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Abstract

The “Object Constraint Language” (OCL) offers a for-
mal notation for constraining model elements in UML
diagrams. OCL consists of a navigational expression
language which, for instance, can be used to state in-
variants and pre- and post-conditions in class diagrams.
We discuss some problems in ensuring non-local, navi-
gating OCL class invariants, as for bidirectional asso-
ciations, in programming language implementations of
UML diagrams, like in Java. As a remedy, we propose
a component-based system specification method for using
OCL constraints, distinguishing between global compo-
nent invariants and local class invariants.

1 Introduction

During the last years the “Unified Modeling Language”
(UML [2]) has become the de facto standard for object-
oriented software development. The “Object Constraint
Language” (OCL [12]) offers a formal notation to con-
strain the interpretation of model elements occurring in
UML diagrams and therefore lends itself for systematic
use in rigorous, UML-based software development meth-
ods, as shown, for example, in the Catalysis approach [5].

The OCL notation is particularly suited to constrain
class diagrams since OCL expressions allow one to navi-
gate along associations and to describe conditions on ob-
ject states in class invariants and pre- and post-conditions
of operations. However, by using the ability of describ-
ing navigational paths, a class invariant may be non-local
in the sense that it also requires properties from other
“remote” classes. This expressiveness and flexibility is
appropriate in requirements specifications where the de-
veloper generally prefers a global view of the properties
of the relationships between different classes. For design
and implementation, however, such global requirements
can be harmful since the implementation of a “remote”
class would have to respect the non-local invariant of an-
other class which is not mentioned anywhere in the “re-
mote” class. Thus a programmer may not only have to

check the validity of the invariant of the class he is im-
plementing, but also the validity of invariants of other
classes.

We first illustrate these problems with non-local class-
based OCL invariants by simple examples, including the
conventional use of “setter” operations and, more interest-
ingly, standard OCL formalizations and Java implementa-
tions of bidirectional associations. As a remedy, we pro-
pose a component-based approach which has the follow-
ing two properties: it allows us to write non-local invari-
ants at the global level of components instead of at the
local level of classes and it allows us to control the visi-
bility of operations. An operation can becomponent pub-
lic and therefore visible for all classesinside and outside
the component; or an operation can becomponent private
and therefore visible for all classesinside the component;
or an operation can beclass privateand therefore visi-
ble only for itsown class. Non-local invariants have to
be respected only by component public operations; local
invariants have to be respected by component public and
component private operations; class private operations do
not have to respect any invariant. However, for simplicity,
we omit inheritance and component hierarchy aspects.

In Sect. 2 we describe the problems with non-local
class-based OCL invariants. In Sect. 3 we propose our
component-based approach. Throughout the paper we as-
sume that the reader is familiar with UML class diagrams
and the OCL notation.

2 Non-Local Class Invariants

For exhibiting the problems with non-local class-based
invariants, we consider a simple seminar system taken
almost literally from the Catalysis book [5, Sect. 2.5.1,
p. 67], see Fig. 1. In this system a course consists of sev-
eral sessions. Each session has at most one instructor and
each instructor may be qualified for several courses. Each
session has a start and an end date. There are two invari-
ants: the simple invariant for the classSession requires
that the start date is before the end date. The invariant for
the classInstructor requires that an instructor should only
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Figure 1: Annotated class diagram for the seminar example

teach sessions for courses he is qualified for. Moreover,
the classSession has a “setter” operationchangeCourse
which allows to assign a new course to a session; the post-
condition just requires to reassign the new course to the
actual session.

For a correct implementation of this system in Java,
one would like to require that any operationop(x1 : D1,
. . ., xn : Dn) of any classC of the diagram satisfies
the class invariantInvC and the pre- and post-condition
(cf. [10]), i.e., the Hoare formula

{Preop and InvC}
op(x1 : D1, . . ., xn : Dn)

{Postop and InvC}

should be true. In the example, the operationchange-
Course of classSession should satisfy the Hoare formula

{start.before(end)}
changeCourse(c : Course) (∗)
{course = c and start.before(end)}

(for the implicit requirements of the bidirectional asso-
ciations see below). The following Java implementation
satisfies (∗):

void changeCourse(Course c) {
course = c;

}

However, althoughchangeCourse does not involve any
attribute or role of classInstructor, it may destroy the
invariant InvInstructor of class Instructor, e.g., when be-
ing called vias.changeCourse(c) for a sessions hav-
ing instructors.instructor who is not qualified for the
coursec.

Another problem stems from making explicit the se-
mantic constraints of bidirectional associations by ex-
pressing them in OCL. Consider for example the one-to-
many association between the classCourse and the class

Session. The semantic constraint requires that any object
c of classCourse is related to a set of objects of classSes-
sion in such a way that each of these objects is related toc;
thus navigating fromc to any object ofSession and back
to classCourse yields the original objectc. Similarly, the
sessions of the course of aSession objects must include
the original objects. In OCL, one may try to formalize
this using the following two class invariants ofSession
andCourse:

context Course
inv Inv′Course:
self.session->
forAll(s | s.course = self)

context Session
inv Inv′Session:
self.course.session->includes(self)

Now consider the following system stateσ with two
objectsc1, c2 of classCourse and three objectss1, s2,
s3 of classSession such thatc1 is related withs1 and
s2, andc2 is related withs3, see Fig. 2(a). Obviously,
a Java calls2.changeCourse(c2) does not respect the
invariantsInv′Course[c1/self] andInv′Session[s2/self], cf.
Fig. 2(b). According to Hitz and Kappel [7, Sect. 6.2.1,
p. 271–275], a correct Java implementation ofchange-
Course w.r.t. the bidirectional association can be given
using two Java operationsaddSession andrmSession in
the following way:

public class Session {
private Instructor instructor;
private Course course;

public void changeCourse(Course c) {
if (course != c) {
if (course != null)

course.rmSession(this);
course = c;
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Figure 2: Sample states of the seminar system

c.addSession(this);
}

}
. . .

}

public class Course {
private Vector session;

public void addSession(Session s) {
if (!session.contains(s))) {
session.addElement(s);
s.changeCourse(this);

}
}

public void rmSession(Session s) {
session.removeElement(s);

}

. . .
}

The operationschangeCourse andaddSession indeed
preserve both of the invariantsInv′Course and Inv′Session
but (as Hitz and Kappel also mention in their book [7])
calling rmSession may lead to an illegal state; e.g., see
Fig. 3, calling c2.rmSession(s3) in state σ leads to
a state where the invariantInvSession[s3/self] does not
hold.

s3 : Session

s2 : Session

s1 : Session

c1 : Course

c2 : Course

Figure 3: Sample stateσ afterc2.rmSession(s3)

3 Component-Based Invariants

The problems described in the previous section can be
solved by a component-oriented development methodol-
ogy. Component-based approaches for software devel-
opment have been advocated by many authors includ-
ing [3, 11], or, in the context of UML and OCL, by
Catalysis [5] and Cheesman and Daniels [4]. We do not
propose a new notion of component; almost any of the
notions for components in the literature is suitable for
our approach provided that a component is composed of
classes (and possibly local components) and that the fol-
lowing two requirements are satisfied:

1. It is possible to require invariants globally for the
whole component and also locally for the elements
of a component.

2. An operation can be declared to be visible either in-
side and outside the component, or only inside the
component, or only inside a single class of the com-
ponent.

For example, Catalysis components, the UML compo-
nents of Cheesman and Daniels, or UML subsystems of-
fer the required properties.

In our approach, we distinguish between class invari-
ants and component invariants: Aclass invariantis an in-
variant for describing properties concerning a single class
(i.e. its attributes and association roles without naviga-
tion) and acomponent invariantis an invariant for de-
scribing properties concerning two or more classes. For
example, the invariantInvInstructor of classInstructor is a
component invariant whereas the invariantInvSession of
classSession is a class invariant. The invariants induced
by bidirectional associations are component invariants.

Concerning the visibility of operations we distinguish
between operations which are

component public —
visible at the interface of the component

component private —
visible to all classes of the component
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Figure 4: Components model of sample seminar system

class private —
visible to a single class of the component

Components in the sense of Cheesman and Daniels or
Catalysis can express these visibility requirements; in par-
ticular, due to the explicit notion of interface the visibility
of component public operations can be modeled explic-
itly. A UML subsystem provides the following visibility
correspondences for operations [9]: class private corre-
sponds to private (–), component private to package (˜),
and component public to public (+).

Fig. 4 shows the seminar system as a component where
the component invariantInvSeminar reads:

context Seminar
inv InvSeminar:

Instructor.allInstances->forAll(i |
i.qualifiedFor->

includesAll(i.session.course))
and Session.allInstances->forAll(s |

s.course.session->includes(s))
and Course.allInstances->forAll(c |

c.session->
forAll(s | s.course = c))

. . .

Based on our notion of component we can now de-
fine a realization relation which connects a given UML
design component and its corresponding Java implemen-
tation model. As implementation model for components
we use Java packages, classes in a design component are
mapped to Java classes. This can be done by using trace
dependencies as considered in [1] whereby in our case a

trace will always relate a class of the UML design com-
ponent and a Java class as shown in Fig. 5(a).

We say that a trace dependency holds if the opera-
tions of the UML design class and the methods of the
Java class coincide (up to an obvious syntactic modifi-
cation of the signature), if all attributes of the design
class are also attributes of the Java class and if for each
role name at the end of a directed association the Java
class contains a corresponding reference attribute with the
same name. (Note that standard types may be slightly re-
named according to the Java syntax and that role names
with multiplicity greater than one map to reference at-
tributes of some container type.) These conditions guar-
antee that the OCL expressions used as constraints for
the design model can be interpreted in the implementa-
tion model which is necessary to define the realization
relation between a design model and an implementation
model as shown in Fig. 5(b). Concerning visibility the
correspondences are as follows [6]: Component public
visible operations correspond to public methods (of pub-
lic classes) in Java, component private operations to Java
default visible methods, and class private operations to
private Java methods with the following proviso: private
Java attributes and methods are only called onthis. The
constraints on the Java implementation are represented by
Hoare formulae and can be proven using the calculus pre-
sented in [10].

A realization relation betweenDesignComponent and
JavaPackage expresses that the implementation model
satisfies the requirements of the design model. This
means that for each classC in the design model there is
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Figure 5: Component dependencies

exactly one classC.java in the implementation model
that are related by a trace dependency. For each compo-
nent public operation ofC the corresponding method in
C.java preserves the component invariant, preserves the
class invariant ofC, and satisfies its pre-/post-condition;
similarly for component public constructors. For each
component private operation ofC the corresponding
method inC.java preserves the class invariant ofC and
satisfies its pre-/post-condition; similarly for component
private constructors. Finally, for each class private opera-
tion ofC the corresponding method inC.java satisfies its
pre-/post-condition; however, we require the constructors
in C.java corresponding to class private constructors to
establish the class invariant ofC in addition to satisfying
the pre-/post-condition.

More formally, letInvM denote the component invari-
ant ofDesignComponent, let InvC denote the class invari-
ant of a classC, and letInvE be the conjunction of all class
invariants, i.e.,

InvE =
∧
T

T.allInstances->

forAll(x | InvT [x/self])

whereInvT is the class invariant ofT and whereT ranges
over all classes of the design model. ThenJavaPackage is
a correct realization ofDesignComponent if for all classes
C in the design model there is exactly one classC.java
in the implementation model such that:

1. C andC.java are related by a trace dependency.

2. Let op be an operation of the design classC with
constraint

context C::op(x1 : D1, . . ., xn : Dn)
pre: Preop

post: Postop

(a) If op is component public then the correspond-
ing public methodop in C.java

• preserves the component invariantInvM:

{Preop and InvM and InvE}
op(x1 : D1, . . ., xn : Dn)

{InvM}

• preserves the class invariantInvC:

{Preop and InvC}
op(x1 : D1, . . ., xn : Dn)

{InvC}

• satisfies the pre-/post-condition:

{Preop}
op(x1 : D1, . . ., xn : Dn)

{Postop}

(b) If op is component private then the correspond-
ing default visible methodop in C.java

• preserves the class invariantInvC:

{Preop and InvC}
op(x1 : D1, . . ., xn : Dn)

{InvC}

• satisfies the pre-/post-condition:

{Preop}
op(x1 : D1, . . ., xn : Dn)

{Postop}



(c) If op is class private then its corresponding pri-
vate methodop in C.java satisfies the pre-/
post-condition (but no invariants):

{Preop}
op(x1 : D1, . . ., xn : Dn)

{Postop}

3. LetC(x1, . . . ,xn) be a constructor of the design class
C with constraint

context C::C(x1 : D1, . . ., xn : Dn)
pre: PreC

post: PostC

(a) If the constructorC is component public then
the corresponding public constructorC in
C.java

• preserves the component invariantInvM:

{PreC and InvM and InvE}
x = new C(x1 : D1, . . ., xn : Dn)

{InvM}

• establishes the class invariantInvC:

{PreC}
x = new C(x1 : D1, . . ., xn : Dn)

{InvC[x/self]}

• satisfies the pre-/post-condition:

{PreC}
x = new C(x1 : D1, . . ., xn : Dn)

{PostC[x/self]}

(b) If the constructorC is class private or compo-
nent private then the corresponding private or
default visible constructorC in C.java

• establishes the class invariantInvC:

{PreC}
x = new C(x1 : D1, . . ., xn : Dn)

{InvC[x/self]}

• satisfies the pre-/post-condition:

{PreC}
x = new C(x1 : D1, . . ., xn : Dn)

{PostC[x/self]}

Note that in general

{ } x = new C(x1 : D1, . . ., xn : Dn) {x.oclIsNew()}

Given an operation callo.op(d1, . . ., dn) and a call
to a constructoro = new C(d′1, . . ., d′m), part (1) and (3)
of the following lemma ensure that invariants of already
existing objects other thano are preserved, part (2) and (4)
guarantee that all objects created during the execution of
the constructor or the operationopsatisfy their invariants.

Lemma 1. Consider a correct realization of a design
model. Assume that for any terminating method call
o.op(d1, . . ., dn) and any terminating constructor call
o = new C(d′1, . . ., d′m) the pre-condition of any method
called during the evaluation of o.op(d1, . . ., dn) and o
= new C(d′1, . . ., d′m) is satisfied. Then for any classes
C and T of the implementation model, object o of class C,
method op of C, and object o′ 6= o of class T in the state
after executing o.op(d1, . . ., dn):

{InvT [o′/self] and
T.allInstances->includes(o′)}
o.op(d1, . . ., dn)

{InvT [o′/self]}

(1)

{not T.allInstances->includes(o′)}
o.op(d1, . . ., dn)

{o′.oclIsNew() implies InvT [o′/self]}
(2)

where d1, . . . ,dn are some objects. Moreover, for any
classes C and T of the implementation model, object o
of class C, method op of C, and object o′ 6= o of class T in
the state after executing o= new C(d′1, . . ., d′m):

{InvT [o′/self] and
T.allInstances->includes(o′)}
o = new C(d′1, . . ., d′m)

{InvT [o′/self]}

(3)

{not T.allInstances->includes(o′)}
o = new C(d′1, . . ., d′m)

{o′.oclIsNew() implies InvT [o′/self]}
(4)

where d′1, . . . ,d
′
m are some objects.

Proof sketch.The claim is proved by induction on the ex-
ecution trace ofo.op(d1, . . ., dn) and o = new C(d′1,
. . ., d′m) and crucially depends on our restrictions on
class invariants, calls of private methods, and attributes:
Class invariants have to be local, i.e., they must not em-
ploy navigation beyond the scope of a single object; pri-
vate methods and attributes are only called onthis; all
attributes have to be private.



For a correct realization of a design model, any non-
class private operation preserves all class invariants and,
as a consequence, any component public operation pre-
serves all invariants:

Theorem 2. Consider a correct realization of a de-
sign model. Assume that for any terminating method
call o.op(d1, . . ., dn) the pre-condition of any method
called during the evaluation of o.op(d1, . . ., dn) is sat-
isfied. Then for any class C of the implementation model
and any non-class private method op of C

{Preop and InvE}
op(x1 : D1, . . ., xn : Dn)

{InvE}

holds; moreover, for any constructor C(x1, . . . ,xn) of C

{PreC and InvE}
x = new C(x1 : D1, . . ., xn : Dn)

{InvE}

holds.

Proof. Let o.op(d1, . . ., dn) be a terminating call of a
non-class private methodop of classC of the implemen-
tation model. LetInvT [o′/self] be any class invariant
of InvE whereo′ is an object of the state after execut-
ing o.op(d1, . . ., dn). If o′ = o and thusT = C, then
InvT [o′/self] is ensured by the assumptions on preserva-
tion of invariants of non-class private methods in correct
realizations of the design model. Otherwise, i.e. ifo′ 6= o,
apply Lemma 1.

The claim on constructors is proved analogously.

Corollary 3. With the assumption as in the theorem, any
call of a component public operation or constructor pre-
serves all the invariants, i.e.

{Preop and InvM and InvE}
op(x1 : D1, . . ., xn : Dn)

{InvM and InvE}

{PreC and InvM and InvE}
x = new C(x1 : D1, . . ., xn : Dn)

{InvM and InvE}

Indeed, using this methodology, we obtain a cor-
rect realization of the seminar system by not declaring
rmSession and addSession to be public but only to
have default visibility, and changing the implementation
of changeCourse in accordance with the component in-
variantInvSeminar:

public void changeCourse(Course c) {
if (course != c) {
if (instructor.isQualifiedFor(c) {
if (course != null)
course.rmSession(this);

course = c;
c.addSession(this);

}
}

}

4 Conclusions

We have shown that pure class diagram-based object-
oriented software development has some drawbacks
which can be overcome by using a component-based
approach. Of course, the problems presented here are
not the only problems in object-oriented and component-
based software development; e.g., sharing and behav-
ioral subtyping or component hierarchies are other ma-
jor issues [8]. However, OCL has proven to be a valu-
able tool for analyzing at least some deficiencies of
well-known implementation schemata for associations
between classes. In our opinion, OCL is well-suited as a
constraint language for UML and presents a further posi-
tive step towards rigorous object-oriented software devel-
opment.
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