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Abstrat. A state-based extension of the algebrai spei�ation lan-

guage CASL is presented. It permits the spei�ation of the stati part

of a omplex dynami system by means of CASL and the dynami part

by means of the failities desribed in the paper. The dynami system

is de�ned as possessing a number of states and a number of operations

(proedures) for transforming one state into another. Eah state pos-

sesses one and the same stati part spei�ed by CASL and a varying

part spei�ed by additional tools. The varying part inludes dynami

sorts/funtions/prediates and dependent funtions/prediates. The de-

pendent funtions/prediates are spei�ed by formulae using the names

of the dynami funtions/prediates so that eah time one of the last ones

is updated the orresponding former ones are also updated. The updates

of the dynami entities are produed by proedures whih are spei�ed

by means of preonditions, postonditions, and dynami equations.

1 Introdution

The Common Framework Initiative (CoFI) [18℄ is an open ollaborative e�ort

to design a ommon framework for algebrai spei�ations. The rational behind

CoFI is that the lak of suh a framework greatly hinders the dissemination and

appliation of researh results in algebrai spei�ation. The aim is to base the

ommon framework as muh as possible on a ritial seletion of features that

have already been explored in various ontexts. The ommon framework will

provide a family of languages entered around a single, reasonably expressive

ommon spei�ation language alled CASL [17℄. Some of these languages will

be extensions of CASL, e.g. oriented to partiular programming paradigms, while

others will be sub-languages of CASL, e.g. exeutable.

In this paper we de�ne SB-CASL, a state-based extension of CASL [17℄ whih

is based on algebrai spei�ations and the onept of impliit state �a la Z, B,

or VDM, also known as the state-as-algebra approah. In ontrast to Z, VDM,

and B, this approah does not onstrain a spei�er by a �xed number of basi

types and type onstrutors used for the representation of appliation data, and
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gives a formal semantis for all notions used in the method. SB-CASL brings

together ideas from Typed Gurevih Mahines of Zamulin [19℄, based on the

original work of Gurevih [13, 14℄, Algebrai Spei�ations with Impliit State

of Dauhy and Gaudel, �rst presented in [8℄ and further developed in [15, 9℄, D-

oids by Astesiano and Zua [2, 20, 21℄, and the work of Baumeister [3{5℄. The

formalism serves for the spei�ation of dynami systems possessing a state and

a number of operations for aessing and updating the state.

The novelty of SB-CASL is that it ombines the operational style for the spe-

i�ation of state transformations with the delarative style in a pratial spei�-

ation language. In the operational style one de�nes how one state is transformed

into another; in ontrast, in the delarative style only the properties that the

suessor state has to posses are spei�ed and not how the state is onstruted.

Up to now either only the operational style was used, like in ASM's and the Im-

pliit State approah, or only the delarative style was used as in the approah

by Baumeister. A notable exeption is the approah by Zua [21℄ whih also

allows both styles of spei�ations; however her intention was not to provide a

spei�ation language.

The paper is organized as follows. The CASL institution is briey desribed

in Se. 2. States and state updates are de�ned in Se. 3. Dynami systems are

introdued in Se. 4. Transition terms, serving for the onstrution of dynami

formulae, are desribed in Se. 5 and dynami formulae in Se. 6. The struture

of a dynami system spei�ation and supporting examples are given in Se. 7.

Some related work is disussed in Se. 8, and in Se. 9 some onlusions are

drawn.

2 The CASL Institution

A basi spei�ation in CASL onsists of a many-sorted signature � together

with a set of sentenes. The (loose) semantis of a basi spei�ation is the lass

of those models inMod(�) whih satisfy all the spei�ed sentenes. For reasons

of simpliity we restrit ourselves to the many-sorted part of CASL and leave out

the order-sorted part. However, all the subsequent onstrutions in this paper

an also be performed in the presene of a subsorting relationship.

A many-sorted signature � = (S;TF ;PF ; P ) onsists of:

{ a set S of sorts;

{ sets TF

w;s

, PF

w;s

, of total funtion symbols, respetively partial funtion

symbols, suh that TF

w;s

\ PF

w;s

= ;, for eah funtion pro�le (w; s) on-

sisting of a sequene of argument sorts w 2 S

�

and a result sort s 2 S

(onstants are treated as funtions with no arguments);

{ sets P

w

of prediate symbols, for eah prediate pro�le onsisting of a sequene

of argument sorts w 2 S

�

.

Here and in the sequel a funtion (prediate) symbol is a name aompanied

with a pro�le. Names may be overloaded, ourring in more than one of the

above sets.

In this paper we write a total funtion symbol as f : s

1

; : : : ; s

n

! s and a

partial funtion symbol as f : s

1

; : : : ; s

n

!? s. When the list of argument values

is empty, we write s and ?s, respetively.
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For a many-sorted signature � = (S;TF ;PF ; P ) a many-sorted model A 2

Mod(�) is a many-sorted �rst-order struture onsisting of a many-sorted par-

tial algebra:

{ a non-empty arrier set jAj

s

for eah sort s 2 S (let jAj

w

denote the artesian

produt jAj

s

1

� � � � � jAj

s

n

when w = s

1

: : : s

n

),

{ a partial funtion f

A

from jAj

w

to jAj

s

for eah funtion symbol f 2 TF

w;s

or f 2 PF

w;s

, the funtion being required to be total in the former ase,

{ together with a prediate p

A

� jAj

w

for eah prediate symbol p 2 P

w

.

Many-sorted terms on a signature � = (S;TF ;PF ; P ) and a set of sorted,

non-overloaded variables X are built from:

{ universally quanti�ed variables from X , introdued by

var v

11

; : : : ; v

1k

: s

1

; : : : ; v

n1

; : : : ; v

nm

: s

n

;

{ appliations of funtion symbols in TF [ PF to argument terms of appro-

priate sorts.

For a many-sorted signature � = (S;TF ;PF ; P ), the set of �-sentenes

onsists of sort-generation onstraints and the usual losed many-sorted �rst-

order logi formulae, built from atomi formulae using quanti�ation (over sorted

variables) and logial onnetives. The atomi formulae are:

{ appliations of prediate symbols p 2 P to argument terms of appropriate

sorts;

{ assertions about the de�nedness of terms, written def t;

{ existential and strong equations between terms of the same sort, written

t

1

e

= t

2

and t

1

= t

2

, respetively.

The satisfation of a sentene in a struture A is determined as usual by the

holding of its atomi formulae w.r.t. assignments of (de�ned) values to all the

variables that our in them. The value of a term w.r.t. a variable assignment may

be unde�ned due to the appliation of a partial funtion during the evaluation

of the term, or beause some arguments of a funtion appliation are unde�ned.

The satisfation of sentenes, however, is 2-valued.

The appliation of a prediate symbol p to a sequene of argument terms

holds in A i� the values of all the terms are de�ned and give a tuple belonging

to p

A

. A de�nedness assertion onerning a term holds i� the value of the term is

de�ned. An existential equation holds i� the values of both terms are de�ned and

idential, whereas a strong equation holds also when the values of both terms

are unde�ned. A sort-generation onstraint (S

0

; F

0

) is satis�ed in a �-model A

if the arriers of the sorts in S

0

are generated by the funtion symbols in F

0

.

3 States and State Updates

The signature of a system de�ned by SB-CASL inludes a part

�

stat

= (S

stat

; TF

stat

; PF

stat

; P

stat

)
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whih de�nes some data types (sorts and operations) using the standard CASL

failities. These data types are used for the spei�ation of system's states and

the desription of possible state updates. A �

stat

-struture is alled a stati

struture in the sequel.

The system's states are de�ned by dynami sorts, dynami funtions, and

dynami prediates. The names and pro�les of these sorts/funtions/prediates,

�

dyn

= (S

dyn

; TF

dyn

; PF

dyn

; P

dyn

), form a signature extension of the stati sig-

nature �

stat

.

We require that eah dynami funtion f : w ! s where s is a dynami sort

from S

dyn

or w ontains a dynami sort from S

dyn

is in PF

dyn

. The reason is that

a funtion having a dynami sort in its pro�le may beome partial if elements

are added or removed from this sort.

In the rest of this paper we denote by �

dyn

= (S

0

; TF

0

; PF

0

; P

0

) the union

of �

stat

with �

dyn

.

Example 1. The �rst example is a spei�ation of an identi�er table. The identi-

�er table stores some data for eah identi�er de�nition. It an be blok-strutured

aording to blok nesting. Typial funtions are reating an empty identi�er ta-

ble, inserting identi�er data in the urrent blok, heking whether an identi�er

is de�ned in the urrent blok, heking whether an identi�er is de�ned in the

program, fething identi�er data, and deleting all identi�er de�nitions of the

urrent blok.

The following spei�ation de�nes the state of the identi�er table. The stati

signature is given by the union of the signatures of NAT, NAME, and DEFDATA;

and id table and ur level are dynami funtions:

System ID TABLE

use NAT, NAME, DEFDATA ** The spei�ations used

dynami

fun id table: Name, Pos �!? Defdata;

fun ur level: Pos; ** the urrent level of blok nesting

Example 2. The seond example is taken from one of the latest work of Zua [21℄.

The proedures (dynami operations in her paper), whose "intended interpre-

tation" is desribed at the model level in that paper, will be formally spei�ed

here.

System CIRCLES

use REAL, COLOUR ** The spe. COLOUR has only two onstants

** "green" and "red" of sort "Colour"

dynami

sort Cirle;

fun X, Y: Cirle �! Real;

fun radius: Cirle �! Real;

fun ol: Cirle �! Colour;

A dynami sort/funtion/prediate an be di�erent in di�erent states.

De�nition 1. A �

dyn

-state is a �

dyn

-struture where �

dyn

= �

stat

[�

dyn

.
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The restrition of any �

dyn

-state A to �

stat

, Aj

�

stat

, is a stati struture

alled the base of A. Several �

dyn

-states an have the same base. Following [15℄,

we denote the set of all �

dyn

-states with the same base B by state

B

(�

dyn

) and

mean by a �

B

dyn

-state a �

dyn

-state with the stati struture B. Thus, the arrier

of any stati sort s 2 S

stat

in a �

dyn

-state A is the same as the arrier of s in

B, that is jAj

s

= jBj

s

.

3.1 Update-Sets

One state an be transformed into another by a state update whih is either a

funtion update or a prediate update or a sort update.

De�nition 2. Let B be a stati struture over �

stat

. A funtion update in a

�

B

dyn

-state A is a triple (f; �a; a) where f

ws

is a dynami funtion (onstant)

symbol in �

dyn

, w = s

1

: : : s

n

, �a = <a

1

; :::; a

n

> 2 jAj

w

(�a is the empty tuple <>

when n is equal to zero), and a is either an element of jAj

s

or the symbol ?. A

funtion update (f; �a;?) is valid only if f is the symbol of a partial funtion.

A funtion update � = (f; �a; a) serves for the transformation of a �

B

dyn

-state A

into a new �

B

dyn

-state A� in the following way:

{ g

A�

= g

A

for any g

ws

2 TF

0

[ PF

0

di�erent from f ;

{ f

A�

(�a) = a if a is not ?, f

A�

(�a) beomes ude�ned otherwise;

{ f

A�

(�a

0

) = f

A

(�a

0

) for any tuple �a

0

= <a

0

1

; : : : ; a

0

n

> di�erent from �a;

{ p

A�

= p

A

for any p

w

2 P

0

;

{ jA�j

s

= jAj

s

for any s 2 S

0

.

Following Gurevih [13℄, we say that A� is obtained by �ring the update � on

A. Roughly speaking, �ring a funtion update either inserts an element in the

de�nition domain of a dynami funtion or modi�es the value of suh a funtion

at one point in its domain or removes an element from the de�nition domain.

De�nition 3. Let B be a stati struture over �

stat

. A prediate update in

a �

B

dyn

-state A is a either a triple (+; p; �a) or a triple (�; p; �a) where p

w

is a

prediate symbol in �

dyn

, w = s

1

: : : s

n

, and �a = <a

1

; :::; a

n

> 2 jAj

w

.

A prediate update � = (�; p; �a) serves for the transformation of a �

B

dyn

-state

A into a new �

B

dyn

-state A� in the following way:

{ p

A�

(�a) holds if � is "+" and p

A�

(�a) does not hold if � is "{";

{ p

A�

(�a

0

) i� p

A

(�a

0

) for any tuple �a

0

= <a

0

1

; : : : ; a

0

n

> di�erent from �a;

{ q

A�

= q

A

for any q

w

2 P

dyn

di�erent from p;

{ f

A�

= f

A

for any f

ws

2 TF

0

[ PF

0

; and

{ jA�j

s

= jAj

s

for any s 2 S

0

.

De�nition 4. Let s be the name of a dynami sort. A sort-update Æ in A is

either a triple (+; s; id) where id is an element suh that id =2 jAj

s

or a triple

(�; s; id) where id is an element suh that id 2 jAj

s

.
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A sort update Æ = (+; s; id) transforms a �

B

dyn

-state A into a new �

B

dyn

-state

AÆ in the following way:

{ jAÆj

s

= jAj

s

[ fidg,

{ jAÆj

s

0

= jAj

s

0

for any s

0

2 S

0

di�erent from s,

{ f

AÆ

= f

A

for any f

ws

2 TF

0

[ PF

0

, and

{ p

AÆ

= p

A

for any p

w

2 P

0

.

A sort update Æ = (�; s; id) transforms a �

B

dyn

-state A into a new �

B

dyn

-state

AÆ in the following way:

{ for any funtion f

A

: jAj

s

1

� ::: � jAj

s

n

! jAj

s

n+1

, if jAj

s

i

, i = 1; :::; n + 1,

is a dynami sort assoiated with the sort name s and id 2 jAj

s

i

, then

if there is a maplet <a

1

; :::; a

n

7! a

n+1

> 2 f

A

suh that a

i

= id, then

f

AÆ

= f

A

n f<a

1

; :::; a

n

7! a

n+1

>g; f

AÆ

= f

A

otherwise;

{ for any prediate p

A

: jAj

s

1

� ::: � jAj

s

n

, if jAj

s

i

, i = 1; :::; n, is a dynami

sort assoiated with the sort name s and id 2 jAj

s

i

, then if there is a tuple

<a

1

; :::; a

n

> 2 p

A

suh that a

i

= id, then p

AÆ

= p

A

n f<a

1

; :::; a

n

>g; p

AÆ

=

p

A

otherwise;

{ jAÆj

s

= A

s

n fidg and jAÆj

s

0

= jAj

s

0

for any s

0

di�erent from s.

Thus, the sort update Æ = (�; s; a) ontrats the set of elements of a er-

tain sort and deletes the orresponding entries from the graphs of all dynami

funtions and prediates using and/or produing the element indiated.

Note that it is possible to reate algebras with empty arrier sets using sort

updates. For example, if A is an algebra with jAj

s

= fag and Æ = (�; s; a),

then jAÆj

s

= fg. This is in ontradition with the requirement that within the

CASL institution arrier sets are non-empty. To solve this problem we introdue

the institution SB-CASL whih is the same as the CASL institution, but allows

their models to have empty arrier sets. Note that the introdution of empty

arriers does not pose any problems with the satisfation relation in ase of

partial logi (f. [7℄), and that any many-sorted model of the CASL institution

is also a model of the SB-CASL institution.

De�nition 5. Let � be a set of funtion/prediate/sort updates. The set � is

inonsistent if it ontains either

{ two ontraditory funtion updates of the following kind: �

1

= (f; �a; a) and

�

2

= (f; �a; a

0

), where a 6= a

0

(two ontraditory funtion updates de�ne the

funtion di�erently at the same point), or

{ two ontraditory prediate updates of the following kind: �

1

= (+; p; �a) and

�

2

= (�; p; �a) (two ontraditory prediate updates de�ne the prediate dif-

ferently at the same tuple of arguments), or

{ two sort updates of the following kind: Æ

1

= (+; s; id) and Æ

2

= (�; s; id)

(two ontraditory sort updates insert in the sort and delete from the sort

the same element), or

{ either an � = (f;<a

1

; :::; a

n

>; a

n+1

) for an f

A

: jAj

s

1

� :::�jAj

s

n

! jAj

s

n+1

or a � = (�; p;<a

1

; :::; a

n

>) for a p

A

: jAj

s

1

� :::� jAj

s

n

, and Æ = (�; s; id)

suh that s is s

i

for some i = 1; :::; n + 1 and id = a

i

(a sort element is

removed while a funtion/prediate is fored to use it);
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the update set is onsistent otherwise.

A onsistent update-set � applied to a �

B

dyn

-state A transforms A into a new

�

B

dyn

-state A

0

by simultaneous �ring all � 2 � , all � 2 � , and all Æ 2 � . If �

is inonsistent, the new state in not de�ned. If � is empty, A

0

is the same as A.

Following [16℄, we denote the appliation of � to a state A by A� . The set of

all onsistent sets of updates in state

B

(�) is denoted by update

B

(�

dyn

) in the

sequel.

De�nition 6. Let �

1

and �

2

be two onsistent update-sets in a �

B

dyn

-state A,

�

1

= (f; ha

1

; : : : ; a

n

i; a), �

2

= (f; ha

1

; : : : ; a

n

i; a

0

), �

1

= (�

1

; p; ha

1

; : : : ; a

n

i),

�

2

= (�

2

; p; ha

1

; : : : ; a

n

i), Æ

1

= (+; s; id), and Æ

2

= (�; s; id), where a 6= a

0

and both �

1

and �

2

are either "+" or "{" suh that �

1

is di�erent from �

2

.

The sequential union of �

1

and �

2

, denoted by �

1

; �

2

, is de�ned as follows:

u 2 �

1

; �

2

i� u 2 �

1

or u 2 �

2

, exept the following ases:

{ if �

1

2 �

1

and �

2

2 �

2

, then �

2

2 �

1

; �

2

and �

1

=2 �

1

; �

2

;

{ if �

1

2 �

1

and �

2

2 �

2

, then �

2

2 �

1

; �

2

and �

1

=2 �

1

; �

2

;

{ if Æ

1

= (�; s; a) 2 �

2

, then for any � = (g; ha

1

; : : : ; a

n

i; a

n+1

) 2 �

1

, where

g

A

: jAj

s

1

� :::�jAj

s

n

! jAj

s

n+1

, and for any � = (�; p;<a

1

; : : : ; a

n

>) 2 �

1

,

where p

A

: jAj

s

1

� ::: � jAj

s

n

: if s is s

i

, i = 1; :::; n + 1, and a

i

= id, then

� =2 �

1

; �

2

and � =2 �

1

; �

2

, and if Æ

2

= (+; s; a) 2 �

1

then both Æ

1

=2 �

1

; �

2

and Æ

2

=2 �

1

; �

2

.

Thus, in a sequential union of update sets, eah next update of a funtion/pre-

diate at a ertain point waives eah preeding update of this funtion/prediate

at the same point. If there are sequential reations of elements of the same sort,

the set of elements of this sort will be expanded aordingly. If there is a deletion

of an element, the orresponding sort will be ontrated aordingly and all

funtion/prediate updates involving this element will be ignored. Note that if

an element is �rst reated and then deleted, then the resulting update set will

ontain no trae of this element.

3.2 Dependent Funtions and Prediates

A funtion update of the form � = (f; �a; a) applied to a �

B

dyn

-state A does not

hange any other funtion g, only f at point �a is hanged. Consider now the

following partial funtion find: Name !? Defdata fething data for a name

in ID TABLE. Clearly the result of �nd depends on the state of ID TABLE;

thus �nd has to be a dynami funtion. Further, �nd depends on the dynami

funtion id table beause, starting from the urrent blok level, �nd looks for

the de�nition of an identi�er at eah blok level. Thus we expet that whenever

id table is hanged so is �nd . However, the semantis of update-sets and dynami

funtions does not provide us with suh an automatism.

To still allow suh funtions as �nd , we introdue dependent funtions and

dependent prediates as a seond set of state omponents. They form a signature

extension �

dep

= (;; TF

dep

; PF

dep

; P

dep

) of �

dyn

where TF

dep

\PF

dep

= ;. Note

that the set of sort names of �

dep

is empty; we don't allow for dependent sorts.

As with dynami funtions, we require that eah dependent funtion f : w ! s

7



where s is a dynami sort from S

dyn

or w ontains a dynami sort from S

dyn

is in PF

dep

. For example, the following dependent funtions/prediates an be

de�ned in the system ID TABLE:

depend

pred de�ned urrent: Name; ** heks whether an id is de�ned in the urrent

blok

pred is de�ned: Name; ** heks whether an id is de�ned in the table

fun �nd: Name �!? Defdata; ** fethes data from the table

De�nition 7. A �

B

dep

-state is a �

dep

-struture with the stati struture B where

�

dep

= �

dyn

[�

dep

.

Thus, dependent funtions/prediates extend a �

B

dyn

-state to a �

B

dep

-state. The

set of all�

B

dep

-states with the same stati strutureB is denoted by state

B

(�

dep

).

4 Dynami Systems

A state update modi�es the dynami and dependent funtions/prediates. Pos-

sible state updates are spei�ed by proedures delared in the fourth part of the

system's signature, �

pro

, whih onsists of sets TP

w

; PP

w

of total proedure

symbols, respetively partial proedure symbols, suh that TP

w

\ PP

w

= ;, for

eah proedure pro�le w onsisting of a sequene of argument sorts from �

dep

.

Example 3. For example, the following proedures an be de�ned in the system

ID TABLE:

pro

initialize; ** onstrution of an empty identi�er table

insert entry: ? Name, Defdata; ** insertion of a new entry in the identi�er table

new level; ** reation of a new level of nesting in the identi�er table

delete level ?; ** deletion of the last blok in the identi�er table

Example 4. The following proedures an be delared in the system CIRCLES:

pro

start; ** reate one irle with default attributes

move: Cirle, Real, Real; ** hange the oordinates of a irle

moveAll: Real, Real; ** hange the oordinates of all irles

resize: Cirle, Real; ** hange the radius of a irle

hangeCol: Cirle; ** hange the olour of a irle

opy: irle ** reate a new irle with the attributes of the argument irle

delCreen; ** delete all green irles

De�nition 8. The signature D� = (�

stat

; �

dyn

; �

dep

; �

pro

) of a dynami sys-

tem onsists of

{ a stati signature �

stat

;

{ a signature extension �

dyn

of �

stat

by symbols of dynami sorts, funtions,

and prediates suh that the pro�les of total funtions do not ontain a dy-

nami sort;

8



{ a signature extension �

dep

of �

stat

[�

dyn

by symbols of dependent funtions

and prediates, but without dependent sorts; and

{ two families of sets �

pro

= (TP; PP ) of total and partial proedure symbols.

De�nition 9. A dynami system, DS(B), of signature D� onsists of

{ a set of states jDS(B)j � state

B

(�

dep

), alled the arrier of the system;

{ a partial surjetive funtion map

DS(B)

: state

B

(�

dyn

) ! jDS(B)j suh

that if map

DS(B)

(A) is de�ned, then map

DS(B)

(A)j

�

dyn

= A for eah A 2

state

B

(�

dyn

);

{ for eah proedure symbol p : s

1

; : : : ; s

n

, a (partial) map p

DS(B)

assoiating

an update set � 2 update

B

(�

dyn

) with a state A of DS(B) and a tuple

<a

1

; : : : ; a

n

> where a

i

2 jAj

s

i

; i = 1; : : : ; n.

Given a dynami system DS(B), we all a �

dep

-struture A a state of DS(B) if

A 2 jDS(B)j.

We write p

DS(B)

(A; �a) for the appliation of a proedure p

DS(B)

to a pair

onsisting of a state A and a tuple �a where A 2 jDS(B)j and �a = <a

1

; :::; a

n

>.

For a proedure p, we say that p is a onstant proedure if the result of

p

DS(B)

(A; �a) does not depend on A. This kind of proedure an be used for the

initialization of a dynami system.

5 Transition terms

State updates are spei�ed by means of speial transition terms. The interpre-

tation of a transition term TT in a dynami system DS(B) at a state A w.r.t. a

variable assignment � : X ! jAj produes an update set � or is unde�ned. The

orresponding state A

0

after �ring the update set an be obtained by

A

0

= map

DS(B)

((Aj

�

dyn

)� )

for whih we will simply write, in abuse of notation, A

0

= A� .

5.1 Basi transition terms

Basi transition terms are update instrutions, proedure all, sort ontration

instrution, and the skip instrution.

Update instrutions Let f be the name of a dynami funtion with the pro-

�le s

1

; : : : ; s

n

! s, g the name of a partial dynami funtion with the pro�le

s

1

; : : : ; s

n

! s, p the name of a dynami prediate with the pro�le s

1

; : : : ; s

n

, X

a set of sorted variables, t

i

a term of sort s

i

over signature �

dep

with variables

X for i = 1; :::; n. Then

f(t

1

; :::; t

n

) := t;

g(t

1

; :::; t

n

) := undef;

p(t

1

; :::; t

n

) := true;

p(t

1

; :::; t

n

) := false

are transition terms alled update instrutions.
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Interpretation If A is a state of DS(B), � a variable assignment, t and t

i

; i =

1; : : : ; n; are de�ned terms in A under �, then

[[f(t

1

; :::; t

n

) := t℄℄

A;�

= f(f;<t

A;�

1

; : : : ; t

A;�

n

>; t

A;�

)g;

[[g(t

1

; :::; t

n

) := undef℄℄

A;�

= f(g;<t

A;�

1

; : : : ; t

A;�

n

>;?)g

[[p(t

1

; :::; t

n

) := true℄℄

A;�

= f(+; p; <t

A;�

1

; : : : ; t

A;�

n

>)g;

[[p(t

1

; :::; t

n

) := false℄℄

A;�

= f(�; p; <t

A;�

1

; : : : ; t

A;�

n

>)g;

If at least one of t; t

i

; i = 1; : : : ; n; is not de�ned in A under �, then the inter-

pretation of the above transition terms is unde�ned.

Example 5. Let x be a variable of sort Nat and f be a dynami funtion from

Nat to Nat. The exeution of the transition term f(x) := f(x) + 1 under the

variable assignment � = fx 7! ag transforms a state A into a state A

0

so that

f

A

0

(a) = f

A

(a) + 1 and f

A

0

(n) = f

A

(n) for all n 6= a.

If  is a partial dynami onstant, a transition term  := undef will make 

unde�ned in the new state.

Proedure all If p : s

1

; :::; s

n

is a proedure symbol and t

1

; :::; t

n

are terms of

sorts s

1

; :::; s

n

over �

dep

with variables from X , then p(t

1

; :::; t

n

) is a transition

term alled a proedure all.

Interpretation Let DS(B) be a dynami system of signature D�, A a state in

jDS(B)j, and � a variable assignment. The interpretation of a proedure all is

de�ned as follows:

[[p(t

1

; :::; t

n

))℄℄

A;�

= p

DS(B)

(A;<t

A;�

1

; :::; t

A;�

n

>)

if eah t

A;�

i

, i = 1; :::; n, is de�ned and p

DS(B)

is de�ned for the state A and the

tuple <t

A;�

1

; :::; t

A;�

n

>; [[p(t

1

; :::; t

n

))℄℄

A;�

is unde�ned otherwise.

Sort ontration If t is a term of a dynami sort s, then drop t is a transition

term alled a sort ontration.

Interpretation: [[drop t℄℄

A;�

= Æ where Æ = (�; s; t

A;�

).

Skip The transition term skip auses no state update, i.e. [[skip℄℄

A;�

= ;.

5.2 Transition term onstrutors

Complex transition terms are onstruted reursively from basi transition terms

by means of several term onstrutors, e.g., sequene onstrutor, set onstrutor,

ondition onstrutor, guarded update, loop onstrutor, import onstrutor, and

massive update.
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Sequene onstrutor If TT

1

; TT

2

; : : : ; TT

n

are transition terms, then

seq TT

1

; TT

2

; : : : ; TT

n

end

is a transition term alled a sequene of transition terms.

Interpretation Let A be a state, �

1

= [[TT

1

℄℄

A;�

, A

1

= A�

1

, �

2

= [[TT

2

℄℄

A

1

;�

,

A

2

= A

1

�

2

, : : : ; �

n

= [[TT

n

℄℄

A

n�1

;�

. Then

[[seq TT

1

; TT

2

; : : : ; TT

n

end℄℄

A;�

= �;

where � = �

1

; �

2

; ::: ; �

n

and eah [[TT

i

℄℄

A

i�1

;�

is de�ned.

Thus, to exeute a sequene of transition terms starting with a state A, it is

suÆient to reate the sequential union of their update sets and use it for the

transformation of A (whih is equivalent to the sequential exeution of the terms

one after another).

Set onstrutor If TT

1

; : : : ; TT

n

are transition terms, then

set TT

1

; : : : ; TT

n

end

is a transition term alled a set of transition terms.

Interpretation Let A be a state and �

1

= [[TT

1

℄℄

A;�

; : : : ; �

n

= [[TT

n

℄℄

A;�

. Then

[[set TT

1

; : : : ; TT

n

end℄℄

A;�

= �

1

[ : : : [ �

n

if eah [[TT

i

℄℄

A;�

is de�ned and �

1

[ : : : [ �

n

is onsistent; the semantis is not

de�ned otherwise.

In other words, to exeute a set of transition terms, exeute all of them in

parallel and unite the results if they are onsistent.

Condition onstrutor If k is a natural number, g

0

; :::; g

k

are formulae, and

TT

0

; :::; TT

k

are transition terms, then the following expression is a transition

term alled a onditional transition term:

if g

0

then TT

0

elseif g

1

then TT

1

: : :

elseif g

k

then TT

k

endif

If g

k

is the formula true, then the last elseif lause an be replaed with

"else TT

k

". We also write if g then TT for if g then TT else skip endif .

Interpretation Let A be a state, � a variable assignment, and TT a onditional

transition term, then

[[TT ℄℄

A;�

= [[TT

i

℄℄

A;�

if g

i

holds in A w.r.t. �, but every g

j

with j < i fails in A w.r.t. �. [[TT ℄℄

A;�

= ;

if every g

i

fails in A w.r.t. �.

11



Loop onstrutors The ondition onstrutor together with the sequene on-

strutor gives us a possibility to de�ne some loop onstrutors. If TT is a tran-

sition term and g is a formula, then while g do TT and do TT until g are

transition terms.

Interpretation

[[while g do TT ℄℄

A;�

= [[if g then seq TT; while g do TT end℄℄

A;�

;

[[do TT until g℄℄

A;�

= [[seq TT; if :g then do TT until g℄℄

A;�

:

Import onstrutor If x is a variable, s is a dynami sort name and TT is a

transition term, then import x : s in TT is a transition term alled an import

term.

Interpretation Let A

0

= AÆ, Æ = (+; s; a) for some a 62 A

s

, and �

0

= ��fx 7! ag

where "�" is the overriding union, i.e. (���

00

)(x) = �

00

(x) if x is in the domain

of �

00

and (� � �

00

)(x) = �(x) otherwise, then

[[import x : s in TT ℄℄

A;�

= fÆg; [[TT ℄℄

A

0

;�

0

Massive update Let x be a variable of sort s and TT a transition term. A

massive update

forall x : s : TT

permits the spei�ation of a parallel update of one or more sorts/funtions/

prediates at several points.

Interpretation Let A be a state suh that jAj

s

is not empty, let � and �

0

=

fxg ! jAj

s

be variable assignment, and let �

00

= � � �

0

. Then

{ if [[TT ℄℄

A;�

00

is de�ned and � =

S

f[[TT ℄℄

A;�

00

g is onsistent, then

[[forall x : s : TT ℄℄

A;�

= � ;

{ [[forall x : s : TT ℄℄

A;�

is not de�ned otherwise.

If jAj

s

= ;, then [[forall x : s : TT ℄℄

A;�

= ;. That is, the massive update over

the empty sort produes nothing.

Example 6. Let f be a dynami funtion from Nat to Nat. A transition term

forall x : Nat : f(x) := f(x) + 1

interpreted in a state A yields the update-set

f(f; n; f

A

(n) + 1) j n 2 jAj

Nat

g

if f

A

(n) is de�ned for all n.

Example 7. The exeution of the update set produed by the transition term

forall x : s : drop x

at the urrent state A will remove all elements from jAj

s

and will make empty

all funtions and prediates using s in their pro�les.
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6 Dynami Formulae

For the spei�ation of dynami systems we introdue dynami formulae whih

an be dynami equations, preondition formulae, or postondition formulae. A

dynami equation serves for the spei�ation of a behaviour of a proedure in

terms of a transition rule. A preondition formula allows us to de�ne the domain

of a proedure. Finally, a postondition formula is used to speify the behaviour

of a proedure similar to VDM or Z.

6.1 Dynami Equations

A dynami equation is of the form TT

1

= TT

2

where TT

1

and TT

2

are transition

terms over variables from X . A dynami system DS(B) satis�es a dynami

equation if for all states A of DS(B) and variable assignments � : X ! jAj:

A[[TT

1

℄℄

A;�

= A[[TT

2

℄℄

A;�

and A[[TT

1=2

℄℄

A;�

2 jDS(B)j.

The most ommon use of dynami equations is in the form:

p(x

1

; : : : ; x

n

) = TT

where TT does not ontain a diret or indiret all of p. This de�nes the semantis

of p in a dynami system to be a funtion mapping a state A and a tuple

<a

1

; : : : ; a

n

> to the update set given by the interpretation of TT w.r.t. A and

the variable assignment mapping eah x

i

to a

i

.

Example 8. For a simple example onsider a dynami onstant ounter : Int

and proedures In and De. The proedure In an be de�ned by the following

dynami equation:

In = ounter := ounter+ 1:

Similarly, De an be de�ned using the dynami equation

De = ounter := ounter� 1:

However, dynami equations need not follow the pattern p(x

1

; : : : ; x

n

) = TT .

For example, an alternative way to de�ne De from the previous example is by

the following dynami equation:

seq De; In end = skip:

This means that whenever a De proedure is followed by an In proedure, the

state of the system should not hange.

6.2 Preondition Formulae

Let p be an element of PP

s

1

;::: ;s

n

, i.e. a partial proedure symbol, and t

1

; : : : ; t

n

are terms over �

dep

with variables from X . A preondition formula of the form

13



pre p(t

1

; : : : ; t

n

) : ' an be used to state under whih onditions a partial

proedure p is guaranteed to be de�ned.

A dynami system DS(B) satis�es a preondition formula i� the value of

p

DS(B)

(A;<[[t

1

℄℄

A;�

; : : : ; [[t

n

℄℄

A;�

>) is de�ned in exatly those states A and for

those variable assignments � for whih ' holds.

The following preondition formula

pre insert entry(id; d) : :de�ned urrent(id)

states that the partial proedure insert entry delared in Ex. 3 for the dynami

system ID TABLE must be de�ned only in those states A and only for those

arguments id for whih the interpretation of de�ned urrent is false.

6.3 Postondition Formulae

Dynami equations of the form p(x

1

; : : : ; x

n

) = TT an be used to speify

dynami systems in an operational style similiar to Gurevih's ASMs.

However, sometimes it is onvenient to use a delarative style similar to the

one used by the spei�ation languages Z and VDM. In the delarative style, the

values of a dynami/dependent omponent before and after the exeution of a

proedure are related by a �rst-order formula. Usually this formula only de�nes

the relationship between the values and does not provide an algorithm how to

hange the value. For example, the De operation of Ex. 8 ould be de�ned by

a postondition formula

post De : ounter = ounter

0

+ 1

where ounter refers to the value of ounter in the state before exeuting the

De operation, and ounter

0

refers to the value of ounter after exeuting De.

Note that this formula does not presribe how the value of ounter is omputed

after performing the De operation. In ontrast, a dynami equation of the form

De = ounter := ounter� 1

de�nes an update-set used for hanging the value of ounter.

To be more preise, let A be a state of a dynami system DS(B) ontaining

the dynami onstant ounter and a proedure De. Then the interpretation of

De in DS(B) yields the update-set De

DS(B);fg

= � whih applied to a state

A yields the state A� . Then A� has the following property: the interpretation

of ounter in A has to be the same as the interpretation of ounter in A� plus 1:

ounter

A;fg

= ounter

A�;fg

+ 1:

The general syntax of a postondition formula is:

post p(t

1

; : : : ; t

n

) : '

where p is a (partial) proedure, t

1

; : : : ; t

n

are terms over �

dep

, and ' is a

formula over the signature

�

� whih is onstruted as follows. First onsider

the ase where there are no dynami sorts, then the sorts of

�

� are the stati
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sorts of �

stat

. The operation symbols (total or partial) of

�

� are those de�ned

in the stati signature plus two opies of the dynami and dependent funtion

symbols: one opy denoting the funtion before the exeution of a proedure and

one opy, deorated by a prime (0), denoting the funtion after the exeution of

a proedure. Similar for the prediate symbols of

�

�.

To de�ne whether ' is satis�ed by a state A and an update-set � , we on-

strut from A and A� a

�

�-model A

�

as follows. The interpretation of a stati

signature omponent, i.e. a sort, operation, or prediate symbol from �

stat

, is the

same as the interpretation of that omponent in A. Note that this is the same as

the interpretation of that symbol in A� and B, beause Aj

�

stat

= B = A� j

�

stat

.

The interpretation of a dynami or dependent signature omponent in A

�

is

either the interpretation of that omponent in A, or, if this is a omponent with

a prime in

�

�, the interpretation of the orresponding unprimed omponent in

A� . Then a state A and an update-set � satisfy a formula ' i� A

�

j= '.

In the ase of dynami sorts the onstrution is similar. That is,

�

� ontains

the stati sorts plus two opies of the dynami sorts, one opy deorated with a

prime. However, the pro�le of a primed dynami or dependent funtion/prediate

in

�

� having a dynami sort in its pro�le hanges. Eah dynami sort in the pro�le

has to be replaed by its primed version. Note that the pro�les of unprimed

funtion/prediate symbols remain the same.

As an example onsider the dynami system CIRCLES, whih has a dynami

sort Cirle and a dynami funtion X : Cirle!? Real (among others). Now the

signature

�

� ontains two sorts Cirle and Cirle

0

and two funtion symbols

X : Cirle !? Real and X

0

: Cirle

0

!? Real. Note that in the pro�le of X

0

the

dynami sort Cirle is also deorated with a prime.

There is still another problem with dynami sorts. Consider the following

spei�ation of the move operation in the dynami system CIRCLES:

post move(; x; y) : X

0

() = X() + x ^ Y

0

() = Y () + y

Note that the formula above is not well-formed w.r.t.

�

� beause X

0

is a funtion

from Cirle

0

to Real while  is of sort Cirle, and similar for Y

0

and . The solution

is to introdue in

�

� a partial funtion tm

s

: s ! s

0

alled a traking map for

eah dynami sort s. The notion of traking map was �rst introdued with d-oids

(f. [1, 2, 20, 21℄). In our example we use the funtion tm

Cirle

: Cirle!? Cirle

0

and write

post move(; x; y) : X

0

(tm

Cirle

()) = X() + x ^ Y

0

(tm

Cirle

()) = Y () + y

In the sequel we leave the appliation of the traking map impliit whenever

possible. If t[r℄ is a term with a subterm r and r is required to be of dynami sort

s

0

, then we allow r to be of dynami sort s and understand this as an abbreviation

for t[tm

s

(r)℄. This allows us to write the above postondition formula as:

post move(; x; y) : X

0

() = X() + x ^ Y

0

() = Y () + y

For the interpretation of the traking maps in A

�

we have to de�ne the

traking map assoiated with a dynami sort and an update-set. This traking

map is unde�ned for elements that are removed and is the identity otherwise.

tm

A;�

s

: jAj

s

! jA� j

s
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tm

A;�

s

(a) =

�

? if Æ = (�; s; a) 2 �

a else

The de�nition of satisfation remains the same, i.e. A and � satisfy ' if

A

�

j= '. The formal de�nition of

�

� and A

�

is given in App. A.

7 Spei�ation of Dynami Systems

De�nition 10. A dynami system spei�ation

DSS = (SPEC;�

dyn

; (�

dep

; Ax); (�

pro

; Ax

pro

))

has four levels:

{ The �rst level is a CASL spei�ation SPEC with semantis (�

stat

;M).

SPEC de�nes the data types used in the system.

{ The seond level de�nes those aspets of the system's state whih are likely

to hange. It inludes a signature extension, �

dyn

, whih delares some dy-

nami sorts/funtions/prediates.

{ The third level de�nes some dependent funtions/prediates and indiates

state invariants. It does not introdue new sorts and uses the names of dy-

nami funtions/prediates from �

dyn

, the names of dependent funtion/pre-

diates from �

dep

, and the operations of �

stat

. The formulae in Ax restrit

the set of possible states of a dynami system satisfying DSS.

{ The fourth level, (�

pro

; Ax

pro

), de�nes some proedures. Ax

pro

is a set

of dynami formulae.

A dynami system spei�ation DSS de�nes a dynami signature

D� = (�

stat

; �

dyn

; �

dep

; �

pro

);

and a dynami system DS(B) over signature D� satis�es a dynami spei�tion

DSS i�

{ B is a model of SPEC,

{ jDS(B)j is the set fA j A 2 state

B

(�

dep

) ^ A j= Axg,

{ DS(B) satis�es eah dynami formula in Ax

pro

.

Example 9.

**spei�ation of the "ID TABLE" system

System ID TABLE

use NAT, NAME, DEFDATA ** The spei�ations used

dynami

id table: Name, Pos �!? Defdata;

ur level: Pos; - the urrent level of blok nesting

depend

pred de�ned urrent, is de�ned: Name;

pred loal de�ned: Name, Pos;

fun loal �nd: Name, Pos �!? Defdata;
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fun �nd: Name �!? Defdata;

var id: Name, k: Pos

� de�ned urrent(id) , def id table(id, ur level));

� loal de�ned(id, 0) , false;

� loal de�ned(id, k) , def id table(id, k)_ loal de�ned(id, k-1);

� is de�ned(id) , loal de�ned(id, ur level);

� loal �nd(id, k) = id table(id, k) when def id table(id, k)

else loal �nd (id, k-1)g;

� �nd(id) = loal �nd(id, ur level) if is de�ned(id);

pro

initialize; ** onstrution of an empty identi�er table

insert entry: ? Name, Defdata;

new level;

delete level?;

var id: Name, k: Pos, d: Defdata

� pre delete level: ur level > 1;

� pre insert entry(id, d): : de�ned urrent(id);

� initialize = set ur level := 1,

forall id: Name, x: Pos. id table(id, x) := undef end;

� post insert entry(id, d): id table'(id, ur level) = d;

� post new level: ur level' = ur level + 1;

� delete level = set ur level := ur level� 1,

forall id: Name. id table(id, ur level) := undef end;

Example 10.

System CIRCLES

use REAL, COLOUR ** The spe. COLOUR has only two onstants

** "green" and "red" of sort "Colour"

dynami

sort Cirle;

fun X, Y: Cirle �!? Real;

fun radius: Cirle �!? Real;

fun ol: Cirle �!? Colour

pro

start; ** reation of one irle with default attributes

move: Cirle, Real, Real; ** hange the oordinates of a irle

moveAll: Real, Real; ** hange the oordinates of all irles

resize: Cirle, Real; ** hange the radius of a irle

hangeCol: Cirle; ** hange the olour of a irle

opy: irle ** reate a new irle with the attributes of the argument irle

delCreen; ** delete all green irles

var x, y, r: Real, ir: Cirle

� start = seq forall : Cirle. drop ,

import : Cirle in

set X() := 0, Y() := 0, radius() := 1, ol() := green end

end;
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� post move(ir, x, y): X'(ir) = X'(ir) + x ^ Y'(ir) = Y(ir) + y;

� moveAll(x, y) = forall : Cirle.

set X() := X() + x, Y() := Y() + y end;

� post resize(ir, r): radius'(ir) = r;

� hangeCol(ir) = if olour(ir) = green then olour(ir) := red

else olour(ir) := green endif;

� opy(ir) = import : Cirle in set X() := X(ir),

Y() := Y(ir), radius() := radius(ir), ol() := ol(ir) end;

� delGreen = forall : Cirle. if olour() = green then drop ;

end

8 Related Work

As mentioned in the introdution, this extension of CASL is based on several

works using the onept of impliit state. Currently none of them o�ers the full

set of tools needed for the spei�ation of a broad range of dynami systems.

Therefore the natural ombination of the failities o�ered by these works and

their adaptation to the CASL institution has been one of our main goals.

We have liked very muh the onept of update set introdued by Gure-

vih in [13℄ for the explanation of state transitions. It was used later by him in

[14℄ for giving denotational semantis of transition rules of Abstrat State Ma-

hines (ASMs). We also give the semantis of our transition terms in terms of

update sets. However, ASMs are based on total universal algebras treating pred-

iates as Boolean funtions. Sine our states are partial many-sorted strutures,

we have extended �-updates of ASMs with �- and Æ-updates representing, re-

spetively, the updates over prediates and sorts. Our notion of transition term

is an extension and generalization of the ASM notion of transition rule. The

amendments are the proedure all, the drop rule allowing a sort to shrink,

the sequene onstrutor and based on it the loop onstrutors (see also [6℄ for

another proposition of sequene and loop onstrutors). ASMs do not have suh

features as dependent funtions and proedures, nor is the notion of dynami

system de�ned for them.

Dependent funtions and proedures are borrowed from [8, 15℄ through inter-

mediate steps of [19, 9℄. However, their semantis is di�erent. In [19, 9℄ dependent

funtions are not part of the state; they belong to the dynami system, and this

aused some problems with the use of their names in terms. In [8, 15℄ dependent

funtions are part of the state with a very omplex semantis of their rede�nition

in di�erent states. The introdution of the funtion map has allowed us to treat

dependent funtions as part of the state with very simple semantis of their re-

de�nition. The semantis of modi�ers (analogue of our proedures) and update

expressions (analogue of our transition terms) is given in [8, 15℄ operationally

(there is no notion of update set in this approah), while we have done it deno-

tationally. We have also provided the means for working with partial strutures

(only total many-sorted algebras are used in [8, 15℄).

The notion of dynami system, as it is de�ned in our paper, stems from the

notion of d-oid introdued in [1, 2℄ and further developed in [20, 21℄. A d-oid is a

set of instane strutures (e.g., algebras), a set of dynami funtions resembling
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our dependent funtions and proedures and a traking map indiating relation-

ships between instane strutures. The approah deals with models and does not

address the issue of d-oid spei�ation. Therefore, we had to borrow and adapt

for our purpose a spei�ation tehnique of another soure.

Another approah are \Transition Categories" presented in [10, 11℄. Here the

algebra of data types is equipped with sorts alled referene sorts in addition to

ordinary sorts, and the state extends this algebra by partial funtions alled on-

tents funtions for eah referene sort whih map elements of referene sorts to

their ontents. State transformations are de�ned by onditional parallel assign-

ment rede�ning the ontents funtions. Though based on di�erent semantial

foundations, Gro�e-Rhode's approah appears as a speial lass of dynami sys-

tem de�ned in this paper where the stati part ontains the referene sorts and

the only omponents of the dynami part are the ontents funtions. Then the

e�et of onditional parallel assignment an be ahieved using dynami equa-

tions.

In a later work [12℄, Gro�e-Rhode de�nes Algebra Rewrite Systems. A rewrite

rule r is of the form P

l

 ! P

r

where P

l

= (X

l

; E

l

) and P

r

= (X

r

; E

r

) are

presentations onsisting of sets of generators X

l

and X

r

and sets of equations E

l

and E

r

, respetively. A rule is applied to a partial algebra A by �rst removing

the elements of X

l

from the arrier sets of A together with the equalities in

E

l

, and then adding the elements in X

r

and the equalities in E

r

. This allows

the modelling of update instrutions f(t

1

) := t

2

by �rst unde�ning a funtion

entry and then adding a new funtion entry by a rule (fx : sg; ff(t

1

) = xg) !

(fx : sg; ff(t

1

) = t

2

g). Deletion of an element of sort s is modeled by a rule

(fx : sg; ;) ! (;; ;), and reation of an element by a rule (;; ;) ! (fx : sg; ;)

However, the approah by Gro�e-Rhode is restrited to partial algebras and thus

annot be used in the ontext of CASL, whih is order-sorted and in addition to

partial funtion ontains total funtions and prediates. Further, the appliation

of rewrite rules and also the interation between axioms de�ning the stati part

with rewrite rules may yield unexpeted results, like the identi�ation of elements

in the result state.

While all the above approahes favour an operational style of writing spe-

i�ations, with the exeption of Zua [21℄, that is, they speify how a state is

transformed into another state, the approah by Baumeister [3{5℄ uses a delar-

ative approah, de�ning how the states before and after the exeution of a state

transformation are related. This allows writing spei�ations whih are similar to

those written in spei�ation languages like Z or VDM. Baumeister's approah

does not require states to be modeled as algebras; states an be strutures from

any suitable institution. From this approah we have used the idea how to in-

terpret postondition formulae.

9 Conlusion

In this paper we have de�ned an extension of CASL for the spei�ation of state-

based software systems intended to be part of the ommon framework de�ned

by the Common Framework Initiative. It permits the spei�ation of the stati

part of a omplex dynami system by means of CASL and the dynami part by

means of the failities desribed in the paper. This is one level of integration of

19



two di�erent spei�ation paradigms. The spei�ation of the dynami part an

also be done either by means of transition rules or by means of postonditions

(where it is appropriate). This provides the seond level of integration. Moreover,

the use of update sets for desribing the semantis of both transition rules and

postonditions has permitted us to de�ne the semantis in a simple way and

easily solve the well-known frame problem.

The next step in the development of the desribed spei�ation tehnique

is the introdution of struturing failities permitting the spei�ations to be

united, loalized, parameterized, et.
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A Postondition Formulae

In this setion we give a formal de�nition of

�

�, A

�

, and postondition formulae.

Let

�

dyn

= (S

dyn

; TF

dyn

; PF

dyn

; P

dyn

)

be a signature extension w.r.t. �

stat

= (S

stat

; TF

stat

; PF

stat

; P

stat

),

�

dep

= (;; TF

dep

; PF

dep

; P

dep

)

be a signature extension w.r.t. �

stat

[�

dyn

, then

� = (S; TF; PF; P ) = (S

dyn

; TF

dyn

[ TF

dep

; PF

dyn

[ PF

dep

; P

dyn

[ P

dep

)

is a signature extension w.r.t. �

stat

. We de�ne

�

� = (

�

S;

�

TF;

�

PF ;

�

P ) as follows:

�

S = S

stat

[ S

dyn

[ fs

0

j s 2 S

dyn

g

�

TF = ff : w ! s

0

j f : w ! s

0

2 (TF

stat

[ TF )g [

ff

0

: �s

1

; : : : ; �s

n

! �s

0

j f : s

1

; : : : ; s

n

! s

0

2 TF;

�s

i

= s

0

i

if s

i

2 S

dyn

, �s

i

= s

i

else; 0 � i � ng

�

PF = ff : w ! s

0

j f : w ! s

0

2 (PF

stat

[ PF )g [

ff

0

: �s

1

; : : : ; �s

n

! �s

0

j f : s

1

; : : : ; s

n

! s

0

2 PF;

�s

i

= s

0

i

if s

i

2 S

dyn

, �s

i

= s

i

else; 0 � i � ng [

ftm

s

: s! s

0

j s 2 S

dyn

g

�

P = fp : w j p : w 2 (P

stat

[ P )g [

fp

0

: �s

1

; : : : ; �s

n

j p : s

1

; : : : ; s

n

2 P;

�s

i

= s

0

i

if s

i

2 S

dyn

, �s

i

= s

i

else; 0 � i � ng
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De�nition 11. A postondition formula is a formula of the form

post p(t

1

; : : : ; t

n

) : '

where p : s

1

; : : : ; s

n

is a proedure symbol, s

1

; : : : ; s

n

are sorts in S

stat

[ S

dyn

,

t

1

; : : : ; t

n

are terms over variables X of sorts s

1

; : : : ; s

n

, and ' is a formula

over

�

� with variables X.

Given a state A in a dynami system DS(B) and an update-set � , we de�ne

a

�

�-struture A

�

by:

jA

�

j

s

= jAj

s

if s 2 S

stat

[ S

dyn

jA

�

j

s

0

= jA� j

s

if s

0

2

�

S n (S

stat

[ S

dyn

)

for all sort symbols in

�

S,

f

A

�

= f

A

if f 2 TF

stat

[ TF

f

0

A

�

= f

A�

if f

0

2

�

TF n (TF

stat

[ TF )

for all total funtion symbols in

�

PF ,

f

A

�

= f

A

if f 2 PF

stat

[ PF

f

A

�

= tm

A;�

s

if f = tm

s

f

0

A

�

= f

A�

if f

0

2

�

PF n (PF

stat

[ PF [ ftm

s

j s 2 S

dyn

g)

for all partial funtion symbols in

�

PF , and

p

A

�

= p

A

if p 2 P

stat

[ P

p

0

A

�

= p

A�

if p

0

2

�

P n (P

stat

[ P )

for all prediate symbols in

�

P .

Note that one an write f

0

A

�

= f

A�

and p

0

A

�

= p

A�

, though di�erent sort

symbols are used in the pro�les of f and f

0

(p and p

0

), sine the arrier-set of

eah s

0

in A

�

is the same as the arrier set of the orresponding s in A� .

A dynami system DS(B) satis�es a postondition formula

post p(t

1

; : : : ; t

n

) : '

i� for any state A and variable assignment � : X ! A: if the update-set

� = p

DS(B)

(A;<[[t

1

℄℄

A;�

; : : : ; [[t

n

℄℄

A;�

>)

exists, then

'

A

�

;�

= true:
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