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Talk Outline 

• Introduction 
• Compressed Sensing: from Sparse to Compressible, from 

Deterministic to Stochastic  

• Sample Distortion (SD) framework 
• definition, examples, lower bounds and convexity 

• Multi-resolution CS 
• Wavelet Statistical Image Model 

• SD and Optimal Bandwise Sampling  

• Oracle Bounds 

• Sample Allocation with tree structure 

• Natural Image Examples 

• Conclusions 
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Sparsity and Compressed Sensing 
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Compressed sensing 

Compressed Sensing assumes a 

sparse/compressible set of signals 

Uses  random projections for 

observation matrices 

Signal reconstruction by a nonlinear 

mapping. 

Compressed sensing provides 

practical algorithms with guaranteed 

performance e.g. L1 min., OMP, 

CoSaMP, IHT. 

 

Closely linked with theory of n-

widths 

Set of signals of 

interest 

random projection 

(observation) 

nonlinear 

approximation 

(reconstruction) 



The L1 solution guarantee 



Compressible vectors 
(deterministic)  



Compressible Distributions 



A Sample-Distortion framework for CS 



Sample Distortion Framework 
[Guo & D. 2011/2012] 



Sample Distortion Framework 
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 SD Functions  for 2-state GSM 
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( ) 0.38 (0,1.198) 0.62 (0,0.0044)p x N N 

BAMP SD fun 

Convexity implies 

achievable (by zeroing) 

MBB 

EBB 

BAMP SD fun 

( ) 0.38 (0,1.198) 0.62 (0,0.0044)p x N N 



SD Lower Bounds 
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Example: Generalized Gaussian 

Laplace EBB 

Gaussian EBB 

GGD, α=0.4 EBB 

Wavelet coefficients of natural images are often modelled 
as GGD with α ≈ 0.4-1.0 



SD Lower Bounds 
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Convexity of D(δ)  

Theorem: 

The SD function, D(δ), is convex 
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 1 1, 

 2 2, 

Convex hull achievable by 

combinations of              and  

                

 1 1, 

 2 2, 1D

2D

3D

1 3 2



Gaussian encoders are not optimal! 

Folk theorem -  Gaussian encoders are optimal. 

False! 

If Gaussian-specific SD function is not convex we 
can do better  
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 SD Functions  for 2-state GSM 
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BAMP SD fun 

Convexity implies 

achievable (by zeroing) 

MBB 

EBB 

( ) 0.38 (0,1.198) 0.62 (0,0.0044)p x N N 



Multi-resolution Compressive Imaging 



Statistical image model 
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Test Images 



Image model example 

cameraman 



Image model example 

GGD representation with Haar wavelets...  

 

        Estimated shape parameters for each level 

cameraman 



Image model example 

e.g. cameraman 

GGD wavelet representation  

 

Estimation of the variance for each level  



Bandwise Compressive Imaging 



Bandwise sampling 



Optimal Bandwise sample allocation 



Bandwise Sampling 

Convexified MMSE AMP distortion reduction 
function (band 1 for cameraman image model) 

27 

distortion distortion reduction 



Bandwise Sample Allocation 

28 

DR fun  for 

cameraman image 



Bandwise CS sample allocation 
Sample allocation (% of full sampling) per band for m = 170, 600, 
2000 and 10000 measurements. There are typically no more 
than 2-3 partially sampled bands 
 

 

 

 

 

 

 

 

 

 

 



Bandwise CS Performance 
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e.g. cameraman 



adding Tree Structure 



Incorporating Tree Structure 
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We can add tree-based priors on coefficients and decode 
using Turbo AMP scheme [Som, Schniter 2012]:   
 
This calculates marginal probabilities for hidden states and 
incorporate into MMSE AMP 
 



Bandwise CS Sample Allocation  

33 

Sample allocation (% of full sampling) per band for δ= 10%, 15.26%, 

25% and 30% 

m=6554 m=1000 

m=16384 m=19661 

SA for cvx SD fun 

Empirical best SA  

with tree info 

SA for SD fun with 

oracle tree info 



Bandwise CS Performance 
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e.g. cameraman 



Reconstructed I 
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Image reconstructions 

from 10000 

measurements (15%)  

 



SA for General Image Statistics 
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Open questions 

 

• How to derive sample allocations for more 
sophisticated models? – analysis representations, 
tree structured model, etc. 

 

• How to allocate samples within constrained 
sampling schemes (e.g. partial Fourier)?  
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Thank You  
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