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Introduction
Fully vs Under Sampled MRI
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Introduction
Dynamic MRI from partial measurements

The imaging equation in dynamic MRI can be written as,

S(k , t) =

∫
γ(x , t)e−i2π(k ·x)dx + n(k , t)

We assume the noise can be modelled by an additive white Gaussian
distribution on both real and imaginary components (with i.i.d. random
variables) .
Reconstructing γ(x , t) from a limited number of measurements of
S(k , t) (sub-Nyquist data) is the inverse problem of interest.
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Introduction
Compressed Sensing in Dynamic MRI
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Introduction
Fast imaging methods previously proposed

Many techniques to tackle this inverse problem in dynamic MRI rely on
the assumption that a Fourier transform along the temporal dimension
(often called (x − f )-space) returns an approximately sparse signal,
because the original images in time exhibit significant correlation
and/or periodicity.
This prior knowledge about a sparse (x − f )-space has been used in
techniques such as

UNFOLD : (Madore et.al., 1999) uses lattice under-sampling
scheme that makes aliasing artefacts in x-f domain easily
removable with a simple filter
k − t-BLAST : (J.Tsao, et.al, 2003), uses variable-density
sampling scheme that provide lowspatial resolution approximation
of the x-f space (training data) which gives a rough estimate of the
signal distribution, and is then used to guide the reconstruction

Additionally the compactness of the signal distribution is implicitly
exploited.
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Introduction
Compressed Sensing Methods

Compressed sensing suggests that if the signal of interest is sparse (in
some domain or in its own), it is possible under some assumptions to
reconstruct the signal exactly with high probability with many fewer
samples than the standard Shannon-Nyquist theory recommends.
CS has been applied to MRI (M. Lustig, D. L. Donoho, and J. M. Pauly
2007) and in particular techniques have been developed specifically
for dynamic MRI, such as

k − t-SPARSE : (M. Lustig, et.al. 2003,2006), use random
under-sampling scheme to produce incoherent, noisy like
artefacts that are removed by denoising via sparsity (l1 norm)
k − t-FOCUSS : (H. Jung, et.al., 2007,2009), first estimates a
low-resolution version of the x − f -space prior to a CS
reconstruction using the FOCUSS algorithm (I. F. Gorodnitsky and
B. D. Rao, 1997), a general estimation method.
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Introduction
Notation

A finite-dimensional spatio-temporal MRI model is denoted

y = E(x) + n

where
y ∈ Cp represents the stacked (k-t)-space measurements vector,
E : CNx Ny Nt → Cp is the MRI encoding operator modelling both the
sub-Nyquist sampling and Fourier transform with P � NxNyNt ,
∈ CNx Ny Nt is the vectorized dynamic sequence (Nt images of

dimensions Nx × Ny ) to recover, and
n ∈ Cp is the noise vector.

The task of finding x is a discrete linear illposed inverse problem.
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Antialiasing

Regular subsampling leads to aliasing
Random sampling offsets aliasing to noise
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KT-BLAST

KT-BLAST (Broad-use Linear Acquisition speed-up Technique) :
J.Tsao, P.Boesinger, K.P. Preuessman, Mag. Res. Med, 2003

k-space sampled regularly,
interleaving samples in time
ignoring time implies a
high-resolution image
low resolution used as prior to
“unalias” the data.
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KT-BLAST
Algorithm

In x− f -space, aliasing requires solution of an undertermined problem

ρalias = Aρ

1 Put ρf=0 as the “DC” image (integral over time).
2 Estimate a prior distribution M = diag

[
ρlowres

]
3 Solve ρalias = AM(M−1ρ)
⇒ ρ = M2AT(AM2AT)−1ρalias

This has a block decompotion since each aliased component is
the sum of a small number of points in x− f -space

More generally

ρ = ρbaseline + ΓρAT(AΓρAT + Γe)−1ρalias

with Γρ the covariance of a training set, and Γe the covariance of noise.
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KT-BLAST
1D example
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Low-Rank + Sparse Methods
Low Rank Recovery for Dynamic MRI
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Low-Rank + Sparse Methods
Outline

Approaches based on low-rank matrix completion for dynamic MR
imaging are based on the formulation of the Casorati matrix.
Each column represents a vectorized complex-valued MR image
xn ∈ CNx Ny (J. P. Haldar and Z.-P. Liang, 2010), so that

X = [x1, . . . , xNt ] ∈ CNx Ny×Nt .

In dynamic MR imaging, the Casorati matrix X is very likely to be
approximately low-rank, where only a few singular values are
significant, because of the high correlation between each images.
the property of being low-rank for matrices can be seen as the
analogous sparsity concept for vectors in CS.
The finite-dimensional MRI model can be written as

y = E(X ) + n

where now E : CNx Ny×Nt → CP (P � NxNy × Nt ) and
X ∈ CNx Ny×Nt represents the matrix to estimate.
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Low-Rank + Sparse Methods
Low Rank and Nuclear Norm

Similarly to the L0 norm in CS reconstruction, rank minimization
subject to a data fidelity term becomes computationally intractable
as the dimension of the problem increases.
⇒ Change rank penalty to the nuclear norm, and relax the
equality constraint.
Nuclear norm (trace norm or Schatten p-norm with p = 1) is the
convex envelope of the rank operator (B. Recht, M. Fazel, and P.
A. Parrilo, 2010) ||X||∗ =

∑
i

σi(X)

In its Lagrangian form, this leads to a nuclear norm regularized
linear least squares problem which can be solved efficiently using
proximal gradient method (K. C. Toh and S. Yun, 2010),
it is also possible to solve variants of the rank minimization
problem without the use of nuclear norm, for example based on
PowerFactorization (J. P. Haldar and D. Hernando, 2009).
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Low-Rank + Sparse Methods
Combined Method

low-rank-plus-sparsity methods (Lingala et.al. 2011, Zhao et.al.
2012) formulate the minimization problem as,

minX

[
1
2
||y − E(X)||2 + αψrank(X) + βφsparse(X)

]
k − t-SLR : ψrank(X)→ ||X||pp (non-convex Shatten p-norm),
and φsparse → TV(X)
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Low-Rank + Sparse Methods
Other work
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Robust Principle Component Analysis

RPCA decomposes a matrix into low-rank and sparse
minL,S [|L|∗ + λρ|S|1] s.t .X = L + S

uses ADMM with
Sτ (Y) = sgn(Y)max(|Y| − τ,0)

D(Y) = USτ (W)VT
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Robust Principle Component Analysis
k − t-RPCA, (Trémoulhéac, Dikaios, Atkinson, A, 2014)

An ADMM algorithm for undersampled k − t data with low rank
plus sparsity constraint.
Fourier transform in time is used for sparsifying

minP,Q,L,S

[
1
2
||y − E(L + S)||2 + µ (|P|∗ + λρ|Q|1)

]
s.t .

{
P = L
Q = FS

Associated augmented Lagrangian function

LA =
1
2
||y − E(L + S)||2 + µ|P|∗ + µλρ|Q|1

+
δ1

2
||L + δ−1

1 Z1 − P||22 +
δ2

2
||FS + δ−1

2 Z2 −Q||22

minimised over P,Q,L,S seperately, followed by updating of
Lagrangian variables Z1,Z2.
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Robust Principle Component Analysis
k − t-RPCA algorithm
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Results
Numerical Phantom
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Results
MRI data
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Results
Quantitative Results
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Results
comparison of methods
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Accelerated Proximal Gradient Method
NNAPG
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Accelerated Proximal Gradient Method
NNAPG results
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Summary and Outlook

two methods for reconstruction of low-rank and sparse
components from under-sampled dynamic MRI

1 k-t RPCA, a motion and contrast enhancement separation model
for under-sampled dynamic MRI based on low-rank plus sparse
decomposition

2 k-t NNAPG, a low-rank matrix recovery method for accelerated
dynamic MRI that is quite efficient and fast in terms of
computational time

Enables faster dynamic MR imaging while providing a flexible
separation of motion and contrast enhancement
Is there an optimal random under-sampling scheme for low-rank
methods?
Extend methods to parallel imaging
Develop a sparsifying transform for dynamic MR data
Incorporate motion correction into the reconstruction
Going to higher dimension: tensor approaches, 3D imaging
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