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Figure 1: An example demonstrating that our error estimation framework for Monte Carlo denoised images reliably estimates
an image’s ground truth relative squared error (RelSE) distribution at different average sample counts (spp). We show that the
RelSE of a denoised pixel 𝑖 follows a scaled noncentral chi-squared distribution, with scale 𝑠2𝑖 and noncentrality 𝜆𝑖 . To estimate
these parameters, we hierarchically aggregate noisy per pixel estimates of error and variance. Knowing 𝑠2𝑖 and 𝜆𝑖 , we can
accurately estimate the image’s error distribution, visualized per pixel (middle) and as the upper half of a logistic-logarithmic
percentile plot (rightmost), leading to a robust stopping criterion for denoised Monte Carlo image synthesis.

ABSTRACT
We present a practical global error estimation technique for Monte
Carlo ray tracing combined with deep learning based denoising.
Our method uses aggregated estimates of bias and variance to deter-
mine the squared error distribution of the pixels. Unlike unbiased
estimates for classical Monte Carlo ray tracing, this distribution
follows a noncentral chi-squared distribution, under reasonable
assumptions. Based on this, we develop a stopping criterion for
denoised Monte Carlo image synthesis that terminates rendering
once a user specified error threshold has been achieved. Our results
demonstrate that our error estimate and stopping criterion work
well on a variety of scenes, and that we are able to achieve a given
error threshold without the user specifying the number of samples
needed.
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• Computing methodologies→ Rendering.
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1 INTRODUCTION
Monte Carlo algorithms such as path tracing have become the de
facto standard in production rendering [Keller et al. 2015; Chris-
tensen and Jarosz 2016; Pharr 2018], owing to their simplicity of
implementation, ability to handle complex scenes and light trans-
port scenarios, and scalability. Although initially impeded by high
computational costs due to their large sample count requirement,
advances in ray tracing specific hardware as well as image denoising
algorithms have enabled their widespread adoption.

As sample variance between different scenes and across image
space within the same scene is generally inhomogeneous, render-
ing to within an acceptable error threshold can often require some
amount of trial-and-error work as the end user tries to ascertain
a suitable sample count for a given scene. Monte Carlo denoising
which effectively trades variance for bias further complicates this
process as the easily perceived stochastic noise is no longer avail-
able to help guide the artist, and important details may be blurred
out of the image entirely. While recent works have sought to im-
prove the convergence of Monte Carlo denoising through adaptive
sampling [Vogels et al. 2018; Salehi et al. 2022; Firmino et al. 2023],
as well as ensuring consistency [Firmino et al. 2022; Back et al. 2022;
Gu et al. 2022; Back et al. 2023], they do not consider the problem of
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estimating the global error to enable a stopping criterion for Monte
Carlo rendering of a denoised image.

When using an unbiased rendering technique, image error can
simply be estimated using sample variance. This error estimate
can then function as a stopping criterion, and a user can specify a
desired maximum error instead of a sample count [Lee et al. 1985].
With the widespread use of image denoising, we need a different
error estimation method as the denoiser invariably introduces bias
(and an estimator’s mean-squared error, MSE, is the sum of its
variance and squared bias). Most denoisers today are based on deep
learning and the bias they introduce is not obvious.

An error-predicting network [Vogels et al. 2018], a dual-buffering
method [Back et al. 2022], and Stein’s unbiased risk estimate (SURE)
[Li et al. 2012; Firmino et al. 2022] have been used to estimate
the MSE of denoised images. We focus on SURE and consider its
suitability for guiding a stopping criterion. Some of the issues we
tackle are that SURE is very noisy for low sample counts and SURE
really estimates the expected value of per pixel squared error and
not the error of a given realization. Based on our investigation, we
present an improved error estimation method practical as a guide
for stopping of Monte Carlo denoised images. Figure 1 provides an
example of our estimated error in comparison to the ground truth
error at 32 and 512 samples per pixel (spp) on average.

2 RELATEDWORK
A stopping criterion often goes hand-in-hand with adaptive sam-
pling because an estimate of the distribution of error in a rendered
image can serve both purposes. In unbiased rendering, an estimate
of the variance is an estimate of the squared error. For 𝑛 samples in
a pixel, the sum of squared differences between sample and sample
mean is expected to follow a chi-squared distribution with 𝑛 − 1
degrees of freedom. An option is then a per-pixel stopping criterion
that changes with the number of samples based on the maximum
tolerated variance and the cumulative distribution function (cdf) of
the chi-squared distribution [Lee et al. 1985]. In a different approach,
Dippé and Wold [1985] expect an error inversely proportional to
the square root of the number of samples and estimate the factor
of proportionality using rendered pixel values for several differ-
ent sample counts. This factor is used to estimate the number of
samples required in a pixel to end up with a pixel error below a
desired bound. Alternatively, the width of a confidence interval for
the pixel value can be used as a stopping criterion [Purgathofer
1987; Tamstorf and Jensen 1997]. Such early work did not consider
the error of denoised images, but we use the observation that the
squared error follows a chi-squared distribution [Lee et al. 1985].

Adaptive hierarchical integration is a way to improve path trac-
ing convergence by controlling the sampling rate in nodes of a 𝑘d
tree [Kajiya 1986]. One approach is to refine the 𝑘d tree accord-
ing to a variance estimate and the area of each node and then use
a confidence interval and a coverage condition as the stopping
criterion [Painter and Sloan 1989]. With a focus on directional dis-
continuities in the rendered image (edge-like features), Guo [1998]
uses progressive refinement of image blocks to locate the parts of
an image that require more samples. For every progressive update,
each of the few selected pixels in each block is rendered using the
hierarchical integration of Kajiya [1986] with the stopping criterion

of Painter and Sloan [1989]. We take inspiration from this early
work and use a 𝑘d tree to adaptively split the image into blocks
that we use for averaging of noisy per-pixel SURE estimates.

Mitchell [1987] uses a contrast threshold to have a per-pixel
stopping criterion more closely related to visual perception of error.
The contrast of a pixel is computed from different sample values
obtained in a supersampling cell. Other work has applied a percep-
tually based threshold model too [Bolin and Meyer 1998; Ramasub-
ramanian et al. 1999; Myszkowski 2002]. We incorporate spatial
contrast sensitivity in our method with inspiration from the Flip
error metric by Andersson et al. [2020].

Various stopping criteria are based on different pixel quality
metrics. One approach is to use entropy from information theory
and keep refining the image until the samples in a region provide
sufficiently homogeneous information [Rigau et al. 2003a,b; Xu
et al. 2007]. Another metric is based on fuzziness from fuzzy set
theory [Xu et al. 2006]. Some researchers train a discriminator to
learn binary human noise classification (noisy or not) and use it as
a stopping criterion with no user parameter [Constantin et al. 2016;
Takouachet et al. 2017; Buisine et al. 2021a,b]. These approaches
however do not perform error estimation, so we cannot use them
to render an image to be approximately within some error bound.

To have a robust stopping criterion, biased rendering techniques
need an error estimation framework different from the variance-
based approach used for unbiased techniques [Overbeck et al. 2009;
Hachisuka et al. 2010]. Denoising introduces bias and its application
means that another error estimation framework is needed regard-
less of the technique used for rendering the input to the denoiser.
Such error estimation and associated stopping criteria have been
derived for non-neural denoisers [Moon et al. 2013; Kalantari and
Sen 2013]. In the case of neural denoisers, probabilistic error bounds
are not as easily derived.

Because the neural denoiser is more of a black box, we need
more general error estimation techniques. These are either expen-
sive to evaluate or difficult to bound. One approach is per-pixel
error estimation based on the difference between two images ren-
dered with equal sample count (dual-buffering) [Dammertz et al.
2010; Rousselle et al. 2012]. Dammertz et al. [2010] combined this
approach with a hierarchical refinement of image blocks similar
to ours. Back et al. [2022] used the dual-buffer approach together
with a neural denoiser, but this requires rendering and denoising of
two images for each iteration. An error-predicting network [Vogels
et al. 2018] depends on its training dataset and may be arbitrarily
off, making it hard to bound even probabilistically. Use of SURE is
another general error estimation technique [Li et al. 2012; Rousselle
et al. 2013] that has been used with neural denoising [Firmino et al.
2022, 2023]. The usefulness of SURE for estimating the global image
error in the context of neural denoising of Monte Carlo rendered
images is however unknown. Thus, we use hierarchical image block
refinement to improve SURE-based error estimation for neural de-
noising and develop a stopping criterion for denoised Monte Carlo
rendering based on this error estimation.

3 ERROR ESTIMATION FRAMEWORK
Our proposed framework is based on estimating the squared error
distribution over a Monte Carlo denoised image. In Section 3.1, we
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lay out our theoretical assumptions and show that the squared error
of a denoised pixel follows a noncentral chi-squared distribution.
In Section 3.2, we present SURE and extend it to estimate relative
squared error and a modified error metric that incorporates spatial
contrast sensitivity. This is followed by Section 3.3 in which we
detail how to compute SURE using the Jacobian-vector product,
and Section 3.4 where we present an adaptive algorithm for block
averaging the noisy error estimate. In Section 3.5, we show how
these estimates relate to the parameters of the aforementioned
noncentral chi-squared distribution, and finally in Section 3.6 we
present our stopping criterion that is based on computing the upper
percentile of an image’s error distribution. An overview of our error
estimation framework and the steps involved is later detailed in
Algorithm 2.

3.1 Theory
Suppose F : R𝑁 ↦→ R𝑁 is a denoiser and 𝑋 ∈ R𝑁 is a non-
denoised rendered image of 𝑁 pixels times channels. A denoised
Monte Carlo pixel of index 𝑖 is denoted F𝑖 (𝑋 ), and to understand
its error distribution, we can approximate it by a weighted average
of neighbouring pixels plus bias:

F𝑖 (𝑋 ) =𝑊 ⊤𝑖 𝑋 + 𝑏𝑖 (1)

with𝑊𝑖 ∈ R𝑁 and 𝑏𝑖 ∈ R. This approximation equals the first two
terms of the Taylor series of F𝑖 (𝑋 ). Given that the denoiser’s neural
network is at least piece-wise smooth, this approximation should
be well founded for small enough input deviations. Assuming 𝑋
is normally distributed with mean 𝜇 ∈ R𝑁 and covariance matrix
Σ ∈ R𝑁×𝑁 , the random variable F𝑖 (𝑋 ) − 𝜇𝑖 representing the error
of F𝑖 (𝑋 ) is then also normally distributed with mean and variance,
respectively,

𝜇𝑒,𝑖 =𝑊𝑇
𝑖 𝜇 + 𝑏𝑖 − 𝜇𝑖 , 𝑠2𝑒,𝑖 =𝑊𝑇

𝑖 Σ𝑊𝑖 . (2)

We base our assumption of the distribution of 𝑋 on the central
limit theorem, which states that in limit of many samples the dis-
tribution of the sample mean approaches a normal distribution.
Following from these assumptions, the square of F𝑖 (𝑋 ) − 𝜇𝑖 is then
distributed according to a scaled noncentral chi-squared distribu-
tion with one degree of freedom [Muirhead 2009], 𝑠2𝑖 𝜒

2
1,𝜆𝑖 , with

scale and noncentrality, respectively,

𝑠2𝑖 = 𝑠2𝑒,𝑖 , 𝜆𝑖 = 𝜇2𝑒,𝑖/𝑠2𝑒,𝑖 . (3)

It is important to clarify the distinction between the measured
squared error (F𝑖 (𝑋 ) − 𝜇𝑖 )2, often reported in research results, and
its expectation value E[(F𝑖 (𝑋 ) − 𝜇𝑖 )2]. The latter is a constant
while the former follows the aforementioned distribution which is
positively skewed. This positive skewness makes it impractical to
apply a maximum bound on the squared error, even for denoised
images, unless that bound is probabilistic. Figure 2 exemplifies
this distinction. These conclusions regarding the squared error
distribution also extend to relative squared error (RelSE), which is
simply squared error divided by a constant:

RelSE =
(F𝑖 (𝑋 ) − 𝜇𝑖 )2
𝜇2𝑖 + 10−2

. (4)
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Figure 2: Percentile plot of the relative squared error (RelSE)
of a Monte Carlo denoised image (top) and of its distribution
for an individual pixel (bottom). In the top plot, the blue
line shows sorted RelSE, where 𝑋 is rendered with 32 spp.
The orange line shows the expected value of RelSE, com-
puted by rendering 𝑋 4096 times with distinct seeds, and the
shaded regions illustrate different quantiles of the pixel’s
RelSE distribution. In the bottom plot, we show a normalized
histogram of the RelSE of a pixel at the 80th percentile, and
the probability density function of a noncentral chi-squared
distribution with parameters 𝑠2𝑖 = 2.52 × 10−4 and 𝜆𝑖 = 9.42
computed from the 4096 images.

Figure 3: Visualizing SURE (middle) on a positive/negative
color scale. Note the high variance of its per-pixel estimates,
often leading to negative estimates despite the non-negativity
of the actual RelSE (right). This high variance motivates the
hierarchical aggregating of these per-pixel estimates in our
error estimation framework. The estimates are from a 32 spp
rendered and denoised image (left).

3.2 Error Estimation using SURE
Stein’s unbiased risk estimate (SURE) can be used for estimating
the MSE of a point estimate of the mean of normally distributed
random variables in an unbiased manner [Stein 1981]. When used
for estimating the expected value of per-pixel squared errors in
denoised images [Li et al. 2012], its unbiased-ness rests in part on
the assumption that the sample means of the rendered image follow
a normal distribution, an assumption we explore further below. It
is relevant to state that SURE estimates the expected squared error,

E[SURE[F𝑖 (𝑋 )]] = E[(F𝑖 (𝑋 ) − 𝜇𝑖 )2] , (5)
and not the squared error of a given realization, (F𝑖 (𝑋 ) − 𝜇𝑖 )2.
Using SURE, the estimate for the per-pixel expected squared error
of a denoised image is given by [Liu 1994]

SURE[F𝑖 (𝑋 )] = (F𝑖 (𝑋 ) − 𝑋𝑖 )2 + 2(𝐽F (𝑋 ) Σ)𝑖𝑖 − Σ𝑖𝑖 , (6)
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where Σ is the covariance matrix of 𝑋 , which may be estimated
during rendering, and 𝐽F (𝑋 ) is the denoiser’s Jacobian matrix at
𝑋 . The middle term, 2(𝐽F (𝑋 ) Σ)𝑖𝑖 , can be estimated using either
the Monte Carlo SURE method [Ramani et al. 2008; Firmino et al.
2022], or using the Jacobian-vector product [Firmino et al. 2023].

The error estimate introduced above suffers from high variance,
as illustrated in Figure 3, made further challenging by the fact
that we are often interested in the error of denoised images at
relatively low sample counts compared to non-denoised images.
This is especially true when denoising with neural denoisers.

While SURE presents us with a method of estimating the ex-
pected squared error, this metric skews heavily to the brightest
parts of the image. We can improve upon this simply by dividing
by the square of the maximum channel of the denoised pixel, plus
some positive epsilon, yielding a biased estimate of the relative
squared error:

SUREr [F𝑖 (𝑋 )] = SURE[F𝑖 (𝑋 )]
max𝑗∈P(𝑖 ) F𝑗 (𝑋 )2 + 10−2

, (7)

where P(𝑖) denotes the pixel of index 𝑖 , such thatmax𝑗∈P(𝑖 ) F𝑗 (𝑋 )
is the maximum value of that pixel’s three color channels. The bias
stems from the fact that in general E[1/𝑋 ] ≠ 1/E[𝑋 ], and from
the dependence between the two estimates in the ratio. Since the
variance of F𝑖 (𝑋 ) is small relative to that of the numerator, we
expect this additional bias to be acceptable for our purposes.

Qualitative inspection of error images reveals that relative squared
error often peaks on single pixels near small aliased details such as
sharp edges, which may not be perceptually significant under regu-
lar viewing conditions. Inspired by the FLIP errormetric [Andersson
et al. 2020], we can augment the error estimate by incorporating spa-
tial contrast sensitivity, expressed as a series of low-pass filters in
the 𝑌𝑐𝑥𝑐𝑧 opponent space, with the width and shape of these filters
being determined by the human eye’s sensitivity to spatial changes
in the 𝑌 , 𝑐𝑥 , and 𝑐𝑧 channels. We rely on the implementation by
Andersson et al. [2020] to define these filters. As the operations
involved, color transformations and filter convolutions, are linear,
we can derive an unbiased error estimate that incorporates these.
Concretely, given a matrix𝑀 ∈ R𝑁×𝑁 , we find that

SURE𝑀 [F𝑖 (𝑋 )] = (𝑀F (𝑋 ) −𝑀𝑋 )2𝑖 +(𝑀Σ(2𝐽⊤F (𝑋 ) − 𝐼 )𝑀⊤)𝑖𝑖 , (8)

such that E[SURE𝑀 [F𝑖 (𝑋 )]] = E[(𝑀F (𝑋 )−𝑀𝜇)2𝑖 ], with notation
as in Eq. 6 and 𝐼 as the identity matrix. The proof follows from the
substitution of 𝑋 with 𝜇 + 𝜖 , where 𝜖 ∼ N(0, Σ), and from Stein’s
Lemma. Denoting𝑀𝑖 as the 𝑖-th row of𝑀 , then

(𝑀𝑖F (𝑋 ) −𝑀𝑖𝑋 )2 = (𝑀𝑖F (𝑋 ) −𝑀𝑖𝜇 −𝑀𝑖𝜖)2
= (𝑀𝑖F (𝑋 ) −𝑀𝑖𝜇)2 − 2(𝑀𝑖𝜖) (𝑀𝑖F (𝑋 ) −𝑀𝑖𝜇) + (𝑀𝑖𝜖)2 . (9)

We expand the middle term to calculate its expected value as follows

E[(𝑀𝑖𝜖)𝑀𝑖 (F (𝑋 ) − 𝜇)] = E

𝑁∑︁
𝑗=1
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)
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Figure 4: Comparing relative squared error with (right) and
without (middle) incorporating spatial contrast sensitivity, as
described in Sec. 3.2. The modified metric places less empha-
sis on error that is not perceptually relevant under regular
viewing conditions, such as along edges and fine details that
are not easily perceived in the denoised image (left).

=
𝑁∑︁
𝑗=1

𝑀𝑖 𝑗

(
𝑁∑︁
𝑘=1

𝑀𝑖𝑘E[𝜖 𝑗F𝑘 (𝑋 )]
)

=
𝑁∑︁
𝑗=1

𝑀𝑖 𝑗

(
𝑁∑︁
𝑘=1

𝑀𝑖𝑘

(
𝑁∑︁
𝑙=1

Σ 𝑗𝑙E

[F𝑘
𝜕𝑥𝑙
(𝑋 )

]))
=

𝑁∑︁
𝑗=1

𝑀𝑖 𝑗

(
𝑁∑︁
𝑘=1

𝑀𝑖𝑘 (E[𝐽F (𝑋 )]Σ)𝑘 𝑗
)
=

𝑁∑︁
𝑗=1

𝑀𝑖 𝑗
(
𝑀 E[𝐽F (𝑋 )]Σ

)⊤
𝑗𝑖

=
(
𝑀 (𝑀 E[𝐽F (𝑋 )]Σ)⊤

)
𝑖𝑖 = (𝑀ΣE[𝐽⊤F (𝑋 )]𝑀⊤)𝑖𝑖

The third equality involves use of the multivariate form of Stein’s
Lemma [Liu 1994], and a similar procedure can be used to show
that E[(𝑀𝑖𝜖)2] = (𝑀Σ𝑀⊤)𝑖𝑖 . The proof concludes by applying the
expected value operator to Eq. 9 and using the derived solutions,
then rearranging it in the form of the right-hand side of Eq. 8,
thus showing it to be an estimate of the expected perceptually
augmented squared error. The relative version of this estimate is
then

SUREr𝑀 [F𝑖 (𝑋 )] =
SURE𝑀 [F𝑖 (𝑋 )]

max𝑗∈P(𝑖 ) (𝑀F (𝑋 ))2𝑗 + 10−2
. (10)

Figure 4 illustrates the difference in error magnitudes when incor-
porating spatial contrast sensitivity, expressed in the matrix𝑀 . We
later report results with and without this addition.

3.3 Computing SURE
To estimate the terms

2(𝐽F (𝑋 ) Σ)𝑖𝑖 and (𝑀Σ(2𝐽⊤F (𝑋 ) − 𝐼 )𝑀⊤)𝑖𝑖
of Eqs. 6 and 8, respectively, we derive the quadratic form whose
expectation matches the desired quantity. It is known, given a
square matrix Λ ∈ R𝑁×𝑁 and a centered random-variable 𝜖 with
covariance matrix Σ, that E[𝜖𝑇Λ𝜖] = tr[ΛΣ] [Muirhead 2009]. It
can also be shown that E[𝜖𝑖 (Λ𝜖)𝑖 ] = (ΛΣ)𝑖𝑖 . From this, we arrive
at the estimates

E[𝜖𝑖 (𝐽F (𝑋 )𝜖)𝑖 ] = (𝐽F (𝑋 ) Σ)𝑖𝑖 (11)
E[(𝑀𝜖)𝑖 (𝑀 (2𝐽F (𝑋 ) − 𝐼 )𝜖)𝑖 ] = (𝑀Σ(2𝐽⊤F (𝑋 ) − 𝐼 )𝑀⊤)𝑖𝑖 . (12)

The random variable 𝜖 is sampled fromN(0, Σ̂), where Σ̂ is the esti-
mated covariance matrix of 𝑋 . The matrix Σ̂ is in practice diagonal
except for elements representing pairs of color channels from the
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same pixel. However, since Σ̂ may not be positive semi-definite, we
use singular value decomposition to generate 𝜖 . Computing 𝐽𝐹 (𝑋 )𝑣
for 𝑣 ∈ R𝑁 can be done using the Jacobian-vector product (also
known as forward-mode auto-differentiation) [Baydin et al. 2018],
and 𝑀𝑣 is implicitly calculated by applying the corresponding op-
erations to 𝑣 .

3.4 Block Averaging of SURE
Individual per-pixel error estimates using SURE, although unbiased,
are unreliable due to their high variance as previously illustrated.
We propose averaging neighbouring error estimates by means of a
𝑘d tree over image space, which adaptively splits blocks of pixels
along the block’s longest axis as long as the block-averaged SURE
estimates are expected to remain reliable.

In the homoskedastic case (Σ = 𝜎2𝐼 ), results from Bellec and
Zhang [2021] imply SURE[F (𝑋 )] is within a small fraction of the
actual error ∥𝜇−F (𝑋 )∥2 when the actual error is of an order greater
than 𝜎2𝑁 1/2. For clarity, we rewrite the stated inequality as:

𝑁 −1/2
∑︁

𝑖∈[1..𝑁 ]
𝜎2 ≪

∑︁
𝑖∈[1..𝑁 ]

SURE[𝐹𝑖 (𝑋 )] .

We base the splitting criterion of our 𝑘d tree on this result and split
a given block B if the following condition would hold true for both
of its children blocks, B1 and B2, and their intersection with each
of the color channels C𝑘 , 𝑘 ∈ {1, 2, 3}:

|B𝑗 ∩ C𝑘 |−1/2
∑︁

𝑖∈B𝑗∩C𝑘
Σ̂𝑟𝑖𝑖 <

∑︁
𝑖∈B𝑗∩C𝑘

SUREr [F𝑖 (𝑋 )], (13)

where Σ̂𝑟𝑖𝑖 = Σ̂𝑖𝑖/(max𝑗∈P(𝑖 ) F𝑗 (𝑋 )2 + 10−2). In the case of using
SUREr𝑀 then an estimate of (𝑀 Σ̂𝑀⊤)𝑖𝑖 is used in place of Σ̂𝑖𝑖 . Fig-
ure 5 exemplifies the result of recursively applying this splitting
criterion, which is detailed in Algorithm 1.

ALGORITHM 1: Adaptive block-wise splitting of image plane.

Input :Estimated relative covariance matrix Σ̂r ∈ R𝑁 ×𝑁 (sparse
3 × 3 block diagonal), and error estimates SUREr ∈ R𝑁 .

Output :Disjoint set of blocks {B0, B1, ...} spanning the image.

ComputeBlocks(Σ̂r, SUREr, B ← Block(Width,Height, 3))
1 if LongestAxisLength(B) > 1 then
2 splitBlock← true
3 B1, B2 ← SplitAlongLongestAxis(B)
4 foreach color channel𝑘 ∈ {1, 2, 3} do
5 a← Sum(Σ̂r, B1∩C𝑘 )/

√︁
| B1 ∩ C𝑘 | < Sum(SUREr, B1∩C𝑘 )

6 b← Sum(Σ̂r, B2∩C𝑘 )/
√︁
| B2 ∩ C𝑘 | < Sum(SUREr, B2∩C𝑘 )

7 splitBlock← splitBlock and𝑎 and𝑏
8 if splitBlock then
9 B1 ← ComputeBlocks(Σ̂r, SUREr, B1 )

10 B2 ← ComputeBlocks(Σ̂r, SUREr, B2 )
11 return {B1, B2}
12 return {B}

3.5 Estimating Error Distribution Parameters
While the adaptive 𝑘d tree is useful for finding suitable minimum
block sizes for which the mean SURE value is reliable, this can
still result in an overly coarse error estimate over image space due

128spp 512spp

Figure 5: Block averaged SURE and false color visualization
of the blocks, for two different sample counts, and for which
the block sizes were computed by recursively applying the
splitting criterion of Eq. 13, as in Algorithm 1 (magnitude of
SURE exaggerated for clarity).

s2i s2i (𝜆i + 1) E[(Fi (X) − 𝜇i)2/...]

Figure 6: Estimated parameters of the per-pixel error distri-
bution 𝑠2𝑖 𝜒

2
1,𝜆𝑖 (magnitudes exaggerated for clarity), from a

32 spp rendering. The scale parameter 𝑠2𝑖 (left) is the denoised
pixel’s estimated relative variance, while 𝑠2𝑖 (𝜆𝑖 + 1) (middle),
with 𝜆𝑖 calculated as in Eq. 14, corresponds to the error dis-
tribution’s mean. The rightmost images, which the middle
image should ideally match, shows the expected RelSE and
was computed from 20 independent image.

to the large block size, especially at lower sample counts, which
do not capture the heterogeneous error distribution within each
block. To estimate values relating to the image’s error distribution,
while capturing its heterogeneity, we propose modelling the er-
ror distribution of each pixel 𝑖 as a scaled noncentral chi-squared
distribution with one degree of freedom, 𝑠2𝑖 𝜒

2
1,𝜆𝑖 . We set the scale pa-

rameter 𝑠2𝑖 equal to the denoised pixel’s estimated relative variance
Varr [F𝑖 (𝑋 )], and set the noncentrality parameter such that the er-
ror’s mean, E[𝑠2𝑖 𝜒21,𝜆𝑖 ] = 𝑠2𝑖 (𝜆𝑖 + 1), is equal to the block-estimated
SURE value scaled in proportion to the block’s per-pixel variance
estimates:

𝜆𝑖 = max
( ∑

𝑗∈B(𝑖 )∩C(𝑖 ) SUREr [F𝑗 (𝑋 )]∑
𝑗∈B(𝑖 )∩C(𝑖 ) Varr [F𝑗 (𝑋 )] + 10−6

, 1
)
− 1 (14)

where B(𝑖) and C(𝑖) denote the block and color channel of index 𝑖 ,
respectively. Figure 6 visualizes the estimated parameters and their
relation to the expected relative squared error.

3.6 SURE-Based Stopping Criterion
We assume rendering is performed progressively, with additional
samples being rendered with each progressive update and that
these samples may be distributed uniformly or according to some
adaptive sampling scheme. We also assume that the denoiser F has
either negligible or vanishing bias with increasing sample count,
such that achieving the desired quality is possible. This is achieved
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using a consistent denoiser [Back et al. 2023] or denoising with
post-correction [Firmino et al. 2022; Gu et al. 2022].

To propose a robust and practical implementation of a stopping
criterion for denoised Monte Carlo rendering, so as to automatically
terminate renderingwhen somemeasure of quality is achieved, with
this measure being consistent across scenes, we formalize such a
criterion as any predicate function befitting the following form:

𝑃F (𝑋 |𝜏) : R𝑁 ↦→ {0, 1}
where 𝜏 is a user parameter, returning 1 when rendering should
terminate. To evaluate the performance of such a stopping func-
tion, it is useful if there exists a ground truth stopping function,
𝑃
𝑔𝑡
F (𝑋 |𝜏, 𝜇), having knowledge of the reference image 𝜇 = E[𝑋 ].

Given such a function, we wish to find a practical method for com-
puting 𝑃F (𝑋 |𝜏) that minimizes its discrepancy with the ground
truth.

Given parameters 𝑠2𝑖 and 𝜆𝑖 , the cumulative distribution function
𝐹𝑖 (𝑥) of the proposed error distribution 𝑠2𝑖 𝜒

2
1,𝜆𝑖 of pixel 𝑖 can be

computed, as can the cumulative distribution function of the error
distribution of the entire image,

𝐹 (𝑥) = (1/𝑁 )∑𝑁
𝑖 𝐹𝑖 (𝑥) . (15)

Given an error threshold 𝜏 , we can then estimate the proportion of
pixels whose error is below that threshold which forms the basis of
our proposed stopping function:

𝑃F (𝑋 |𝑝, 𝜏) = 1 [𝐹 (𝜏) ≥ 𝑝] . (16)
In practice, we fix the parameter 𝑝 ∈ [0, 1] to 0.999, which would
correspond to 99.9% of the pixels having error less than the user
specified threshold 𝜏 . Computation of the ground truth stopping
function, for evaluation purposes, involves merely comparing the
error at the given percentile to the threshold. An overview of our
complete error estimation framework is in Algorithm 2.

4 IMPLEMENTATION
In our experiments, we used Mitsuba 3 [Jakob et al. 2022] CPU ren-
derer to render images and Intel’s Open Image Denoise [Áfra 2019]
in combination with a post-correction denoising method [Firmino
et al. 2022] to denoise images and to avoid the otherwise non-
vanishing bias from preventing stopping. Iterative adaptive sam-
pling, as described by Firmino et al. [2023], was also used in all of
our experiments to achieve faster error convergence over uniform
sampling. Our stopping criterion was also evaluated iteratively,
with an iteration step size of 32 (average) samples per pixel. This
is reflected in our terminal sample counts being multiples of 32.
Denoising and computation of the pixel-wise error estimates (Sec-
tion 3.3) was performed on the GPU using PyTorch [Paszke et al.
2019], while the block averaging of SURE and computation of the
distribution parameters and stopping function (Sections 3.4, 3.5, and
3.6) was performed on the CPU. We tested our method on a set of 20
publicly available scenes [Bitterli 2016]. For a representative scene
(BATHROOM) at 1024×1024 resolution, denoising and computation
of SURE took 90 milliseconds, block averaging 29 milliseconds, and
computation of the stopping function another 11 milliseconds. Com-
pared to the mean per-iteration rendering duration of 3.2 seconds,
the relative overhead is only 4%. When compared to the adaptive
sampling of Firmino et al. [2023], the inclusion of our stopping

ALGORITHM 2: Overview of our error estimation framework.
Input :Current iteration’s noisy rendered estimates 𝑋 ∈ R𝑁 ,

estimates of pixel channel covariance matrix Σ̂ ∈ R𝑁 ×𝑁
(sparse 3 × 3 block diagonal), and error threshold 𝜏 .

Output :Result of our SURE-based stopping criterion.

// Denoise and Compute SURE (Section 3.3)

1 𝜖 ← SampleNormal(0, Σ̂)
2 F(𝑋 ), ( 𝐽 𝜖 ) ← EvaluateDenoiserAndJVP(𝑋, 𝜖)

3 SURE ← (F(𝑋 ) − 𝑋 ) ⊙ (F(𝑋 ) − 𝑋 ) + 𝜖 ⊙ (2( 𝐽 𝜖 ) − 𝜖 )
4 SUREr ← SURE / (PixelWiseMax(F(𝑋 ))2 + 10−2 )
5 Varr ← ( 𝐽 𝜖 ) ⊙ ( 𝐽 𝜖 ) / (PixelWiseMax(F(𝑋 ))2 + 10−2 )
6 Σ̂r ← Σ̂ / (PixelWiseMax(F(𝑋 ))2 + 10−2 )
// Block splitting (Section 3.4, Algorithm 1)

7 {B0, B1, ...} ← ComputeBlocks(Σ̂r, SUREr)
// Estimating distribution parameters (Section 3.5)

8 foreach index 𝑖 ∈ [1..𝑁 ] do
9 C𝑘 ← ColorChannelOf(𝑖 )

10 B ← BlockOf(𝑖, {B0, B1, ...})
11 𝜆𝑖 ← max

(
Sum(SUREr,B∩C𝑘 )

Sum(Varr,B∩C𝑘 )+10−6
, 1

)
− 1

12 𝑠2𝑖 ← Varr𝑖
// Compute SURE-based stopping function (Section 3.6)

13 𝐹 ← 0
14 foreach index 𝑖 ∈ [1..𝑁 ] do
15 𝐹 ← 𝐹 + ComputeNoncentralChiSquaredCDF(𝜏/𝑠2𝑖 , 𝜆𝑖 )/𝑁
16 return 𝐹 ≥ 99.9%

criterion incurs a runtime penalty of just 1-2%, see Table 2, because
denoising and the Jacobian-vector product are computed for the
adaptive sampling in any case.

5 RESULTS AND DISCUSSION
Our error estimation framework estimates parameters of the under-
lying error distributions to evaluate the mixed cumulative distribu-
tion function at the specified threshold. We evaluate the proposed
stopping criterion by comparing it to its ground truth version,
which computes the RelSE using the reference image and finds the
percentage of pixels below the specified threshold. In all our results,
we fix the percentile value to 99.9%, such that quality can be tuned
by only one parameter. Results are shown in Table 1 for our experi-
ments using SUREr and SUREr𝑀 . We use smaller error thresholds
for the SUREr𝑀 experiments as the magnitude of the estimates is
generally smaller. In our results, we deviate from the original defi-
nition of Eq. 4 for relative square error, replacing its denominator
with that of Eq. 7 (or Eq. 10), so as to match our estimates.

Our experiments show good agreement, here defined as stopping
within one third or one step (32 samples per pixel) of the true sample
count, in 52 out of 60 cases (87%), and in 49 out of 60 cases (82%)
for the SUREr and SUREr𝑀 experiments, respectively. Failure cases
generally appear to be scene-dependent, spanning both experiments
and different error thresholds. We examined one of these cases
in Figure 10, finding that scene elements giving rise to extreme
sample variance lead to slow convergence and erroneous error
estimates. Pixels with such sample distributions would require more
samples for their means to converge to a normal distribution (never
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...𝑠2𝑖 (𝜆𝑖 + 1) --𝑠2𝑖 𝜒2𝑖,𝜆𝑖–RelSE
128spp, 𝑠2𝑖 (𝜆𝑖 + 1)

RelSE
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Figure 7: Here we visualize, in false color, the estimated ex-
pected RelSE (based on the computed parameters 𝑠2𝑖 and 𝜆𝑖 ;
upper left cuts) and the actual RelSE (lower right cuts), for
two different scenes (KITCHEN and CAR) and at two different
stopping thresholds (0.050 and 0.010). The percentile error
plots (rightmost), show the predicted error from the distri-
bution of 𝑠2𝑖 𝜒

2
1,𝜆𝑖 (computed by inverting the CDF of Eq. 15),

and the actual error (RelSE). The estimated expected RelSE
𝑠2𝑖 (𝜆𝑖 + 1) is also plotted (its line computed by sorting indi-
vidual estimates), which is lower than the actual error at the
upper percentiles as predicted.

converging if variance is infinite), breaking one of the assumptions
underlying SURE.

We compare some terminal images for different error thresholds
in Figure 8, and in Figure 7 we visualize the relative squared error
images and show how our framework accurately estimates different
percentiles of the images’ relative squared error distribution, similar
to how is shown in Figure 1.

Our framework accounts not only for variance but also for the
bias in denoised images, as a consequence of relying on SUREwhich
estimates both quantities. In Figure 9 we compare our error estima-
tion to previous work which only estimates variance [Firmino et al.
2023] and consequently underestimates squared error. From this
comparison we conclude that our method and its block averaging
of SURE, reliably estimates the non-centrality parameter 𝜆𝑖 (Eq. 14),
and thus accounts for bias when estimating squared error.

The practical use case of our proposed framework and its associ-
ated stopping criterion is in enabling the automatic termination of
Monte Carlo denoised rendering at an appropriate sample count,
an otherwise time consuming trial-and-error process for the user.

6 LIMITATIONS AND FUTURE WORK
Sources of Bias in Error Estimates. Applying SURE to Monte Carlo
denoising requires assuming the sample means are normally dis-
tributed, else the estimate may be biased. Provided sample variance
is finite and samples independent, the sample mean’s distribution
tends to a normal distribution in the limit of many samples, as per
the central limit theorem. How many samples are required, for the
assumption to be valid, cannot be answered in general and depends
on the sample distributions, which in practice are diverse [Elek
et al. 2019], possibly plagued by outliers [Zirr et al. 2018], or having
infinite variance [Kalos 1963; Georgiev et al. 2013].

Top-Down Block Size Determination. The splitting criteria defined
in Eq. 13 will fail to split if the estimated error from SURE is er-
roneously small or negative. This may happen due to the afore-
mentioned bias or due to variance inherent in the estimates despite
aggregating. For this reason, better error estimation results are
sometimes had when pre-splitting to smaller blocks (e.g. 200 × 200
pixel sized blocks) before applying the criterion. The result by Bel-
lec and Zhang [2021] which inspires our criterion, does not account
for the extra variance from our estimation of the covariance matrix
Σ and its heteroskedasticity.

Perceptually Relevant Error. We incorporated spatial contrast sensi-
tivity into the squared error metric used in this work to increase its
perceptual relevance, similar to Anderssson et al. [2020] in the con-
struction FLIP. Due to our requirement that these additions involve
only linear operations, and being limited to squared differences, we
did not incorporate other perceptual aspects into the metric, and
differences were computed in the linear RGB color space with each
pixel’s channels being weighted equally. Finding a more percep-
tually relevant metric which may still be estimated unbiasedly by
Eq. 8 remains future work.

7 CONCLUSION
We have presented a framework for estimating the error of Monte
Carlo denoised images. Noting that each pixel’s squared error
should follow a noncentral chi-squared distribution, we estimate
the distribution’s parameters by aggregating estimates of bias and
variance by way of a 𝑘d tree. Given these parameters, we can es-
timate the error distribution of the denoised image, including the
very top percentiles, which we use to guide our stopping criterion.
In our experiments, we find close agreement between our terminal
sample counts and the sample count at which the specified error
threshold is actually achieved. Our error estimation framework
thus provides a reliable method of finding a suitable sample count
for a given desired quality, without the need for trial-and-error by
the end user.
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Table 1: To evaluate our proposed stopping criterion, we compare its terminal sample count to the sample count at which the
given threshold 𝜏 is actually achieved by 99.9% of pixels (values in parentheses), for twenty different scenes and six different
thresholds. For the top three rows, the threshold is specified as relative squared error, and for the bottom three rows it is as
perceptual relative squared error which incorporates spatial contrast sensitivity (denoted by the subscript 𝑀). The cell colors
indicate if our criterion stopped too early (in red) or too late (in blue), in terms relative to the parenthesized values and with
colors determined by the scale (left). Light red or blue indicate that the terminal sample count from our stopping criterion
closely agrees with ground truth.
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(1536) (64) (448) (64) (64) (512) (64) (64) (2784) (64) (160) (64) (288) (96) (192) (64) (64) (64) (64) (1408)

0.020 4672 320 1408 128 64 1824 64 160 7808 128 640 64 992 256 416 96 96 96 64 4192
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Figure 8: Comparing terminal images for different error thresholds, we note their general differences in terms of perceived
quality. Differences are notable, for example in the blurring of foliage details (top row), between the 0.010𝑀 and 0.010 error
thresholds, the former’s metric incorporating spatial contrast sensitivity while the latter does not. While this blurring is
noted in close ups of the image denoised to the lowest of the perceptual thresholds, this is expected as those details are not
easily perceived under regular viewing conditions of the whole image, and therefore not as penalized by the metric. Scenes are
LIVING-ROOM and BEDROOM for the top and bottom rows respectively.
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Table 2: Equal quality (8×32spp iterations) comparison of total runtime for our error estimation framework (top values) against
the adaptive sampling method of Firmino et al. [2023] (values in parentheses), for the 20 different scenes listed in Table 1. In this
scenario, the inclusion of our proposed stopping criterion incurs a small overhead of only 1-2% as denoising and computation
of the Jacobian-vector product are already performed.
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Figure 9: We compare our SURE-based error estimation
against an error estimate that ignores the denoiser’s bias, re-
lying solely on estimates of its variance [Firmino et al. 2023].
We do this as though its squared error were chi-squared
distributed (𝑠2𝑖 𝜒

2
1 ), rather than according to the noncentral

chi-squared distribution (𝑠2𝑖 𝜒
2
1,𝜆𝑖 ) for which our SURE-based

framework estimates the noncentrality parameter 𝜆𝑖 . The
method based on previous work, shown in red in the above
percentile error plots, clearly underestimates the error, in-
dicating that an error estimation framework for denoised
images should account for bias.
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Figure 10: Examining one of the failure cases, LIVING-ROOM-3,
we found excessive sample variance arising from volumetric
scattering within the red vases, leading to inaccurate error
estimates and early stopping. Replacing the culpable geome-
try’s material with an opaque material leads to significantly
better results. The table and scale follow the same definitions
as for Table 1.
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