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Abstract. A state-based extension of the algebraic specification lan-
guage CASL is presented. It permits the specification of the static part
of a complex dynamic system by means of CASL and the dynamic part
by means of the facilities described in the paper. The dynamic system
is defined as possessing a number of states and a number of operations
(procedures) for transforming one state into another. Each state pos-
sesses one and the same static part specified by CASL and a varying
part specified by additional tools. The varying part includes dynamic
sorts/functions/predicates and dependent functions/predicates. The de-
pendent functions/predicates are specified by formulae using the names
of the dynamic functions/predicates so that each time one of the last ones
is updated the corresponding former ones are also updated. The updates
of the dynamic entities are produced by procedures which are specified
by means of preconditions, postconditions, and dynamic equations.

1 Introduction

The Common Framework Initiative (CoFI) [18] is an open collaborative effort
to design a common framework for algebraic specifications. The rational behind
CoFT is that the lack of such a framework greatly hinders the dissemination and
application of research results in algebraic specification. The aim is to base the
common framework as much as possible on a critical selection of features that
have already been explored in various contexts. The common framework will
provide a family of languages centered around a single, reasonably expressive
common specification language called CASL [17]. Some of these languages will
be extensions of CASL, e.g. oriented to particular programming paradigms, while
others will be sub-languages of CASL, e.g. executable.

In this paper we define SB-CASL, a state-based extension of CASL [17] which
is based on algebraic specifications and the concept of implicit state a la Z, B,
or VDM, also known as the state-as-algebra approach. In contrast to Z, VDM,
and B, this approach does not constrain a specifier by a fixed number of basic
types and type constructors used for the representation of application data, and
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gives a formal semantics for all notions used in the method. SB-CASL brings
together ideas from Typed Gurevich Machines of Zamulin [19], based on the
original work of Gurevich [13,14], Algebraic Specifications with Implicit State
of Dauchy and Gaudel, first presented in [8] and further developed in [15,9], D-
oids by Astesiano and Zucca [2,20, 21], and the work of Baumeister [3-5]. The
formalism serves for the specification of dynamic systems possessing a state and
a number of operations for accessing and updating the state.

The novelty of SB-CASL is that it combines the operational style for the spec-
ification of state transformations with the declarative style in a practical specifi-
cation language. In the operational style one defines how one state is transformed
into another; in contrast, in the declarative style only the properties that the
successor state has to posses are specified and not how the state is constructed.
Up to now either only the operational style was used, like in ASM’s and the Im-
plicit State approach, or only the declarative style was used as in the approach
by Baumeister. A notable exception is the approach by Zucca [21] which also
allows both styles of specifications; however her intention was not to provide a
specification language.

The paper is organized as follows. The CASL institution is briefly described
in Sec. 2. States and state updates are defined in Sec. 3. Dynamic systems are
introduced in Sec. 4. Transition terms, serving for the construction of dynamic
formulae, are described in Sec. 5 and dynamic formulae in Sec. 6. The structure
of a dynamic system specification and supporting examples are given in Sec. 7.
Some related work is discussed in Sec. 8, and in Sec. 9 some conclusions are
drawn.

2 The CASL Institution

A basic specification in CASL consists of a many-sorted signature X together
with a set of sentences. The (loose) semantics of a basic specification is the class
of those models in Mod(X') which satisfy all the specified sentences. For reasons
of simplicity we restrict ourselves to the many-sorted part of CASL and leave out
the order-sorted part. However, all the subsequent constructions in this paper
can also be performed in the presence of a subsorting relationship.

A many-sorted signature X = (S, TF, PF, P) consists of:

— aset S of sorts;

— sets TF,s, PFy. s, of total function symbols, respectively partial function
symbols, such that TF, s N PF, s = 0, for each function profile (w, s) con-
sisting of a sequence of argument sorts w € S* and a result sort s € S
(constants are treated as functions with no arguments);

— sets P, of predicate symbols, for each predicate profile consisting of a sequence
of argument sorts w € S*.

Here and in the sequel a function (predicate) symbol is a name accompanied
with a profile. Names may be overloaded, occurring in more than one of the
above sets.

In this paper we write a total function symbol as f : s1,...,s, — s and a
partial function symbol as f : s1,...,5, =7 s. When the list of argument values
is empty, we write s and 7s, respectively.



For a many-sorted signature X = (S, TF, PF, P) a many-sorted model A €
Mod(X) is a many-sorted first-order structure consisting of a many-sorted par-
tial algebra:

— anon-empty carrier set|A|s for each sort s € S (let | A|,, denote the cartesian
product |Als, X --- X |Als, when w =s;1...5,),

— a partial function f* from |Al, to |A|s for each function symbol f € TF,, s
or f € PF, s, the function being required to be total in the former case,

— together with a predicate p* C |A|,, for each predicate symbol p € P,,.

Many-sorted terms on a signature ¥ = (S, TF, PF', P) and a set of sorted,
non-overloaded variables X are built from:

— universally quantified variables from X, introduced by
var Ui1,-.- ,U1k *S1,--- ,Unly--- yUnm * Sn;

— applications of function symbols in TF U PF to argument terms of appro-
priate sorts.

For a many-sorted signature ¥ = (S, TF, PF, P), the set of X-sentences
consists of sort-generation constraints and the usual closed many-sorted first-
order logic formulae, built from atomic formulae using quantification (over sorted
variables) and logical connectives. The atomic formulae are:

— applications of predicate symbols p € P to argument terms of appropriate
sorts;

— assertions about the definedness of terms, written def t;

— existential and strong equations between terms of the same sort, written

t1 =ty and t; = to, respectively.

The satisfaction of a sentence in a structure A is determined as usual by the
holding of its atomic formulae w.r.t. assignments of (defined) values to all the
variables that occur in them. The value of a term w.r.t. a variable assignment may
be undefined due to the application of a partial function during the evaluation
of the term, or because some arguments of a function application are undefined.
The satisfaction of sentences, however, is 2-valued.

The application of a predicate symbol p to a sequence of argument terms
holds in A iff the values of all the terms are defined and give a tuple belonging
to pA. A definedness assertion concerning a term holds iff the value of the term is
defined. An existential equation holds iff the values of both terms are defined and
identical, whereas a strong equation holds also when the values of both terms
are undefined. A sort-generation constraint (S’, F') is satisfied in a X-model A
if the carriers of the sorts in S’ are generated by the function symbols in F”.

3 States and State Updates

The signature of a system defined by SB-CASL includes a part

Ystat = (Sstata TFstata PFstata Pstat)



which defines some data types (sorts and operations) using the standard CASL
facilities. These data types are used for the specification of system’s states and
the description of possible state updates. A Yy -structure is called a static
structure in the sequel.

The system’s states are defined by dynamic sorts, dynamic functions, and
dynamic predicates. The names and profiles of these sorts/functions/predicates,
Agyn = (Sayn, T Fayn, PFayn, Payn), form a signature extension of the static sig-
nature Ygsqs-

We require that each dynamic function f :w — s where s is a dynamic sort
from Sgqyy, or w contains a dynamic sort from Sy, is in PFyp,. The reason is that
a function having a dynamic sort in its profile may become partial if elements
are added or removed from this sort.

In the rest of this paper we denote by Xy,,, = (S',TF’, PF', P') the union
of Estat with Adyn.

Ezample 1. The first example is a specification of an identifier table. The identi-
fier table stores some data for each identifier definition. It can be block-structured
according to block nesting. Typical functions are creating an empty identifier ta-
ble, inserting identifier data in the current block, checking whether an identifier
is defined in the current block, checking whether an identifier is defined in the
program, fetching identifier data, and deleting all identifier definitions of the
current, block.

The following specification defines the state of the identifier table. The static
signature is given by the union of the signatures of NAT, NAME, and DEFDATA;
and id_table and cur_level are dynamic functions:

System ID_TABLE
use NAT, NAME, DEFDATA ** The specifications used
dynamic

func id_table: Name, Pos —? Defdata;

func cur_level: Pos; ** the current level of block nesting

Ezample 2. The second example is taken from one of the latest work of Zucca [21].
The procedures (dynamic operations in her paper), whose ”intended interpre-
tation” is described at the model level in that paper, will be formally specified
here.

System CIRCLES
use REAL, COLOUR ** The spec. COLOUR has only two constants
** Ygreen” and "red” of sort ”Colour”

dynamic

sort Circle;

func X, Y: Circle — Real,;

func radius: Circle — Real;

func col: Circle — Colour;

A dynamic sort/function/predicate can be different in different states.

Definition 1. A Xy ,-state is a X gyn-structure where Xgyn = Ystqr U Agyn.



The restriction of any Xgy,-state A to Xgar, A|s,.., 1S a static structure
called the base of A. Several X 4, ,-states can have the same base. Following [15],
we denote the set of all X'4,,-states with the same base B by stater(Xqy,) and
mean by a Zf;n—state a Y gyn-state with the static structure B. Thus, the carrier
of any static sort s € Sgtat in a Xgyn-state A is the same as the carrier of s in
B, that is |A|s = | B|s.

3.1 Update-Sets

One state can be transformed into another by a state update which is either a
function update or a predicate update or a sort update.

Definition 2. Let B be a static structure over Xg,.:. A function update in a
EdByn—state A is a triple (f,a,a) where fys is a dynamic function (constant)
symbol in Agyn, W = 81...5p, @ = <a1,...,a,> € |A|y (G is the empty tuple <>
when n is equal to zero), and a is either an element of |A|s or the symbol L. A
function update (f,a, L) is valid only if f is the symbol of a partial function.
A function update o = (f, a,a) serves for the transformation of a ZdByn—state A
into a new Zf;n—state Aa in the following way:

— g*® = g4 for any g,,, € TF' U PF' different from f;

— fA*@) = aif a is not L, f4%(@) becomes udefined otherwise;

— fA*(@') = fA(@') for any tuple @’ = <a}, ... ,al,> different from a;
— pA* = pA for any p,, € P';

— |Aa|s = |A|s for any s € S'.

Following Gurevich [13], we say that A« is obtained by firing the update a on
A. Roughly speaking, firing a function update either inserts an element in the
definition domain of a dynamic function or modifies the value of such a function
at one point in its domain or removes an element from the definition domain.

Definition 3. Let B be a static structure over Xg.:. A predicate update in
a EdByn—state A is a either a triple (+,p,a) or a triple (—,p,a) where py is a
predicate symbol in Agyp, W = $1...85, and @ = <a1, ...,an,> € |Alw.

A predicate update 8 = (¢, p, a) serves for the transformation of a Efyn—state
A into a new X7 -state A in the following way:

— pAP(a) holds if ¢ is ”+” and p*?(a) does not hold if ¢ is ”—7;

— pAB(a’) iff p*(a’) for any tuple a’' = <a!, ... ,al,> different from a;
— g% = ¢4 for any ¢, € Pgyy, different from p;

— fAP = fA for any fu, € TF'U PF'; and

— |AB|s = |Als for any s € S".

Definition 4. Let s be the name of a dynamic sort. A sort-update 6 in A is
either a triple (+, s,id) where id is an element such that id ¢ |A|s or a triple
(=, s,id) where id is an element such that id € |A|;.
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A sort update d = (+, s,4d) transforms a 77} -state A into a new X7 -state
A¢ in the following way:
= |Ad|s = [Als U {id},
— |Ad|s = |A|s for any s’ € S’ different from s,
— fA% = f4 for any f,, € TF'UPF', and
— pA% = pA for any p,, € P'.
A sort update § = (-, s,4d) transforms a '} -state A into a new X7 -state

A¢ in the following way:

— for any function f4 :|Als, x ... x |A]s, — |Alg, 0 if |Als, i =1,.,n + 1,
is a dynamic sort associated with the sort name s and id € |A|s,, then
if there is a maplet <ai,...,a, — a,p1> € f4 such that a; = id, then
A% = fA\{<ay,...,an = any1>}; fA° = f4 otherwise;

— for any predicate p : |A|,, x ... x |A],,, if |Als,, i = 1,...,n, is a dynamic
sort associated with the sort name s and id € |Als,, then if there is a tuple
<ay,...,ap> € p? such that a; = id, then p*? = p\ {<ay,...,a,>}; p*° =
p? otherwise;

— |Adls = Ag \ {id} and |Ad|y = |A|s for any s different from s.

Thus, the sort update § = (—,s,a) contracts the set of elements of a cer-
tain sort and deletes the corresponding entries from the graphs of all dynamic
functions and predicates using and/or producing the element indicated.

Note that it is possible to create algebras with empty carrier sets using sort
updates. For example, if A is an algebra with |A|; = {a} and § = (—,s,a),
then |Ad|s = {}. This is in contradiction with the requirement that within the
CASL institution carrier sets are non-empty. To solve this problem we introduce
the institution SB-CASL which is the same as the CASL institution, but allows
their models to have empty carrier sets. Note that the introduction of empty
carriers does not pose any problems with the satisfaction relation in case of
partial logic (cf. [7]), and that any many-sorted model of the CASL institution
is also a model of the SB-CASL institution.

Definition 5. Let I' be a set of function/predicate/sort updates. The set I is
inconsistent if it contains either

— two contradictory function updates of the following kind: cn = (f,a,a) and
as = (f,a,a’), where a # a' (two contradictory function updates define the
function differently at the same point), or

— two contradictory predicate updates of the following kind: f; = (+,p,a) and
B2 = (—,p,a) (two contradictory predicate updates define the predicate dif-
ferently at the same tuple of arguments), or

— two sort updates of the following kind: &, = (+,s,id) and 02 = (—,s,id)
(two contradictory sort updates insert in the sort and delete from the sort
the same element), or

— either an a = (f, <ai,...,an>,any1) for an f4 1 |Als, X .. x |Als, = |Alsn s
oraf = (&p,<ay,...,an>) for a pt : |Als, x ... x |Als,, and § = (—, s,id)
such that s is s; for some i = 1,...n+ 1 and id = a; (a sort element is
removed while a function/predicate is forced to use it);



the update set is consistent otherwise.

A consistent update-set I" applied to a Efyn—state A transforms A into a new
Y5 -state A' by simultaneous firing all « € I', all € I', and all § € I'. If I’
is inconsistent, the new state in not defined. If I" is empty, A’ is the same as A.
Following [16], we denote the application of I" to a state A by AI'. The set of
all consistent sets of updates in stateg(X) is denoted by updatep(X4yn) in the
sequel.

Definition 6. Let I'y and I be two consistent update-sets in a ZdByn—state A,
ayp = (.f: <CL1, v 7an>7a)’ Q2 = (fa ((7,1, s 7an>aa'l)7 61 = (glapa <a17 s 7an>)’
B = (&,p,(a1,... ,an)), 61 = (+,8,id), and 62 = (—,s,id), where a # a
and both & and & are either "+ or =7 such that & is different from &.
The sequential union of Iy and Is, denoted by I 3 Is, is defined as follows:
w€ll s Iy iff u €7 oru € Iy, except the following cases:

—ifay €I and ay € Iy, then as € I 55 and ay ¢ I 5 Iy;

- Zfﬁl el andﬁgel—'g, thenﬁg el ;s andﬁl ¢F1 s Io;

—if 6 = (—,s,a) € Iy, then for any a = (g,{a1,...,an),ant1) € I, where
gA - |Als, X ... X |Als, = |Als, 4., and for any § = (&,p, <ay,...,a,>) € I,
where p* 1 |Alg, X ... X |Als, : if 5 is 84,1 = 1,..,n + 1, and a; = id, then
ag¢ Iy and B¢ I s Iy, and if 02 = (+, s,a) € Iy then both &, ¢ I'y 5 Iy
and52¢f’1 ;FQ.

Thus, in a sequential union of update sets, each next update of a function/pre-
dicate at a certain point waives each preceding update of this function/predicate
at the same point. If there are sequential creations of elements of the same sort,
the set of elements of this sort will be expanded accordingly. If there is a deletion
of an element, the corresponding sort will be contracted accordingly and all
function/predicate updates involving this element will be ignored. Note that if
an element is first created and then deleted, then the resulting update set will
contain no trace of this element.

3.2 Dependent Functions and Predicates

A function update of the form o = (f,a,a) applied to a Efyn—state A does not

change any other function g, only f at point a is changed. Consider now the
following partial function find: Name —7?7 Defdata fetching data for a name
in ID_.TABLE. Clearly the result of find depends on the state of ID_TABLE;
thus find has to be a dynamic function. Further, find depends on the dynamic
function id_table because, starting from the current block level, find looks for
the definition of an identifier at each block level. Thus we expect that whenever
id_table is changed so is find. However, the semantics of update-sets and dynamic
functions does not provide us with such an automatism.

To still allow such functions as find, we introduce dependent functions and
dependent predicates as a second set of state components. They form a signature
extension Agep = (0, T Fyep, PFaep, Paep) of X gy where T FyepNPFy., = 0. Note
that the set of sort names of Ay, is empty; we don’t allow for dependent sorts.
As with dynamic functions, we require that each dependent function f: w — s



where s is a dynamic sort from Sgy, or w contains a dynamic sort from Sgy,
is in PFye,. For example, the following dependent functions/predicates can be
defined in the system ID_TABLE:

depend

pred defined_current: Name; ** checks whether an id is defined in the current
block

pred is_defined: Name; ** checks whether an id is defined in the table

func find: Name —? Defdata; ** fetches data from the table

Definition 7. A Efep—state is a X gep-structure with the static structure B where
Zdep - Edyn V) Adep'

Thus, dependent functions/predicates extend a X2 _state to a ¥ -state. The

dyn dep
set of all 7} -states with the same static structure B is denoted by statep (¥ ep)-

4 Dynamic Systems

A state update modifies the dynamic and dependent functions/predicates. Pos-
sible state updates are specified by procedures declared in the fourth part of the
system’s signature, Ap.,., which consists of sets TP, PP, of total procedure
symbols, respectively partial procedure symbols, such that TP, N PP, = 0, for
each procedure profile w consisting of a sequence of argument sorts from X jp,.

Example 3. For example, the following procedures can be defined in the system
ID_TABLE:

proc
initialize; ** construction of an empty identifier table

insert_entry: ? Name, Defdata; ** insertion of a new entry in the identifier table
new_level; ** creation of a new level of nesting in the identifier table
delete_level 7; ** deletion of the last block in the identifier table

Ezample 4. The following procedures can be declared in the system CIRCLES:

proc
start; ** create one circle with default attributes
move: Circle, Real, Real; ** change the coordinates of a circle
moveAll: Real, Real; ** change the coordinates of all circles
resize: Circle, Real; ** change the radius of a circle
changeCol: Circle; ** change the colour of a circle
copy: circle ** create a new circle with the attributes of the argument circle
delCreen; ** delete all green circles

Definition 8. The signature DX = (X101, Adyny Adeps Aproc) of a dynamic sys-
tem consists of

— a static signature Yo,

— a signature extension Agyn of Ysar by symbols of dynamic sorts, functions,
and predicates such that the profiles of total functions do not contain a dy-
namic sort;



— a signature extension Agep of Xt UAqyn by symbols of dependent functions
and predicates, but without dependent sorts; and
— two families of sets Aproc = (TP, PP) of total and partial procedure symbols.

Definition 9. A dynamic system, DS(B), of signature DX consists of

— a set of states |DS(B)| C stateg(Xqep), called the carrier of the system;

— a partial surjective function mapPS(B) . stateg(Zgym) — |DS(B)| such
that if mapP5(B)(A) is defined, then mapP5B)(A)|x,, = A for each A €
statep (X ayn);

— for each procedure symbol p : s1,...,Sn, a (partial) map pPSB) gssociating
an update set I' € updatep(Xqy,) with a state A of DS(B) and a tuple
<ai,...,ap> where a; € |Als;,i=1,... ,n.

Given a dynamic system DS(B), we call a X gep-structure A a state of DS(B) if
A € |DS(B)].
We write pP9(B)(A,a) for the application of a procedure pP5(®) to a pair
consisting of a state A and a tuple @ where A € [DS(B)| and a = <ay, ..., a,>.
For a procedure p, we say that p is a constant procedure if the result of
pPS(B)(A,a) does not depend on A. This kind of procedure can be used for the
initialization of a dynamic system.

5 Transition terms

State updates are specified by means of special transition terms. The interpre-
tation of a transition term 77T in a dynamic system DS(B) at a state A w.r.t. a
variable assignment o : X — |A| produces an update set I" or is undefined. The
corresponding state A’ after firing the update set can be obtained by

A" = map”S P ((Al5,,)T)

for which we will simply write, in abuse of notation, A’ = AI.

5.1 Basic transition terms

Basic transition terms are update instructions, procedure call, sort contraction
instruction, and the skip instruction.

Update instructions Let f be the name of a dynamic function with the pro-
file s1,...,8, — s, g the name of a partial dynamic function with the profile
S1,...,8, — S, p the name of a dynamic predicate with the profile s1,... ,8,, X
a set of sorted variables, ¢; a term of sort s; over signature X4, with variables
X fori=1,...,n. Then

flt1,ty) =1,
g(t1, ...y tn) := undef,
p(t1, ..., tn) := true,
p(t1, ..., tn) := false

are transition terms called update instructions.



Interpretation If A is a state of DS(B), o a variable assignment, ¢ and t;,7 =
1,...,n, are defined terms in A under o, then

[f(t1, .o tn) == 4 =
[g(t1, ... tn) := undef]>" =
[p(t1, s tn) == true]™” =
[p(ty,....tn) := false]" =

If at least one of t,t;,7 = 1,... ,n, is not defined in A under o, then the inter-
pretation of the above transition terms is undefined.

fo<th s )Y
g, <t s 1))

Example 5. Let x be a variable of sort Nat and f be a dynamic function from
Nat to Nat. The execution of the transition term f(z) := f(z) + 1 under the
variable assignment ¢ = {z — a} transforms a state A into a state A’ so that
fA(a) = fAa) + 1 and 4 (n) = fA(n) for all n # a.

If ¢ is a partial dynamic constant, a transition term ¢ := undef will make ¢
undefined in the new state.

Procedure call If p: sy, ..., s, is a procedure symbol and ¢4, ..., t, are terms of
SOrts s1, ..., S, over X4, with variables from X, then p(t1, ..., t,) is a transition
term called a procedure call.

Interpretation Let DS(B) be a dynamic system of signature DX, A a state in
|DS(B)|, and o a variable assignment. The interpretation of a procedure call is
defined as follows:

[t ot )] = PSP (A, <17, 107 >)
if each "7, i = 1,...,n, is defined and pP5(P) is defined for the state A and the

tuple <tf7‘7, ey BT >0 [p(ty, .oy t,))]47 is undefined otherwise.

Sort contraction If ¢ is a term of a dynamic sort s, then drop ¢ is a transition
term called a sort contraction.

Interpretation: [drop t]*7 = § where § = (—,s,t"7).
Skip The transition term skip causes no state update, i.e. [skip]*” = 0.

5.2 Transition term constructors

Complex transition terms are constructed recursively from basic transition terms
by means of several term constructors, e.g., sequence constructor, set constructor,
condition constructor, guarded update, loop constructor, import constructor, and
massive update.
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Sequence constructor If T7,,TT,,... ,TT, are transition terms, then
seq TT,,TT>,... ,TT, end

is a transition term called a sequence of transition terms.

Interpretation Let A be a state, I = [TT1]47, A; = A, Iy = [TTy]*7,
A2 = A1F2, ey Fn = [[TTn]]A"*hU. Then
[seq TTy,TTs,... ,TT, end]*" =T,

where I' = I 3 I 5 ... ; I, and each [TT;]4-17 is defined.

Thus, to execute a sequence of transition terms starting with a state A, it is
sufficient to create the sequential union of their update sets and use it for the
transformation of A (which is equivalent to the sequential execution of the terms
one after another).

Set constructor If TTy,... ,TT, are transition terms, then

set TTy,... ,TT, end

is a transition term called a set of transition terms.

Interpretation Let A be a state and I = [TT1]47,... , [, = [TT,]*. Then
[set TTy,... ,TT, end]*” =T U...UT,

if each [[TTi]]A"’ is defined and I} U...U I, is consistent; the semantics is not
defined otherwise.

In other words, to execute a set of transition terms, execute all of them in
parallel and unite the results if they are consistent.

Condition constructor If k is a natural number, go, ..., g are formulae, and
TTy,...,TT are transition terms, then the following expression is a transition
term called a conditional transition term:

if gy then 7T
elseif g, then TT)

elseif g, then T'T}
endif

If g is the formula true, then the last elseif clause can be replaced with
"else T'T;,”. We also write if g then T'T for if g then TT else skip endif.

Interpretation Let A be a state, o a variable assignment, and 7T a conditional
transition term, then

[TT) = [TT]*

if g; holds in A w.r.t. o, but every g; with j < i fails in A w.r.t. o. [TT]4" =0
if every g; fails in A w.r.t. o.

11



Loop constructors The condition constructor together with the sequence con-
structor gives us a possibility to define some loop constructors. If 77T is a tran-
sition term and g is a formula, then while g do 7T and do T7T until g are
transition terms.
Interpretation

[while g do TT]*" = [if g then seq TT, while g do TT end]*;

[do TT until g]*° = [seq TT, if ~g then do TT until g]*.

Import constructor If z is a variable, s is a dynamic sort name and 7T is a
transition term, then import x : s in 7T is a transition term called an import
term.

Interpretation Let A’ = Ad, 6 = (+, s,a) for some a € A, and ¢’ = o ® {z — a}
where ”@®” is the overriding union, i.e. (6 ®0")(z) = 0" (z) if 2 is in the domain
of 0" and (0 ® 0")(x) = o(z) otherwise, then

[import z : s in TT]*" = {5}; [[TT]]A,J’

Massive update Let z be a variable of sort s and 7T a transition term. A
massive update

forall z : s . TT

permits the specification of a parallel update of one or more sorts/functions/
predicates at several points.

Interpretation Let A be a state such that |A|s; is not empty, let o and o' =
{z} — |A|s be variable assignment, and let ¢ = o ® ¢’. Then

— if [TT]4°" is defined and I = |J{[T'T]*""} is consistent, then
[forall z : s . TT]*" =T
— [forall z : s . TT]*7 is not defined otherwise.

If |Als = 0, then [forall z : s . TT]*° = (). That is, the massive update over
the empty sort produces nothing.

Example 6. Let f be a dynamic function from Nat to Nat. A transition term
forall = : Nat. f(z) := f(z) +1
interpreted in a state A yields the update-set
{(f,n, f4(n) + 1) | n € [Alvar}
if £4(n) is defined for all n.
Example 7. The execution of the update set produced by the transition term
forall z : s . drop z=

at the current state A will remove all elements from |A|; and will make empty
all functions and predicates using s in their profiles.
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6 Dynamic Formulae

For the specification of dynamic systems we introduce dynamic formulae which
can be dynamic equations, precondition formulae, or postcondition formulae. A
dynamic equation serves for the specification of a behaviour of a procedure in
terms of a transition rule. A precondition formula allows us to define the domain
of a procedure. Finally, a postcondition formula is used to specify the behaviour
of a procedure similar to VDM or Z.

6.1 Dynamic Equations

A dynamic equation is of the form TT) = TT, where TT; and TT5 are transition
terms over variables from X. A dynamic system DS(B) satisfies a dynamic
equation if for all states A of DS(B) and variable assignments o : X — |A|:

A[TTi]*" = A[TT>]*" and A[TT, »]*“ € |DS(B)|.
The most common use of dynamic equations is in the form:
p(x1,...,2n) =TT

where T'T does not contain a direct or indirect call of p. This defines the semantics
of p in a dynamic system to be a function mapping a state A and a tuple
<ay,...,ap> to the update set given by the interpretation of TT w.r.t. A and
the variable assignment mapping each z; to a;.

Ezample 8. For a simple example consider a dynamic constant counter : Int
and procedures Inc and Dec. The procedure Inc can be defined by the following
dynamic equation:

Inc = counter := counter + 1.
Similarly, Dec can be defined using the dynamic equation

Dec = counter := counter — 1.
However, dynamic equations need not follow the pattern p(z1,...,z,) = TT.
For example, an alternative way to define Dec from the previous example is by
the following dynamic equation:

seq Dec, Inc end = skip.

This means that whenever a Dec procedure is followed by an Inc procedure, the
state of the system should not change.

6.2 Precondition Formulae

Let p be an element of PP, . s, ,i.e. apartial procedure symbol, and ¢;,... ,t,
are terms over Yy, with variables from X. A precondition formula of the form
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pre p(ti,... ,tn) : » can be used to state under which conditions a partial
procedure p is guaranteed to be defined.

A dynamic system DS(B) satisfies a precondition formula iff the value of
pPSB(A, <[t:1]47,. .., [ta]?7>) is defined in exactly those states A and for
those variable assignments o for which ¢ holds.

The following precondition formula

pre insert_entry(id, d) : —defined_current(id)

states that the partial procedure insert_entry declared in Ex. 3 for the dynamic
system ID_TABLE must be defined only in those states A and only for those
arguments id for which the interpretation of defined_current is false.

6.3 Postcondition Formulae

Dynamic equations of the form p(xi,...,z,) = TT can be used to specify
dynamic systems in an operational style similiar to Gurevich’s ASMs.

However, sometimes it is convenient to use a declarative style similar to the
one used by the specification languages Z and VDM. In the declarative style, the
values of a dynamic/dependent component before and after the execution of a
procedure are related by a first-order formula. Usually this formula only defines
the relationship between the values and does not provide an algorithm how to
change the value. For example, the Dec operation of Ex. 8 could be defined by
a postcondition formula

post Dec : counter = counter’ + 1

where counter refers to the value of counter in the state before executing the
Dec operation, and counter’ refers to the value of counter after executing Dec.
Note that this formula does not prescribe how the value of counter is computed
after performing the Dec operation. In contrast, a dynamic equation of the form

Dec = counter := counter — 1

defines an update-set used for changing the value of counter.

To be more precise, let A be a state of a dynamic system DS(B) containing
the dynamic constant counter and a procedure Dec. Then the interpretation of
Dec in DS(B) yields the update-set DecPS(B){} = " which applied to a state
A yields the state AI'. Then AI has the following property: the interpretation
of counterin A has to be the same as the interpretation of counterin AI” plus 1:

counter®tt = counter" 1} 4+ 1.
The general syntax of a postcondition formula is:
post p(t1,... ,tn) 1 @
where p is a (partial) procedure, ti,...,t, are terms over Xg.,, and ¢ is a

formula over the signature X which is constructed as follows. First consider
the case where there are no dynamic sorts, then the sorts of X' are the static
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sorts of Ygq. The operation symbols (total or partial) of X are those defined
in the static signature plus two copies of the dynamic and dependent function
symbols: one copy denoting the function before the execution of a procedure and
one copy, decorated by a prime (/), denoting the function after the execution of
a procedure. Similar for the predicate symbols of X.

To define whether ¢ is satisfied by a state A and an update-set I, we con-
struct from A and AI" a ¥-model AT as follows. The interpretation of a static
signature component, i.e. a sort, operation, or predicate symbol from X, is the
same as the interpretation of that component in A. Note that this is the same as
the interpretation of that symbol in AI" and B, because A|yx,,,, = B = Al'|s,,,,-
The interpretation of a dynamic or dependent signature component in A’ is
either the interpretation of that component in A, or, if this is a component with
a prime in X, the interpretation of the corresponding unprimed component in
AT. Then a state A and an update-set I" satisfy a formula ¢ iff AT |= .

In the case of dynamic sorts the construction is similar. That is, £ contains
the static sorts plus two copies of the dynamic sorts, one copy decorated with a
prime. However, the profile of a primed dynamic or dependent function/predicate
in ¥ having a dynamic sort in its profile changes. Each dynamic sort in the profile
has to be replaced by its primed version. Note that the profiles of unprimed
function/predicate symbols remain the same.

As an example consider the dynamic system CIRCLES, which has a dynamic
sort Circle and a dynamic function X : Circle —? Real (among others). Now the
signature ¥ contains two sorts Circle and Circle’ and two function symbols
X : Circle —»? Real and X' : Circle’ —? Real. Note that in the profile of X' the
dynamic sort Circle is also decorated with a prime.

There is still another problem with dynamic sorts. Consider the following
specification of the move operation in the dynamic system CIRCLES:

post move(c,z,y) : X'(¢) = X(¢) +zAY'(¢) =Y (e) +y

Note that the formula above is not well-formed w.r.t. ¥ because X' is a function
from Circle’ to Real while c is of sort Circle, and similar for Y’ and c. The solution
is to introduce in X a partial function tm, : s — s' called a tracking map for
each dynamic sort s. The notion of tracking map was first introduced with d-oids
(cf. [1,2,20,21]). In our example we use the function tm gipere : Circle =7 Circle
and write

post move(c,z,y) : X' (tmcircie(c)) = X () + A Y (tmciree(c)) =Y (c) +y

In the sequel we leave the application of the tracking map implicit whenever
possible. If ¢[r] is a term with a subterm r and r is required to be of dynamic sort
s', then we allow r to be of dynamic sort s and understand this as an abbreviation
for t[tms(r)]. This allows us to write the above postcondition formula as:

post move(e,z,y) : X'(¢) = X(¢) +zAY'(c) =Y (e) +y

For the interpretation of the tracking maps in A’ we have to define the
tracking map associated with a dynamic sort and an update-set. This tracking
map is undefined for elements that are removed and is the identity otherwise.

tmAT Al — |AT,
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tm
s a else

Lifd=(—,s,a) €l
A,F(a) — { ( )
The definition of satisfaction remains the same, i.e. A and I' satisfy ¢ if
AT = . The formal definition of ¥ and AT is given in App. A.

7 Specification of Dynamic Systems

Definition 10. A dynamic system specification
DSS = (SPEO, Adyn: (Adepa Aw)a (Aproc: Amproc))

has four levels:

— The first level is a CASL specification SPEC with semantics (Xstar, M).
SPEC defines the data types used in the system.

— The second level defines those aspects of the system’s state which are likely
to change. It includes a signature extension, Agyy,, which declares some dy-
namic sorts/functions/predicates.

— The third level defines some dependent functions/predicates and indicates
state invariants. It does not introduce new sorts and uses the names of dy-
namic functions/predicates from Aqyn, the names of dependent function/pre-
dicates from Agep, and the operations of Xsiat. The formulae in Ax restrict
the set of possible states of a dynamic system satisfying DSS.

— The fourth level, (Aproc, ATproc), defines some procedures. Azproc is a set
of dynamic formulae.

A dynamic system specification DSS defines a dynamic signature
DX = (Estata Adyna Adepa Eproc)a

and a dynamic system DS(B) over signature DX satisfies a dynamic specifiction
DSS iff

— B is a model of SPEC,
— |DS(B)| is the set {A | A € statep(Xgep) N A |= Az},
— DS(B) satisfies each dynamic formula in Az,.c.

Ezample 9.

**specification of the "ID_-TABLE” system
System ID_TABLE
use NAT, NAME, DEFDATA ** The specifications used
dynamic
id_table: Name, Pos —7? Defdata;
cur_level: Pos; - the current level of block nesting
depend
pred defined_current, is_defined: Name;
pred local_defined: Name, Pos;
func local_find: Name, Pos —7 Defdata;
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func find: Name —7 Defdata;
var id: Name, k: Pos
e defined_current(id) < def id_table(id, cur_level));
e local_defined(id, 0) < false;
e local_defined(id, k) < def id_table(id, k)V local_defined(id, k-1);
e is_defined(id) < local_defined(id, cur_level);
e local find(id, k) = id_table(id, k) when def id_table(id, k)
else local find (id, k-1)};
e find(id) = local_find(id, cur_level) if is_defined(id);
proc
initialize; ** construction of an empty identifier table
insert_entry: 7 Name, Defdata;
new_level;
delete_level?;
var id: Name, k: Pos, d: Defdata
e pre delete_level: cur_level > 1;
e pre insert_entry(id, d): = defined_current(id);
e initialize = set cur_level := 1,
forall id: Name, x: Pos. id_table(id, x) :=
e post insert_entry(id, d): id_table’(id, cur_level) =
e post new_level: cur_level’ = cur_level + 1;
e delete_level = set cur_level := cur_level — 1,
forall id: Name. id_table(id, cur_level) := undef end;

undef end;
d;

Ezample 10.

System CIRCLES
use REAL, COLOUR ** The spec. COLOUR has only two constants
** Ygreen” and "red” of sort ”Colour”
dynamic
sort Circle;
func X, Y: Circle —7? Real;
func radius: Circle —7? Real;
func col: Circle —? Colour
proc
start; ** creation of one circle with default attributes
move: Circle, Real, Real; ** change the coordinates of a circle
moveAll: Real, Real; ** change the coordinates of all circles
resize: Circle, Real; ** change the radius of a circle
changeCol: Circle; ** change the colour of a circle
copy: circle ** create a new circle with the attributes of the argument circle
delCreen; ** delete all green circles
var X, y, r: Real, cir: Circle
e start = seq forall c: Circle. drop c,
import c: Circle in
set X(c) := 0, Y(c) := 0, radius(c) := 1, col(c) := green end

end;
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e post move(cir, x, y): X’(cir) = X’(cir) + x A Y’(cir) = Y(cir) + y;
e moveAll(x, y) = forall c: Circle.
set X(c) := X(c) + %, Y(c) := Y(c) + y end;
e post resize(cir, r): radius’(cir) = r;
e changeCol(cir) = if colour(cir) = green then colour(cir) := red
else colour(cir) := green endif;
e copy(cir) = import c: Circle in set X(c) := X(cir),
Y(c) := Y(cir), radius(c) := radius(cir), col(c) := col(cir) end;
e delGreen = forall c: Circle. if colour(c) = green then drop c;
end

8 Related Work

As mentioned in the introduction, this extension of CASL is based on several
works using the concept of implicit state. Currently none of them offers the full
set of tools needed for the specification of a broad range of dynamic systems.
Therefore the natural combination of the facilities offered by these works and
their adaptation to the CASL institution has been one of our main goals.

We have liked very much the concept of update set introduced by Gure-
vich in [13] for the explanation of state transitions. It was used later by him in
[14] for giving denotational semantics of transition rules of Abstract State Ma-
chines (ASMs). We also give the semantics of our transition terms in terms of
update sets. However, ASMs are based on total universal algebras treating pred-
icates as Boolean functions. Since our states are partial many-sorted structures,
we have extended a-updates of ASMs with - and d-updates representing, re-
spectively, the updates over predicates and sorts. Our notion of transition term
is an extension and generalization of the ASM notion of transition rule. The
amendments are the procedure call, the drop rule allowing a sort to shrink,
the sequence constructor and based on it the loop constructors (see also [6] for
another proposition of sequence and loop constructors). ASMs do not have such
features as dependent functions and procedures, nor is the notion of dynamic
system defined for them.

Dependent functions and procedures are borrowed from [8, 15] through inter-
mediate steps of [19,9]. However, their semantics is different. In [19, 9] dependent
functions are not part of the state; they belong to the dynamic system, and this
caused some problems with the use of their names in terms. In [8, 15] dependent
functions are part of the state with a very complex semantics of their redefinition
in different states. The introduction of the function map has allowed us to treat
dependent functions as part of the state with very simple semantics of their re-
definition. The semantics of modifiers (analogue of our procedures) and update
expressions (analogue of our transition terms) is given in [8,15] operationally
(there is no notion of update set in this approach), while we have done it deno-
tationally. We have also provided the means for working with partial structures
(only total many-sorted algebras are used in [8, 15]).

The notion of dynamic system, as it is defined in our paper, stems from the
notion of d-oid introduced in [1, 2] and further developed in [20,21]. A d-oid is a
set of instance structures (e.g., algebras), a set of dynamic functions resembling
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our dependent functions and procedures and a tracking map indicating relation-
ships between instance structures. The approach deals with models and does not
address the issue of d-oid specification. Therefore, we had to borrow and adapt
for our purpose a specification technique of another source.

Another approach are “Transition Categories” presented in [10, 11]. Here the
algebra of data types is equipped with sorts called reference sorts in addition to
ordinary sorts, and the state extends this algebra by partial functions called con-
tents functions for each reference sort which map elements of reference sorts to
their contents. State transformations are defined by conditional parallel assign-
ment redefining the contents functions. Though based on different semantical
foundations, Grofle-Rhode’s approach appears as a special class of dynamic sys-
tem defined in this paper where the static part contains the reference sorts and
the only components of the dynamic part are the contents functions. Then the
effect of conditional parallel assignment can be achieved using dynamic equa-
tions.

In a later work [12], GroBe-Rhode defines Algebra Rewrite Systems. A rewrite
rule r is of the form P, «— P, where P, = (X;,E;) and P, = (X,,E,) are
presentations consisting of sets of generators X; and X, and sets of equations Ej;
and FE,, respectively. A rule is applied to a partial algebra A by first removing
the elements of X; from the carrier sets of A together with the equalities in
E;, and then adding the elements in X, and the equalities in E,. This allows
the modelling of update instructions f(t¢1) := t2 by first undefining a function
entry and then adding a new function entry by a rule ({z : s}, {f(t1) = z}) +—
({z : s},{f(t1) = t2}). Deletion of an element of sort s is modeled by a rule
({z : 5},0) «+— (0,0), and creation of an element by a rule (@, 0) +— ({z : s},0)
However, the approach by Grofle-Rhode is restricted to partial algebras and thus
cannot be used in the context of CASL, which is order-sorted and in addition to
partial function contains total functions and predicates. Further, the application
of rewrite rules and also the interaction between axioms defining the static part
with rewrite rules may yield unexpected results, like the identification of elements
in the result state.

While all the above approaches favour an operational style of writing spec-
ifications, with the exception of Zucca [21], that is, they specify how a state is
transformed into another state, the approach by Baumeister [3-5] uses a declar-
ative approach, defining how the states before and after the execution of a state
transformation are related. This allows writing specifications which are similar to
those written in specification languages like Z or VDM. Baumeister’s approach
does not require states to be modeled as algebras; states can be structures from
any suitable institution. From this approach we have used the idea how to in-
terpret postcondition formulae.

9 Conclusion

In this paper we have defined an extension of CASL for the specification of state-
based software systems intended to be part of the common framework defined
by the Common Framework Initiative. It permits the specification of the static
part of a complex dynamic system by means of CASL and the dynamic part by
means of the facilities described in the paper. This is one level of integration of
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two different specification paradigms. The specification of the dynamic part can
also be done either by means of transition rules or by means of postconditions
(where it is appropriate). This provides the second level of integration. Moreover,
the use of update sets for describing the semantics of both transition rules and
postconditions has permitted us to define the semantics in a simple way and
easily solve the well-known frame problem.

The next step in the development of the described specification technique

is the introduction of structuring facilities permitting the specifications to be
united, localized, parameterized, etc.
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A Postcondition Formulae

In this section we give a formal definition of ¥, AT, and postcondition formulae.
Let

Agyn = (Sayn, T Fayn, PFayn, Payn)
be a signature extension w.r.t. Xsior = (Sstats T Fistat, P Fstat, Pstat)s
Agep = (waTFdepadeep;Pdep)
be a signature extension w.r.t. X U Agyyp, then
A= (S, TF,PF,P) = (Sayn, T Fayn U T Fyep, PFayn U PFgcp, Payn U Pyep)
is a signature extension w.r.t. Xg;. We define ¥ = (S, TF, PF, P) as follows:

5 = SstatU den U {SI | s € den}

TF= {f:w—s0|f:w—s0€ (TFs,; UTF)}U
{f':5,...,8n 250 | f:51,...,8, — 50 € TF,
5; = s} if s; € Sayn, 5; = s; else, 0 <i < n}

PF= {f:w—sy|f:w— sy € (PFyqUPF)}U
{f':51,...,8, 50| f:81,...,8, — 80 € PF,
§;=s}if s; € Sqyn, 5i = s; else, 0 <i<n}U
{tms:s 5" | s € Sayn}

P={p:w|p:w€ (P UP)}U
{p:5,....5,|p:s1,... ,8n €P,
§i=sg ifSiGden, 3; = s; else, OS’LS’R}
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Definition 11. A postcondition formula is a formula of the form

pOSt p(tla"' 7tn) P

where p : s1,...,Sy @5 a procedure symbol, sq,... ,s, are sorts in Ssiar U Sqyn,
t1,...,t, are terms over variables X of sorts s1,...,8n, and ¢ is a formula
over X with variables X .

_Given a state A in a dynamic system DS(B) and an update-set I", we define
a Y-structure A’ by:

|AF|S = |A|S if s € Sstat U den
|AF|5' = |AF|S lf SI € 5\ (Sstat V) den)

for all sort symbols in S,

AT = fA if f € TFygUTF
A = fAT it ' € TF\ (TFyat UTF)
for all total function symbols in PF,
AT = A if f € PFyq UPF
AT = tmAT i f = tm,

AT Al seopr 5
o =71 if f' € PF\ (PFstqt UPFU{tms|s € Sayn})
for all partial function symbols in PF, and
pAF:pA if p € Pgtet UP
r _
P =pAT iy e P\ (Pg, U P)

for all predicate symbols in P.

. AT AT .

Note that one can write f'* = fA7 and p'* = pA”, though different sort
symbols are used in the profiles of f and f’ (p and p’), since the carrier-set of
each s’ in A is the same as the carrier set of the corresponding s in AT,

A dynamic system DS(B) satisfies a postcondition formula

post p(t1,... ,ty) 1
iff for any state A and variable assignment ¢ : X — A: if the update-set
I =pPSBNA <[], ..., [ta]7>)
exists, then

r
07 = true.
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