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Introduction

Fully vs Under Sampled MRI
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Introduction

Dynamic MRI from partial measurements

The imaging equation in dynamic MRI can be written as,

<

S(k,t) = / y(x, t)e 2" Xdx + n(k, t)

We assume the noise can be modelled by an additive white Gaussian
distribution on both real and imaginary components (with i.i.d. random
variables) .

Reconstructing v(x, t) from a limited number of measurements of
S(k, t) (sub-Nyquist data) is the inverse problem of interest.
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Introduction

Compressed Sensing in Dynamic MRI
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Introduction

Fast imaging methods previously proposed

Many techniques to tackle this inverse problem in dynamic MRI rely on
the assumption that a Fourier transform along the temporal dimension
(often called (x — f)-space) returns an approximately sparse signal,
because the original images in time exhibit significant correlation
and/or periodicity.
This prior knowledge about a sparse (x — f)-space has been used in
techniques such as
@ UNFOLD : (Madore et.al., 1999) uses lattice under-sampling
scheme that makes aliasing artefacts in x-f domain easily
removable with a simple filter
@ k — t-BLAST : (J.Tsao, et.al, 2003), uses variable-density
sampling scheme that provide lowspatial resolution approximation
of the x-f space (training data) which gives a rough estimate of the
signal distribution, and is then used to guide the reconstruction
Additionally the compactness of the signal distribution is implicitly
exploited.
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Introduction
Compressed Sensing Methods

Compressed sensing suggests that if the signal of interest is sparse (in
some domain or in its own), it is possible under some assumptions to
reconstruct the signal exactly with high probability with many fewer
samples than the standard Shannon-Nyquist theory recommends.

CS has been applied to MRI (M. Lustig, D. L. Donoho, and J. M. Pauly
2007) and in particular techniques have been developed specifically
for dynamic MRI, such as

@ k — t-SPARSE : (M. Lustig, et.al. 2003,2006), use random
under-sampling scheme to produce incoherent, noisy like
artefacts that are removed by denoising via sparsity (11 norm)

@ k — t-FOCUSS : (H. Jung, et.al., 2007,2009), first estimates a
low-resolution version of the x — f-space prior to a CS
reconstruction using the FOCUSS algorithm (I. F. Gorodnitsky and
B. D. Rao, 1997), a general estimation method.
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Introduction
Notation

A finite-dimensional spatio-temporal MRl model is denoted
y=EX)+n

where
@ y c CPrepresents the stacked (k-t)-space measurements vector,

e E:CNMWNi _, CPis the MRI encoding operator modelling both the
sub-Nyquist sampling and Fourier transform with P < Ny N,/ N;,

o e CNxNNt s the vectorized dynamic sequence (N; images of
dimensions Ny x Ny) to recover, and

@ n € CP is the noise vector.
The task of finding x is a discrete linear illposed inverse problem.
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@ AntiAliasing Methods
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Antialiasing

@ Regular subsampling leads to aliasing
@ Random sampling offsets aliasing to noise
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KT-BLAST

KT-BLAST (Broad-use Linear Acquisition speed-up Technique) :
J.Tsao, P.Boesinger, K.P. Preuessman, Mag. Res. Med, 2003

t
@ k-space sampled regularly,
interleaving samples in time
@ ignoring time implies a R
high-resolution image
@ low resolution used as prior to k
“unalias” the data.
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KT-BLAST
Algorithm

In x — f-space, aliasing requires solution of an undertermined problem

palias — A p

@ Put p;_, as the “DC” image (integral over time).
@ Estimate a prior distribution M = diag [p'*""*]|

© Solve piss = AM(M~1p)
= p= MZAT(AMZAT) 1 ahas
This has a block decompotlon since each aliased component is
the sum of a small number of points in x — f-space

More generally

p= pbasehne 4T AT( AF AT 4T ) 1 ahas

with ', the covariance of a training set, and I, the covariance of noise.
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KT-BLAST

1D example

true xf im:
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© Low-Rank + Sparse Methods
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Low-Rank + Sparse Methods

Low Rank Recovery for Dynamic MRI

spafiotemporal signal ~(x, t)
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Low-Rank + Sparse Methods
Outline

Approaches based on low-rank matrix completion for dynamic MR
imaging are based on the formulation of the Casorati matrix.

Each column represents a vectorized complex-valued MR image
Xp € CNNy (J. P. Haldar and Z.-P. Liang, 2010), so that

X =[x1,...,xn] € CNNrxNe,

@ In dynamic MR imaging, the Casorati matrix X is very likely to be
approximately low-rank, where only a few singular values are
significant, because of the high correlation between each images.

@ the property of being low-rank for matrices can be seen as the
analogous sparsity concept for vectors in CS.

@ The finite-dimensional MRI model can be written as

y=EX)+n

where now E : CNN>xNe — CP (P <« NyN, x Ny) and
X e CNNyxNt represents the matrix to estimate.
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Low-Rank + Sparse Methods

Low Rank and Nuclear Norm

@ Similarly to the Ly norm in CS reconstruction, rank minimization
subject to a data fidelity term becomes computationally intractable
as the dimension of the problem increases.

@ = Change rank penalty to the nuclear norm, and relax the
equality constraint.

@ Nuclear norm (trace norm or Schatten p-norm with p = 1) is the
convex envelope of the rank operator (B. Recht, M. Fazel, and P.

A. Parrilo, 2010) 11X | = ZJI,(X)

I
@ In its Lagrangian form, this leads to a nuclear norm regularized
linear least squares problem which can be solved efficiently using
proximal gradient method (K. C. Toh and S. Yun, 2010),
@ it is also possible to solve variants of the rank minimization
problem without the use of nuclear norm, for example based on
PowerFactorization (J. P. Haldar and D. Hernando, 2009).
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Low-Rank + Sparse Methods
Combined Method

I |
Y
‘
e
I..] .i_l I+l
;{. L S

@ low-rank-plus-sparsity methods (Lingala et.al. 2011, Zhao et.al.
2012) formulate the minimization problem as,

. 1
miny EHy _ E(X)”2 + awrank(x) + ﬁqbsparse(x)

@ k — t-SLR : ¢"(X) — ||X||5 (non-convex Shatten p-norm),
and ¢#5 — TV(X)
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Low-Rank + Sparse Methods

Other work

+ [Gao PMB'11] robust RPCA for dynamic CT with framelet as sparsifying
transform

(X1, X5) = argmin [|A(X; + X5) — Y[+ A1 X, ], + A || WXo] |y
(X1.X2)

» [Lingala TMI'11] uses Schatten-p norm with p=0.1 (non convex) and total
variation as sparsifying transform

'* =arg rl}in [lA(T) = bl[? + Ap(T) + Aoy (T)

* [Zhao TMI'12] uses pajrtial separability model (to capture spatio temporal
correlation) and FT in time as sparsifying transform. Implicitly constraint the
rank through the decomposition C=UV with C the Casorati matrix)

U.=arg min |ld - QFU V)2 + A|vec(UVi)|lx
TI.eCNxL
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e Robust Principle Component Analysis
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Robust Principle Component Analysis

@ RPCA decomposes a matrix into low-rank and sparse
min g [[L|« +A,[S[1] st.X=L+8

@ uses ADMM with
S-(Y) = sgn(Y)max(]Y| —7,0)
DY) = US (W)VT

Algorithm 1 Robust PCA [16]. [31]

Input: X € RV=NyxM decomposltlon par'unerel Ap >0
Initialize: S’ =Z" = 0. k=0. 4 = ”;('ﬁ;'\"
while stopping criterion is not met do
LA Pea(X -8R s 17k
Sk+1 Sy /o(X = P ST 6_lzk_)
Z}.+1 P Zk 5(X st Lk+1 . Sk+1:]
end while
Output: L.S
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Robust Principle Component Analysis

k — t-RPCA, (Trémoulhéac, Dikaios, Atkinson, A, 2014)

@ An ADMM algorithm for undersampled k — t data with low rank
plus sparsity constraint.

@ Fourier transform in time is used for sparsifying
°

P =L

) 1
minp.aLs 2||Y—E(L+5)||2+#(|P|*+>‘p|Q|1)] s.t. {Q =FS

@ Associated aug1mented Lagrangian function
La = slly—E(L+ S)|1? + u|Pl + 1A, |Qls

01 _ d2 .
+ Sllb+67'2i = PIE + 5178 +6,'22 — QI3

minimised over P, Q, L, S seperately, followed by updating of
Lagrangian variables Z, Z,.
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Robust Principle Component Analysis

k — t-RPCA algorithm

Algorithm 2 k-t RPCA
Input: (k-t)-space samples y. regularization and decompo-
sition parameters p, A, > 0
Initialize: X =10 =Efy, S =ZY=0.k=0
while stopping criterion is not met do
PEl o D, (X* — S* + ZF)
QFH Sux (Fy(X* — LF) + 25)
L*! + (E"E) (E"y + P* — A} — E"ES")
gkl o (BHE-HERy 1P (QF _AY) EYELF)
z“  Z§ + Lk+! _ pril
+1 “ Z.k +F, {Sk+l) e Qk‘+1
Xk+1 Lk+1 23 Sk+1
end while
Output: 1.8

DTU, Copenhagen
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e Results
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Results

Numerical Phantom
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Results

MRI data

Fully sampled Uncler—sampled
Full FOV Close up
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Results

Quantitative Results

Cartesian sampling

Pseudo-radial sampling

Reconstruction Regularization Reconstruction Regulanzation
error in dB (rel. error) parameter(s) error in dB (rel. error) parameter(s)
Zero-filled FT 14.3 (3.758291e-02) N/A 13.6 (2.778515e-02) N/A
Sliding window 16.7 (2.155588e-02) N/A 17.2 (1.897659%-02) N/A
k-t FOCUSS 20.7 (8.558858e-03) 01 227 (5.419496e-03) 0.01
k-t SLR 242 (3.817756e-03) a=0.4=1 28.2 (1.511268e-03) a=0 =1
k-t RPCA 212 (7.639737e03) | =200 p=075 | 235 (4505012e-03) | =200, p=075

TABLEI

QUANTITATIVE RESULTS FOR NUMERICAL PHANTOM WITH 10-FOLD ACCELERATION

Cartesian sampling

Pseudo-radial sampling

Reconstruction Regulanzation Reconstruction Regulanzation
error in dB (rel error) parameter(s) error i dB (rel error) parameter(s)
Zero-filled FT 8.79 (1.321385e-01) TR N/A
Shiding window 12.5 (5.659558e-02) sk N/A
k-t FOCUSS 15.7 (2.676942e-02) . 181 (1.534241e-02) 0
k-t SLR 15.7 (2.662888e-02) a =100, 3 =0.01 17.8 (1.633227e-02) a =100, =001
k-t RPCA 15.6 (2.768693e-02) u =200 p=175 19.1 (1.233944-02) a=100.3=175

TABLE II

QUANTITATIVE RESULTS FOR FREE BREATHING REAL CARDIAC MRI DATA WITH ABOUT 10-FOLD ACCELERATION (CARTESIAN SAMPL

28/37
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Results

comparison of methods

ZF-IDFT Sliding window k-t FOCUSS k-t SLR k-t RPCA k-t RPCA k-t RPCA (8]
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@ Accelerated Proximal Gradient Method

S.Arridge (University College London) Sparse Dynamic Imaging DTU, Copenhagen 30/37



Accelerated Proximal Gradient Method

NNAPG

k-t NNAPG: Fast dynamic MRI via nuclear norm minimization and
accelerated proximal gradient [ISBI'13]

The idea was to find a fast algorithm using only rank prior information and test its efficiency in
the context of under-sampled dynamic MRI; which so far hasn't been really investigated apart
from [Haldar&Liang ISBI'10,Zhao ISBI'10]

The problem was formulated as a convex one implying only nuclear norm regularization

1
1o

mit
eCNxM )

AX) -y 5+ pl X[,

X = arg
X

This was solved through an accelerated proximal gradient (gradient step + proximal step for
nuclear norm) algorithm using a randomlyj—rotated golden angle based radial sampling.
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Accelerated Proximal Gradient Method

NNAPG results

k-t NNAPG: Fast dynamic MRI via nuclear norm minimization and
accelerated proximal gradient [ISBI'13]

Cine cardiac MR imaging dataset (breath-hold).

Ground truth / direct (zero-filled) inverse Fourier
transform (9.9dB) / k-t NNAPG reconstruction
(17.8dB)

8.7-fold acceleration, reconstruction time of
58sec (2.2GHz/12GB laptop/Matlab non
optimised code)

PINCAT phantom with contrast (free-breathing)

Ground truth / direct (zero-filled) inverse Fourier
transform (19.4dB) / k-t NNAPG reconstruction
(30.2dB)

4.5-fold acceleration, reconstruction time of
22sec (2.2GHz/12GB laptop/Matlab non
optimised code)
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e Summary
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Summary and Outlook

@ two methods for reconstruction of low-rank and sparse
components from under-sampled dynamic MRI
@ k-t RPCA, a motion and contrast enhancement separation model
for under-sampled dynamic MRI based on low-rank plus sparse
decomposition
@ k-t NNAPG, a low-rank matrix recovery method for accelerated
dynamic MRI that is quite efficient and fast in terms of
computational time
@ Enables faster dynamic MR imaging while providing a flexible
separation of motion and contrast enhancement
@ |s there an optimal random under-sampling scheme for low-rank
methods?

Extend methods to parallel imaging

Develop a sparsifying transform for dynamic MR data
Incorporate motion correction into the reconstruction

Going to higher dimension: tensor approaches, 3D imaging
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