
State-Based Extension of CASL

?

/

??

H. Baumeister

1

and A. Zamulin

2

1

Institute of Computer S
ien
e, University of Muni
h

baumeist�informatik.uni-muen
hen.de

2

Instiute of Informati
s Systems

Siberian Division of Russian A
ademy of S
ien
es

zam�iis.nsk.su

Abstra
t. A state-based extension of the algebrai
 spe
i�
ation lan-

guage CASL is presented. It permits the spe
i�
ation of the stati
 part

of a
omplex dynami
 system by means of CASL and the dynami
 part

by means of the fa
ilities des
ribed in the paper. The dynami
 system

is de�ned as possessing a number of states and a number of operations

(pro
edures) for transforming one state into another. Ea
h state pos-

sesses one and the same stati
 part spe
i�ed by CASL and a varying

part spe
i�ed by additional tools. The varying part in
ludes dynami

sorts/fun
tions/predi
ates and dependent fun
tions/predi
ates. The de-

pendent fun
tions/predi
ates are spe
i�ed by formulae using the names

of the dynami
 fun
tions/predi
ates so that ea
h time one of the last ones

is updated the
orresponding former ones are also updated. The updates

of the dynami
 entities are produ
ed by pro
edures whi
h are spe
i�ed

by means of pre
onditions, post
onditions, and dynami
 equations.

1 Introdu
tion

The Common Framework Initiative (CoFI) [18℄ is an open
ollaborative e�ort

to design a
ommon framework for algebrai
 spe
i�
ations. The rational behind

CoFI is that the la
k of su
h a framework greatly hinders the dissemination and

appli
ation of resear
h results in algebrai
 spe
i�
ation. The aim is to base the

ommon framework as mu
h as possible on a
riti
al sele
tion of features that

have already been explored in various
ontexts. The
ommon framework will

provide a family of languages
entered around a single, reasonably expressive

ommon spe
i�
ation language
alled CASL [17℄. Some of these languages will

be extensions of CASL, e.g. oriented to parti
ular programming paradigms, while

others will be sub-languages of CASL, e.g. exe
utable.

In this paper we de�ne SB-CASL, a state-based extension of CASL [17℄ whi
h

is based on algebrai
 spe
i�
ations and the
on
ept of impli
it state �a la Z, B,

or VDM, also known as the state-as-algebra approa
h. In
ontrast to Z, VDM,

and B, this approa
h does not
onstrain a spe
i�er by a �xed number of basi

types and type
onstru
tors used for the representation of appli
ation data, and

?

This resear
h has been partially supported by ESPRIT working group 29432

(CoFI WG) and the Russian Foundation for Basi
 Resear
h under Grant 98-01-

00682

??

to appear in pro
eedings of IFM 2000, Springer, LNCS.

gives a formal semanti
s for all notions used in the method. SB-CASL brings

together ideas from Typed Gurevi
h Ma
hines of Zamulin [19℄, based on the

original work of Gurevi
h [13, 14℄, Algebrai
 Spe
i�
ations with Impli
it State

of Dau
hy and Gaudel, �rst presented in [8℄ and further developed in [15, 9℄, D-

oids by Astesiano and Zu

a [2, 20, 21℄, and the work of Baumeister [3{5℄. The

formalism serves for the spe
i�
ation of dynami
 systems possessing a state and

a number of operations for a

essing and updating the state.

The novelty of SB-CASL is that it
ombines the operational style for the spe
-

i�
ation of state transformations with the de
larative style in a pra
ti
al spe
i�-

ation language. In the operational style one de�nes how one state is transformed

into another; in
ontrast, in the de
larative style only the properties that the

su

essor state has to posses are spe
i�ed and not how the state is
onstru
ted.

Up to now either only the operational style was used, like in ASM's and the Im-

pli
it State approa
h, or only the de
larative style was used as in the approa
h

by Baumeister. A notable ex
eption is the approa
h by Zu

a [21℄ whi
h also

allows both styles of spe
i�
ations; however her intention was not to provide a

spe
i�
ation language.

The paper is organized as follows. The CASL institution is brie
y des
ribed

in Se
. 2. States and state updates are de�ned in Se
. 3. Dynami
 systems are

introdu
ed in Se
. 4. Transition terms, serving for the
onstru
tion of dynami

formulae, are des
ribed in Se
. 5 and dynami
 formulae in Se
. 6. The stru
ture

of a dynami
 system spe
i�
ation and supporting examples are given in Se
. 7.

Some related work is dis
ussed in Se
. 8, and in Se
. 9 some
on
lusions are

drawn.

2 The CASL Institution

A basi
 spe
i�
ation in CASL
onsists of a many-sorted signature � together

with a set of senten
es. The (loose) semanti
s of a basi
 spe
i�
ation is the
lass

of those models inMod(�) whi
h satisfy all the spe
i�ed senten
es. For reasons

of simpli
ity we restri
t ourselves to the many-sorted part of CASL and leave out

the order-sorted part. However, all the subsequent
onstru
tions in this paper

an also be performed in the presen
e of a subsorting relationship.

A many-sorted signature � = (S;TF ;PF ; P)
onsists of:

{ a set S of sorts;

{ sets TF

w;s

, PF

w;s

, of total fun
tion symbols, respe
tively partial fun
tion

symbols, su
h that TF

w;s

\ PF

w;s

= ;, for ea
h fun
tion pro�le (w; s)
on-

sisting of a sequen
e of argument sorts w 2 S

�

and a result sort s 2 S

(
onstants are treated as fun
tions with no arguments);

{ sets P

w

of predi
ate symbols, for ea
h predi
ate pro�le
onsisting of a sequen
e

of argument sorts w 2 S

�

.

Here and in the sequel a fun
tion (predi
ate) symbol is a name a

ompanied

with a pro�le. Names may be overloaded, o

urring in more than one of the

above sets.

In this paper we write a total fun
tion symbol as f : s

1

; : : : ; s

n

! s and a

partial fun
tion symbol as f : s

1

; : : : ; s

n

!? s. When the list of argument values

is empty, we write s and ?s, respe
tively.

2

For a many-sorted signature � = (S;TF ;PF ; P) a many-sorted model A 2

Mod(�) is a many-sorted �rst-order stru
ture
onsisting of a many-sorted par-

tial algebra:

{ a non-empty
arrier set jAj

s

for ea
h sort s 2 S (let jAj

w

denote the
artesian

produ
t jAj

s

1

� � � � � jAj

s

n

when w = s

1

: : : s

n

),

{ a partial fun
tion f

A

from jAj

w

to jAj

s

for ea
h fun
tion symbol f 2 TF

w;s

or f 2 PF

w;s

, the fun
tion being required to be total in the former
ase,

{ together with a predi
ate p

A

� jAj

w

for ea
h predi
ate symbol p 2 P

w

.

Many-sorted terms on a signature � = (S;TF ;PF ; P) and a set of sorted,

non-overloaded variables X are built from:

{ universally quanti�ed variables from X , introdu
ed by

var v

11

; : : : ; v

1k

: s

1

; : : : ; v

n1

; : : : ; v

nm

: s

n

;

{ appli
ations of fun
tion symbols in TF [PF to argument terms of appro-

priate sorts.

For a many-sorted signature � = (S;TF ;PF ; P), the set of �-senten
es

onsists of sort-generation
onstraints and the usual
losed many-sorted �rst-

order logi
 formulae, built from atomi
 formulae using quanti�
ation (over sorted

variables) and logi
al
onne
tives. The atomi
 formulae are:

{ appli
ations of predi
ate symbols p 2 P to argument terms of appropriate

sorts;

{ assertions about the de�nedness of terms, written def t;

{ existential and strong equations between terms of the same sort, written

t

1

e

= t

2

and t

1

= t

2

, respe
tively.

The satisfa
tion of a senten
e in a stru
ture A is determined as usual by the

holding of its atomi
 formulae w.r.t. assignments of (de�ned) values to all the

variables that o

ur in them. The value of a term w.r.t. a variable assignment may

be unde�ned due to the appli
ation of a partial fun
tion during the evaluation

of the term, or be
ause some arguments of a fun
tion appli
ation are unde�ned.

The satisfa
tion of senten
es, however, is 2-valued.

The appli
ation of a predi
ate symbol p to a sequen
e of argument terms

holds in A i� the values of all the terms are de�ned and give a tuple belonging

to p

A

. A de�nedness assertion
on
erning a term holds i� the value of the term is

de�ned. An existential equation holds i� the values of both terms are de�ned and

identi
al, whereas a strong equation holds also when the values of both terms

are unde�ned. A sort-generation
onstraint (S

0

; F

0

) is satis�ed in a �-model A

if the
arriers of the sorts in S

0

are generated by the fun
tion symbols in F

0

.

3 States and State Updates

The signature of a system de�ned by SB-CASL in
ludes a part

�

stat

= (S

stat

; TF

stat

; PF

stat

; P

stat

)

3

whi
h de�nes some data types (sorts and operations) using the standard CASL

fa
ilities. These data types are used for the spe
i�
ation of system's states and

the des
ription of possible state updates. A �

stat

-stru
ture is
alled a stati

stru
ture in the sequel.

The system's states are de�ned by dynami
 sorts, dynami
 fun
tions, and

dynami
 predi
ates. The names and pro�les of these sorts/fun
tions/predi
ates,

�

dyn

= (S

dyn

; TF

dyn

; PF

dyn

; P

dyn

), form a signature extension of the stati
 sig-

nature �

stat

.

We require that ea
h dynami
 fun
tion f : w ! s where s is a dynami
 sort

from S

dyn

or w
ontains a dynami
 sort from S

dyn

is in PF

dyn

. The reason is that

a fun
tion having a dynami
 sort in its pro�le may be
ome partial if elements

are added or removed from this sort.

In the rest of this paper we denote by �

dyn

= (S

0

; TF

0

; PF

0

; P

0

) the union

of �

stat

with �

dyn

.

Example 1. The �rst example is a spe
i�
ation of an identi�er table. The identi-

�er table stores some data for ea
h identi�er de�nition. It
an be blo
k-stru
tured

a

ording to blo
k nesting. Typi
al fun
tions are
reating an empty identi�er ta-

ble, inserting identi�er data in the
urrent blo
k,
he
king whether an identi�er

is de�ned in the
urrent blo
k,
he
king whether an identi�er is de�ned in the

program, fet
hing identi�er data, and deleting all identi�er de�nitions of the

urrent blo
k.

The following spe
i�
ation de�nes the state of the identi�er table. The stati

signature is given by the union of the signatures of NAT, NAME, and DEFDATA;

and id table and
ur level are dynami
 fun
tions:

System ID TABLE

use NAT, NAME, DEFDATA ** The spe
i�
ations used

dynami

fun
 id table: Name, Pos �!? Defdata;

fun

ur level: Pos; ** the
urrent level of blo
k nesting

Example 2. The se
ond example is taken from one of the latest work of Zu

a [21℄.

The pro
edures (dynami
 operations in her paper), whose "intended interpre-

tation" is des
ribed at the model level in that paper, will be formally spe
i�ed

here.

System CIRCLES

use REAL, COLOUR ** The spe
. COLOUR has only two
onstants

** "green" and "red" of sort "Colour"

dynami

sort Cir
le;

fun
 X, Y: Cir
le �! Real;

fun
 radius: Cir
le �! Real;

fun

ol: Cir
le �! Colour;

A dynami
 sort/fun
tion/predi
ate
an be di�erent in di�erent states.

De�nition 1. A �

dyn

-state is a �

dyn

-stru
ture where �

dyn

= �

stat

[�

dyn

.

4

The restri
tion of any �

dyn

-state A to �

stat

, Aj

�

stat

, is a stati
 stru
ture

alled the base of A. Several �

dyn

-states
an have the same base. Following [15℄,

we denote the set of all �

dyn

-states with the same base B by state

B

(�

dyn

) and

mean by a �

B

dyn

-state a �

dyn

-state with the stati
 stru
ture B. Thus, the
arrier

of any stati
 sort s 2 S

stat

in a �

dyn

-state A is the same as the
arrier of s in

B, that is jAj

s

= jBj

s

.

3.1 Update-Sets

One state
an be transformed into another by a state update whi
h is either a

fun
tion update or a predi
ate update or a sort update.

De�nition 2. Let B be a stati
 stru
ture over �

stat

. A fun
tion update in a

�

B

dyn

-state A is a triple (f; �a; a) where f

ws

is a dynami
 fun
tion (
onstant)

symbol in �

dyn

, w = s

1

: : : s

n

, �a = <a

1

; :::; a

n

> 2 jAj

w

(�a is the empty tuple <>

when n is equal to zero), and a is either an element of jAj

s

or the symbol ?. A

fun
tion update (f; �a;?) is valid only if f is the symbol of a partial fun
tion.

A fun
tion update � = (f; �a; a) serves for the transformation of a �

B

dyn

-state A

into a new �

B

dyn

-state A� in the following way:

{ g

A�

= g

A

for any g

ws

2 TF

0

[PF

0

di�erent from f ;

{ f

A�

(�a) = a if a is not ?, f

A�

(�a) be
omes ude�ned otherwise;

{ f

A�

(�a

0

) = f

A

(�a

0

) for any tuple �a

0

= <a

0

1

; : : : ; a

0

n

> di�erent from �a;

{ p

A�

= p

A

for any p

w

2 P

0

;

{ jA�j

s

= jAj

s

for any s 2 S

0

.

Following Gurevi
h [13℄, we say that A� is obtained by �ring the update � on

A. Roughly speaking, �ring a fun
tion update either inserts an element in the

de�nition domain of a dynami
 fun
tion or modi�es the value of su
h a fun
tion

at one point in its domain or removes an element from the de�nition domain.

De�nition 3. Let B be a stati
 stru
ture over �

stat

. A predi
ate update in

a �

B

dyn

-state A is a either a triple (+; p; �a) or a triple (�; p; �a) where p

w

is a

predi
ate symbol in �

dyn

, w = s

1

: : : s

n

, and �a = <a

1

; :::; a

n

> 2 jAj

w

.

A predi
ate update � = (�; p; �a) serves for the transformation of a �

B

dyn

-state

A into a new �

B

dyn

-state A� in the following way:

{ p

A�

(�a) holds if � is "+" and p

A�

(�a) does not hold if � is "{";

{ p

A�

(�a

0

) i� p

A

(�a

0

) for any tuple �a

0

= <a

0

1

; : : : ; a

0

n

> di�erent from �a;

{ q

A�

= q

A

for any q

w

2 P

dyn

di�erent from p;

{ f

A�

= f

A

for any f

ws

2 TF

0

[PF

0

; and

{ jA�j

s

= jAj

s

for any s 2 S

0

.

De�nition 4. Let s be the name of a dynami
 sort. A sort-update Æ in A is

either a triple (+; s; id) where id is an element su
h that id =2 jAj

s

or a triple

(�; s; id) where id is an element su
h that id 2 jAj

s

.

5

A sort update Æ = (+; s; id) transforms a �

B

dyn

-state A into a new �

B

dyn

-state

AÆ in the following way:

{ jAÆj

s

= jAj

s

[fidg,

{ jAÆj

s

0

= jAj

s

0

for any s

0

2 S

0

di�erent from s,

{ f

AÆ

= f

A

for any f

ws

2 TF

0

[PF

0

, and

{ p

AÆ

= p

A

for any p

w

2 P

0

.

A sort update Æ = (�; s; id) transforms a �

B

dyn

-state A into a new �

B

dyn

-state

AÆ in the following way:

{ for any fun
tion f

A

: jAj

s

1

� ::: � jAj

s

n

! jAj

s

n+1

, if jAj

s

i

, i = 1; :::; n + 1,

is a dynami
 sort asso
iated with the sort name s and id 2 jAj

s

i

, then

if there is a maplet <a

1

; :::; a

n

7! a

n+1

> 2 f

A

su
h that a

i

= id, then

f

AÆ

= f

A

n f<a

1

; :::; a

n

7! a

n+1

>g; f

AÆ

= f

A

otherwise;

{ for any predi
ate p

A

: jAj

s

1

� ::: � jAj

s

n

, if jAj

s

i

, i = 1; :::; n, is a dynami

sort asso
iated with the sort name s and id 2 jAj

s

i

, then if there is a tuple

<a

1

; :::; a

n

> 2 p

A

su
h that a

i

= id, then p

AÆ

= p

A

n f<a

1

; :::; a

n

>g; p

AÆ

=

p

A

otherwise;

{ jAÆj

s

= A

s

n fidg and jAÆj

s

0

= jAj

s

0

for any s

0

di�erent from s.

Thus, the sort update Æ = (�; s; a)
ontra
ts the set of elements of a
er-

tain sort and deletes the
orresponding entries from the graphs of all dynami

fun
tions and predi
ates using and/or produ
ing the element indi
ated.

Note that it is possible to
reate algebras with empty
arrier sets using sort

updates. For example, if A is an algebra with jAj

s

= fag and Æ = (�; s; a),

then jAÆj

s

= fg. This is in
ontradi
tion with the requirement that within the

CASL institution
arrier sets are non-empty. To solve this problem we introdu
e

the institution SB-CASL whi
h is the same as the CASL institution, but allows

their models to have empty
arrier sets. Note that the introdu
tion of empty

arriers does not pose any problems with the satisfa
tion relation in
ase of

partial logi
 (
f. [7℄), and that any many-sorted model of the CASL institution

is also a model of the SB-CASL institution.

De�nition 5. Let � be a set of fun
tion/predi
ate/sort updates. The set � is

in
onsistent if it
ontains either

{ two
ontradi
tory fun
tion updates of the following kind: �

1

= (f; �a; a) and

�

2

= (f; �a; a

0

), where a 6= a

0

(two
ontradi
tory fun
tion updates de�ne the

fun
tion di�erently at the same point), or

{ two
ontradi
tory predi
ate updates of the following kind: �

1

= (+; p; �a) and

�

2

= (�; p; �a) (two
ontradi
tory predi
ate updates de�ne the predi
ate dif-

ferently at the same tuple of arguments), or

{ two sort updates of the following kind: Æ

1

= (+; s; id) and Æ

2

= (�; s; id)

(two
ontradi
tory sort updates insert in the sort and delete from the sort

the same element), or

{ either an � = (f;<a

1

; :::; a

n

>; a

n+1

) for an f

A

: jAj

s

1

� :::�jAj

s

n

! jAj

s

n+1

or a � = (�; p;<a

1

; :::; a

n

>) for a p

A

: jAj

s

1

� :::� jAj

s

n

, and Æ = (�; s; id)

su
h that s is s

i

for some i = 1; :::; n + 1 and id = a

i

(a sort element is

removed while a fun
tion/predi
ate is for
ed to use it);

6

the update set is
onsistent otherwise.

A
onsistent update-set � applied to a �

B

dyn

-state A transforms A into a new

�

B

dyn

-state A

0

by simultaneous �ring all � 2 � , all � 2 � , and all Æ 2 � . If �

is in
onsistent, the new state in not de�ned. If � is empty, A

0

is the same as A.

Following [16℄, we denote the appli
ation of � to a state A by A� . The set of

all
onsistent sets of updates in state

B

(�) is denoted by update

B

(�

dyn

) in the

sequel.

De�nition 6. Let �

1

and �

2

be two
onsistent update-sets in a �

B

dyn

-state A,

�

1

= (f; ha

1

; : : : ; a

n

i; a), �

2

= (f; ha

1

; : : : ; a

n

i; a

0

), �

1

= (�

1

; p; ha

1

; : : : ; a

n

i),

�

2

= (�

2

; p; ha

1

; : : : ; a

n

i), Æ

1

= (+; s; id), and Æ

2

= (�; s; id), where a 6= a

0

and both �

1

and �

2

are either "+" or "{" su
h that �

1

is di�erent from �

2

.

The sequential union of �

1

and �

2

, denoted by �

1

; �

2

, is de�ned as follows:

u 2 �

1

; �

2

i� u 2 �

1

or u 2 �

2

, ex
ept the following
ases:

{ if �

1

2 �

1

and �

2

2 �

2

, then �

2

2 �

1

; �

2

and �

1

=2 �

1

; �

2

;

{ if �

1

2 �

1

and �

2

2 �

2

, then �

2

2 �

1

; �

2

and �

1

=2 �

1

; �

2

;

{ if Æ

1

= (�; s; a) 2 �

2

, then for any � = (g; ha

1

; : : : ; a

n

i; a

n+1

) 2 �

1

, where

g

A

: jAj

s

1

� :::�jAj

s

n

! jAj

s

n+1

, and for any � = (�; p;<a

1

; : : : ; a

n

>) 2 �

1

,

where p

A

: jAj

s

1

� ::: � jAj

s

n

: if s is s

i

, i = 1; :::; n + 1, and a

i

= id, then

� =2 �

1

; �

2

and � =2 �

1

; �

2

, and if Æ

2

= (+; s; a) 2 �

1

then both Æ

1

=2 �

1

; �

2

and Æ

2

=2 �

1

; �

2

.

Thus, in a sequential union of update sets, ea
h next update of a fun
tion/pre-

di
ate at a
ertain point waives ea
h pre
eding update of this fun
tion/predi
ate

at the same point. If there are sequential
reations of elements of the same sort,

the set of elements of this sort will be expanded a

ordingly. If there is a deletion

of an element, the
orresponding sort will be
ontra
ted a

ordingly and all

fun
tion/predi
ate updates involving this element will be ignored. Note that if

an element is �rst
reated and then deleted, then the resulting update set will

ontain no tra
e of this element.

3.2 Dependent Fun
tions and Predi
ates

A fun
tion update of the form � = (f; �a; a) applied to a �

B

dyn

-state A does not

hange any other fun
tion g, only f at point �a is
hanged. Consider now the

following partial fun
tion find: Name !? Defdata fet
hing data for a name

in ID TABLE. Clearly the result of �nd depends on the state of ID TABLE;

thus �nd has to be a dynami
 fun
tion. Further, �nd depends on the dynami

fun
tion id table be
ause, starting from the
urrent blo
k level, �nd looks for

the de�nition of an identi�er at ea
h blo
k level. Thus we expe
t that whenever

id table is
hanged so is �nd . However, the semanti
s of update-sets and dynami

fun
tions does not provide us with su
h an automatism.

To still allow su
h fun
tions as �nd , we introdu
e dependent fun
tions and

dependent predi
ates as a se
ond set of state
omponents. They form a signature

extension �

dep

= (;; TF

dep

; PF

dep

; P

dep

) of �

dyn

where TF

dep

\PF

dep

= ;. Note

that the set of sort names of �

dep

is empty; we don't allow for dependent sorts.

As with dynami
 fun
tions, we require that ea
h dependent fun
tion f : w ! s

7

where s is a dynami
 sort from S

dyn

or w
ontains a dynami
 sort from S

dyn

is in PF

dep

. For example, the following dependent fun
tions/predi
ates
an be

de�ned in the system ID TABLE:

depend

pred de�ned
urrent: Name; **
he
ks whether an id is de�ned in the
urrent

blo
k

pred is de�ned: Name; **
he
ks whether an id is de�ned in the table

fun
 �nd: Name �!? Defdata; ** fet
hes data from the table

De�nition 7. A �

B

dep

-state is a �

dep

-stru
ture with the stati
 stru
ture B where

�

dep

= �

dyn

[�

dep

.

Thus, dependent fun
tions/predi
ates extend a �

B

dyn

-state to a �

B

dep

-state. The

set of all�

B

dep

-states with the same stati
 stru
tureB is denoted by state

B

(�

dep

).

4 Dynami
 Systems

A state update modi�es the dynami
 and dependent fun
tions/predi
ates. Pos-

sible state updates are spe
i�ed by pro
edures de
lared in the fourth part of the

system's signature, �

pro

, whi
h
onsists of sets TP

w

; PP

w

of total pro
edure

symbols, respe
tively partial pro
edure symbols, su
h that TP

w

\ PP

w

= ;, for

ea
h pro
edure pro�le w
onsisting of a sequen
e of argument sorts from �

dep

.

Example 3. For example, the following pro
edures
an be de�ned in the system

ID TABLE:

pro

initialize; **
onstru
tion of an empty identi�er table

insert entry: ? Name, Defdata; ** insertion of a new entry in the identi�er table

new level; **
reation of a new level of nesting in the identi�er table

delete level ?; ** deletion of the last blo
k in the identi�er table

Example 4. The following pro
edures
an be de
lared in the system CIRCLES:

pro

start; **
reate one
ir
le with default attributes

move: Cir
le, Real, Real; **
hange the
oordinates of a
ir
le

moveAll: Real, Real; **
hange the
oordinates of all
ir
les

resize: Cir
le, Real; **
hange the radius of a
ir
le

hangeCol: Cir
le; **
hange the
olour of a
ir
le

opy:
ir
le **
reate a new
ir
le with the attributes of the argument
ir
le

delCreen; ** delete all green
ir
les

De�nition 8. The signature D� = (�

stat

; �

dyn

; �

dep

; �

pro

) of a dynami
 sys-

tem
onsists of

{ a stati
 signature �

stat

;

{ a signature extension �

dyn

of �

stat

by symbols of dynami
 sorts, fun
tions,

and predi
ates su
h that the pro�les of total fun
tions do not
ontain a dy-

nami
 sort;

8

{ a signature extension �

dep

of �

stat

[�

dyn

by symbols of dependent fun
tions

and predi
ates, but without dependent sorts; and

{ two families of sets �

pro

= (TP; PP) of total and partial pro
edure symbols.

De�nition 9. A dynami
 system, DS(B), of signature D�
onsists of

{ a set of states jDS(B)j � state

B

(�

dep

),
alled the
arrier of the system;

{ a partial surje
tive fun
tion map

DS(B)

: state

B

(�

dyn

) ! jDS(B)j su
h

that if map

DS(B)

(A) is de�ned, then map

DS(B)

(A)j

�

dyn

= A for ea
h A 2

state

B

(�

dyn

);

{ for ea
h pro
edure symbol p : s

1

; : : : ; s

n

, a (partial) map p

DS(B)

asso
iating

an update set � 2 update

B

(�

dyn

) with a state A of DS(B) and a tuple

<a

1

; : : : ; a

n

> where a

i

2 jAj

s

i

; i = 1; : : : ; n.

Given a dynami
 system DS(B), we
all a �

dep

-stru
ture A a state of DS(B) if

A 2 jDS(B)j.

We write p

DS(B)

(A; �a) for the appli
ation of a pro
edure p

DS(B)

to a pair

onsisting of a state A and a tuple �a where A 2 jDS(B)j and �a = <a

1

; :::; a

n

>.

For a pro
edure p, we say that p is a
onstant pro
edure if the result of

p

DS(B)

(A; �a) does not depend on A. This kind of pro
edure
an be used for the

initialization of a dynami
 system.

5 Transition terms

State updates are spe
i�ed by means of spe
ial transition terms. The interpre-

tation of a transition term TT in a dynami
 system DS(B) at a state A w.r.t. a

variable assignment � : X ! jAj produ
es an update set � or is unde�ned. The

orresponding state A

0

after �ring the update set
an be obtained by

A

0

= map

DS(B)

((Aj

�

dyn

)�)

for whi
h we will simply write, in abuse of notation, A

0

= A� .

5.1 Basi
 transition terms

Basi
 transition terms are update instru
tions, pro
edure
all, sort
ontra
tion

instru
tion, and the skip instru
tion.

Update instru
tions Let f be the name of a dynami
 fun
tion with the pro-

�le s

1

; : : : ; s

n

! s, g the name of a partial dynami
 fun
tion with the pro�le

s

1

; : : : ; s

n

! s, p the name of a dynami
 predi
ate with the pro�le s

1

; : : : ; s

n

, X

a set of sorted variables, t

i

a term of sort s

i

over signature �

dep

with variables

X for i = 1; :::; n. Then

f(t

1

; :::; t

n

) := t;

g(t

1

; :::; t

n

) := undef;

p(t

1

; :::; t

n

) := true;

p(t

1

; :::; t

n

) := false

are transition terms
alled update instru
tions.

9

Interpretation If A is a state of DS(B), � a variable assignment, t and t

i

; i =

1; : : : ; n; are de�ned terms in A under �, then

[[f(t

1

; :::; t

n

) := t℄℄

A;�

= f(f;<t

A;�

1

; : : : ; t

A;�

n

>; t

A;�

)g;

[[g(t

1

; :::; t

n

) := undef℄℄

A;�

= f(g;<t

A;�

1

; : : : ; t

A;�

n

>;?)g

[[p(t

1

; :::; t

n

) := true℄℄

A;�

= f(+; p; <t

A;�

1

; : : : ; t

A;�

n

>)g;

[[p(t

1

; :::; t

n

) := false℄℄

A;�

= f(�; p; <t

A;�

1

; : : : ; t

A;�

n

>)g;

If at least one of t; t

i

; i = 1; : : : ; n; is not de�ned in A under �, then the inter-

pretation of the above transition terms is unde�ned.

Example 5. Let x be a variable of sort Nat and f be a dynami
 fun
tion from

Nat to Nat. The exe
ution of the transition term f(x) := f(x) + 1 under the

variable assignment � = fx 7! ag transforms a state A into a state A

0

so that

f

A

0

(a) = f

A

(a) + 1 and f

A

0

(n) = f

A

(n) for all n 6= a.

If
 is a partial dynami

onstant, a transition term
 := undef will make

unde�ned in the new state.

Pro
edure
all If p : s

1

; :::; s

n

is a pro
edure symbol and t

1

; :::; t

n

are terms of

sorts s

1

; :::; s

n

over �

dep

with variables from X , then p(t

1

; :::; t

n

) is a transition

term
alled a pro
edure
all.

Interpretation Let DS(B) be a dynami
 system of signature D�, A a state in

jDS(B)j, and � a variable assignment. The interpretation of a pro
edure
all is

de�ned as follows:

[[p(t

1

; :::; t

n

))℄℄

A;�

= p

DS(B)

(A;<t

A;�

1

; :::; t

A;�

n

>)

if ea
h t

A;�

i

, i = 1; :::; n, is de�ned and p

DS(B)

is de�ned for the state A and the

tuple <t

A;�

1

; :::; t

A;�

n

>; [[p(t

1

; :::; t

n

))℄℄

A;�

is unde�ned otherwise.

Sort
ontra
tion If t is a term of a dynami
 sort s, then drop t is a transition

term
alled a sort
ontra
tion.

Interpretation: [[drop t℄℄

A;�

= Æ where Æ = (�; s; t

A;�

).

Skip The transition term skip
auses no state update, i.e. [[skip℄℄

A;�

= ;.

5.2 Transition term
onstru
tors

Complex transition terms are
onstru
ted re
ursively from basi
 transition terms

by means of several term
onstru
tors, e.g., sequen
e
onstru
tor, set
onstru
tor,

ondition
onstru
tor, guarded update, loop
onstru
tor, import
onstru
tor, and

massive update.

10

Sequen
e
onstru
tor If TT

1

; TT

2

; : : : ; TT

n

are transition terms, then

seq TT

1

; TT

2

; : : : ; TT

n

end

is a transition term
alled a sequen
e of transition terms.

Interpretation Let A be a state, �

1

= [[TT

1

℄℄

A;�

, A

1

= A�

1

, �

2

= [[TT

2

℄℄

A

1

;�

,

A

2

= A

1

�

2

, : : : ; �

n

= [[TT

n

℄℄

A

n�1

;�

. Then

[[seq TT

1

; TT

2

; : : : ; TT

n

end℄℄

A;�

= �;

where � = �

1

; �

2

; ::: ; �

n

and ea
h [[TT

i

℄℄

A

i�1

;�

is de�ned.

Thus, to exe
ute a sequen
e of transition terms starting with a state A, it is

suÆ
ient to
reate the sequential union of their update sets and use it for the

transformation of A (whi
h is equivalent to the sequential exe
ution of the terms

one after another).

Set
onstru
tor If TT

1

; : : : ; TT

n

are transition terms, then

set TT

1

; : : : ; TT

n

end

is a transition term
alled a set of transition terms.

Interpretation Let A be a state and �

1

= [[TT

1

℄℄

A;�

; : : : ; �

n

= [[TT

n

℄℄

A;�

. Then

[[set TT

1

; : : : ; TT

n

end℄℄

A;�

= �

1

[: : : [�

n

if ea
h [[TT

i

℄℄

A;�

is de�ned and �

1

[: : : [�

n

is
onsistent; the semanti
s is not

de�ned otherwise.

In other words, to exe
ute a set of transition terms, exe
ute all of them in

parallel and unite the results if they are
onsistent.

Condition
onstru
tor If k is a natural number, g

0

; :::; g

k

are formulae, and

TT

0

; :::; TT

k

are transition terms, then the following expression is a transition

term
alled a
onditional transition term:

if g

0

then TT

0

elseif g

1

then TT

1

: : :

elseif g

k

then TT

k

endif

If g

k

is the formula true, then the last elseif
lause
an be repla
ed with

"else TT

k

". We also write if g then TT for if g then TT else skip endif .

Interpretation Let A be a state, � a variable assignment, and TT a
onditional

transition term, then

[[TT ℄℄

A;�

= [[TT

i

℄℄

A;�

if g

i

holds in A w.r.t. �, but every g

j

with j < i fails in A w.r.t. �. [[TT ℄℄

A;�

= ;

if every g

i

fails in A w.r.t. �.

11

Loop
onstru
tors The
ondition
onstru
tor together with the sequen
e
on-

stru
tor gives us a possibility to de�ne some loop
onstru
tors. If TT is a tran-

sition term and g is a formula, then while g do TT and do TT until g are

transition terms.

Interpretation

[[while g do TT ℄℄

A;�

= [[if g then seq TT; while g do TT end℄℄

A;�

;

[[do TT until g℄℄

A;�

= [[seq TT; if :g then do TT until g℄℄

A;�

:

Import
onstru
tor If x is a variable, s is a dynami
 sort name and TT is a

transition term, then import x : s in TT is a transition term
alled an import

term.

Interpretation Let A

0

= AÆ, Æ = (+; s; a) for some a 62 A

s

, and �

0

= ��fx 7! ag

where "�" is the overriding union, i.e. (���

00

)(x) = �

00

(x) if x is in the domain

of �

00

and (� � �

00

)(x) = �(x) otherwise, then

[[import x : s in TT ℄℄

A;�

= fÆg; [[TT ℄℄

A

0

;�

0

Massive update Let x be a variable of sort s and TT a transition term. A

massive update

forall x : s : TT

permits the spe
i�
ation of a parallel update of one or more sorts/fun
tions/

predi
ates at several points.

Interpretation Let A be a state su
h that jAj

s

is not empty, let � and �

0

=

fxg ! jAj

s

be variable assignment, and let �

00

= � � �

0

. Then

{ if [[TT ℄℄

A;�

00

is de�ned and � =

S

f[[TT ℄℄

A;�

00

g is
onsistent, then

[[forall x : s : TT ℄℄

A;�

= � ;

{ [[forall x : s : TT ℄℄

A;�

is not de�ned otherwise.

If jAj

s

= ;, then [[forall x : s : TT ℄℄

A;�

= ;. That is, the massive update over

the empty sort produ
es nothing.

Example 6. Let f be a dynami
 fun
tion from Nat to Nat. A transition term

forall x : Nat : f(x) := f(x) + 1

interpreted in a state A yields the update-set

f(f; n; f

A

(n) + 1) j n 2 jAj

Nat

g

if f

A

(n) is de�ned for all n.

Example 7. The exe
ution of the update set produ
ed by the transition term

forall x : s : drop x

at the
urrent state A will remove all elements from jAj

s

and will make empty

all fun
tions and predi
ates using s in their pro�les.

12

6 Dynami
 Formulae

For the spe
i�
ation of dynami
 systems we introdu
e dynami
 formulae whi
h

an be dynami
 equations, pre
ondition formulae, or post
ondition formulae. A

dynami
 equation serves for the spe
i�
ation of a behaviour of a pro
edure in

terms of a transition rule. A pre
ondition formula allows us to de�ne the domain

of a pro
edure. Finally, a post
ondition formula is used to spe
ify the behaviour

of a pro
edure similar to VDM or Z.

6.1 Dynami
 Equations

A dynami
 equation is of the form TT

1

= TT

2

where TT

1

and TT

2

are transition

terms over variables from X . A dynami
 system DS(B) satis�es a dynami

equation if for all states A of DS(B) and variable assignments � : X ! jAj:

A[[TT

1

℄℄

A;�

= A[[TT

2

℄℄

A;�

and A[[TT

1=2

℄℄

A;�

2 jDS(B)j.

The most
ommon use of dynami
 equations is in the form:

p(x

1

; : : : ; x

n

) = TT

where TT does not
ontain a dire
t or indire
t
all of p. This de�nes the semanti
s

of p in a dynami
 system to be a fun
tion mapping a state A and a tuple

<a

1

; : : : ; a

n

> to the update set given by the interpretation of TT w.r.t. A and

the variable assignment mapping ea
h x

i

to a

i

.

Example 8. For a simple example
onsider a dynami

onstant
ounter : Int

and pro
edures In
 and De
. The pro
edure In

an be de�ned by the following

dynami
 equation:

In
 =
ounter :=
ounter+ 1:

Similarly, De

an be de�ned using the dynami
 equation

De
 =
ounter :=
ounter� 1:

However, dynami
 equations need not follow the pattern p(x

1

; : : : ; x

n

) = TT .

For example, an alternative way to de�ne De
 from the previous example is by

the following dynami
 equation:

seq De
; In
 end = skip:

This means that whenever a De
 pro
edure is followed by an In
 pro
edure, the

state of the system should not
hange.

6.2 Pre
ondition Formulae

Let p be an element of PP

s

1

;::: ;s

n

, i.e. a partial pro
edure symbol, and t

1

; : : : ; t

n

are terms over �

dep

with variables from X . A pre
ondition formula of the form

13

pre p(t

1

; : : : ; t

n

) : '
an be used to state under whi
h
onditions a partial

pro
edure p is guaranteed to be de�ned.

A dynami
 system DS(B) satis�es a pre
ondition formula i� the value of

p

DS(B)

(A;<[[t

1

℄℄

A;�

; : : : ; [[t

n

℄℄

A;�

>) is de�ned in exa
tly those states A and for

those variable assignments � for whi
h ' holds.

The following pre
ondition formula

pre insert entry(id; d) : :de�ned
urrent(id)

states that the partial pro
edure insert entry de
lared in Ex. 3 for the dynami

system ID TABLE must be de�ned only in those states A and only for those

arguments id for whi
h the interpretation of de�ned
urrent is false.

6.3 Post
ondition Formulae

Dynami
 equations of the form p(x

1

; : : : ; x

n

) = TT
an be used to spe
ify

dynami
 systems in an operational style similiar to Gurevi
h's ASMs.

However, sometimes it is
onvenient to use a de
larative style similar to the

one used by the spe
i�
ation languages Z and VDM. In the de
larative style, the

values of a dynami
/dependent
omponent before and after the exe
ution of a

pro
edure are related by a �rst-order formula. Usually this formula only de�nes

the relationship between the values and does not provide an algorithm how to

hange the value. For example, the De
 operation of Ex. 8
ould be de�ned by

a post
ondition formula

post De
 :
ounter =
ounter

0

+ 1

where
ounter refers to the value of
ounter in the state before exe
uting the

De
 operation, and
ounter

0

refers to the value of
ounter after exe
uting De
.

Note that this formula does not pres
ribe how the value of
ounter is
omputed

after performing the De
 operation. In
ontrast, a dynami
 equation of the form

De
 =
ounter :=
ounter� 1

de�nes an update-set used for
hanging the value of
ounter.

To be more pre
ise, let A be a state of a dynami
 system DS(B)
ontaining

the dynami

onstant
ounter and a pro
edure De
. Then the interpretation of

De
 in DS(B) yields the update-set De

DS(B);fg

= � whi
h applied to a state

A yields the state A� . Then A� has the following property: the interpretation

of
ounter in A has to be the same as the interpretation of
ounter in A� plus 1:

ounter

A;fg

=
ounter

A�;fg

+ 1:

The general syntax of a post
ondition formula is:

post p(t

1

; : : : ; t

n

) : '

where p is a (partial) pro
edure, t

1

; : : : ; t

n

are terms over �

dep

, and ' is a

formula over the signature

�

� whi
h is
onstru
ted as follows. First
onsider

the
ase where there are no dynami
 sorts, then the sorts of

�

� are the stati

14

sorts of �

stat

. The operation symbols (total or partial) of

�

� are those de�ned

in the stati
 signature plus two
opies of the dynami
 and dependent fun
tion

symbols: one
opy denoting the fun
tion before the exe
ution of a pro
edure and

one
opy, de
orated by a prime (0), denoting the fun
tion after the exe
ution of

a pro
edure. Similar for the predi
ate symbols of

�

�.

To de�ne whether ' is satis�ed by a state A and an update-set � , we
on-

stru
t from A and A� a

�

�-model A

�

as follows. The interpretation of a stati

signature
omponent, i.e. a sort, operation, or predi
ate symbol from �

stat

, is the

same as the interpretation of that
omponent in A. Note that this is the same as

the interpretation of that symbol in A� and B, be
ause Aj

�

stat

= B = A� j

�

stat

.

The interpretation of a dynami
 or dependent signature
omponent in A

�

is

either the interpretation of that
omponent in A, or, if this is a
omponent with

a prime in

�

�, the interpretation of the
orresponding unprimed
omponent in

A� . Then a state A and an update-set � satisfy a formula ' i� A

�

j= '.

In the
ase of dynami
 sorts the
onstru
tion is similar. That is,

�

�
ontains

the stati
 sorts plus two
opies of the dynami
 sorts, one
opy de
orated with a

prime. However, the pro�le of a primed dynami
 or dependent fun
tion/predi
ate

in

�

� having a dynami
 sort in its pro�le
hanges. Ea
h dynami
 sort in the pro�le

has to be repla
ed by its primed version. Note that the pro�les of unprimed

fun
tion/predi
ate symbols remain the same.

As an example
onsider the dynami
 system CIRCLES, whi
h has a dynami

sort Cir
le and a dynami
 fun
tion X : Cir
le!? Real (among others). Now the

signature

�

�
ontains two sorts Cir
le and Cir
le

0

and two fun
tion symbols

X : Cir
le !? Real and X

0

: Cir
le

0

!? Real. Note that in the pro�le of X

0

the

dynami
 sort Cir
le is also de
orated with a prime.

There is still another problem with dynami
 sorts. Consider the following

spe
i�
ation of the move operation in the dynami
 system CIRCLES:

post move(
; x; y) : X

0

(
) = X(
) + x ^ Y

0

(
) = Y (
) + y

Note that the formula above is not well-formed w.r.t.

�

� be
ause X

0

is a fun
tion

from Cir
le

0

to Real while
 is of sort Cir
le, and similar for Y

0

and
. The solution

is to introdu
e in

�

� a partial fun
tion tm

s

: s ! s

0

alled a tra
king map for

ea
h dynami
 sort s. The notion of tra
king map was �rst introdu
ed with d-oids

(
f. [1, 2, 20, 21℄). In our example we use the fun
tion tm

Cir
le

: Cir
le!? Cir
le

0

and write

post move(
; x; y) : X

0

(tm

Cir
le

(
)) = X(
) + x ^ Y

0

(tm

Cir
le

(
)) = Y (
) + y

In the sequel we leave the appli
ation of the tra
king map impli
it whenever

possible. If t[r℄ is a term with a subterm r and r is required to be of dynami
 sort

s

0

, then we allow r to be of dynami
 sort s and understand this as an abbreviation

for t[tm

s

(r)℄. This allows us to write the above post
ondition formula as:

post move(
; x; y) : X

0

(
) = X(
) + x ^ Y

0

(
) = Y (
) + y

For the interpretation of the tra
king maps in A

�

we have to de�ne the

tra
king map asso
iated with a dynami
 sort and an update-set. This tra
king

map is unde�ned for elements that are removed and is the identity otherwise.

tm

A;�

s

: jAj

s

! jA� j

s

15

tm

A;�

s

(a) =

�

? if Æ = (�; s; a) 2 �

a else

The de�nition of satisfa
tion remains the same, i.e. A and � satisfy ' if

A

�

j= '. The formal de�nition of

�

� and A

�

is given in App. A.

7 Spe
i�
ation of Dynami
 Systems

De�nition 10. A dynami
 system spe
i�
ation

DSS = (SPEC;�

dyn

; (�

dep

; Ax); (�

pro

; Ax

pro

))

has four levels:

{ The �rst level is a CASL spe
i�
ation SPEC with semanti
s (�

stat

;M).

SPEC de�nes the data types used in the system.

{ The se
ond level de�nes those aspe
ts of the system's state whi
h are likely

to
hange. It in
ludes a signature extension, �

dyn

, whi
h de
lares some dy-

nami
 sorts/fun
tions/predi
ates.

{ The third level de�nes some dependent fun
tions/predi
ates and indi
ates

state invariants. It does not introdu
e new sorts and uses the names of dy-

nami
 fun
tions/predi
ates from �

dyn

, the names of dependent fun
tion/pre-

di
ates from �

dep

, and the operations of �

stat

. The formulae in Ax restri
t

the set of possible states of a dynami
 system satisfying DSS.

{ The fourth level, (�

pro

; Ax

pro

), de�nes some pro
edures. Ax

pro

is a set

of dynami
 formulae.

A dynami
 system spe
i�
ation DSS de�nes a dynami
 signature

D� = (�

stat

; �

dyn

; �

dep

; �

pro

);

and a dynami
 system DS(B) over signature D� satis�es a dynami
 spe
i�
tion

DSS i�

{ B is a model of SPEC,

{ jDS(B)j is the set fA j A 2 state

B

(�

dep

) ^ A j= Axg,

{ DS(B) satis�es ea
h dynami
 formula in Ax

pro

.

Example 9.

**spe
i�
ation of the "ID TABLE" system

System ID TABLE

use NAT, NAME, DEFDATA ** The spe
i�
ations used

dynami

id table: Name, Pos �!? Defdata;

ur level: Pos; - the
urrent level of blo
k nesting

depend

pred de�ned
urrent, is de�ned: Name;

pred lo
al de�ned: Name, Pos;

fun
 lo
al �nd: Name, Pos �!? Defdata;

16

fun
 �nd: Name �!? Defdata;

var id: Name, k: Pos

� de�ned
urrent(id) , def id table(id,
ur level));

� lo
al de�ned(id, 0) , false;

� lo
al de�ned(id, k) , def id table(id, k)_ lo
al de�ned(id, k-1);

� is de�ned(id) , lo
al de�ned(id,
ur level);

� lo
al �nd(id, k) = id table(id, k) when def id table(id, k)

else lo
al �nd (id, k-1)g;

� �nd(id) = lo
al �nd(id,
ur level) if is de�ned(id);

pro

initialize; **
onstru
tion of an empty identi�er table

insert entry: ? Name, Defdata;

new level;

delete level?;

var id: Name, k: Pos, d: Defdata

� pre delete level:
ur level > 1;

� pre insert entry(id, d): : de�ned
urrent(id);

� initialize = set
ur level := 1,

forall id: Name, x: Pos. id table(id, x) := undef end;

� post insert entry(id, d): id table'(id,
ur level) = d;

� post new level:
ur level' =
ur level + 1;

� delete level = set
ur level :=
ur level� 1,

forall id: Name. id table(id,
ur level) := undef end;

Example 10.

System CIRCLES

use REAL, COLOUR ** The spe
. COLOUR has only two
onstants

** "green" and "red" of sort "Colour"

dynami

sort Cir
le;

fun
 X, Y: Cir
le �!? Real;

fun
 radius: Cir
le �!? Real;

fun

ol: Cir
le �!? Colour

pro

start; **
reation of one
ir
le with default attributes

move: Cir
le, Real, Real; **
hange the
oordinates of a
ir
le

moveAll: Real, Real; **
hange the
oordinates of all
ir
les

resize: Cir
le, Real; **
hange the radius of a
ir
le

hangeCol: Cir
le; **
hange the
olour of a
ir
le

opy:
ir
le **
reate a new
ir
le with the attributes of the argument
ir
le

delCreen; ** delete all green
ir
les

var x, y, r: Real,
ir: Cir
le

� start = seq forall
: Cir
le. drop
,

import
: Cir
le in

set X(
) := 0, Y(
) := 0, radius(
) := 1,
ol(
) := green end

end;

17

� post move(
ir, x, y): X'(
ir) = X'(
ir) + x ^ Y'(
ir) = Y(
ir) + y;

� moveAll(x, y) = forall
: Cir
le.

set X(
) := X(
) + x, Y(
) := Y(
) + y end;

� post resize(
ir, r): radius'(
ir) = r;

�
hangeCol(
ir) = if
olour(
ir) = green then
olour(
ir) := red

else
olour(
ir) := green endif;

�
opy(
ir) = import
: Cir
le in set X(
) := X(
ir),

Y(
) := Y(
ir), radius(
) := radius(
ir),
ol(
) :=
ol(
ir) end;

� delGreen = forall
: Cir
le. if
olour(
) = green then drop
;

end

8 Related Work

As mentioned in the introdu
tion, this extension of CASL is based on several

works using the
on
ept of impli
it state. Currently none of them o�ers the full

set of tools needed for the spe
i�
ation of a broad range of dynami
 systems.

Therefore the natural
ombination of the fa
ilities o�ered by these works and

their adaptation to the CASL institution has been one of our main goals.

We have liked very mu
h the
on
ept of update set introdu
ed by Gure-

vi
h in [13℄ for the explanation of state transitions. It was used later by him in

[14℄ for giving denotational semanti
s of transition rules of Abstra
t State Ma-

hines (ASMs). We also give the semanti
s of our transition terms in terms of

update sets. However, ASMs are based on total universal algebras treating pred-

i
ates as Boolean fun
tions. Sin
e our states are partial many-sorted stru
tures,

we have extended �-updates of ASMs with �- and Æ-updates representing, re-

spe
tively, the updates over predi
ates and sorts. Our notion of transition term

is an extension and generalization of the ASM notion of transition rule. The

amendments are the pro
edure
all, the drop rule allowing a sort to shrink,

the sequen
e
onstru
tor and based on it the loop
onstru
tors (see also [6℄ for

another proposition of sequen
e and loop
onstru
tors). ASMs do not have su
h

features as dependent fun
tions and pro
edures, nor is the notion of dynami

system de�ned for them.

Dependent fun
tions and pro
edures are borrowed from [8, 15℄ through inter-

mediate steps of [19, 9℄. However, their semanti
s is di�erent. In [19, 9℄ dependent

fun
tions are not part of the state; they belong to the dynami
 system, and this

aused some problems with the use of their names in terms. In [8, 15℄ dependent

fun
tions are part of the state with a very
omplex semanti
s of their rede�nition

in di�erent states. The introdu
tion of the fun
tion map has allowed us to treat

dependent fun
tions as part of the state with very simple semanti
s of their re-

de�nition. The semanti
s of modi�ers (analogue of our pro
edures) and update

expressions (analogue of our transition terms) is given in [8, 15℄ operationally

(there is no notion of update set in this approa
h), while we have done it deno-

tationally. We have also provided the means for working with partial stru
tures

(only total many-sorted algebras are used in [8, 15℄).

The notion of dynami
 system, as it is de�ned in our paper, stems from the

notion of d-oid introdu
ed in [1, 2℄ and further developed in [20, 21℄. A d-oid is a

set of instan
e stru
tures (e.g., algebras), a set of dynami
 fun
tions resembling

18

our dependent fun
tions and pro
edures and a tra
king map indi
ating relation-

ships between instan
e stru
tures. The approa
h deals with models and does not

address the issue of d-oid spe
i�
ation. Therefore, we had to borrow and adapt

for our purpose a spe
i�
ation te
hnique of another sour
e.

Another approa
h are \Transition Categories" presented in [10, 11℄. Here the

algebra of data types is equipped with sorts
alled referen
e sorts in addition to

ordinary sorts, and the state extends this algebra by partial fun
tions
alled
on-

tents fun
tions for ea
h referen
e sort whi
h map elements of referen
e sorts to

their
ontents. State transformations are de�ned by
onditional parallel assign-

ment rede�ning the
ontents fun
tions. Though based on di�erent semanti
al

foundations, Gro�e-Rhode's approa
h appears as a spe
ial
lass of dynami
 sys-

tem de�ned in this paper where the stati
 part
ontains the referen
e sorts and

the only
omponents of the dynami
 part are the
ontents fun
tions. Then the

e�e
t of
onditional parallel assignment
an be a
hieved using dynami
 equa-

tions.

In a later work [12℄, Gro�e-Rhode de�nes Algebra Rewrite Systems. A rewrite

rule r is of the form P

l

 ! P

r

where P

l

= (X

l

; E

l

) and P

r

= (X

r

; E

r

) are

presentations
onsisting of sets of generators X

l

and X

r

and sets of equations E

l

and E

r

, respe
tively. A rule is applied to a partial algebra A by �rst removing

the elements of X

l

from the
arrier sets of A together with the equalities in

E

l

, and then adding the elements in X

r

and the equalities in E

r

. This allows

the modelling of update instru
tions f(t

1

) := t

2

by �rst unde�ning a fun
tion

entry and then adding a new fun
tion entry by a rule (fx : sg; ff(t

1

) = xg) !

(fx : sg; ff(t

1

) = t

2

g). Deletion of an element of sort s is modeled by a rule

(fx : sg; ;) ! (;; ;), and
reation of an element by a rule (;; ;) ! (fx : sg; ;)

However, the approa
h by Gro�e-Rhode is restri
ted to partial algebras and thus

annot be used in the
ontext of CASL, whi
h is order-sorted and in addition to

partial fun
tion
ontains total fun
tions and predi
ates. Further, the appli
ation

of rewrite rules and also the intera
tion between axioms de�ning the stati
 part

with rewrite rules may yield unexpe
ted results, like the identi�
ation of elements

in the result state.

While all the above approa
hes favour an operational style of writing spe
-

i�
ations, with the ex
eption of Zu

a [21℄, that is, they spe
ify how a state is

transformed into another state, the approa
h by Baumeister [3{5℄ uses a de
lar-

ative approa
h, de�ning how the states before and after the exe
ution of a state

transformation are related. This allows writing spe
i�
ations whi
h are similar to

those written in spe
i�
ation languages like Z or VDM. Baumeister's approa
h

does not require states to be modeled as algebras; states
an be stru
tures from

any suitable institution. From this approa
h we have used the idea how to in-

terpret post
ondition formulae.

9 Con
lusion

In this paper we have de�ned an extension of CASL for the spe
i�
ation of state-

based software systems intended to be part of the
ommon framework de�ned

by the Common Framework Initiative. It permits the spe
i�
ation of the stati

part of a
omplex dynami
 system by means of CASL and the dynami
 part by

means of the fa
ilities des
ribed in the paper. This is one level of integration of

19

two di�erent spe
i�
ation paradigms. The spe
i�
ation of the dynami
 part
an

also be done either by means of transition rules or by means of post
onditions

(where it is appropriate). This provides the se
ond level of integration. Moreover,

the use of update sets for des
ribing the semanti
s of both transition rules and

post
onditions has permitted us to de�ne the semanti
s in a simple way and

easily solve the well-known frame problem.

The next step in the development of the des
ribed spe
i�
ation te
hnique

is the introdu
tion of stru
turing fa
ilities permitting the spe
i�
ations to be

united, lo
alized, parameterized, et
.

Referen
es

1. E. Astesiano and E. Zu

a. A semanti
 model for dynami
 systems. In Modeling

Database Dynami
s, Workshops in Computing, pages 63{83, Volkse 1992, 1993.

Springer.

2. E. Astesiano and E. Zu

a. D-oids: a model for dynami
 data types. Mathemati
al

Stru
tures in Computer S
ien
e, 5(2):257{282, June 1995.

3. H. Baumeister. Relations as abstra
t datatypes: An institution to spe
ify relations

between algebras. In TAPSOFT 95, volume 915 of LNCS, pages 756{771. Springer,

1995.

4. H. Baumeister. Using algebrai
 spe
i�
ation languages for model-oriented spe
-

i�
ations. Te
h. report MPI-I-96-2-003, Max-Plan
k-Institut f�ur Informatik,

Saarbr�u
ken, February 1996.

5. H. Baumeister. Relations between Abstra
t Datatypes modeled as Abstra
t

Datatypes. PhD thesis, Universit�at des Saarlandes, Saarbr�u
ken, November 1998.

6. E. B�orger. Composition and stru
turing prin
iples for ASMs. In Abstra
t State

Ma
hines | ASM 2000 (Pro
. Int. Workshop on Abstra
t State Ma
hines, Monta

Verita, Switzerland, Mar
h 2000), LNCS. Springer, 2000. to appear.

7. M. Cerioli, T. Mossakowski, and H. Rei
hel. From total equational to partial

�rst-order logi
. In E. Astesiano, H.-J. Kreowski, and B. Krieg-Br�u
kner, editors,

Algebrai
 Foundations of Systems Spe
i�
ation, pages 31{104. Springer, 1999.

8. P. Dau
hy and M.-C. Gaudel. Algebrai
 spe
i�
ations with impli
it state. Te
h.

report No 887, Laboratoire de Re
her
he en Informatique, Univ. Paris-Sud, 1994.

9. M.-C. Gaudel, C. Khoury, and A. Zamulin. Dynami
 systems with impli
it state.

In Fundamental Approa
hes to Software Engineering, volume 1577 of LNCS, pages

114{128. Springer, 1999.

10. M Gro�e-Rhode. Con
urrent state transformation on abstra
t data types. In

Re
ent Trends in Data Type Spe
i�
ations, volume 1130 of LNCS, pages 222{236.

Springer, 1995.

11. M. Gro�e-Rhode. Transition spe
i�
ations for dynami
 abstra
t data types. Ap-

plied Categori
al Stru
tures, pages 265{308, 1997.

12. M. Gro�e-Rhode. Spe
i�
ation of state based systems by algebra rewrite systems

and re�nements. Te
h. report 99-04, TU Berlin, FB Informatik, Mar
h 1999.

13. Y. Gurevi
h. Evolving Algebras 1993: Lipary guide. In Spe
i�
ation and Validation

Methods, pages 9{36. Oxford University Press, 1995.

14. Y. Gurevi
h. ASM guide 1997. EECS Departmental Te
hni
al Report CSE-TR-

336-97, University of Mi
higan, 1997.

15. C. Khoury, M.-C. Gaudel, and P. Dau
hy. AS-IS. Te
h. report No 1119, Univ.

Paris-Sud, 1997.

16. K. Lellahi and A. Zamulin. Dynami
 systems based on update sets. Te
h. report

99-03, LIPN, Univ. Paris 13 (Fran
e), 1999.

20

17. P. Mosses. CASL: a guided tour of its design. In Re
ent Trends in Algebrai

Development Te
hniques: Sele
ted Papers from WADT'98, volume 1589 of LNCS,

Lisbon, 1999. Springer.

18. The Common Framework Initiative. http://www.bri
s.dk/Proje
ts/CoFI/.

19. A. Zamulin. Dynami
 system spe
i�
ation by Typed Gurevi
h Ma
hines. In Pro
.

Int. Conf. on Systems S
ien
e, Wro
law, Poland, September 15{18 1998.

20. E. Zu

a. From stati
 to dynami
 data types. In Mathemati
al Foundations of

Computer S
ien
e, volume 1113 of LNCS, pages 579{590, 1996.

21. E. Zu

a. From stati
 to dynami
 abstra
t data types: an institution transforma-

tion. Theori
al Computer s
ien
e, 216:109{157, 1999.

A Post
ondition Formulae

In this se
tion we give a formal de�nition of

�

�, A

�

, and post
ondition formulae.

Let

�

dyn

= (S

dyn

; TF

dyn

; PF

dyn

; P

dyn

)

be a signature extension w.r.t. �

stat

= (S

stat

; TF

stat

; PF

stat

; P

stat

),

�

dep

= (;; TF

dep

; PF

dep

; P

dep

)

be a signature extension w.r.t. �

stat

[�

dyn

, then

� = (S; TF; PF; P) = (S

dyn

; TF

dyn

[TF

dep

; PF

dyn

[PF

dep

; P

dyn

[P

dep

)

is a signature extension w.r.t. �

stat

. We de�ne

�

� = (

�

S;

�

TF;

�

PF ;

�

P) as follows:

�

S = S

stat

[S

dyn

[fs

0

j s 2 S

dyn

g

�

TF = ff : w ! s

0

j f : w ! s

0

2 (TF

stat

[TF)g [

ff

0

: �s

1

; : : : ; �s

n

! �s

0

j f : s

1

; : : : ; s

n

! s

0

2 TF;

�s

i

= s

0

i

if s

i

2 S

dyn

, �s

i

= s

i

else; 0 � i � ng

�

PF = ff : w ! s

0

j f : w ! s

0

2 (PF

stat

[PF)g [

ff

0

: �s

1

; : : : ; �s

n

! �s

0

j f : s

1

; : : : ; s

n

! s

0

2 PF;

�s

i

= s

0

i

if s

i

2 S

dyn

, �s

i

= s

i

else; 0 � i � ng [

ftm

s

: s! s

0

j s 2 S

dyn

g

�

P = fp : w j p : w 2 (P

stat

[P)g [

fp

0

: �s

1

; : : : ; �s

n

j p : s

1

; : : : ; s

n

2 P;

�s

i

= s

0

i

if s

i

2 S

dyn

, �s

i

= s

i

else; 0 � i � ng

21

De�nition 11. A post
ondition formula is a formula of the form

post p(t

1

; : : : ; t

n

) : '

where p : s

1

; : : : ; s

n

is a pro
edure symbol, s

1

; : : : ; s

n

are sorts in S

stat

[S

dyn

,

t

1

; : : : ; t

n

are terms over variables X of sorts s

1

; : : : ; s

n

, and ' is a formula

over

�

� with variables X.

Given a state A in a dynami
 system DS(B) and an update-set � , we de�ne

a

�

�-stru
ture A

�

by:

jA

�

j

s

= jAj

s

if s 2 S

stat

[S

dyn

jA

�

j

s

0

= jA� j

s

if s

0

2

�

S n (S

stat

[S

dyn

)

for all sort symbols in

�

S,

f

A

�

= f

A

if f 2 TF

stat

[TF

f

0

A

�

= f

A�

if f

0

2

�

TF n (TF

stat

[TF)

for all total fun
tion symbols in

�

PF ,

f

A

�

= f

A

if f 2 PF

stat

[PF

f

A

�

= tm

A;�

s

if f = tm

s

f

0

A

�

= f

A�

if f

0

2

�

PF n (PF

stat

[PF [ftm

s

j s 2 S

dyn

g)

for all partial fun
tion symbols in

�

PF , and

p

A

�

= p

A

if p 2 P

stat

[P

p

0

A

�

= p

A�

if p

0

2

�

P n (P

stat

[P)

for all predi
ate symbols in

�

P .

Note that one
an write f

0

A

�

= f

A�

and p

0

A

�

= p

A�

, though di�erent sort

symbols are used in the pro�les of f and f

0

(p and p

0

), sin
e the
arrier-set of

ea
h s

0

in A

�

is the same as the
arrier set of the
orresponding s in A� .

A dynami
 system DS(B) satis�es a post
ondition formula

post p(t

1

; : : : ; t

n

) : '

i� for any state A and variable assignment � : X ! A: if the update-set

� = p

DS(B)

(A;<[[t

1

℄℄

A;�

; : : : ; [[t

n

℄℄

A;�

>)

exists, then

'

A

�

;�

= true:

22

