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Short Intro to Computed Tomography 

Assume you have a shiny new CT scanner… And an aardvark has scheduled a head scan for today. 
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Projection 
and log-

transform + 
Ideal sinogram Stochastic data-

dependent noise 

Noise in Low-Dose Reconstruction 

FBP 

Ideal inverse 
Radon 

FBP 

Smoothed 
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Adaptive 
Median Filtering 

(Hsieh, 98) 
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Problem of local reconstruction 
A point in the image 
draws a sine. 

Points outside the ROI contribute to its projections. 
ROI is not uniquely determined from the truncated data. 
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Problem of local reconstruction 

Basic sinogram 
completion: duplicate the 
margins. 

FBP reconstruction from 
zero-padded truncated 
projections 

Non-linear sine-based 
sinogram completion 
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Error measure for CT reconstruction 

Basic error measure: Mean 
Square Error (MSE) 

−f −f~reference image reconstructed image 
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Problem: MSE can be reduced by blurring the image. 

Sharpness-promoting penalty: the gradient norm in       should not fall 
below the gradient norm in      . 
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Nuances:  
•The MSE component is restricted to regions of interest 
•The gradient-based component is restricted to fine edges. 
•The non-negativity function        is smoothed for better optimization. ( )+
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Supervised learning of adaptive processing 
tools 
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Learned FBP filter for ROI reconstruction 
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Train the convolution kernel     to 
pursuit reconstruction goals.             
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convolution kernel. 
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ROI reconstruction 
Image size = 461 pixels. 
ROI radius = 34 pixels, 
Margin = 3 pixels. 

True ROI image FBP 
reconstruction 

22.9 dB 

AFBP 
reconstruction 

34.68 dB 
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ROI reconstruction 
Image size = 461 pixels. 
ROI radius = 34 pixels, 
Margin = 3 pixels. 

True ROI image FBP 
reconstruction 

18.04 dB 

AFBP 
reconstruction 

29.63 dB 
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ROI reconstruction 
Image size = 461 pixels. 
ROI radius = 34 pixels, 
Margin = 3 pixels. 

True ROI image FBP 
reconstruction 

19.48 dB 

AFBP 
reconstruction 

31.44 dB 
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Sparse-Land model for signals 
The concept: natural signals admit a faithful representation using only 
few columns (atoms) from a dedicated overcomplete dictionary. 
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Residual is small 

Natural dictionaries: Wavelets, Haar 
functions, Discrete Cosines, Fourier. 

Dictionaries tailored to the specific family 
of signals: obtained via a training process. 
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      Minimize w.r.t  1. (K-SVD) Train a dictionary D 
along with sparse 
representations           2.     Compute the image estimate (closed-form solution). 

Denoising technique (Elad, Aharon, 2006): 
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• State-of-the-art noise reduction. 
• Adaptive to current image or training set. 
• Uniform noise assumption. 
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Previous work (Liao, Sapiro, 2007): 

Application to CT reconstruction 

• Patch-wise sparse coding of CT image    .  

• Online learning from noisy data. 

• Very nice results on geometric images under severe 
angular subsampling. 

f

Drawbacks: 
• Data fidelity term in the sinogram domain. 

• No reference to statistical model of the noise. 

• Sparse coding thresholds not treated. 
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Application to CT reconstruction 
Our approach:   

1. check data fidelity and perform sparse coding in the domain of 

noise-normalized raw data :  
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at restoration stage:  
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Application to CT reconstruction 
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     2. Train a second dictionary       optimized for image reconstruction 

using a designed error measure and pre-computed repersentations    :  
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Compared algorithms 
Adaptive Trimmed Mean (ATM) Filter  Hsieh, ’98. 

Penalized Weighted Least Squares (PWLS)  Elbakri, Fessler, ’02. 

• Extract M values from the neighborhood of a photon count    . 
• Remove             extreme values and compute the average of the rest. 
•            are data-dependent; computed through 
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2-nd order aproximation of a penalized log-likelihood expression for 
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Huber penalty 
(smoothed      norm). 

Penalty weight. Controls 
variance-resolution tradeoff. 1L

In our experience: 
depends highly on 
the parameters. 

Works quite well. 
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Empirical results 

Thighs section 
FBP, 25.76 dB  ATM, 28.32 dB PWLS, 28.90 dB Sparse, 29.62 dB 

Error 
images 

Recon. in  
[-220,350] 

HU 
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Empirical results 

FBP, 25.26 dB  ATM, 27.46 dB PWLS, 28.26 dB Sparse, 27.94 dB 

Error 
images 

Recon. in  
[-220,350] 

HU 

Thighs section 
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Empirical results 

Head section 
FBP, 29.84 dB  ATM, 29.83 dB PWLS, 31.02 dB Sparse, 32.36 dB 

Error 
images 

Recon. in  
 [-170,250] 

HU 

Same parameters, 
new anatomical 
region. 
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Learned shrinkage in a transform domain 

Scalar shrinkage 
functions 

•Denosing by shrinkage of wavelet coeffs: Donoho & Johnston, 1994.  
  The tool: Descriptive functions for descriptive dictionary. 

LUT 

Examples of     : Discrete 
Cosines, Wavelets, etc. 

D+

D

Convert to 
z-domain Analysis Shrinkage Synhtesis Recon-

struction 

Dictionary 
(pseudo-inverse) 

 Denoising by supression of small 
coefficients, which usually  
contain the noise. 

D

•Our goal: Solving non-linear inverse problems.  
 The tool: Learned functions for learned dictionary in a look-ahead training. 

•Denoising with learned shrinkage functions: Hel-Or and Shaked, 2002. 
 The tool: Learned functions for descriptive dictionary. 
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Learned shrinkage in a transform domain 
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Why not repeat the trick? 

Raw data 
shrinkage FBP recon Image 

shrinkage 

Post-processing with shrinkage 
functions, also trained by comparing 
to reference images. 

Difference made by the post-
processing : no image structure lost. 
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Empirical results 

Thighs section 
(male) 

Error 
images 

Recon. in  
[-220,350] 

HU 

FBP, 25.76 dB  ATM, 28.32 dB PWLS, 28.90 dB Shrinkage 30.05 dB 
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Empirical results 

Thighs section 

Error 
images 

Recon. in  
[-220,350] 

HU 

FBP, 25.26 dB  ATM, 27.46 dB PWLS, 28.26 dB Shrinkage 28.94 dB 
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Empirical results 

Head section 

Error 
images 

Recon. in  
[-170,250] 

HU 

FBP, 29.84 dB  ATM, 29.83 dB PWLS, 31.02 dB Shrinkage 32.81dB 
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Alternative versions 

Thighs section 

MSE-
optimized 
versions 

 
 
 

Tuned by 
visual 

appearance 

FBP,    27.70 dB 
           25.76 dB 

PWLS,   30.45 dB 
              28.90 dB 

Shrinkage 30.84 dB 
                  30.05 dB 

Optimizing for MSE 
introduces a blur into 
the image. 
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Effective dose reduction 

Normal X-ray dose range Low X-ray dose range 

Estimating dose reduction factor: 
•For each noise level, sweep over a range of FBP parameter and chose a 
reconstruction with minimal error measure. 
•Sweep over a range of the noise level and compare to learned shrinkage. 
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Fusion over a smoothing parameter 

Recon. 
algorithm 

Scalar 
parameter 

Raw data Image 

Decision 
rule 

The algorithm: 
• Sweep the variance-resolution tradeoff.   
• Extract pixel neighborhood (or other  
   features) from each version. 
• Build a decision rule to perform the local  
   fusion. 

Decision rule:  
    Use a regression to build one automatically,  
    with a Neural network or Support Vector  
    Regression. 

Artificial Neural 
Network (ANN) 

… 

… 
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Fusion over a smoothing parameter 
FBP algorithm: sweep the cut-off 
frequency of the low-pass 
sinogram filter. 
Collect few images with different 
resolution-variance trade-off. 

PWLS algorithm: perform the regular 
reconstruction while collecting versions 
along the iterations. 

Created with 
FBP 

Standard 
PWLS result 

Initial 
image 

Converged 
image 

versions from partial iterations 
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Empirical results 

Thighs section 

FBP  25.76 dB  FBP-ANN 30.62 dB PWLS  28.90 dB PWLS-ANN 31.11 dB 

Error 
images 

Recon. in  
[-220,350] 

HU 
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Empirical results 

Thighs section 

Error 
images 

Recon. in  
[-220,350] 

HU 

FBP  25.26 dB  FBP-ANN 29.67 dB PWLS  28.26 dB PWLS-ANN 30.03 dB 
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Empirical results 

Head section 

FBP  29.84 dB FBP-ANN 33.41dB PWLS  31.02 dB PWLS-ANN 33.66 dB 

Error 
images 

Recon. in  
[-170,250] 

HU 



Ph.D. Talk,  Apr. 2012 Computer Science dept. 

• Scan model, Noise, Local reconstruction Intro to Computed 
Tomography 

• General scheme of supervised learning  Framework of adaptive 
reconstruction 

• Learned FBP filter for local reconstruction Adaptive FBP 

• Adaptation of K-SVD to low-dose CT reconstruction Sparsity-based sinogram 
restoration 

• Adaptation of the method to low-dose CT 
reconstruction 

Learned shrinkage in a 
transform domain 

• Local fusion of multiple versions of the algorithm output Performance boosting of 
existing algorithms 

Conclusions 



Ph.D. Talk,  Apr. 2012 Computer Science dept. 

Parade of proposed 
methods 

Thighs section 

Sparse 29.62 dB Shrinkage 30.05 dB FBP-ANN 30.62 dB PWLS-ANN 31.11 dB 

Error 
images 

Recon. in  
[-220,350] 

HU 
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Summary 
Adaptive methods can help improving CT reconstruction. 

Once the raw data is variance-normalized, the sparsity-based 
denoising mends most of the damage done by the low-dose scan. 

When the smootheness parameter is swept, reconstruction 
algorithms supply more information about the image; it is easily 
extracted by a regression function using only the intensity values. 

FBP needs only a little help to allow truly local reconstruction. 

Example-based training does not jeopardize the image content (in 
the presented algorithms) and can be allowed for clinical use. 
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Thank you. 
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