Adaptive Reconstruction Methods for Low-Dose Computed Tomography

Joseph Shtok

Ph.D. supervisors: Prof. Michael Elad, Dr. Michael Zibulevsky.

Technion IIT, Computer Science dept. Israel, 2011

Computer Science dept.

Contents of this talk

Intro to Computed Tomography	 Scan model, Noise, Local reconstruction
Framework of adaptive reconstruction	 General scheme of supervised learning
Adaptive FBP	 Learned FBP filter for local reconstruction
Sparsity-based sinogram restoration	 Adaptation of K-SVD to low-dose CT reconstruction
Learned shrinkage in a transform domain	 Adaptation of the method to low-dose CT reconstruction
Performance boosting of existing algorithms	 Local fusion of multiple versions of the algorithm output
Then you get tired of me.	
Computer Science dept.	Ph.D. Talk. Apr. 2012

Short Intro to Computed Tomography

And Assa and york has escheduled exheads scanfor. today.

Computer Science dept.

Noise in Low-Dose Reconstruction

Accepted model for detector measurements (similar to one in CCD sensors):

$$y_{l} \underbrace{\text{instance}}_{Y_{l}} Y_{l} \sim Poisson(\lambda_{l}) + \mathcal{N}(0, \sigma_{n}) \qquad \lambda_{l} = \lambda_{0}e^{-[\mathbb{R}f]_{l}} - \text{ideal count}$$
Poor photon statistics due/

$$Electronic noise in the hardware
to low counts$$

$$\overline{Y_{l}} = Y_{l} + \sigma_{n}^{2} \approx Poisson(\lambda_{l} + \sigma_{n}^{2}) \xrightarrow{\text{instance}} \overline{y}_{l} \quad \text{var}(\overline{y}_{l}) = \lambda_{l} + \sigma_{n}^{2}$$

$$Z_{l} = Anscombe(\overline{Y_{l}}) = \sqrt{\overline{Y_{l}} + \frac{3}{8}} \xrightarrow{\text{instance}} z_{l} \quad \text{var}(z_{l}) = 1$$

$$\underbrace{\text{Large}}_{\text{attenuation}} \xrightarrow{\text{High}}_{\text{integral}} \xrightarrow{\text{Low count}} \xrightarrow{\text{High noise}}_{\text{variance}} \xrightarrow{\text{Streak}}_{\text{artifacts}}$$

$$g_{l} = \int_{l} f(x)dl \quad y_{l} = I_{0}e^{-g_{l}} \quad \text{var}(g_{l}) = y_{l}^{-1}$$

Computer Science dept.

Noise in Low-Dose Reconstruction

0

0

Problem of local reconstruction

A point in the image draws a sine.

Points outside the ROI contribute to its projections. ROI is not uniquely determined from the truncated data.

Computer Science dept.

Problem of local reconstruction

FBP reconstruction fromzero-padded truncatedprojections

Basic sinogram completion: duplicate the margins.

Non-linear sine-based sinogram completion

Computer Science dept.

Intro to Computed Tomography	 Scan model, Noise, Local reconstruction
Framework of adaptive reconstruction	 General scheme of supervised learning
Adaptive FBP	Learned FBP filter for local reconstruction
Sparsity-based sinogram restoration	Adaptation of K-SVD to low-dose CT reconstruction
Learned shrinkage in a transform domain	 Adaptation of the method to low-dose CT reconstruction
Performance boosting of existing algorithms	• Local fusion of multiple versions of the algorithm output

V

Error measure for CT reconstruction

f – reference image \tilde{f} – reconstructed image

Basic error measure: Mean Square Error (MSE)

$$\varphi_1(\widetilde{f}) = \sum_{x} \left(f(x) - \widetilde{f}(x) \right)^2 = \left\| f - \widetilde{f} \right\|_2^2$$

Problem: MSE can be reduced by blurring the image.

Sharpness-promoting penalty: the gradient norm in f should not fall below the gradient norm in f.

$$\varphi_2(\widetilde{f}) = \left\| f - \widetilde{f} \right\|_2^2 + \mu \left(J - \widetilde{J} \right)_+ \qquad \qquad J = \left\| \nabla_x f \right\|_2^2, \quad \widetilde{J} = \left\| \nabla_x \widetilde{f} \right\|_2^2$$

Nuances:

- The MSE component is restricted to regions of interest
- The gradient-based component is restricted to fine edges.
- •The non-negativity function $()_{+}$ is smoothed for better optimization.

Scan model, Noise, Local reconstruction
General scheme of supervised learning
Learned FBP filter for local reconstruction
 Adaptation of K-SVD to low-dose CT reconstruction
 Adaptation of the method to low-dose CT reconstruction
• Local fusion of multiple versions of the algorithm output

V

Learned FBP filter for ROI reconstruction

 $\Psi(\kappa) = \left\| \mathbf{T}_{\kappa}(g_f) - f \right\|_{2,0}^{2}$

 \mathcal{K}_1

 K_5

Train the convolution kernel κ to pursuit reconstruction goals.

 g_f -Truncated sinogram

Training objective: for ROI reconstruction:

Truncated sinogram with completion

2. Filter the sinogram with radially-variant convolution kernel.

Computer Science dept.

ROI reconstruction

Image size = 461 pixels. ROI radius = 34 pixels, Margin = 3 pixels.

FBP	AFBP
reconstruction	reconstruction
22.9 dB	34.68 dB
	FBP reconstruction 22.9 dB

Computer Science dept.

ROI reconstruction

Computer Science dept.

ROI reconstruction

Computer Science dept.

Intro to Computed Tomography	Scan model, Noise, Local reconstruction
Framework of adaptive reconstruction	General scheme of supervised learning
Adaptive FBP	Learned FBP filter for local reconstruction
Sparsity-based sinogram restoration	 Adaptation of K-SVD to low-dose CT reconstruction
Learned shrinkage in a transform domain	Adaptation of the method to low-dose CT reconstruction
Performance boosting of	• Local fusion of multiple versions of the algorithm output
existing algorithms	• Local rusion of multiple versions of the algorithm output

V

Sparse-Land model for signals

The concept: natural signals admit a faithful representation using only few columns (atoms) from a dedicated overcomplete dictionary.

Natural dictionaries: Wavelets, Haar functions, Discrete Cosines, Fourier.

Dictionaries tailored to the specific family of signals: obtained via a training process.

 $\|\alpha\|_{0} \leq k$ Number of non-zeros is small $\|v\|_{2} \leq \varepsilon$ Residual is small $s + v = D\alpha$ $s = E_i(f)$

α

Sparse-Land model for signals

Denoising technique (Elad, Aharon, 2006):

$$\Phi(\mathbf{D}, f, \alpha) = \left\| \delta \| f - \tilde{f} \|_{2}^{2} + \sum_{patch j} \mu_{j} \| \alpha_{j} \|_{0} - \sum_{patch j} \| \mathbf{D} \alpha_{j} - \mathbf{E}_{j} f \|_{2}^{2} \right\|_{2}$$
Noisy image

Minimizerwintze vf.r.t $\mathbf{D}, \{\alpha_i\}$ (K-SVD) Train a dictionary D 1. along with sparse

representations $\{\alpha\}$ Compute the image estimate (closed-form solution). 2.

 $\alpha_j = \arg\min_{\alpha} \|\alpha\|_0 \quad s.t. \|\mathbf{D}\alpha_j - \mathbf{E}_j f\|_2^2 \le \varepsilon_j$ Sparse coding: • State-of-the-art noise reduction. Dictionary update: Adaptive accounter in Dage of training set and the column in**D**.Uniform noise assumption.

Computer Science dept.

 \tilde{f}

Application to CT reconstruction

Previous work (Liao, Sapiro, 2007):

 $\left\{ \mathbf{D}^{*}, f^{*}, \alpha^{*} \right\} = \arg\min_{\mathbf{D}, f, \alpha} \left\{ \delta \left\| \mathbf{R} f - \tilde{g} \right\|_{2}^{2} + \sum_{patch j} \mu_{j} \left\| \alpha_{j} \right\|_{0} + \sum_{patch j} \left\| \mathbf{D} \alpha_{j} - \mathbf{E}_{j} f \right\|_{2}^{2} \right\}$

- Patch-wise sparse coding of CT image f.
- Online learning from noisy data.
- Very nice results on geometric images under severe angular subsampling.

Drawbacks:

- Data fidelity term in the sinogram domain.
- No reference to statistical model of the noise.
- Sparse coding thresholds not treated.

Application to CT reconstruction

Our approach:

1. check data fidelity and perform sparse coding in the domain of noise-normalized raw data : $\tilde{z} = \sqrt{(\tilde{y} + \sigma_n^2) + \frac{3}{8}}$

$$\left\{ \mathbf{D}_{1}^{*}, \boldsymbol{\alpha}^{*}, z \right\} = \arg\min_{\mathbf{D}_{1}, \boldsymbol{\alpha}, z} \left\{ \lambda \left\| z - \widetilde{z} \right\|_{2}^{2} + \mu \sum_{patch j} \left\| \boldsymbol{\alpha}_{j} \right\|_{0} + \sum_{patch j} \left\| \mathbf{D}_{1} \,\boldsymbol{\alpha}_{j} - \mathbf{E}_{j} \, \widetilde{z} \right\|_{2}^{2} \right\}$$

Solve for D_1, α using K-SVD, but allow to use a different dictionary D_2 at restoration stage:

$$z^* = \arg\min_{z} \left\{ \lambda \| z - \tilde{z} \|_2^2 + \sum_{patch j} \| \mathbf{D}_2 \, \boldsymbol{\alpha}_j - \mathbf{E}_j \, \tilde{z} \|_2^2 \right\} =$$
$$= \mathbf{G}_{\mathbf{D}_1}, \mathbf{D}_2 \, (\boldsymbol{\alpha}) \equiv \left(\sum_j \mathbf{E}_j^{\mathrm{T}} \mathbf{E}_j \right)^{-1} \left(\sum_{patch j} \mathbf{E}_j^{\mathrm{T}} \mathbf{D}_2 \boldsymbol{\alpha}_j + \lambda \tilde{z} \right)^{-1}$$

Computer Science dept.

Application to CT reconstruction

2. Train a second dictionary D_2 optimized for image reconstruction using a designed error measure and pre-computed repersentations α :

$$\mathsf{D}_{2}^{*} = \arg\min_{\mathsf{D}_{2}} \left\| f - \mathsf{T}\Omega \mathsf{G}_{\mathsf{D}_{1},\mathsf{D}_{2}} \alpha \right\|_{2}^{2} + \mu (J - \widetilde{J})_{+} \qquad \Omega: z \to y \to g$$

Compared algorithms

Adaptive Trimmed Mean (ATM) Filter Hsieh, '98.

- Extract M values from the neighborhood of a photon count y_{1}
- Remove $2\alpha M$ extreme values and compute the average of the rest.
- M, α are data-dependent; computed through

$$\mathbf{M}(y_l) = \frac{2\beta\lambda}{2\lambda + [y_l - \delta]_+}, \quad \alpha(y_l) = \frac{\alpha_m y_l}{\lambda}.$$

In our experience: depends highly on the parameters.

Penalized Weighted Least Squares (PWLS) Elbakri, Fessler, '02. 2-nd order aproximation of a penalized log-likelihood expression for photon counts data:

$$PWLS(y \mid f) = \frac{1}{2} \sum_{l} W_{l}([\mathbf{R} f]_{l} - g_{l})^{2} + \lambda \sum_{p} \sum_{k \in N(p)} \psi(f_{p} - f_{k})$$

Works quite well.

Penalty weight. Controls variance-resolution tradeoff.

Huber penalty (smoothed L_1 norm).

Computer Science dept.

 Empiric Same parameters new anatomical region. Head section	s,			
FBP, 29.84 dB	ATM, 29.83 dB	PWLS, 31.02 dB	Sparse, 32.36 dB	Recon. in [-170,250] HU
		No.		Error images

Intro to Computed Tomography	Scan model, Noise, Local reconstruction
Framework of adaptive reconstruction	General scheme of supervised learning
Adaptive FBP	Learned FBP filter for local reconstruction
Sparsity-based sinogram restoration	 Adaptation of K-SVD to low-dose CT reconstruction
Learned shrinkage in a transform domain	 Adaptation of the method to low-dose CT reconstruction
Performance boosting of existing algorithms	 Local fusion of multiple versions of the algorithm output

Learned shrinkage in a transform domainConvert to
z-domainAnalysisShrinkageSynhtesisRecon-
struction

(pseudo-inverse) functions Denoising by supression of small coefficients, which usually contain the noise. LUT Examples of D: Discrete Cosines, Wavelets, etc.

Scalar shrinkage

Dictionary D

•Denosing by shrinkage of wavelet coeffs: Donoho & Johnston, 1994. The tool: Descriptive functions for descriptive dictionary.

 D^+

•Denoising with learned shrinkage functions: Hel-Or and Shaked, 2002. The tool: Learned functions for descriptive dictionary.

•Our goal: Solving non-linear inverse problems. The tool: Learned functions for learned dictionary in a look-ahead training.

Why not repeat the trick?

FBP recon

Raw data

shrinkage

Post-processing with shrinkage functions, also trained by comparing to reference images.

Image

shrinkage

Difference made by the postprocessing : no image structure lost.

$$p, \Phi = \arg \min_{p, \Phi} \left\| f - \Phi S_p \Psi \mathbf{E} \, \hat{f} \right\|_2^2 + \mu (J - \widetilde{J})_+$$

Computer Science dept.

Effective dose reduction

Estimating dose reduction factor:

•For each noise level, sweep over a range of FBP parameter and chose a reconstruction with minimal error measure.

•Sweep over a range of the noise level and compare to learned shrinkage.

$$Error(f, \tilde{f}) = \left\| f - \tilde{f} \right\|_{2}^{2} + \mu (J - \tilde{J})_{4}$$

Computer Science dept.

Contents of this talk		
Intro to Computed Tomography	Scan model, Noise, Local reconstruction	
Framework of adaptive reconstruction	General scheme of supervised learning	
Adaptive FBP	Learned FBP filter for local reconstruction	
Sparsity-based sinogram restoration	Adaptation of K-SVD to low-dose CT reconstruction	
Learned shrinkage in a transform domain	Adaptation of the method to low-dose CT reconstruction	
Performance boosting of existing algorithms	• Local fusion of multiple versions of the algorithm output	

 $\overline{\mathbb{V}}$

Computer Science dept.

Fusion over a smoothing parameter

FBP algorithm: sweep the cut-off frequency of the low-pass sinogram filter. Collect few images with different resolution-variance trade-off.

PWLS algorithm: perform the regular reconstruction while collecting versions along the iterations.

		新生活。 二·特殊方法 二·特殊方法 二·特殊方法
	Intro to Computed Tomography	Scan model, Noise, Local reconstruction
	Framework of adaptive reconstruction	General scheme of supervised learning
	Adaptive FBP	Learned FBP filter for local reconstruction
	Sparsity-based sinogram restoration	Adaptation of K-SVD to low-dose CT reconstruction
	Learned shrinkage in a transform domain	Adaptation of the method to low-dose CT reconstruction
	Performance boosting of existing algorithms	• Local fusion of multiple versions of the algorithm output
	Conclusions	
V	Computer Science dept.	Ph.D. Talk, Apr. 2012

Summary

Adaptive methods can help improving CT reconstruction. FBP needs only a little help to allow truly local reconstruction. Once the raw data is variance-normalized, the sparsity-based denoising mends most of the damage done by the low-dose scan.

When the smootheness parameter is swept, reconstruction algorithms supply more information about the image; it is easily extracted by a regression function using only the intensity values.

Example-based training does not jeopardize the image content (in the presented algorithms) and can be allowed for clinical use.

Thank you.

D BillyBear4Kids.com

BBBB

© Anthony Bannister / www.nhpa.co.uk

Computer Science dept.