Empirical Phase Transitions in Sparsity-Regularized Computed Tomography

Jakob Sauer Jørgensen

Postdoc, DTU

Sparse Tomo Days, DTU, March 28, 2014

Joint work with

Per Christian Hansen, DTU Emil Sidky and Xiaochuan Pan, U. Chicago Christian Kruschel and Dirk Lorenz, TU Braunschweig

Exploiting prior knowledge in CT

Discrete imaging model:

$$Ax = b$$

Typical CT images:

- Regions of homogeneous tissue.
- Separated by sharp boundaries.

Reconstruction by regularization:

$$x^{\star} = \underset{x}{\operatorname{argmin}} \mathcal{D}(Ax, b) + \lambda \cdot \mathcal{R}(x)$$

Sparsity-promoting choices:

- $\mathcal{R}(x) = \|x\|_1$ (ℓ_1 /basis pursuit)
- $\mathcal{R}(x) = ||x||_{\text{TV}}$ (total variation)
- $\blacktriangleright \mathcal{R}(x) = \|D^T x\|_1 \qquad \text{(analysis-}\ell_1\text{)}$

TV example: Physical head phantom, CB-CT

(Bian 2010). Courtesy of X. Pan, U. Chicago.

TV example: Human coronary artery, CB-CT

Courtesy of X. Pan, U. Chicago. Data collected with a bench-top CB-CT of Dr. E. Ritman at Mayo

Less successful CT cases for TV:

5/24

Lack of quantitative understanding

Some fundamental questions remain unanswered:

- Under what conditions will reconstruction work?
- Robustness to noise?
- Which types of images?
- What is sufficient sampling?

Application-specific vs. general

Focus on the imaging model.

Classical CT sampling results

Continuous image and data:

- Based on invertibility and stability of Radon transform etc.
- ► Fan-beam: 180° plus fan-angle
- Cone-beam: Tuy's condition

Discrete data:

- Nyquist sampling
- Assumption of bandlimited signal
- (Huesmann 1977, Natterer)

Reconstruction with sparse/compressible signal assumption?

Compressed Sensing

Guarantees of accurate reconstruction

- ► Under suitable assumptions, a sufficiently sparse signal can be recovered from few measurements by l₁-minimization.
- ▶ RIP, incoherence, spark, ...

For tomography?

- So far no practically useful guarantees.
- Results for certain discrete tomography cases (Petra et al.)

This study:

- Empirical study of sampling conditions for tomographic reconstruction of sparse signals
- Recoverability of single images
- Worst-case vs. average case

Reconstruction problems

Inequality-constrained regularization:

$$x^{\star} = \operatorname*{argmin}_{x} \mathcal{R}(x) \quad \text{s.t.} \quad \|Ax - b\|_2 \le \epsilon$$

Simplified reconstruction problems:

BP
$$x_{BP} = \underset{x}{\operatorname{argmin}} \|x\|_1$$
 s.t. $Ax = b$
ATV $x_{ATV} = \underset{x}{\operatorname{argmin}} \|D^T x\|_1$ s.t. $Ax = b$
finite-difference approximation of

Algorithms:

- Our interest: Reliably obtaining accurate solution, not speed.
- ▶ Recast as linear programs (LPs) and solve by MOSEK.

gradient

Non-uniqueness of solutions

Both BP and ATV can have multiple solutions for same data:

- 1-norm convex, but not strictly convex.
- Even if x_{orig} is a minimizer, others may exist.

Consequences:

- Different algorithms may produce different solutions.
- Decision of recoverability of x_{orig} is algorithm-dependent.

Alternative idea:

Can we test for uniqueness of solution?

Uniqueness test for BP

Given:

- $\blacktriangleright \ b = Ax_{\mathsf{orig}}$
- $I = \operatorname{support}(x_{\operatorname{orig}})$
- A_I is A with columns I

Characterization of solution uniqueness:

• x_{orig} uniquely minimizes $\min_x \|x\|_1$ s.t. Ax = b if and only if

- ▶ A_I is injective, and
- $\blacktriangleright \ \exists w: \quad A_I^T w = \operatorname{sign}(x_{\operatorname{orig}})_I \quad \text{and} \quad \|A_{I^c}^T w\|_\infty < 1$

(Plumbley 2007, Fuchs 2004, Grasmair et al. 2011)

Uniqueness test for ATV

Given:

- $\blacktriangleright \ b = Ax_{\mathsf{orig}}$
- $I = \operatorname{support}(D^T x_{\operatorname{orig}})$
- D_I is D with columns I

Characterization of solution uniqueness:

▶ x_{orig} uniquely minimizes $\min_x \|D^T x\|_1$ s.t. Ax = b if and only if

•
$$\begin{pmatrix} A \\ D_{Ic}^T \end{pmatrix}$$
 is injective, and
• $\exists w, v : Dv = A^T w, v_I = \operatorname{sign}(D_I^T x_{\operatorname{orig}}), \|v_{Ic}\|_{\infty} < 1$

Application of (Haltmeier 2013)

Uniqueness testing procedure using LP

BP ATV 1. Check injectivity: $\begin{pmatrix} A \\ D_{IC}^T \end{pmatrix}$ A_I 2. Solve LP: $t^{\star} = \operatorname{argmin} t$ $t^{\star} = \operatorname{argmin} t$ $-te < A_{Ic}^T w < te$ $-te \le v_{I^c} \le te$ $A_I^T w = \operatorname{sign}(x_{\operatorname{orig}})_I$ $Dv = A^T w$ $v_I = \operatorname{sign}(D_I^T x_{\operatorname{orig}})$ 3. Unique iff: $t^{\star} < 1$ $t^{\star} < 1$

The geometry and system matrix

- Disk-shaped image inscribed in $N_{\rm side} \times N_{\rm side}$ square.
- Number of pixels:

$$N\approx \frac{\pi}{4}N_{\rm side}^2$$

- Fan-beam, equi-angular views (N_{views} = 3 shown)
- Number of rays per view: $2N_{\text{side}}$
- System matrix A size:

$$M = N_{\mathsf{views}} \cdot 2N_{\mathsf{side}}$$

Elements A_{ij} computed by the line intersection method (implementation: www.imm.dtu.dk/~pch/AIRtools/)

BP image class examples images

Reconstruction error vs. sampling and sparsity

Phase diagrams: spikes with BP

- Fraction recovered/unique of 100 instances at each point (κ, μ) of relative sparsity and sampling.
- Excellent agreement of reconstruction and uniqueness test.
- ▶ Well-separated "no-recovery" and "full-recovery" regions.
- Phase transition as in compressed sensing (Donoho-Tanner).

Comparing image classes, BP

Average sufficient sampling

Example images: altproj, trununif

Phase diagrams: altproj with ATV

- Fraction recovered/unique of 100 instances at each point (κ, μ) of relative sparsity and sampling.
- Excellent agreement of reconstruction and uniqueness test.
- ▶ Well-separated "no-recovery" and "full-recovery" regions.
- Phase transition as in compressed sensing (Donoho-Tanner).

Comparing image classes, ATV

altproj Relative sampling: $\mu = N_v / N$ 0.5 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Relative sparsity: κ = k / N Ő. trununif Relative sampling: $\mu = N_v / N$ 0.5 0.5 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 ٥ Relative sparsity: k = k / N

Average sufficient sampling

Time: Reconstruction vs. uniqueness test

BP

ATV

- 10 repetitions at each relative sparsity and 5, 13, 21 views.
- Comparable time of reconstruction (R) and uniqueness test (UT).

A more well-known image: Shepp-Logan on disk

Conclusions and future work

Conclusions

- Empirical evidence of relation between sparsity and sampling
- Reconstruction and uniqueness test
- Phase transition from no to full recovery
- Small dependence on image class, mostly sparsity
- Additional results (not shown): limited angle, robustness to noise, scaling with image size.

Future work and open questions

- ► Extensions: Isotropic TV, more realistic image classes, ...
- Theoretical/compressed sensing explanation?
- Connection to classical CT sampling results?