
Relating Abstrat Datatypes and Z-Shemata

?

Hubert Baumeister

University of Munih, Institute of Computer Siene,

Oettingenstr. 67, D-80358 Munih, Germany

baumeist�informatik.uni-muenhen.de

Abstrat. In this paper we investigate formally the relationship be-

tween the notion of abstrat datatypes in an arbitrary institution, found

in algebrai spei�ation languages like Clear, ASL and CASL; and the

notion of shemata from the model-oriented spei�ation language Z. To

this end the institution S of the logi underlying Z is de�ned and a trans-

lation of Z-shemata to abstrat datatypes over S is given. The notion of

a shema is internal to the logi of Z and thus spei�ation tehniques of

Z relying on the notion of a shema an only be applied in the ontext of

Z. By translating Z-shemata to abstrat datatypes these spei�ation

tehniques an be transformed to spei�ation tehniques using abstrat

datatypes. Sine the notion of abstrat datatypes is institution indepen-

dent, this results in a separation of these spei�ation tehniques from

the spei�ation language Z and allows them to be applied in the ontext

of other, e.g. algebrai, spei�ation languages.

1 Introdution

As already noted by Spivey [11℄, shema-types, as used in the model-oriented

spei�ation language Z, are losely related to many-sorted signatures; and

shemata are related to the notion of abstrat datatypes found in algebrai

spei�ation languages.

Z is a model-oriented spei�ation language based on set-theory. In the

model-oriented approah to the spei�ation of software systems spei�ations

are expliit system models onstruted out of either abstrat or onrete primi-

tives. This is in ontrast to the approah used with algebrai or property-oriented

spei�ation languages like CASL [9℄, whih identi�es the interfae of a software

module, onsisting of sorts and funtions, and states the properties of the inter-

fae omponents using �rst-order formulas.

Spei�ations written in Z are strutured using shemata and operations on

shemata. A shema denotes a set of bindings of the form f(x

1

; v

1

); : : : ; (x

n

; v

n

)g.

Operations on shemata inlude restrition of the elements of a shema to those

satisfying a formula; logial operations like negation, onjuntion, disjuntion

and quanti�ation; and renaming and hiding of the omponents of a shema.

Shemata, and thus the struturing mehanism of Z, are elements of the logi

used by Z. This, on one hand, has the advantage of using Z again to reason about

the struture of a spei�ation, but, on the other hand, has the disadvantage

that development methods and theoretial results referring to the struture of

spei�ations annot be easily transfered to other spei�ation languages based

on di�erent logis.

?

This researh was partly supported by the Esprit working group 29432 (CoFI WG).

In ontrast, the struturing primitives of property-oriented spei�ation lan-

guages an be formulated independent from the logi underlying the partiular

spei�ation language. This is done by using the notion of an institution intro-

dued by Goguen and Burstall [5℄ to formalize the informal notion of a logial

system. The building bloks of spei�ations are abstrat datatypes whih on-

sist of an interfae and a lass of possible implementations of that interfae.

Operations on abstrat datatypes are the restrition of the implementations to

those satisfying a set of formulas; the union of abstrat datatypes; hiding, adding

and renaming of interfae omponents. What exatly onstitutes the omponents

of an interfae and how they are interpreted in implementations depends on the

institution underlying the spei�ation language. For example, in the institution

of equational logi the omponents of an interfae are sorts and operations. The

implementations interpret the sorts as sets and the operations as funtions on

these sets.

The goal of this paper is to formalize the relationship between shemata and

abstrat datatypes, and to show a orrespondene between the operations on

abstrat datatypes and operations on shemata. This relationship an be used

to transfer results and methods used from Z to property-oriented spei�ation

languages and vie versa. For example, the Z-style for the spei�ation of sequen-

tial systems an be transfered to property-oriented spei�ation languages [2℄.

Further, the orrespondene between operations on abstrat datatypes and op-

erations on shema suggests new operations on abstrat datatypes like negation

and disjuntion.

However, we annot ompare shemata with abstrat datatypes in an arbi-

trary institution; instead, we have to de�ne �rst an institution S whih formalizes

the notion of the set-theory used in Z, and then ompare shemata with abstrat

datatypes in this institution. The de�nition of the institution S has the further

advantage that it an be used to de�ne a variant of the spei�ation language

CASL, CASL-S, based on set-theory instead of order-sorted partial �rst-order

logi. This is possible beause the semantis of most of CASL is largely indepen-

dent from a partiular institution (f. Mossakowski [8℄).

2 Institutions and Abstrat Datatypes

The notion of institutions is an attempt to formalize the informal notion of a

logial system and was developed by Goguen and Burstall [5℄ as a means to

de�ne the semantis of the spei�ation language Clear [3℄ independent from a

partiular logi.

De�nition 1 (Institution). An institution I = hSign

I

; Str

I

; Sen

I

; j=

I

i on-

sists of

{ a ategory of signatures Sign

I

,

{ a funtor Str

I

: Sign

op

I

! Cat assigning to eah signature � the ategory of

�-strutures and to eah signature morphism � : � ! �

0

the redut funtor

j

�

: Str

I

(�

0

)! Str

I

(�);

{ a funtor Sen

I

: Sign

I

! Set assigning to eah signature � the set of

�-formulas and to eah signature morphism � : � ! �

0

a translation � of

�-formulas to �

0

-formulas, and

2

{ a family of satisfation relations j=

I

�

� Str

I

(�)� Sen

I

(�) for � 2 Sign

I

indiating whether a �-formula ' is valid in a �-struturem, writtenm j=

I

�

' or for short m j=

I

',

suh that the satisfation ondition holds: for all signature morphisms � : � !

�

0

, formulas ' 2 Sen

I

(�) and strutures m

0

2 Str

I

(�

0

) we have

m

0

j

�

j=

I

' if and only if m

0

j=

I

�(')

We may write M j=

I

' for a lass of �-struturesM and a �-formula ' instead

of 8m 2 M : m j=

I

', and similar for m j=

I

� and M j=

I

� for a set of

�-formulas � and a �-struture m.

Traditionally, an abstrat datatype (�;M) is a spei�ation of a datatype in

a software system. The signature � de�nes the external interfae as a olletion

of sort and funtion symbols andM is a lass of�-algebras onsidered admissible

implementations of that datatype. In the ontext of an arbitrary institution I

an abstrat datatype is a pair (�;M) where � is an element of Sign

I

and M is

a full subategory of Str

I

(�).

The basi operations on abstrat datatypes are I

�

(impose), D

�

(derive), T

�

(translate) and + (union) (f. Sannella and Wirsing [10℄):

Impose allows to impose additional requirements on an abstrat datatype.

The semantis of an expression I

�

(�;M) is the abstrat datatype (�;M

0

) where

M

0

onsists of all �-strutures m in M satisfying all formulas in �, i.e.

I

�

(�;M) = (�; fm 2M j m j=

I

�g):

The translate operation an be used to rename symbols in a signature but

also to add new symbols to a signature. If � is a signature morphism from � to

�

0

then the expression T

�

(�;M) denotes an abstrat datatype (�

0

;M

0

) where

M

0

ontains all �

0

-strutures m whih are extensions of some �-struture m in

M , i.e.

T

�

(�;M) = (�

0

; fm

0

2 Str

I

(�

0

) j m

0

j

�

2Mg):

The derive operation allows to hide parts of a signature. D

�

(�

0

;M

0

) denotes

the abstrat datatype having as signature the domain of � and as models the

translations of the models of Sp by j

�

, i.e.

D

�

(�

0

;M

0

) = (�; fm

0

j

�

j m

0

2M

0

g):

At last, the union operation is used to ombine two spei�ations. Sine

for arbitrary institutions, the union of signatures is not de�ned, we have to

require that both spei�ations have the same signature. To form the union

of two spei�ations of di�erent signatures �

1

and �

2

one has to provide a

signature � and signature morphisms �

1

: �

1

! � and �

2

: �

2

! � and write

T

�

1

Sp

1

+ T

�

2

Sp

2

. The semantis of (�;M

1

) + (�;M

2

) is the abstrat datatype

(�;M

0

) where M

0

is the intersetion M

1

and M

2

, i.e.

(�;M

1

) + (�;M

2

) = (�;M

1

\M

2

):

3

3 The Institution S

In this setion we introdue the omponents of the institution S formalizing the

logi underlying the spei�ation language Z. Note that this is not an attempt

to give a semantis to the Z spei�ation language. The relationship between S

and Z is similar to the relationship between the institution of equational logi

and the semantis of a spei�ation language based on this institution.

3.1 Signatures

A signature � in Sign

S

onsists of a set of names for given-sets G and a set of

identi�ers O. Eah identi�er id in O is assoiated with a type �(id) built from

the names of given-sets and the onstrutors: artesian produt, power-set and

shema-type. Note that S has no type onstrutors for funtion types. Instead,

a funtion from T

1

to T

2

is identi�ed with its graph and is of type P(T

1

� T

2

).

This allows funtions to be treated as sets and admits higher-order funtions,

as funtions may take as arguments the graph of a funtion and also return the

graph of a funtion.

De�nition 2 (Signatures). Let F and V be two disjoint reursive enumerable

sets of names. A signature � in Sign

S

is a tuple (G;O; �) where G and O are

�nite disjoint subsets of F . The funtion � maps names in O to types in T (G)

where T (G) is indutively de�ned by:

{ G � T (G)

{ (produt) T

1

� � � � � T

n

2 T (G) for T

i

2 T (G), 1 � i � n

{ (power-set) P(T) 2 T (G) for T 2 T (G)

{ (shema-type) <x

1

: T

1

; : : : ; x

n

: T

n

> 2 T (G) for T

i

2 T (G) and x

i

2 V

and x

i

6= x

j

for 1 � i; j � n.

The funtion T , mapping a given-set G to T (G), is extended to a funtor

from Set to Set by extending the funtion f : G ! G

0

to a funtion T (f) :

T (G)! T (G

0

) as follows:

{ T (f)(g) = g for g 2 G,

{ T (f)(T

1

� : : :� T

n

) = T (f)(T

1

)� : : :� T (f)(T

n

) for T

1

; : : : ; T

n

2 T (G),

{ T (f)(P(T)) = P(T (f)(T)) for T 2 T (G),

{ T (f)(<x

1

: T

1

; : : : ; x

n

: T

n

>) = <x

1

: T (f)(T

1

); : : : ; x

n

: T (f)(T

n

)>

for T

1

; : : : ; T

n

2 T (G).

De�nition 3 (Signature-Morphisms). A signature morphism � from a sig-

nature (G;O; �) to a signature (G

0

; O

0

; �

0

) is a pair of funtions �

G

: G ! G

0

and �

O

: O ! O

0

suh that �

G

and �

O

are ompatible with � and �

0

, that is

� ; T (�

G

) = �

O

; �

0

.

The ategory Sign

S

has as objets signatures � = (G;O; �) and as mor-

phisms signature morphisms � = (�

G

; �

O

) as de�ned above.

Example 1. As an example of a signature in Sign

S

onsider the following small

Z spei�ation of a bank aount whih de�nes a given set Integer, an identi�er

+, and a shema ACCOUNT :

[Integer℄

4

+ : Integer � Integer ! Integer

ACCOUNT

bal : Integer

The signature of this spei�ation is � = (fIntegerg; f+;ACCOUNTg; �) where

� maps ACCOUNT to the type Integer and + to the type P(Integer� Integer�

Integer). Note that the funtion type of + is translated to the type P(Integer�

Integer� Integer) of its graph.

A property neessary for writing modular spei�ations is the oompleteness

of the ategory of signatures of an institution.

Theorem 1. The ategory Sign

S

is �nitely oomplete.

The olimit of a funtor F : J ! Sign

S

is given by the olimits of the set

of given-set names and the set of identi�ers. Note that Sign

S

is only �nitely

oomplete beause we have assumed that the set of given-set names and the

set of identi�ers are �nite.

3.2 Strutures

Given a signature � = (G;O; �) a �-struture A interprets eah given-set in G

as a set from Set and eah identi�er id in O as a value of the set orresponding

to the type of id .

De�nition 4 (�-strutures). For a given signature � = (G;O; �) the at-

egory Str

S

(�) of �-strutures has as objets pairs (A

G

; A

O

) where A

G

is a

funtor from the set G, viewed as a disrete ategory, to Set, and A

O

is the set

f(o

1

; v

1

); : : : ; (o

n

; v

n

)g for O = fo

1

; : : : ; o

n

g and v

i

2

�

A

G

(�(o

i

)). The funtor

�

A

G

: T (G) ! Set is given by:

{

�

A

G

(T) = A

G

(T) for T = g and g 2 G

{

�

A

G

(T

1

� � � � � T

n

) = (

�

A

G

(T

1

)� � � � �

�

A

G

(T

n

)) for T

1

� � � � � T

n

2 T (G)

{

�

A

G

(P(T)) = 2

�

A

G

(T)

for P(T) 2 T (G)

{

�

A

G

(<x

1

: T

1

; : : : ; x

n

: T

n

>)

= ff(x

1

; v

1

); : : : ; (x

n

; v

n

)g j v

i

2

�

A

g

(T

i

); i 2 1 : : : ng

for <x

1

: T

1

; : : : ; x

n

: T

n

> 2 T (G).

Example 2. An example of a struture A over the signature de�ned in Ex. 1

onsists of a funtion A

G

mapping Integer to Z and the set

A

O

= f(ACCOUNT ; ff(bal ; n)g j n 2 Zg); (+; graph(�(x; y):x + y))g:

The notation graph(f) is used to denote the graph of a funtion f : T ! T

0

.

A morphism h from a �-struture A to a �-struture B is a family of fun-

tions between the interpretations of the given-sets whih is ompatible with the

interpretations of the identi�ers in O.

5

De�nition 5 (�-homomorphism). A �-homomorphism h from a struture

A = (A

G

; A

O

) to a struture B = (B

G

; B

O

) is a natural transformation h :

A

G

) B

G

for whih

�

h

�(o)

(v

A

) = v

B

for all o 2 O, (o; v

A

) 2 A

O

and (o; v

B

) 2 B

O

holds.

�

h is the extension of h : A

G

) B

G

to h :

�

A

G

)

�

B

G

given by:

{

�

h

T

(v) = h

T

(v) for T 2 G

{

�

h

T

((v

1

; : : : ; v

n

)) = (

�

h

T

1

(v

1

); : : : ;

�

h

T

n

(v

n

)) for T = T

1

� � � � � T

n

2 T (G)

{

�

h

T

(S) = f

�

h

T

0

(v) j v 2 Sg for T = P(T

0

) 2 T (G)

{

�

h

T

(f(x

1

; v

1

); : : : ; (x

n

; v

n

)g) = f(x

1

;

�

h

T

1

(v

1

)); : : : ; (x

n

;

�

h

T

n

(v

n

))g

for T = <x

1

: T

1

; : : : ; x

n

: T

n

> 2 T (G)

De�nition 6 (�-redut). Given a signature morphism � from � = (G;O; �)

to �

0

= (G

0

; O

0

; �

0

) in Sign

S

and a struture A = (A

G

; A

O

) in Str

S

(�

0

) the

�-redut of A, written Aj

�

, is the struture B = (B

G

; B

O

) given by:

{ B

G

= �

G

;A

G

{ B

O

= f(o; v) j (�

O

(o); v) 2 A

O

; o 2 Og

For a �

0

-homomorphism h : A! B the �-redut is de�ned as hj

�

= �

G

;h.

De�nition 7 (Str

S

). The ontravariant funtor Str

S

from Sign

S

to Cat as-

signs to eah signature � the ategory having as objets �-strutures and as

morphisms �-homomorphisms, and to eah Sign

S

-morphism � from � to �

0

a funtor from the ategory Str

S

(�

0

) to the ategory Str

S

(�) mapping a �-

struture A and a �-homomorphism to their �-redut.

If an institution has amalgamation, two strutures A and B over di�erent

signatures �

A

and �

B

an be always ombined provided that the ommon om-

ponents of both signatures are interpreted the same in A and B. This allows to

build larger strutures from smaller ones in a modular way. An institution has

amalgamation if and only if its struture funtor preserves pushouts, i.e. maps

pushout diagrams in Sign

I

to pullbak diagrams in the ategory of ategories.

The funtor Str

S

not only preserves pushouts but also arbitrary �nite olimits.

Theorem 2. The funtor Str

S

preserves �nite olimits.

3.3 Expressions

The �-formulas are �rst-order formulas over expressions denoting sets and ele-

ments in sets. Expressions an be tested for equality and membership. An impor-

tant ategory of expressions, alled shema-expressions, denote sets of elements

of shema-type.

E ::= id j (E; : : : ; E) j E:i j <x

1

:= E; : : : ; x

n

:= E> j E:x j E(E)

j fE; : : : ; Eg j fS �Eg j P(E) j E � : : :�E j S

The funtion appliation E

1

(E

2

) is well-formed if E

1

is of type P(T

1

� T

2

) and

E

2

is of type T

1

. The result is of type T

2

. If E

1

represents the graph of a total

funtion then E

1

(E

2

) yields the result of that funtion applied to E

2

. However,

6

if E

1

is the graph of a partial funtion, or not funtional at all, then an arbitrary

value from the

�

A

G

(T

2

) is hosen as the result for the situations where E

2

is not

in the domain of that funtion or if several results are assoiated with E

2

in E

1

.

Given a signature � = (G;O; �) and a set of variables X � V together with

a funtion �

X

: X ! T (G) then an environment � is a pair (�; (X; �

X

)). We use

the notation �[<x

1

: T

1

; : : : ; x

n

: T

n

>℄ to denote the environment (�; (X

0

; �

0

X

))

given by X

0

= X [fx

1

; : : : ; x

n

g and

�

0

X

(id) =

�

T

i

if id = x

i

for some 1 � i � n

�

X

(id) else

An expression E is well-formed with respet to � if

{ E = id and id 2 X [O [G. The type of E wrt. � is

�

�

(E) =

8

<

:

�

X

(id) if id is in X ,

�(id) if id is in O,

P(id) if id is in G.

{ E = (E

1

; : : : ; E

n

) and eah E

i

is well-formed for all 1 � i � n. Then

�

�

(E) = �

�

(E

1

)� : : :� �

�

(E

n

).

{ E = E

0

:i, �

�

(E

0

) = T

1

� : : :� T

n

and 1 � i � n. The type of E is T

i

.

{ E = <x

1

:= E

1

; : : : ; x

n

:= E

n

>, x

i

2 V , x

i

6= x

j

and eah E

i

is well-formed.

The type of E is <x

1

: �

�

(E

1

); : : : ; x

n

: �

�

(E

n

)>.

{ E = E

0

:x, �

�

(E

0

) = <x

1

: T

1

; : : : ; x

n

: T

n

> and x = x

i

for some 1 � i � n.

The type of E is T

i

.

{ E

1

(E

2

), �

�

(E

1

) = P(T

1

� T

2

) and �

�

(E

2

) = T

1

. The type of E is T

2

.

{ E = fE

1

; : : : ; E

n

g, eah E

i

is well-formed and all E

i

have the same type T

for 1 � i � n. The type of E is P(T).

{ E = fS �E

0

g, S is well-formed and has type P(<x

1

: T

1

; : : : ; x

n

: T

n

>) and

E

0

is well-formed with respet to �[<x

1

: T

1

; : : : ; x

n

: T

n

>℄. The type of E

is P(�

�

0

(E

0

)).

{ E = P(E

0

) and E

0

is well-formed. The type of E is P(�

�

(E

0

)).

{ E = E

1

� : : :�E

n

and eah E

i

is well-formed. The type of E is P(�

�

(E

i

)�

: : :� �

�

(E

n

)).

{ E = S and S is a well-formed shema-expression with respet to � (well-

formedness of shema-expressions is de�ned later in this paper.) The type of

E is the type of S with respet to �.

Let E be an expression well-formed with respet to an environment � =

(�; (X; �

X

)) and let A = (A

G

; A

O

) be a �-struture. The semantis of an ex-

pression E is given with respet to a variable binding � ompatible with the

environment �. A variable binding � = (A;A

X

) ompatible with � onsists of a

�-struture A and a set A

X

= f(x

1

; v

1

) : : : (x

n

; v

n

)g with v

i

2

�

A

G

(�

X

(x

i

)) for

all 1 � i � n.

If v = f(x

1

; v

1

); : : : ; (x

n

; v

n

)g is an element of type T = <x

1

: T

1

; : : : ; x

n

: T

n

>

then the notation �[v℄ is used to desribe the variable binding (A;A

0

X

) where

(x

i

; v

i

) is in A

0

x

i� (x

i

; v

i

) is in v, or there is no (x

i

; v

0

i

) in v for some v

i

and

(x

i

; v

i

) is in A

X

.

Now the semantis of an expression E wrt. � is de�ned as follows:

7

{ [[id℄℄

�

= v if (id; v) 2 A

X

and id 2 X or (id; v) 2 A

O

and o 2 O, or

[[id℄℄

�

= A

G

(id) if id is in G.

{ [[(E

1

; : : : ; E

n

)℄℄

�

= ([[E

1

℄℄

�

; : : : ; [[E

n

℄℄

�

).

{ [[E:i℄℄

�

= v

i

if [[E℄℄

�

= (v

1

; : : : ; v

n

).

{ [[<x

1

:= E

1

; : : : ; x

n

:= E

n

>℄℄

�

= f(x

1

; [[E

1

℄℄

�

); : : : ; (x

n

; [[E

n

℄℄

�

)g.

{ [[E:x℄℄

�

= v

i

if [[E℄℄

�

= f(x

1

; v

1

); : : : ; (x

n

; v

n

)g and x = x

i

.

{ [[E

1

(E

2

)℄℄

�

= v if v is unique with ([[E

2

℄℄

�

; v) in [[E

1

℄℄

�

. If another v

0

with

([[E

2

℄℄

�

; v

0

) in [[E

1

℄℄

�

exists or if none exists then v is an arbitrary element of

�

A

G

(T

2

), where �

�

(E

1

) = P(T

1

� T

2

).

{ [[fE

1

; : : : ; E

n

g℄℄

�

= f[[E

1

℄℄

�

; : : : ; [[E

n

℄℄

�

g.

{ [[fS �Eg℄℄

�

= f[[E℄℄

�[v℄

j v 2 [[S℄℄

�

g.

{ [[P(E)℄℄

�

= 2

[[E℄℄

�

.

{ [[E

1

� : : :�E

n

℄℄

�

= [[E

1

℄℄

�

� : : :� [[E

n

℄℄

�

.

Shema-expressions A shema denotes a set of elements of shema-type,

whih have the form f(x

1

; v

1

); : : : ; (x

n

; v

n

)g and are alled bindings. Thus the

type of a shema is P(<x

1

: T

1

; : : : ; x

n

: T

n

>) if T

i

is the type of v

i

for 1 � i � n.

A simple shema of the form x

1

: E

1

; : : : ; x

n

: E

n

de�nes the identi�ers of

a shema and a set of possible values for eah identi�er. Given a shema S

we an a de�ne a new shema SjP having as elements all the elements of S

satisfying the prediate P . We an form the negation, disjuntion, onjuntion

and impliation of shema-expressions, whih orrespond to the omplement,

union and intersetion of the sets denoted by the arguments. For the disjuntion,

onjuntion and impliation of shema-expressions the type of the arguments

have to be ompatible, that is, if two omponents have the same name, they have

to have the same type. The type of the result has as omponents the union of the

omponents of the arguments with all dupliates removed. Adjustments of the

type of shemas an be made by using hiding and renaming, where hiding hides

some omponents of a shema-type and renaming renames some omponents.

A partiular kind of renaming is deorating the identi�ers with �nite sequenes

of elements from f

0

; !; ?g. An existentially quanti�ed shema 9S

1

:S

2

denotes the

set of all bindings of the identi�ers of S

2

without the ones in S

1

suh that there

exists a binding in S

1

suh that the union of the bindings is an element of S

2

.

An universally quanti�ed shema 8S

1

:S

2

is an abbreviation for :9S

1

::S

2

.

S ::= x

1

: E; : : : ; x

n

: E j (SjP) j :S j S _ S j S ^ S j S) S

j 8S:S j 9S:S j S n [x

1

; : : : ; x

n

℄ j S[x

1

=y

1

; : : : ; x

n

=y

n

℄

j S Deor j E

Note that the shema operations �S and �S, used in Z for the spei�ation

of sequential systems, are only onvenient abbreviations for shema expressions

involving the shema operations de�ned above. For example, �S is the same as

the onjuntion of the shema S with S

0

, where S

0

is S where all omponents

are deorated with a prime, and �S is the same as the shema �Sj(x

1

= x

0

1

^

: : : ^ x

n

= x

0

n

) if P(<x

1

: T

1

; : : : ; x

n

: T

n

>) is the type of S.

A shema-expression S is well-formed with respet to an environment � =

(�; (X; �

X

)) with � = (G;O; �), if

8

{ S = x

1

: E

1

; : : : ; x

n

: E

n

, x

i

2 V and E

i

is well-formed and has type P(T

i

)

for eah 1 � i � n. The type of S is P(<x

1

: T

1

; : : : ; x

n

: T

n

>).

{ S = S

0

jP and P is well-formed with respet to �

0

= �[T ℄, where P(T) is the

type of S

0

with respet to �. The type of S is P(T).

{ S = :S

0

and S

0

is well-formed. The type of S is �

�

(S

0

).

{ S = S

1

op S

2

, S

1

and S

2

have ompatible types, and S

1

and S

2

are well-

formed for eah op 2 f_;^;)g. Two types P(<x

1

: T

1

; : : : ; x

n

: T

n

>) and

P(<x

0

1

: T

0

1

; : : : ; x

0

m

: T

0

m

>) are ompatible if for all i; j suh that x

i

= x

0

j

we

have T

i

= T

0

j

. The type of S has as omponents the union of the omponents

of the type of S

1

and S

2

with the dupliates removed.

{ S = 9S

1

:S

2

, S

1

and S

2

are well-formed with respet to � and their types are

ompatible. The type of S is the type of S

2

with all the identi�ers removed

whih our in S

1

.

{ S = S

0

n [x

1

; : : : ; x

n

℄ and S is well-formed. Note that it is not required that

the x

i

have to be identi�ers of the type of S

0

. The type of S is the type of

S

0

without the identi�er x

i

if x

i

ours in the type of S for all 1 � i � n.

{ S = S

0

[x

1

=y

1

; : : : ; x

n

=y

n

℄ and S is well-formed. Note that it is not required

that the x

i

have to be identi�ers of the type of S

0

. The type of S is the type

of S

0

where x

i

is replaed by y

i

if x

i

is an identi�er of S

0

. Note that the

funtion from the identi�ers of the type of S

0

to the identi�ers of the type

of S de�ned by this replaement has to be injetive.

{ S = S

0

Deor and S

0

is well-formed. Deor is a �nite sequene of elements

from f

0

; !; ?g. The type of S is P(<�x

1

: T

1

; : : : ; �x

n

: T

n

>) if S

0

is of type

P(<x

1

: T

1

; : : : ; x

n

: T

n

>). �x

i

is the deorated form of x

i

, for example, if

Deor is ! then �x

i

is x

i

!.

{ S = E and E is well-formed with type P(<x

1

: T

1

; : : : ; x

n

: T

n

>). The type

of S is P(<x

1

: T

1

; : : : ; x

n

: T

n

>).

Let v be the set f(x

1

; v

1

); : : : ; (x

n

; v

n

)g and X be a set of variables, then

vj

X

denotes the binding v restrited to the identi�ers in the set X , i.e. the set

f(x

i

; v

i

) j x

i

2 X; (x

i

; v

i

) 2 vg.

If a shema-expression S is well-formed with respet to �, its semantis [[S℄℄

�

with respet to a struture A = (A

G

; A

O

) and a variable binding � = (A;A

X

)

ompatible with � is de�ned as follows:

{ [[x

1

: E

1

; : : : ; x

n

: E

n

℄℄

�

= ff(x

1

; v

1

); : : : ; (x

n

; v

n

)g j v

i

2 [[E

i

℄℄

�

; 1 � i � ng.

{ [[SjP ℄℄

�

= fv 2 [[S℄℄

�

j �[v℄ j=

S

Pg. The satisfation relation j=

S

is de�ned in

Set. 3.4.

{ [[:S℄℄

�

= fv 2

�

A

G

(T) j v 62 [[S℄℄

�

g and T is the type of S.

{ [[S n [y

1

; : : : ; y

n

℄℄℄

�

= fvj

fx

1

;::: ;x

m

g

j v 2 [[S℄℄

�

g, where fx

1

; : : : ; x

m

g is the set

of identi�ers of the type of S without the identi�ers y

1

; : : : ; y

n

.

{ [[S

1

op S

2

℄℄

�

= fv 2

�

A

G

(T) j vj

X

1

2 [[S

1

℄℄

�

op vj

X

2

2 [[S

2

℄℄

�

g for op 2 f_;^;)g,

where T is the type of S

1

op S

2

and X

1

and X

2

are the set of omponents

of shemata S

1

and S

2

, respetively. Note that v 2

�

A

G

(T) guarantees that

if (x; a) 2 v

1

, (x; a

0

) 2 v

2

and v = v

1

[v

2

then a = a

0

.

{ [[9S

1

:S

2

℄℄

�

= fv 2

�

A

G

(�

�

(9S

1

:S

2

)) j 9v

1

2 [[S

1

℄℄

�

(v

1

[v)j

X

2

2 [[S

2

℄℄

�

g where

X

2

is the set of omponents of shema S

2

.

{ [[S[y

1

=y

0

1

; : : : ; y

n

=y

0

n

℄℄℄

�

= f

�

f(v) j v 2 [[S℄℄

�

g where f is the funtion from the

identi�ers of type S to the identi�ers of type S

0

de�ned by [y

1

=y

0

1

; : : : ; y

n

=y

0

n

℄

9

as follows:

f(id) =

�

y

0

i

if y

i

= id for some 1 � i � n

id else

and

�

f is the extension of f to bindings.

{ [[S

0

Deor ℄℄

�

= ff(�x

1

; v

1

); : : : ; (�x

n

; v

n

)g j f(x

1

; v

1

); : : : ; (x

n

; v

n

)g 2 [[S

0

℄℄

�

g.

�x

i

is the identi�er x

i

deorated with Deor . For example, if Deor is

0

then

�x

i

is x

i

0

.

3.4 Formulas

The formulas in Sen

S

(�) are the usual �rst-order formulas built on the mem-

bership prediate and the equality between expressions.

P ::= true j false j E 2 E j E = E j :P j P _ P j P ^ P

j P) P j 8S:P j 9S:P

A formula P is well-formed in an environment � = (�; (X; �

X

)) if

{ P = E

1

2 E

2

, �

�

(E

2

) = P(�

�

(E

1

)) and E

1

and E

2

are well-formed.

{ P = (E

1

= E

2

), �

�

(E

1

) = �

�

(E

2

) and E

1

and E

2

are well-formed.

{ P = :P

0

and P

0

is well-formed.

{ P = P

1

op P

2

and P

1

and P

2

are well-formed for op 2 f_;^;)g.

{ P = 8S:P

0

, S is well-formed and has type P(T) where T is a shema-type

and P

0

is well-formed with respet to �[T ℄.

{ P = 9S:P

0

, S is well-formed and has type P(T) where T is a shema-type

and P

0

is well-formed with respet to �[T ℄.

Given a signature-morphism � : � ! �

0

and a formula P well-formed with

respet to � = (�; (X; �

X

)) then the formula ��(P) is well-formed with respet

to (�

0

; (X; �

0

X

)) where �

0

X

= �

X

;T (�

G

) and ��(P) is given by:

{ ��(id) = id if id 2 X , ��(id) = �

O

(id) if id 2 O and ��(id) = �

G

(id) if id 2 G.

{ ��((E

1

; : : : ; E

n

)) = (��(E

1

); : : : ; ��(E

n

)).

{ ��(E:i) = ��(E):i.

{ ��(<x

1

:= E

1

; : : : ; x

n

:= E

n

>) = <x

1

:= ��(E

1

); : : : ; x

n

:= ��(E

n

)>.

{ ��(E:x) = ��(E):x.

{ ��(E

1

(E

2

)) = ��(E

1

)(��(E

2

)).

{ ��(fE

1

; : : : ; E

n

g) = f��(E

1

); : : : ; ��(E

n

)g.

{ ��(fS �Eg) = f��(S) � ��(E)g.

{ ��(P(E)) = P(��(E)).

{ ��(E

1

� : : :�E

n

) = ��(E

1

)� : : :� ��(E

n

).

{ ��(x

1

: E

1

; : : : ; x

n

: E) = x

1

: ��(E

1

); : : : ; x

n

: ��(E

n

).

{ ��(SjP) = ��(S)j��(P).

{ ��(:S) = :��(S).

{ ��(S

1

op S

n

) = ��(S

1

) op ��(S

n

) for op 2 f_;^;)g.

{ ��(9S

1

:S

2

) = 9��(S

1

):��(S

2

) and ��(8S

1

:S

2

) = 8��(S

1

):��(S

2

).

{ ��(S n [x

1

; : : : ; x

n

℄) = ��(S) n [x

1

; : : : ; x

n

℄.

{ ��(S[x

1

=y

1

; : : : ; x

n

=y

n

℄) = ��(S)[x

1

=y

1

; : : : ; x

n

=y

n

℄.

{ ��(E

1

2 E

2

) = ��(E

1

) 2 ��(E

2

).

10

{ ��(E

1

= E

2

) = ��(E

1

) = ��(E

n

).

{ ��(true) = true and ��(false) = false.

{ ��(:P) = :��(P).

{ ��(P

1

op P

2

) = ��(P

1

) op ��(P

2

) for op 2 f_;^;)g.

{ ��(8S:P) = 8��(S):��(P) and ��(9S:P) = 9��(S):��(P).

De�nition 8 (Sen

S

). The funtor Sen

S

from Sign

S

to Set maps eah signature

� to its set of �-formulas and eah signature morphism � from � to �

0

to the

translation of �-formulas to �

0

-formulas given by ��.

Validity of a well-formed formula P in � = (A;A

X

), � j=

S

P , is de�ned by:

{ � j=

S

true.

{ � j=

S

E

1

2 E

2

i� [[E

1

℄℄

�

2 [[E

2

℄℄

�

.

{ � j=

S

E

1

= E

2

i� [[E

1

℄℄

�

= [[E

2

℄℄

�

.

{ � j=

S

:P i� not � j=

S

P .

{ � j=

S

P

1

op P

2

i� � j=

S

P

1

op � j=

S

P

2

for op 2 f_;^;)g.

{ � j=

S

8S:P i� �[v℄ j=

S

P for all v 2 [[S℄℄

�

.

{ � j=

S

9S:P i� �[v℄ j=

S

P for some v 2 [[S℄℄

�

.

De�nition 9 (Satisfation). Given a signature �, a formula P whih is well-

formed with respet to (�; (fg; �

X

)), and a �-struture A then A j=

S

�

P if

(A; fg) j=

S

P .

Theorem 3 (The Institution S). The ategory Sign

S

, the funtor Str

S

, the

funtor Sen

S

and the family of satisfation relations given by j=

S

�

de�ne the

institution S = hSign

S

; Str

S

; Sen

S

; j=

S

i.

Example 3. To omplete our small example of a bank aount we de�ne the

shema �ACCOUNT and the operation UPDATE adding n to the balane of

the aount:

�ACCOUNT = ACCOUNT ^ACCOUNT

0

UPDATE

�ACCOUNT

n : Integer

bal

0

= bal + n

The abstrat datatype in S orresponding to this spei�ation onsists of the

signature:

�

BA

= (fIntegerg; f+;ACCOUNT ; �ACCOUNT ;UPDATEg; �)

where � is given by

�(id) =

8

>

<

>

:

P(Integer� Integer� Integer) if id = +

P(<bal : Integer>) if id = ACCOUNT

P(<bal : Integer; bal

0

: Integer>) if id = �ACCOUNT

P(<bal : Integer; bal

0

: Integer; n : Integer>) if id = UPDATE

11

The following set of formulas spei�es the shema�ACCOUNT and the UPDATE

operation:

� =

f�ACCOUNT = ACCOUNT ^ACCOUNT

0

;

UPDATE = ((�ACCOUNT ^ (n : Integer)) j bal

0

= bal + n)g

4 Relating Abstrat Datatypes to Shemata

Let � = (G;O; �) be a signature in S. A shema-type

T = <x

1

: T

1

; : : : ; x

n

: T

n

>

de�nes a signature �

0

= (G;O[fx

1

; : : : ; x

n

g; �

0

) where �

0

(x

i

) = T

i

and �

0

(id) =

�(id) for id 2 O.

1

Given a �-struture A = (A

G

; A

O

) then an element f(x

1

; v

1

); : : : ; (x

n

; v

n

)g

of type T de�nes a �

0

-struture A

0

= (A

G

; A

O

[f(x

1

; v

1

); : : : ; (x

n

; v

n

)g).

De�nition 10. Given a signature � = (G;O; �), a shema-expression S of type

P(<x

1

: T

1

; : : : ; x

n

: T

n

>) and a �-struture A = (A

G

; A

O

). De�ne an abstrat

datatype (�

S

;M

A

S

) by

{ �

S

= (G;O [fx

1

; : : : ; x

n

g; �

S

), where �

S

(x

i

) = T

i

for 1 � i � n and

�

S

(id) = �(id) for id 2 O and

{ M

A

S

= f(A

G

; A

O

[v

S

) j v

S

2 [[S℄℄

((A

G

;A

O

);fg)

g.

This de�nition an be extended to abstrat datatypes Sp = (�;M) in Adt

S

by

taking the union of all M

A

S

for A 2M :

Sp

S

= (�

S

;

[

A2M

M

A

S

):

Example 4. Given � = (fIntegerg; f+g; �) then the signatures orresponding to

the shemata ACCOUNT , �ACCOUNT and UPDATE are:

�

A

= (fIntegerg; f+; balg; �

A

);

�

�A

= (fIntegerg; f+; bal ; bal

0

g; �

�A

);

�

U

= (fIntegerg; f+; bal ; bal

0

; ng; �

U

):

The next theorem relates the operations on shemata with the operations on

abstrat datatypes:

Theorem 4. Let Sp = (�;M) be an abstrat datatype in S. If

1

Note that �

0

is not a signature as de�ned in Def. 2 beause fx

1

; : : : ; x

n

g is not a

subset of F sine, for tehnial reasons, we had to require that the set of variable

names and the set of identi�er names are disjoint. However, we an assume that O

0

is the set O [f�x

1

; : : : ; �x

n

g where the �x

i

are suitable renamings of x

i

to symbols in

F not ourring in O.

12

{ S = x : E

1

; : : : ; x : E

n

then Sp

S

= I

fx

i

2E

i

j1�i�ng

T

�

Sp where � is the

inlusion of � into �

S

.

{ S = S

0

jP then Sp

S

= I

fPg

Sp

S

0

.

{ S = S

1

^ S

2

then Sp

S

= T

�

1

Sp

S

1

+ T

�

2

Sp

S

2

. The signature morphisms �

1

and �

2

are the inlusions of the signatures �

S

1

and �

S

2

into �

S

1

^S

2

. This

is needed beause, in ontrast to the union of abstrat datatypes, the types of

S

1

and S

2

are only required to be ompatible in the union of S

1

and S

2

.

{ S = S

0

n [x

1

; ::; x

n

℄ then Sp

S

= D

�

Sp

S

0

where � is the inlusion of �

S

into

�

S

0

.

{ S = S

0

[x

1

=y

1

; ::; x

n

=y

n

℄ then Sp

S

= T

�

Sp

S

0

where �

G

is the identity and

�

O

(x) = y

i

, if x = x

i

for some i and �

O

(x) = x if x 6= x

i

for all i.

Example 5. Given Sp = (�;M) and UPDATE = (�ACCOUNT ^(n : Integer) j

bal

0

= bal + n) we an write Sp

U

= (�

U

;M

U

) as:

Sp

U

= I

fbal

0

=bal+ng

(T

�

1

Sp

�A

+ T

�

2

I

fn2Integerg

T

�

3

Sp):

Here, �

1

is the inlusion of �

�A

into �

U

, �

3

the inlusion of � into �

(n:Integer)

,

and �

2

the inlusion of �

(n:Integer)

into �

U

. �

(n:Integer)

= (fIntegerg; f+; ng; �

0

)

is the signature orresponding to the shema (n : Integer).

What about the other shema operations :S, S

1

_S

2

, S

1

) S

2

, and 9S

1

:S

2

?

The existential quanti�er is the same as hiding the shema variables of S

1

in

the onjuntion of S

1

and S

2

. Let x

1

; : : : ; x

n

be the shema variables of S

1

then 9S

1

:S

2

and (S

1

^ S

2

) n [x

1

; ::; x

n

℄ have the same semantis. This yields the

following theorem:

Theorem 5. Let Sp = (�;M) be an abstrat datatype in S, and S = 9S

1

:S

2

a

well-formed shema expression wrt. the environment �. Then

Sp

S

= D

�

(T

�

1

Sp

S

1

^ T

�

2

Sp

S

2

)

where �

1

and �

2

are the inlusions of �

S

1

and �

S

2

into �

S

1

^S

2

, and � is the

inlusion of the signature of the whole expression into �

S

1

^S

2

.

It is easy to de�ne negation, disjuntion and impliation on abstrat data-

types:

De�nition 11. Let (�;M), (�;M

1

) and (�;M

2

) be abstrat datatypes in an

arbitrary institution I, de�ne:

:(�;M) = (�; fm 2 Str

I

(�) j m 62Mg)

(�;M

1

) _ (�;M

2

) = (�;M

1

[M

2

)

(�;M

1

)) (�;M

2

) = (�; fm 2 Str

I

(�) j m 2M

1

) m 2M

2

g)

What is the relationship of these operations to the orresponding shema

operations? Disjuntion an be treated similar to onjuntion; however, while it

seems natural to expet Sp

:S

= :Sp

S

, this does not hold. The reason is that

in Sp

:S

the negation of S is interpreted within a given abstrat datatype Sp

while the negation of Sp

S

also permits the negation of Sp itself. If (A

G

; A

O

[v)

is a model of Sp

:S

then v is not in [[S℄℄

�

and (A

G

; A

O

) is always a model of Sp.

On the other hand, if (A

G

; A

O

[v) is a model of :Sp

S

, either v is not in [[S℄℄

�

or (A

G

; A

O

) is not a model of Sp. The solution is to add the requirement that

(A

G

; A

O

) is a model of Sp to :Sp

S

. Impliation has a similar problem.

13

Theorem 6. Let Sp = (�;M) be an abstrat datatype in S. If

{ S = S

1

_ S

2

then Sp

S

= T

�

1

Sp

S

1

_ T

�

2

Sp

S

2

. The signature morphisms �

1

and �

2

are the inlusions of the signatures �

S

1

and �

S

2

into �

S

1

_S

2

.

{ Sp

:S

= :Sp

S

+ T

�

S

Sp where �

S

is the inlusion of the � into �

S

.

{ S = S

1

) S

2

then Sp

S

= (T

�

1

Sp

S

1

) T

�

2

Sp

S

2

) + T

�

S

Sp. The signature

morphisms �

1

and �

2

are the inlusions of the signatures �

S

1

and �

S

2

into

�

S

1

)S

2

.

5 Conlusion

In this paper we have formalized the relationship between the struturing meh-

anism in Z and the struturing mehanism of property-oriented spei�ation

languages. Z spei�ations are strutured using shemata and operations on

shemata, whih are based on the partiular logi underlying Z. In ontrast,

property-oriented spei�ations are strutured using abstrat datatypes and op-

erations on abstrat datatypes, whih an be formulated largely independent of

the logi used for the spei�ations.

The advantage of having the struturing mehanism represented as part of

the logi is that it is possible to reason within that logi about the struture

of spei�ations. The disadvantage is that it is not easy to transfer results and

methods to be used with a di�erent logi and spei�ation language. For example,

the spei�ation of sequential systems in Z onsists of a shema for the state

spae and a shema for eah operation. In the example of the bank aount the

shema ACCOUNT de�nes the state spae of the bank aount and the shema

UPDATE de�nes the update operation that hanges the state of the aount.

Using the results of this paper we an use abstrat datatypes instead of shemata

for the spei�ation of sequential systems and the bank aount spei�ation an

be written without the use of shemata as a CASL-S spei�ation as follows:

spe BASE =

sort Integer

op + : P(Integer � Integer � Integer)

spe ACCOUNT = BASE then

op bal : Integer

spe �ACCOUNT = ACCOUNT and f ACCOUNT with bal 7! bal

0

g

spe UPDATE = �ACCOUNT then

op n : Integer

axioms bal

0

= bal + n

Note that this spei�ation does not make any referene to shemata any-

more. Instead of shemata the struturing failities of CASL-S are used. Sine

these struturing failities, based on abstrat datatypes and operations on ab-

strat datatypes, are institution independent

2

, this allows the use of the Z-style

for the spei�ation of sequential systems also with other spei�ation languages.

2

To be preise, CASL is parameterized by the notion of an institution with sym-

bols (f. Mossakowski [8℄). However, it is easy to show that S is an institution with

symbols.

14

For example, this spei�ation style an be used in the state as algebra approah

(e.g. [1, 4, 6℄).

In the proess of relating shemata and their operations to abstrat datatypes

we have de�ned the operations negation, disjuntion and impliation on abstrat

datatypes, whih were previously not de�ned. Further work needs to be done to

study the relationship of these new operations with the other operations on

abstrat datatypes, and how to integrate the new operations into proof aluli,

like that of Henniker, Wirsing and Bidoit [7℄. Work in this diretion has been

done for the ase of disjuntion in Baumeister [2℄.

Referenes

1. Hubert Baumeister. Relations as abstrat datatypes: An institution to speify

relations between algebras. In Peter D. Mosses, Mogens Nielsen, and Mihael I.

Shwartzbah, editors, TAPSOFT 95, Proeedings of the Sixth Joint Conferene

on Theory and Pratie of Software Development, number 915 in LNCS, pages

756{771,

�

Arhus, Denmark, May 1995. Springer.

2. Hubert Baumeister. Relations between Abstrat Datatypes modeled as Abstrat

Datatypes. PhD thesis, Universit�at des Saarlandes, Saarbr�uken, May 1999.

3. R. M. Burstall and J. A. Goguen. The semantis of Clear, a spei�ation language,

February 1980.

4. Hartmut Ehrig and Fernando Orejas. Dynami abstrat data types, an informal

proposal. Bulletin of the EATCS, 53:162{169, June 1994.

5. J. A. Goguen and R. Burstall. Institutions: Abstrat model theory for spei�ation

and programming. Journal of the Assoiation for Computing Mahinery, 39(1):95{

146, January 1992.

6. Yuri Gurevih. Evolving algebras: An attempt to disover semantis. Bulletin of

the EATCS, 43:264{284, February 1991.

7. Rolf Henniker, Martin Wirsing, and Mihel Bidoit. Proof systems for stru-

tured spei�ations with observability operators. Theoretial Computer Siene,

173(2):393{443, February 28 1996.

8. Till Mossakowski. Spei�ations in an arbitrary institution with symbols, Novem-

ber 19 1999. draft version.

9. Peter D. Mosses. CoFI: The ommon framework initiative for algebrai spei�a-

tion and development. In Mihel Bidoit and Max Dauhet, editors, TAPSOFT '97:

Proeedings of the Seventh Joint Conferene on Theory and Pratie of Software

Development, 7th International Joint Conferene CAAP/FASE, number 1214 in

LNCS, Lille, Frane, April 1997. Springer.

10. Donald Sannella and Martin Wirsing. A kernel language for algebrai spei�a-

tion and implementation. In M. Karpinski, editor, Colloquium on Foundations of

Computation Theory, number 158 in LNCS, pages 413{427, Berlin, 1983. Springer.

11. J. M. Spivey. Understanding Z: A Spei�ation Language and its Formal Semantis,

volume 3 of Cambridge trats in theoretial omputer siene. Cambridge Univ.

Press, Cambridge, GB, repr. 1992 edition, 1988.

15

