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Sparsity and Compressed Sensing



Compressed sensing

Compressed Sensing assumes a

Set of signals of
interest

sparse/compressible set of signals

Uses random projections for
observation matrices

Signal reconstruction by a nonlinear
mapping.

Compressed sensing provides nonlinear |
practical algorithms with guaranteed approximation random projection

performance e.g. L1 min., OMP, (reconsiruction) (observation)

CoSaMP, IHT. 7;1? /

Closely linked with theory of n-
widths




The L1 solution guarantee

A (the?) popular Compressed Sensing solution is:

Basis Pursuit: X; = argmin [|x||,
{Px=y}

CS theory asserts that when ® has an appropriate RIP on k-
sparse vectors, x4, X5.

(1= )llxy —x2l < [[P(xq — x| < (1 + 8)lxg — x|

then we are guaranteed the following "instance optimality”

11 — xoll1 < Cr(P) - 03 (x0)4

[Candes 2008, Cohen, Dahmen & DeVore 2009]



Compressible vectors
(deterministic)

If x lives in either an [? or weak w/? ball:

<> Ixlly, = (ZW) < Il

lxllwe, = sup {|xz] - n'/P} < R
n

Instance optimality implies small approximation error:

5. ()q < R (L)q 6D



Compressible Distributions

Consider a stochastic (Bayesian) setting...
express signal as a draw from a probabilistic model:

— Draw N samples i.i.d. from a distribution

N
px(x) 1_[ p(x;)
i=1
Question:

When does py(x) define an approximately lower dimensional
(i.e. compressible) signal model?

= notion of compressible distributions



A Sample-Distortion framework for CS



Sample Distortion Framework
[Guo & D. 2011/2012]

What is the best we can do?

any recovery algorithm; any measurement matrix; any dimension,
l.e. a sampling equivalent to Rate Distortion Theory.

Define the [, Sample Distortion (SD) function as:
P )
D(5) = infinfinf—E||X — A(DPX)||5
n & A n

where X = [X,X,, ..., X,,]T isthei.i.d. source and we define:
 samplingratio:6 =m/n,m<n

* linear measurement encoder: ® € R™*"

* nonlinear decoder: A(®X)



Sample Distortion Framework

Specific SD functions
e L, decoder

D) =1-6

« MMSE AMP with ud Gaussian encoder state evolution
equations predict SD fun. a fixed point of:

Dys1 = E(X?) —E|[XF(X + Z+/Dy/8; /Dy /5)]

where F(-; ) 1s MMSE scalar shrinkage function and
Z ~N(0,1)
Replica Method valid = MMSE AMP is Bayes optimal
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SD Functions for 2-state GSM

MSE Distortion
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SD Lower Bounds

Entropy Based Bound (EBB) c.f. Shannon RD lower bound

Let x; ~ p(xi);var(xi) = 1,h(xl) < oo then
Dyss(8) > (1 — 8)22(hCD-Rg) /(10

where

h(x;) - entropy of p(x;) and
h, - entropy of Gaussian

12



relative error

Example: Generalized Gaussian

-

sample-distortion bounds for GGD alpha from 0.4 to 1 (and 2)
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Wavelet coefficients of natural images are often modelled
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SD Lower Bounds

Model Based Bound (MBB)

for distributions with a finite/infinite Gaussian scale mixture form
p(x) = f N(x:0,7)p(1)dt
0

we have the following ‘oracle’ based bound

C

Dypp(6) = f tp(1)dt

0

where § = fcoop('c)dr
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Convexity of D(0)

Theorem:
The SD function, D(0), is convex

Convex hull achievable by
{q)l’Al} combinations of {®;,A;} and
Q
D@ " T~ o~ [Pn2]
N o N {(DZ , Az}
[
é‘l 53 52 -

63 —_ C(61 + (1 — C()52



MSE Distortion

Gaussian encoders are not optimal!

Folk theorem - Gaussian encoders are optimal.
False!

If Gaussian-specific SD function is not convex we
can do better
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SD Functions for 2-state GSM

MSE Distortion
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Multi-resolution Compressive Imaging



Statistical image model

A simple statistical multi-resolution model [Mallat 89, Choi &
Baraniuk 99] represent image with wavelets (Besov priors):

f= zu]0k¢]0k+ z Wik Pjk

k JZjo,k

with w; ;. drawn from i.i.d. GMM with fixed variance per band

Wi ~ )[]N(O, O-E,]) + (1 — A})N(OJ O-E,j)
or GGD
Wj,k

exp| —
ZJﬂ_a]F(—) ( JBa; )

Where variances decay exponentially across scale

(W] k) =




Test Images



Image model example

TABLE 1
STATISTICS FOR DB2 WAVELET COEFFICIENTS OF CAMERAMAN

subband bo bl bg bg 54 b5

GGD o | 2 0.7 0.4 0.3 0.3_ 0.4
o 261.4383  2.0822 0.4559 0.0902 0.0167  0.0033
A 1 0.4155 05309 04842 0.3664 0.2792
GMD aﬁ 261.4383 44215 0.8542 0.1856  0.0453 0.0115
cr:é 0.3331  0.0038  0.0004  0.0002 0.0001

cameraman



Image model example

GGD representation with Haar wavelets...

ganwrycrane
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Image model example

C.g. cameraman

log4(variance)

GGD wavelet representation

Estlmatlon of the varlance for each level

+ rice Iog4(y) =kx+b [k,b]=[- 1 1584,5.0466]

pepper,[-1.3573,6.8050]

—%— cameraman,[-1.2545,5.8836]
concordorthophoto,[-1.1238,4.6772]

—%— football,[-1.3123,5.4647]
gantrycrane,[-0.9852,3.8232]

—x— kids,[-1.4588,4.9487]
m83,[-0.7214,2.6421]

— © — spine,[-1.7952,5.9752]

— 8 — peppers,[-1.4987,6.6983]
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Bandwise Compressive Imaging



Plan: (randomly) sample each wavelet band separately .

Bandwise sampling

Vi

Why?

Many researchers have proposed bandwise sampling schemes,

Vo

D

Dy

Xo”

Xk

e.g. [Donoho 2006, Tsaig 2007, Chang et al 2009]

Makes analysis tractable (consider problem of bandwise sample

allocation)

Linked to the near-optimal sampling for n-widths of function

spaces [Kashin, Maiorov].




Optimal Bandwise sample allocation

Need to balance placing a sample in one band over another.

e (Can be formulated as parallel CS problem

* Convex SD function reverse water filling solution similar to Rate
Distortion theory.

Define a distortion reduction function for each band:
@ (m;) = g? -(D( +1)/n;) — D(m; .))
77 ml * O-l nl (ml )/nl ml/nl

Optimal solution when 0 < r](i)(mi) < Aforall i and some A.



Bandwise Sampling

Convexified MMSE AMP distortion reduction
function (band 1 for cameraman image model)
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Bandwise Sample Allocation

We select a A and reverse fill samples in each band until
n®(my) <2

Distortion Reduction

DR fun for
cameraman image

4 5

10" 10 10° 10 10

Measurement Index for Band 1 to Band 6

The optimization works for any convex SD function, including L,
SD function and lower bounds (EBB, MMB) 28



Bandwise CS sample allocation

Sample allocation (% of full sampling) per band for m = 170, 600,
2000 and 10000 measurements. There are typically no more
than 2-3 partially sampled bands

Sample Allocation for M=170 Sample Allocation for M=600
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_ Bandwise CS Performance
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adding Tree Structure



Incorporating Tree Structure

S0,1 S1,mq S2,nq

< [\
HMT

Decoding

CS ' . LY
| oo 0
Decoding o 1 ~ lsz,n2
g *

We can add tree-based priors on coefficients and decode
using Turbo AMP scheme [Som, Schniter 2012]:

This calculates marginal probabilities for hidden states and
incorporate into MMSE AMP

32



Bandwise CS Sample Allocation

Sample allocation (% of full sampling) per band for 6= 10%, 15.26%,

25% and 30%
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€.g. cameraman

Peak Signal to Noise Ratio (dB)

Band
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(a) Original Cameraman

(d) MBSA+BAMP (23.56 dB)

Image reconstructions
from 10000
measurements (15%)
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SA for General Image Statistics

36



Open questions

How to derive sample allocations for more
sophisticated models? — analysis representations,
tree structured model, etc.

How to allocate samples within constrained
sampling schemes (e.g. partial Fourier)?
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