
1

Using XP to develop a CRM framework
Hubert Baumeister

Abstract— This paper describes our experiences with us-
ing XP practices within the EU-project CARUSO. The ob-
jective of CARUSO is the development of a framework for
building customized Customer Relationship Management
(CRM) applications. Originally, the project was planned
with a traditional software development process in mind
with a first prototype for evaluation by the customer and a
second prototype building on the results of that evaluation.
However, problems occurred defining the requirements for
the framework for several reasons. First, our prime cus-
tomer had only a vague understanding of how the software
support for their CRM needs should look like, and second,
CRM involves almost every business process in a company.
To address these problems we used an agile software devel-
opment process that allowed us to start from a simple CRM
process (customer service), dividing it into user-stories, and
clarifying the requirements on the framework as the user-
stories were implemented.

I. Introduction

IN particular in the domain of e-commerce, having ro-
bust software systems satisfying the needs of the busi-

ness, is getting more and more crucial to the survival of
companies. In addition, when starting the development of
a software system, usually one has only a rough idea of
the final functionality of the system while, on the other
hand, the software is needed already yesterday. Classical,
heavyweight software processes, which first require a thor-
ough analysis of the requirements and a detailed design
before implementing, fail to deliver in time. Software that
takes several years to design and implement may find them-
selves in a situation that it cannot cope with the current
requirements of the company, or even worse that the com-
pany who initiated the software development does not exist
anymore. To cope with these kind of problems, agile soft-
ware development processes, like Scrum [12], Crystal [6],
FDD [5], DSDM [7], and others have been proposed [1]. A
quite recent agile method which has gained a lot of pop-
ularity is Extreme Programming (XP) developed by Kent
Beck, Ward Cunningham, and others [3], [10]. XP is a
lightweight process which incorporates methods to react
to change while not sacrificing the quality of the result-
ing software. XP is most suited to small and middle-sized
projects where the software has to adapt to changes in the
requirements and the environment, and where the software
needs to produce business value even if not all functional-
ity is implemented. An example of this type of projects are
e-commerce web-sites. It is important that the web-site is
up and running already quite early to start making money,
even if only a minimal functionality is present. While the
web-site is running, new functionality is added and the re-

H. Baumeister is with the Institute of Computer Science, Lud-
wig-Maximilians-Unviersity (LMU), Munich, Germany. E-mail:
baumeist@informatik.uni-muenchen.de .

This research has been partially sponsored by the European Union
within the IST project CARUSO (IST-1999-12192).

quirements for the web-site are refined and changed due to
the feedback from the customers.

We have used practices from XP in the CARUSO
project [2], [4]. CARUSO is an EU-funded project [8] with
the objective to design and implement a framework for
building customized Customer Relationship Management
software. The major problem with designing such a frame-
work is finding the right components and their functionality
because the requirements on CRM software are quite com-
plex as they involve all the business processes of a company,
like marketing, sales, service, etc., and all its IT systems.

We first started the project following a classical software
development process which required us to analyze a good
deal of these processes before starting the design of the
system [13]. Because of the complexities involved in CRM
this proved to be impossible.

Therefore, starting from a rough idea of the CARUSO ar-
chitecture, we defined user-stories based on the CRM needs
of REMU, a utility company and one of the partners of the
project. During the implementation of these user-stories,
the components of the framework and their functionality
was discovered and implemented.

One of the components of this framework is the script en-
gine which manages the execution of dialog-scripts. Dialog-
scripts guide the dialog between a call-center agent and a
customer by presenting the agent with text and questions
she should ask the customer. Though more precise, the
general requirements of the script engine were too many to
be dealt with in a suitable time frame. Thus the problem
was to decide which subset of the requirements were the
most important in the context of the CARUSO project.
By looking at the user-stories of the CARUSO project we
were led to the definition of suitable user-stories for the
script engine. In addition, the script-engine was imple-
mented using test-first programming.

In the next section we describe the CARUSO project
and the architecture of the framework in more detail. Sec-
tions III and IV show how XP practices were used in the
CARUSO project. Finally, Section V provides a conclu-
sion.

II. CARUSO

The CARUSO (Customer Relationship Support Office)
project [4], [2] is a research and technological development
(RTD) project funded by the European Union within the
Information Society Technologies (IST) program of the 5th
framework program [8]. Partners are REMU, a Dutch util-
ity provider in Utrecht, DataCall, a German software house
in Munich, and the Institute of Computer Science of the
Ludwig-Maximilians-University in Munich. The project
started in January 2000 and ends June 2002. The objective
of CARUSO is to provide customized Customer Relation-



2

ship Management (CRM) solutions for small- and middle-
sized enterprises. This is achieved by designing and imple-
menting a framework for constructing CRM applications.
This framework consists of a set of generic components to-
gether with tools to customize these components.

A. Architecture

The basic design consideration of CARUSO was to
build the framework from components. Microsoft’s COM/
DCOM component technology was chosen because Win-
dows is the target platform for CARUSO and the frame-
work should reuse and extend existing COM/DCOM com-
ponents. The architecture of the CARUSO framework has
five major parts:
• the kernel components
• interfaces to back-office systems
• front-office applications
• application builder tools
• administration tools

The kernel components provide the basic services to all
front-office applications built with CARUSO. These com-
ponents are:
• Communication Server
• Storage Manager
• Business Object Manager
• Script Engine
• Service Manager

The communication server is one of the central parts of
any CRM application. Ideally any communication with
the customer will be done using some of its services. In
particular, the communication server manages the routing
of incoming and outgoing messages, like phone calls, e-
mails, faxes etc. Each incoming message will be sent to the
most skilled agent depending on a variety of factors, e.g.
which number the customer called (i.e. which service he
requested), who the customer is (can be inferred from the
calling telephone number), and what his contact history is.
In addition, the communication server can be used to make
outbound calls and it supports marketing campaigns using
pre- and power-dialing.

The storage manager defines an abstraction layer on top
of common relational databases so that an application pro-
grammer does not have to deal with the peculiarities of a
particular relational database. On top of the storage man-
ager functionality, the business object manager provides
access to the business objects of an application by apply-
ing a user-defined mapping of these objects to relational
database tables.

Finally, the script engine is used to run dialog-scripts
guiding the dialog between a call-center agent and a cus-
tomer. The script engine will be discussed in more detail
in the next section.

For each back-office systems that the CRM applica-
tion has to interface with, like ERP systems, workflow-
management systems, etc., a software-component repre-
senting the back-office system needs to be implemented.
The task of this component is to access the data stored

in these systems, but also to initiate business processes in-
volving these systems. The advantage of using components
representing the back-office systems instead of directly call-
ing the API functions of the legacy system is that all the
methods that need to know about the API of the legacy
system are grouped together in one place, which makes it
easier to adapt these components to changes to the back-
office system (like new versions of the software).

The CARUSO kernel together with the interfaces to the
back-office systems provide the components used to build
particular front-office applications. These are built with
the help of the Application Builder Tools. These tools in-
clude a Data Modeler to define the business objects used
by the business object manager, the Script Developer for
developing dialog scripts, and tools to administer and mon-
itor the resulting CRM applications.

B. Script Engine

A dialog-script guides the dialog between the call-center
agent and the customer. It guides the agent through a set of
questions and texts to be presented to the customer. The
sequence of questions and texts depends on the answers
a customers gives. In addition, to each transition from
one question or text to another one can associate arbitrary
actions, like updating databases or sending messages to
other agents.

An example is the script used by REMU for changing the
amount of monthly pre-payment for a customer’s utility-
bill. After the usual introduction, identification who is call-
ing, and finding out about the service request, that is, that
the customer wants to change the monthly pre-payment,
the agent is first presented with the following question on
his screen:
,,Your current monthly payment is [payment]. What should
be your new monthly payment?”
In this question [payment] is replaced by the actual monthly
payment of the customer, which is retrieved from the
customer-database. Then the agent types the answer of the
customer on his keyboard. If the new payment is greater
then the original payment or not less than 90% of the orig-
inal payment, this new payment is accepted by the system
without further questions and the customer database is up-
dated with the new payment. The agent then is presented
with the text:
,,Thank you, your new monthly payment is [payment].”
In this example, we assume that the dialog is finished at
this point, although, more likely, the agent would ask the
customer if he could do something else for her.

In case that the new payment is less then 90% of the
original payment an explanation is needed. Thus the agent
asks:
,,The number you have given is too small. Please give an
explanation.”
The agent types the answer given by the customer and
automatically this answer is forwarded by e-mail to some
person in the back-office evaluating the request. The agent
is presented with the following text to end the dialog with
the customer:



3

,,Thank you, your request will be considered.”
The task of the script engine is to execute given dialog-

scripts. It keeps track of which questions have been asked
and what answers were given, what the current question or
text is, and performs actions when moving from one script
item to another.

One of the design goals was to separate the logic of how
scripts are executed from the user interface used to exe-
cute these scripts and from the storing of the answers. In
particular, different programming languages were used to
implement these different aspects. The engine itself was
written in Java (Visual J++) as a COM component. One
user interface was written as an ActiveX component using
native Windows widgets, while a web-interface was imple-
mented with the help of Java Server Pages. To process and
store the answers given to the questions in a script, the
business object manager and storage manager components
were used.

III. Requirements Paralysis

Our first approach was to use a more traditional software
development process. Two prototypes of the software were
planned. The first prototype was scheduled after the first
18 months and should be evaluated by REMU. The result of
this evaluation was intended to drive the second prototype
which was scheduled for the next 9 months. Each of the
two prototypes were planned according to the traditional
development cycle: analyzing requirements, designing, im-
plementing, and testing the system.

A major problem with this approach was that for the
first design of the system we had the tendency to look for
a complete set of requirements to start with, because any
requirements that were not considered in the first design
could require changes to the design and implementation
that would be too expensive to do in the later phases. In
CARUSO we first tried to model the business processes
that would be influenced by a CRM software. This was
not feasible as CRM usually has to interact with almost
every business process of a company and each company
has different kind of business processes. Further, it proved
to be very difficult to find a common data model for a
customer suitable for several companies even in the same
vertical market. Also, REMU had only an imprecise under-
standing of their CRM requirements. REMU was referring
to CARUSO as their customer care dream. As is common
with dreams, CARUSO was supposed to do everything; but
because of the complexity of CRM, no concrete require-
ments were given, since nobody knew where to start. This
resulted in the problem that to start with the design and
implementation of the system, we needed to have precise
requirements, while, on the other hand, the real require-
ments would only be known when a first version of the
system was available to gain some experience.

The way XP addresses this problem is that analysis, de-
sign, implementation, and testing is done for each user-
story in turn without taking those user stories into account
which have not yet been implemented. The result of these
steps is a system implementing exactly this user-story. This

allows for immediate feedback by the customer. Each new
user-story is dealt with the same way. Not taking into ac-
count all user stories that have not yet been implemented
is important as the user-stories may change because of the
experiences gained with the resulting system.

A. User Stories

Therefore, within the CARUSO project, we first fo-
cused on the business process most important to REMU,
which was customer service. This included support cases
like complaining, getting information about products, and
changing customer data. One of the most important, but
also most complicated support case was the moving from
one place to another by the customer.

So the first step was to build a small pilot to show REMU
how these service requests could be handled. While this
pilot could show some sample screens, it did not yet im-
plement any serious business logic. However, it proved suf-
ficient for REMU to produce a set of support cases they
want to have handled and to define how these should be
handled.
• User-story 1: Identifying Customer
• User-story 2: Change Billing Address
• User-story 3: Change Monthly Pre-Payment
• User-story 4: Handle Complaints
• User-story 5: Handle Requests for Information
• User-story 6: Move In / Out
Each user-story added to the functionality of each of the
software-components. At the end of the last user-story, a
first prototype of the CARUSO framework was available.

B. Example: Script Engine

Using the script engine as an example, we show how each
of the iterations guided the design of the scripts and the
script engine. To handle the support case of the first it-
eration, identifying customer, no script was necessary. In
the support case for the second iteration, changing the cus-
tomers billing address, the script consisted of a simple ques-
tion and processing its answer without any branching. The
support case for the third iteration, changing the monthly
payment, involved branching on conditions and performing
actions, like sending an e-mail to the back-office. Further-
more, parameters like [payment] had to be introduced into
the text of the question. These parameters were replaced
by their actual value during the execution of the scripts.

For the support case of the fourth iteration, handling
customer complaints, we discovered that at several points
in the script it was necessary to schedule the visit of a tech-
nician at the customers house. This involved asking several
question which could be considered as a script of its own
and led to introducing scripts as part of other scripts. Also
we noticed that the first question of a script may depend on
information REMU had about the customer. For example,
if the customer had a complaint about district heating and
has a service agreement with REMU, then immediately a
technician would be scheduled to visit the customer. How-
ever, if the customer does not have a service agreement,
further questions would be asked and she would be referred



4

to, for example, the house owner. This led to the introduc-
tion of a script item which could be used as the first item
in a script and as source for branching but would not be
displayed on the screen.

The support cases of the last two iterations did not re-
quire any further extensions to the scripts and the script
engine.

IV. Test-First Programming

To achieve the robustness required of the script engine,
automated tests and test-first programming were used.
This ensured that each each functionality had its associ-
ated test and that everything that we want the software to
do was document as a test. This also helped in better un-
derstanding the functionality to be implemented, because
the test made precise the functionality we expected.

We wrote tests for:
• Intended Functionality
• Assumptions About the Code
• Border Cases
• Discovered Bugs
• Interaction between COM/DCOM Components
Test for intended functionality and assumptions about the
code are quite similar. However, the test for intended func-
tionality tests for the results the code should produce if
everything is okay. Testing assumptions about the code
may also document failures, for example, what happens if
a function gets passed a wrong argument. While this prob-
ably shouldn’t happen at all, in some cases it is important
to document what would happen. Other assumptions on
code include unexpected behavior (whether correct or in-
correct) of library components.

Writing the test for the border cases, e.g., if an argument
to a method is null and similar cases, made precise (and
documents) what should be the result of such situations.

Bugs were an indication that we forgot to test and im-
plement some functionality. Further, tests for bugs ensured
that later revisions of the software did not introduce the
same bug again.

One major problem was to understand the interaction
between COM/DCOM components written in Visual Basic
and Java. One of the user interfaces was written in Visual
Basic while the script engine was implemented in Java.
Therefore access from Visual Basic to methods and objects
in Java was needed. Problems occurred with how data
types in the Visual Basic were mapped to data types in
Java; in particular, how values of type Variant in Visual
Basic were mapped to values in Java. Tests were important
to document our assumption on how this mapping works.

In addition, also access from Java to other COM/DCOM
components was required, as all the data manipulated by
the scripts were handled by objects outside the script en-
gine COM component. For example, all data gathered by
the script engine was stored using the business object man-
ager components. Again tests were written to document
and test our assumptions.

Usually one adds functionality in a way that keeps the
old design untouched to ensure that the old functionality

still works. However, this results in duplicated and com-
plex code. Therefore, when adding new functionality to
the script engine, we changed the old design to produce
the most simplest design that implements the old and new
functionality. This approach requires to re-implement some
of the old functionality using the new design. The tests
helped us assure that we correctly re-implemented the old
functionality.

Tests helped us improve the portability of the script en-
gine. While intended to be used as a COM component in
Windows, we wanted to use the script engine also as a pure
Java application to maintain platform independence. Thus
a first version of the engine was developed under Linux.
When moving from Linux to Windows, tests showed us
that almost everything works with the exception of a few
tests related to reading and writing scripts in XML. In-
vestigations showed that these failures were related to the
different line end conventions of Unix and Windows.

A more subtle problem occurred when moving from one
computer running Windows 2000 to another computer run-
ning the same operating system. All tests passed but one.
The failing test revealed a broken library we distributed
with the script engine. The computer on which the de-
velopment took place used a correct version of the library
instead of the broken one. Because of having the tests we
found the bug which otherwise might have been discovered
only at the customers site where fixing this bug would have
been quite expensive.

The code size of the tests equals almost that of the pro-
duction code, 42 classes with 5.111 lines of production code
versus 37 classes and 4.837 lines of test code. JUnit [9] was
used to test the Java part and the connection from Java to
other COM components, and VBUnit [11] was used to test
the connection from Visual Basic to Java.

V. Conclusion

In this paper we have presented our positive experi-
ence with some of the XP practices in the context of the
CARUSO project, although not all XP practices could be
applied because of the distributed nature of the project
(as common with EU-projects, the project partners were
from different countries) and political reasons. It proved
very helpful to divide the development task into user-stories
guided by the CRM needs of REMU to get a precise un-
derstanding of the requirements of the framework and to
get feedback on its use.

Similarly, this approach helped the implementation of
the script engine, which otherwise would have taken much
longer to design and implement, because we would have
taken into account a lot of sensible requirements which were
not needed for CARUSO.

Although no big design phase preceeded the implemen-
tation of the engine, the design proved quite stable with re-
spect to future requirements. While within the CARUSO
project the design of the script engine reached a stable
state, the engine is being extended at the moment to
cope with requirements coming from outside of CARUSO.
A company needs an implementation of dialog-scripts in-



5

volving forms in addition to plain questions. It showed
that these new requirements could be implemented with
only minor modifications, although no particular effort was
made to ensure that the design of the script engine was able
to cope with future changes.

Also, the engine is quite stable and only a few bugs were
found since the engine is in use. We believe that this is
due to the automatic tests and due to the fact that tests
were written before the actual code. Writing the tests also
helped us discover problems when moving from one plat-
form to another and even when moving from one computer
to another running the same OS. We think that without
the tests it would have much harder to find and deal with
these problems.

References

[1] Agile Alliance. The agile alliance. www.agilealliance.org, 2001.
[2] Hubert Baumeister and Piotr Kosiuczenko. CARUSO: Customer

Care and Relationship Support Office. In Ricardo Gonçalves and
Adolfo Steiger-Garção, editors, Product and Process Modelling
in Building and Construction, Proceedings of the Third Euro-
pean Conference on Product and Process Modelling in the Build-
ing and Related Industries, Lisbon, Portugal, 25-27 September
2000, pages 115–120. A. A. Balkema, Rotterdam, Brookfield,
2000.

[3] Kent Beck. Extreme Programming Explained. Addison Wesley
Longman, 1999.

[4] CARUSO Consortium. CARUSO web-site. www.caruso-crm.uni-
muenchen.de, www.caruso24.com, 2001.

[5] Peter Coad, Eric LeFebrve, and Jeff De Luca. Feature-driven
development. In Java Modeling in Color with UML. Prentice
Hall, 1999.

[6] Alistair Cockburn and Jim Highsmith. Crystal methodologies.
www.crystalmethodologies.org, 2001.

[7] DSDM Consortium. Dynamic systems developement method.
www.dsdm.org, 2001.

[8] European Union. Future and emerging technologies initiative
global computing. www.cordis.lu/ist/fetgc.htm, 2001.

[9] Erich Gamma and Kent Beck. JUnit. www.junit.org, 2001.
[10] Ron E. Jeffries, Ann Anderson, and Chet Hendrickson. Extreme

Programming Installed. Addison Wesley Longman, 2000.
[11] Bodo Maass. VBUnit. www.vbunit.org, 2001.
[12] Ken Schwaber. Scrum development process.

www.controlchaos.com, 2001.
[13] Ian Sommerville. Software Engineering. Addison Wesley Long-

man, 2000.


