
Relations between Abstract Datatypes

modeled as Abstract Datatypes

Hubert Baumeister

Dissertation
zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Technischen Fakultät

der Universität des Saarlandes

Saarbrücken

1998

Dekan: Prof. Dr. Wolfgang Paul
Gutachter: Prof. Dr. Harald Ganzinger

Prof. Dr.-Ing. Jacques Loeckx
Termin des Kolloquiums: 21. Mai 1999

Meinen Eltern,

für alles

Abstract

In this thesis we define a framework for the specification of dynamic behavior of software
systems. This framework is motivated by the state as algebra approach and the model-
oriented language Z. From the state as algebra approach we use the idea of modeling the
environment and the state components as structures of an institution. However, in contrast
to the state as algebra approach, states in our framework are modeled by structures from any
suitable institution not only those having algebras as their structures. From Z we use the
idea that environment, state spaces, and relations between state spaces are specified using
the same logic, and how more complex relations can be constructed from simpler ones by
means of the schema calculus. However, we differ from Z in that our framework can be
instantiated by different institutions while the approach of Z can only work because of the
particular logical system used by Z.

Zusammenfassung

In dieser Arbeit schlagen wir einen Ansatz zur Spezifikation des Verhaltens von Software-
systemen vor. Dieser Ansatz ist motiviert durch Spezifikationssprachen, die den Zustand
von Softwaresystemen als Algebren modellieren, und durch die modellorientierte Spezifika-
tionssprache Z. Von der ersten Gruppe von Spezifikationssprachen übernehmen wird das
Konzept den Zustand als Struktur einer Logik zu modellieren; allerdings ist unser Ansatz
nicht auf Logiken beschränkt, deren Strukturen Algebren sind. Von Z übernehmen wir die
Idee Zustandsräume und Zustandsübergänge mit derselben Logik zu spezifizieren, und die
Art und Weise wie aus einfachen Zustandsräumen und Zustandsübergängen komplexere Zu-
standsräume und Zustandsübergänge konstruiert werden können. Im Gegensatz zu Z können
wir eine beliebige Logik verwenden, während der Ansatz von Z nur funktioniert weil eine ganz
spezielle Logik verwendet wird.

Extended Abstract

In this thesis we study relations between abstract datatypes. Relations between abstract
datatypes can be used to specify the dynamic behavior of software systems. An abstract
datatype, a pair consisting of a signature and a class of structures over that signature, defines
the state-space of a software system, and relations between abstract datatypes define how
the state of a software system changes.

Our approach is connected to the state as algebra approach, where the state of a software
system is modeled by an algebra, for example, [33, 4, 22, 29, 59, 20, 16, 23]. However, in a
similar way as Goguen and Burstall [13] used the notion of institution to define the semantics
of the specification language Clear independent from a particular logical system, we use
institutions to study relations between abstract datatypes from an arbitrary institution, not
only those consisting of a many-sorted signature Σ and a class of Σ-algebras as in the state-
as-algebra approach. For example, we define the institution SET that models the logical
system of the model-oriented specification language Z [56], which is based on set-theory.
But not only institutions for existing logical systems may be used, one is free to define ones
own institution whose structures model in a more appropriate way the states of the class of
software systems one is dealing with.

Our approach is also similar to the way the dynamic behavior of software systems is specified
in Z. However, Z’s method depends on the particular logical systems used by Z. In this thesis
we show a way to uncouple Z’s method from the underlying logical system. This yields
a specification method which is in many aspects similar to Z’s method, but can be used
with any suitable logical system, including the logical systems used for the state as algebra
approach, as well as the logical system used by Z.

The method we use in this thesis is to model relations between abstract datatypes again as
abstract datatypes. To this end we define the institution RI which is based on a suitable
institution I. Then relations between abstract datatypes from I are modeled by abstract
datatypes from RI . This has the advantage that a lot of results from the institution inde-
pendent theory of abstract datatypes can be reused for the specification of relations. For
example, we use the operations defined by Sannella and Tarlecki [50] as the basis for the
specification language RSLI used to specify relations. We show also how to reuse the proof
calculus for proving properties of abstract datatypes and entailment of abstract datatypes,
for example, from Wirising [61], to prove properties of relations and entailment of relations.

The results of this thesis can be used in two ways to specify the dynamic behavior of software
systems. First, RSLI can be used as the basis for a more practical specification language.
However, new tools have to be designed and implemented for that language. Another way is
to use the translation GA of abstract datatypes in RI , that is relations, to abstract datatypes

viii

in I, which has the property that it preserves entailment. Then one can reuse any specifica-
tion language having as semantics abstract datatypes in I together with its tools to specify
relations. This yields a specification style similar to that used by Z.

Ausführliche Zusammenfassung

Das Ziel dieser Arbeit ist das Studium von Relationen zwischen abstrakten Datentypen.
Relationen zwischen abstrakten Datentypen werden verwendet um das dynamische Ver-
halten von Softwaresystemen zu spezifizieren. Dabei definieren abstrakte Datentypen, die
aus einer Signatur und einer Klassen von Strukturen über diese Signatur bestehen, Zu-
standsräume von Softwaresystemen und Relationen zwischen abstrakten Datentypen deren
Zustandsübergänge.

Unser Ansatz ist vergleichbar mit den Spezifikationssprachen, die den Zustand eines Soft-
waresystems als Algebra modellieren, zum Beispiel [33, 4, 22, 29, 59, 20, 16, 23]. Wir ver-
allgemeinern den Ansatz dieser Spezifikationssprachen und erlauben es den Zustand eines
Softwaresystems als eine Struktur bzgl. einer beliebigen Institution I zu modellieren. Zum
Beispiel kann man die, in dieser Arbeit definierte, Institution SET verwenden, die die Lo-
gik der modellorientierten Spezifikationssprache Z [56] repräsentiert und auf Mengentheorie
basiert. Es ist aber auch möglich eigene Institutionen zu definieren, deren Strukturen die
Zustände von Klassen von Softwaresystemen besser modellieren als die Strukturen von Insti-
tutionen, die eine existierende Logik repräsentieren.

Aus einer ähnlichen Motivation heraus haben Goguen und Burstall [13] den Begriff der In-
stitution entwickelt um die Semantik der Spezifikationssprache Clear unabhängig von einer
speziellen Logik zu formulieren.

Unser Ansatz ist ähnlich der Methode, die in Z verwendet wird um das Verhalten dynamischer
Systeme zu spezifizieren. Allerdings hängt die Methode von Z von der speziellen Logik ab
die Z verwendet. Ein Resultat dieser Arbeit ist die Trennung dieser Methode von der Logik,
die Z verwendet. Das Ergebnis ist eine Spezifikationsmethode, die in vielen Aspekten der
von Z entspricht, aber nicht von der Logik von Z abhängt. So ist es zum Beispiel möglich
Varianten von Gleichungslogik zu verwenden, aber auch wieder die Logik von Z.

In unserem Ansatz modellieren wir Relation zwischen abstrakten Datentypen wieder als
abstrakte Datentypen. Zu diesem Zweck definieren wir eine Institution RI basierend auf
einer geeigneten Institution I, deren abstrakte Datentypen Relationen zwischen abstrakten
Datentypen von I repräsentieren. Dieses Vorgehen hat den Vorteil, daß die Theorie der
abstrakten Datentypen, die unabhängig von einer speziellen Institution ist, auf Relationen
zwischen abstrakten Datentypen angewandt werden kann. Zum Beispiel liefern die Operation
auf abstrakten Datentypen, wie sie bei Sannella und Tarlecki [50] definiert sind, die Basis
für eine rudimentäre Spezifikationssprache RSLI zur Spezifikation von Relationen und wir
zeigen wie man Inferenzsysteme, die es erlauben Eigenschaften von abstrakten Datentypen
abzuleiten (zum Beispiel Wirsing [61]), anwenden kann um Eigenschaften von Relationen
abzuleiten.

x

Die Resultate dieser Arbeit lassen sich in zweifacher Hinsicht zur Spezifikation des dyna-
mischen Verhaltens von Softwaresystemen verwenden. Erstens kann man RSLI als Basis
einer praktischeren Spezifikationssprache verwenden. Der Nachteil dieser Methode ist, daß
neue Werkzeuge für diese Spezifikationssprache entwickelt und implementiert werden müssen.
Einen zweiten Weg liefert die Übersetzung GA, die abstrakte Datentypen in RI — also
Relationen — in abstrakte Datentypen der Institution I übersetzt. Damit kann man jede
Spezifikationssprache mit ihren Werkzeugen wiederverwenden, deren Semantik abstrakte Da-
tentypen in I sind. Als Ergebnis erhält man einen Stil zur Spezifikation von dynamischen
Verhalten, der dem von Z entspricht.

Acknowledgments

I am indebted to my supervisor Harald Ganzinger for his support, his patients, and for
providing the pressure that I needed to finish the thesis. I also thank Jacques Loeckx for
agreeing to referee this thesis.

I wish to thank Viorica Sofronie for careful reading several drafts of this thesis and suggesting
improvements. Without her comments the thesis would be very much different.

I also like to thank Andrzej Tarlecki for clarifying some subtle points with indexed categories.

Finally, I would like to thank my colleagues at the Max-Planck-Institut für Informatik for
fruitful discussions and a lot of fun, especially, Jürgen Stuber, Uwe Waldmann, Andreas
Tönne, Ullrich Hustadt, Renate Schmidt, Uwe Brahm, Margus Veanes, and Giorgio Delzanno.

Contents

1 Introduction 1
1.1 Relations between Abstract Datatypes . 3
1.2 Structure of the Thesis . 6
1.3 Related Work . 7

2 Some Category Theory 15
2.1 Categories, Functors and Natural Transformations 15
2.2 Colimits . 18
2.3 Limits . 22
2.4 Adjoints . 26
2.5 Indexed Categories . 29

3 Institutions 37
3.1 Equational Logic . 38
3.2 Amalgamation . 46
3.3 Constraints . 48
3.4 The Institution LSL . 55

4 Specifications of Abstract Datatypes 65
4.1 Abstract Datatypes . 65
4.2 The Specification Language SLI . 68
4.3 Proving Specification Entailment in SLI . 75
4.4 Problems with Derive . 77
4.5 Completeness . 78

5 Relations as Abstract Datatypes 81
5.1 Introduction . 81
5.2 The Category Rel . 85
5.3 The Institution RI . 86
5.4 Colimits in SignRI

. 96
5.5 Preservation of Colimits . 102
5.6 Relation between AdtRI

and AdtI . 103
5.7 Operations on relations . 105
5.8 Finite Diagrams . 108
5.9 The Language RSLI . 109

6 Abstract Machines 113
6.1 State as Algebra Approach . 115

xiv CONTENTS

6.2 Models of the State . 118
6.3 Extensions to RSLI . 124

7 Proving Entailment of Relations 129
7.1 Translation of RSLI-Expressions . 130
7.2 Refinement . 135
7.3 Data-Refinement . 139
7.4 An Example of Data-Refinement . 140
7.5 Conclusion . 154

8 Disjunction 157
8.1 Adding Disjunction to SLI . 158
8.2 Proving Properties with Disjunction . 159
8.3 Adding Disjunction to RSLI . 162

9 Z Specifications 165
9.1 The Institution SET . 165
9.2 Abstract Machines in Z . 176
9.3 Z-style specifications using LSL . 179

10 Conclusion 183
10.1 Future Work . 185

A Larch Traits 187
A.1 FiniteMap . 187
A.2 Set . 187
A.3 SetBasics . 188
A.4 DerivedOrder . 189

1 Introduction

It is well recognized that at least some, if not all, aspects of a software system should be
formally specified. Among these aspects are the functional requirements and the dynamic
behavior of a software system. A specification of the functional requirements is concerned
with the data of a software system and how this data is transformed by functions. Usually
property-oriented, also known as axiomatic or algebraic, specification languages are used
for functional requirement specifications. When writing property-oriented specifications, one
first defines the sorts and functions involved; then, their properties are defined by using
equations or, more generally, first-order formulas. Examples of property-oriented specification
languages are Clear [13], the Larch Shared Language [34], ASL [3], OBJ [28], Obscure [41],
ACT [15], and CASL [45].

A specification of the dynamic behavior of a software system is concerned with the changes of
the behavior of that system after performing some operations. This means that the system
may react differently on the same operation depending on the operations that have been
performed in the meantime. An example is the top operation of stacks which returns the
top-most element of a stack. The result of two successive top operations yields different
elements if a pop operation which removes the top-most element of a stack is performed in
between the top operations. This leads to the notion of state of a software system which is an
abstraction of the history of a software system. Model-oriented specification languages are
often used for dynamic behavior specifications. When writing model-oriented specifications
one first constructs an abstract model of the state of the software system and then defines
for each operation the effect of this operation on the state. Examples of model-oriented
specification languages are Z [56], VDM [40], and B [1].

In general, functional requirement specifications precede dynamic behavior specifications in
the software engineering process, in particular, if the target programming language is imper-
ative or object-oriented. The dynamic behavior specification can be seen as a refinement of
the functional requirement specifications. Take for example a functional requirement speci-
fication of the union operation of sets. Given two sets, the result of the union operation is a
set that contains as its only elements all the elements of the argument sets. A dynamic be-
havior specification specifies in addition whether a new set is created for the result while the
arguments remain unchanged, or if the elements of the second set are added to the elements
of the first set and thus change the first set.

However, a functional requirement specification need not be followed by a dynamic behav-
ior specification if, for example, the target programming language is a functional language.
Similarly, one may omit the functional requirement specification and directly start with a
dynamic behavior specification if its style is more appropriate to the software system that is

2 Introduction

to be specified, for example a database system.

In the two-tiered approach of Larch [34] functional requirement specifications and dynamic
behavior specifications are combined. The datatypes which are used to model the states are
given as functional requirement specifications. For this the Larch Shared Language is used
which is a specification language based on many-sorted total algebras and equational logic
with constraints. For each target programming language there exist different Larch Interface
Languages for the specifications of the dynamic behavior of the functions, procedures, or
methods of that programming language.

A problem with the two-tiered approach of Larch is that for each programming language the
state is modeled in a different way. This is in contrast to the state as algebra approaches
where not only the used datatypes are defined by algebras, but also the states. This has
the advantage that the datatypes used by the components of the state as well as the set of
admissible states of a software system can be specified by the same specification language.

There are quite a few specification languages and methods using the state as algebra ap-
proach, for example, Gurevich’s Abstract State Machines [33], also known as evolving al-
gebras, d-oids by Astesiano and Zucca [4], COLD-K by Feijs and Jonkers [22], transition
categories by Große-Rhode [29], equational dynamic logic by Wieringa [59], an informal pro-
posal to dynamic algebras by Ehrig and Orjeas [20], the implicit state approach by Dauchy
and Gaudel [16], and the proposal by Ganzinger to model the semantics of programs by
transformation of algebraic theories [23].

In this thesis we abstract away from the use of algebras to model states; instead, we use
structures from any suitable institution. Goguen and Burstall [13] introduced the notion
of institution to define the semantics of the specification language Clear independent from
a logical system. In a similar way we use institutions to define a framework for dynamic
behavior specifications which can be instantiated, for example, with states modeled as many-
sorted total algebras, many-sorted partial algebras, order-sorted algebras, and first-order
structures. In addition, we define two new institutions which can be used to model states.
The institution LSL models the logical system of the Larch Shared Language, and the
institution SET models the logical system of the model-oriented specification language Z.

Given a specification language whose semantics are abstract datatypes, that is pairs consist-
ing of a signature and a class of algebras over that signature, then a specification in that
specification language defines the state space of a software system. Operations that modify
the state of a software system are relations between abstract datatypes or, more precisely,
relations between the classes of algebras given by abstract datatypes.

In this thesis we concentrate on the specification of state transformations, that is we study
relations between abstract datatypes. We provide a set of basic operations to construct
complex relations from simpler ones. These operations are parallel composition, extending
the domain of a relation by adding new state components, and restricting a relation by hiding
state components. Other operations, like sequential composition, can be defined in terms of
these basic operations.

1.1 Relations between Abstract Datatypes 3

Another way to define state transitions relates the state components before and after a state
transformation using formulas. Our approach is based on the observation that we can use the
same kind of formulas that were used to define the components of the environment and the set
of admissible states to relate the state components before and after a state transformation.
These formulas depend on the logical system we use for the states; however, they do not
depend on a particular logical system, like equational logic or first-order logic.

We also provide an inference system for proving properties from relations. This inference
system is based on an inference system for the institution used to model the states. This
allows us to reuse theorem provers for the base institution, if existent, to prove properties of
relations.

This work is strongly influenced by the model-oriented specification language Z [56, 57]. In
Z states are modeled as elements of schema-type, state spaces as schemata which are sets of
elements of schema-type, and operations (relations between state-spaces) again as schemata.
The schema-calculus allows to construct complex state spaces and operations from simpler
state spaces and operations. Since state spaces and operations are schemata, and schemata
are objects in the logical system underlying Z, proving properties of states and proving
operations are done using the same inference system.

However, the fact that schemata are objects of the logical-system of Z implies that the method
used by Z for the specification of state-based software systems depends on the particular
logical system of Z and thus cannot be applied directly to the state as algebra approach.

In this thesis we present a way to uncouple Z’s method for the specification of state based
systems from the logical system used by Z. This is based on the close relationship between
schemata and abstract datatypes already observed by Spivey [56]. This yields a specification
method which is in many aspects similar to Z’s method, but can be used with any suitable
logical system, including the logical systems used for the state as algebra approach.

1.1 Relations between Abstract Datatypes

As an example of a relation between abstract datatypes consider a simple counter with an
increment operation. The state space of the counter is modeled as a class of ΣC-algebras
MC where ΣC is a many-sorted signature with one sort Nat, an operation succ from Nat to
Nat, and constants zero and c of sort Nat; and MC has the following properties: For each
algebra A inMC A(Nat) is the set of natural numbers N, A(c) is an arbitrary natural number,
A(zero) = 0,and A(succ)(n) = n+ 1 for each natural number n.

The relation Inc ⊆ MC ×MC is defined as all pairs (A,B) such that B(c) = A(c) + 1. Note
that, because of the way MC is defined, A(Nat) is the same as B(Nat), A(succ) the same as
B(succ), and B(zero) is the same as A(zero). Thus Inc defines an operation incrementing
the constant c while leaving the interpretation of Nat, succ, and zero unchanged.

The advantage of viewing a class of Σ-algebras M as an abstract datatype (Σ,M) is the
possibility to use a specification language that has abstract datatypes as the semantics of

4 Introduction

their specifications to define the domain of relations. For example, the abstract datatype
(ΣC ,MC) is given by the following specification using a syntax adopted from the Larch
Shared Language:1

Counter : trait
introduces

succ: Nat

zero: Nat

c: Nat
asserts

Nat generated freely by succ, zero

Now consider the following pascal program:2

program example;

var c: natural;

procedure increment;

begin

c := c + 1;

end;

begin

c := 10;

increment;

end.

Its state can be viewed as a ΣC-algebra where ΣC contains as sorts the pascal types —
in this case natural — and for each variable x of type T a constant x of sort T , which
in this example is c. Then we can view the semantics of a pascal procedure as a relation
between abstract datatypes. This makes it possible, for example, to check whether the
pascal procedure increment implements the relation Inc defined above.

However, for specification purposes we do not want to limit ourselves to those algebras
that model states of pascal programs. Instead, we want to use more problem oriented
descriptions of the state space, and only after a process of data-refinement reach algebras
that model states of pascal programs to show that a certain pascal program implements
its specification.

Thus, we are not limited to the use of constants as state components in the state as algebra
approach. For example, we can define the state of a dictionary by an algebra over a signature
that has sorts bool, E for the elements of the dictionary, K for the keys of the dictionary, and
functions map from K to E and dom from K to bool. The intention is that the function map

records the associations between keys and values, but since map is a total function, we need
the function dom which tells us for each key if the key/value pair is valid. Now an operation

1Note that it is not completely true that (ΣC ,MC) is the semantics of the given specification since for an
algebra A in MC , A(Nat) is the same as N while for an algebra B satisfying the LSL-specification we can only
ensure that B(Nat) is isomorphic to N. However, as we will see in later chapters, this poses no problems.

2For the purpose of this introduction we assume that pascal has a datatype natural for the natural
numbers.

1.1 Relations between Abstract Datatypes 5

Update(k, e), adding an association (k, e) to the dictionary, changes the value of map such
that map(k′) is e if k′ = k and is the old value of map(k′) if k 6= k′. Similarly, dom is changed
such that dom(k′) yields true if k′ = k and returns the old value of dom(k′) otherwise.

The theory presented in this thesis is largely independent from the underlying logical systems
used to model the states. To make this precise, we use the notion of an institution. The idea
of an institution I is to abstract away from the notion of many-sorted signatures, algebras,
equations, and satisfaction to an arbitrary class of signatures such that each signature Σ
has associated a class of Σ-structures, a set of Σ-formulas, and a satisfaction relation |=I

which relates Σ-structures to Σ-formulas valid in these structures. The definition of abstract
datatypes extends naturally to arbitrary institutions. An abstract datatype with respect to
I is a pair (Σ,M) where Σ is a signature from I and M a class of Σ-structures.

A variety of well-known logical systems have been shown to be institutions, and a lot of these
can be used in the framework of this thesis; for example, the original paper by Goguen and
Burstall [25] showed that equational logic, that is many-sorted signatures together with al-
gebras as Σ-structures and (conditional) equations as Σ-formulas, forms an institution. Also
first-order logic is an institution. As part of this thesis we show that the logical systems
underlying the specification languages LSL, which is a variant of equational logic with con-
straints, and Z, which is based on set-theory, are institutions. It is also possible to define
a new institution appropriate to model the states of a particular class of software systems.
For example, one could define an institution which naturally allows to talk about states
containing arrays and pointers.

The instantiation of our framework by different institutions results in different specifications
for the same problem. For example, if in the dictionary example the states were modeled by
partial algebras, the state would probably consist only of a partial function map from K to
E. For any key not in the range of the dictionary map would be undefined. The operation
Update(k, e) would change map(k) to yield e if map is defined for k and would extend the
domain of map to include k if map is not defined for k. If the institution SET were used, then
map most likely would be a subset of K × E such that if (k, e) and (k, e′) are in map, then
e = e′. The operation Update(k, e) would add the pair (k, e) to map and remove any pair
(k, e′) with e 6= e′ from map.

In this thesis we construct a new institution RI based on a suitable institution I used to
describe the states. The signatures of RI are, roughly, tuples Θ = ((Σ1,M1), . . . , (Σn,Mn))
of abstract datatypes from I, and Θ-structures are tuples (A1, . . . , An) where Ai is in Mi for
1 ≤ i ≤ n. Now we can view a relation R ⊆ M1 × . . .×Mn as an abstract datatype (Θ, R)
with respect to the institution RI .

The advantage of this approach is that we can reuse the institution independent theory of
abstract datatypes found, for example, in the paper of Sannella and Tarlecki [50] for the
definition of relations. The operations on abstract datatypes can be interpreted in RI as
operations on relations. For example, we show how the relation Inc can be defined as the
class of all pairs (A,B) ∈ MC × MC such that (A,B) satisfies the equation c′ = succ(c)
where c′ refers to the value of B(c) and c to the value of A(c). Note that, by the choice of

6 Introduction

MC , A(succ) and B(succ) are the same. Other operations to construct relations are union,
extension, and restriction. More complex operations on relations, like sequential composition,
instantiation etc. can be defined in terms of these primitive operations.

Another consequence of the construction of RI is that we can reuse the institution indepen-
dent proof calculus for proving properties of abstract datatypes and refinement of abstract
datatypes studied, for example, by Sannella and Tarlecki [50], Wirsing [61], and Hennicker,
Wirsing and Bidoit [38] to prove properties of relations and entailment of relations.

1.2 Structure of the Thesis

The rest of this chapter gives a brief overview of specification languages based on the state
as algebra approach.

The notion of institutions is based on category theory; thus Chapter 2 introduces the ter-
minology from category theory needed for the main construction of this thesis in Chapter 5.
The reader familiar with (co)limits, adjunctions, and indexed categories may want to skip
this chapter.

Chapter 3 introduces institutions and gives three examples: the institution EQ of equational
logic, EQC of equational logic with constraints, and the institution LSL, which formalizes
the logical system underlying the Larch Shared Language [34].

Chapter 4 summarizes the institution independent theory of abstract datatypes. It introduces
the specification language SLI for writing specifications of abstract datatypes in an institution
I, and we present an inference system for proving specification entailment.

Chapter 5 contains the main construction of this thesis — the institution RI parameterized
by a suitable institution I — and proves properties of this institution, like that the category
of signatures of RI is (finitely) cocomplete and that the structure functor preserves colimits.
Another important property is the relationship between abstract datatypes in RI and ab-
stract datatypes in I. The chapter ends with the introduction of the language RSLI for the
definition of relations.

Chapter 6 applies the theoretical results of the previous chapter to the specification of abstract
datatypes with states, also called abstract machines. Several styles for the specification of
abstract machines are discussed.

Chapter 7 extends the methods for proving specification entailment introduced in Chapter 4
to prove entailment of relations. The main technique is the translation of RSLI-expressions
to SLI-expressions, which preserves entailment of relations. As an example we apply these
results to the refinement of abstract machines and prove the correctness of the implementation
of a stack by using a pointer in an array. This stack implementation is also an example of
the construction of more complex relations from simpler ones.

In Chapter 8 we add disjunction to our set of operations on specifications and thus to RSLI .
This allows us to define relations on parts of the input domain first and then combine these

1.3 Related Work 7

relations into one relation, which is defined on the whole input domain. Disjunction was not
studied before as a specification building operation mainly because, in contrast to the union
of specifications, the disjunction of specifications is not in all institutions expressible on the
presentation level; for this a sufficently expressive institution is needed. We shall show that
LSL is such an institution.

Chapter 9 compares the approach of this thesis with the approach taken by Z for the speci-
fication of sequential systems. To this end we first define the institution SET of the logical
system underlying Z, which is a variant of set theory, and then investigate the relationship
between elements of schema-types and abstract datatypes over SET . The outcome is a spec-
ification style similar to that used by Z for the specification of sequential systems, but using
an algebraic specification language — LSL — instead of Z.

1.3 Related Work

There are mainly two approaches to the specification of state based software systems using
algebras. In the first approach, also known as the explicit state approach (cf. [16]), a state
is modeled as an element of the carrier set of a special state sort. Operations changing the
state of a software system are functions having the state sort in its domain and co-domain.
To enforce data abstraction, one usually hides the state sort which means that one cannot
directly compare two elements of the state sort. This leads to the hidden sorted approach
(cf. Goguen et al [24, 26]).

The other approach is the state as algebra approach where the state of a software system is
modeled as an algebra and a state transformation as a relation or function between classes
of algebras. This approach goes back to at least Ganzinger [23], who used this approach to
define an algebraic semantics of imperative programming languages.

Semantic of While-Programs Ganzinger defines the semantics of while-programs to be
the composition of a free functor and a forgetful functor on algebras representing the state
of the program. In principle there are three specifications: Specbase, SpecX , and SpecpX∪X′ .
Specbase is the specification of some base types defining the domain over which the variables
range. SpecX is a conservative extension of Specbase containing constants of the form x : s
denoting the variables of the program. Each program p determines a specification SpecpX∪X′

which is an enrichment of SpecX that contains for each x : s in SpecX a constant x′ : s.
Further, it contains equations defining the semantics of the program p. For example in the
case where p is the assignment statement x := t, SpecpX∪X′ contains the formula x′ = t. The
semantics of a program p is given by Tp;Uσ where Tp : Alg(SpecX) → Alg(SpecpX∪X′) is the
left adjoint to the forgetful functor U with respect to the inclusion of SpecX in SpecpX∪X′, and
Uσ : Alg(SpecpX∪X′) → Alg(SpecX) is the forgetful functor for the signature morphism σ that
takes each x : s in SpecX to x′ : s in SpecpX∪X′ . In general Tp will be a persistent functor;
however, if p does not terminate then (Tp;U)(A) 6= A.

8 Introduction

Abstract State Machines (a.k.a. Evolving Algebras) Abstract State Machines, for-
merly known as evolving algebras, are intended to provide a computing device for formalizing
the notion of algorithm similar to the Turing machine model, which formalizes the notion
of computable function. The Abstract State Machine Thesis claims that for any algorithm
there always exists an appropriate abstract state machine that simulates that algorithm in
lock-step on the same abstraction level of that algorithm. Thus, Abstract State Machines
are able to directly execute algorithms without translating them to a lower abstraction level.

Computation models and specification methods seem to be worlds apart. The
Abstract State Machine (ASM) project started as an attempt to bridge the gap
by improving on Turing’s thesis. We sought more versatile machines which would
be able to simulate arbitrary algorithms in a direct and essentially coding-free
way. Here the term algorithm is taken in a broad sense including programming
languages, architectures, distributed and real-time protocols, etc.. The simulator
is not supposed to implement the algorithm on a lower abstraction level; the
simulation should be performed on the natural abstraction level of the algorithm.

The ASM thesis asserts that ASM’s are such versatile machines.

This quote from Gurevich can be found on the web-site on Abstract State Machines3 and is
adapted from Gurevich [33].

The state of an abstract state machine is a one-sorted algebra. Relations and subsorts are
modeled using characteristic functions.

A signature Σ is a finite collection of function names, each of a fixed arity and possibly
marked as relation name or static name, or both. The set of function names includes the
null-ary static function names true, false, and undef ; the equal sign as a binary static
relation name; and the usual Boolean operations.

A Σ-algebra A (or a state) is a non-empty set X , called super-universe, together with a
set of functions for each function name f in the signature. If the arity of f is n, then the
algebra contains a function fA : Xn → X if it is not marked as a relation name and a
function fA : Xn → {true, false} if it is marked as a relation name. The null-ary function
names true, false, and undef are required to be interpreted as different elements from the
super-universe.

Unary relations U determine subsets of the super-universe and are called universes. Universes
do not include undef .

All functions and relations are total. Partiality is modeled by returning undef . However,
note that the characteristic function of a relation can not yield undef . Further, the boolean
operations ∨, ∧, ¬ etc. are not relations and therefore may have undef as a result. The
boolean operations are strict while, in general, functions need not be strict.

The equality sign is interpreted as the characteristic function of the identity on the super-
universe. Note that this implies undef = undef .

3http://www.eecs.umich.edu/gasm/

1.3 Related Work 9

Transformations are build from sets of guarded multi-update instructions of the form

if g then R.

A multi-update instruction R is a set of update instructions f(~t) := t0 where f is a function
name not marked as static, ~t a vector of ground terms matching the arity of f , and t0 a
ground term. Let ~t evaluate to ~a and t0 to a0 in A. If the guard g evaluates to true in A,
then the update f(~t) := t0 changes the interpretation of f at location ~a in A to a0. All update
instructions are performed simultaneously. The result of function applications to values not
mentioned in an update instruction remain unchanged. In case of conflicting updates, i.e.
where there are update instructions for updating fA(~a) to a0 and to b0 (a0 6= b0), A is not
changed.

A program is a set of guarded multi-updates, and a run of a program is a possible infinite
sequence of algebras starting from some initial state such that the next algebra in the sequence
is obtained by firing the guarded multi-updates in the previous algebra.

The interpretation of function names marked static cannot change. The set of static names
determines a sub-signature ΣEnv of Σ.

The execution of a program for an evolving algebra is deterministic. If two conflicting update
instructions are to be executed, none of them is executed. This is in contrast to the Evolving
Algebra Tutorial [32] where one update was chosen non-deterministically. In the current
setting non-determinism is achieved by introducing a new transformation rule

choose v in U

R

endchoose

This rule randomly picks an element a of the universe U and executes R in an algebra where
v is bound to a. If the universe U is empty, the execution of the evolving algebra halts.

Parallelism is modeled by rules containing variables which are declared with

Var v ranges over U

where U is preferably finite. The semantics is that for each instantiation of v with a value
from U the updates are performed in parallel.

D-oids D-oids are a model theoretic approach by Astesiano and Zucca [4] to define dynamic
datatypes. D-oids consist of a set of algebras over a many-sorted signature together with a
set of dynamic operations. A dynamic operation associates to an algebra A and a set of
values from A an algebra B a return value from B and a family of functions fs : A(s) → B(s)
for each sort s called the tracking map.

In the D-oids approach not only the interpretation of the operation symbols may change,
but also the interpretation of sorts. The tracking map fs is used to relate the elements in
the interpretation of the sort s before and after an application of a dynamic operation. For
example, if a dynamic operation adds a new element of sort s, that is B(s) = A(s) ∪ {e},
then fs is the injection of A(s) into B(s).

10 Introduction

Proposal for Dynamic Abstract Datatypes An approach similar to d-oids is the infor-
mal proposal for dynamic abstract datatypes by Ehrig and Orejas [20]. The instant structure
specification, a conservative extension of some value type specification, is intended to model
class sorts and attribute functions of objects. A dynamic operation denotes a function map-
ping a model A of the instant structure specification and a set of values from A to some
instant algebra B.

Implicit State Approach In the implicit state approach of Dauchy and Gaudel [16] the
states are enrichments of an abstract datatype defining the environment by a set of access
functions. The set of access functions is divided into elementary access functions and non-
elementary access functions. The non-elementary access functions are completely defined in
terms of the elementary access functions and the functions in the environment. Modifiers are
functors on states built from elementary modifiers by sequential and indifferent composition
and using conditionals. Elementary modifiers modify the value of the elementary access
functions; however, since the value of the non-elementary access functions depend on the
value of the elementary access functions, the non-elementary access functions also change.
The signature containing the symbols from the environment together with the elementary
and non-elementary access functions is denoted by Σac .

The implicit state approach is independent of the specification language used to specify the
environment and how the non-elementary access functions relate to the elementary access
functions as long as the semantics of a specification in that language is a class of many-sorted
algebras.

Given an elementary access function f : s1 → s2 with sorts s1 and s2 from the environment.
An elementary modifier has the form µ-f (t1, t2) where t1 is a term over the signature of the
environment and t2 is a term over Σac such that all variables in t2 also occur in t1. Given a
Σac-algebra A and an elementary modifier µ-f (t1, t2), a new Σac-algebra B is constructed by
letting B(f)(a) = ρ̃(t2) if there exists a variable assignment ρ from the variables of t1 to A
such that ρ̃(t1) = a. In case there is no such assignment, B(f)(a) is the same as A(f)(a). All
the other elementary access functions do not change; however, the derived non-elementary
access functions may change if they depend on f .

Transition Categories In the approach taken by Große-Rhode in his PhD-thesis [29, 30]
the states of a software system are partial algebras over a many-sorted signature Σ = (S,Ω).
Σ contains the sorts and operations of the data-types needed to describe the state components,
and, in addition, some sorts in S are marked as reference sorts for other sorts in S. A reference
sort for a sort s is denoted by ref(s). Not every sort in S needs to have a reference sort,
and it is possible to have a reference sort for a reference sort, for example, ref(ref(s)). For
each reference sort ref(s) there exists an operation !s : ref(s) → s in Ω, called the contents
function. A base specification BaseSPEC is a pair (Σ,Φ) where Φ is a set of conditional
existential equations defining the data-types and the state invariant.

Given a model A of BaseSPEC, a state A[d1:=a1,... ,dn:=an] is a free extension of A by the set

1.3 Related Work 11

of existential equations !si(di) =e= ai where ai is an element of A(si) and di is an element
of A(ref(si)) for every i = 1, . . . , n. In the free extension the values a ∈ A(s) are added
as constants to the signature. Note that a state A[d1:=a1,... ,dn:=an] need not be a persistent
extension of A, that is, the unit morphisms ηA : A → A[d1:=a1,... ,dn:=an] of the adjunction may
not be a family of isomorphisms. This happens, for example, if a formula ϕ in Φ requires that
!s(d) =e= !s(d

′) while we have a state A[d:=a,d′:=a′] where a and a′ are two distinct elements
in A(s). In this case the state A[d:=a,d′:=a′] satisfies the equations !s(d) = a and !s(d

′) = a′,
which implies together with ϕ that a = a′ and thus ηA(a) = ηA(a

′).

A state A[d1:=a1,... ,dn:=an] is called persistent if the state is a persistent extension of A. The
intuition is that a persistent state A[d1:=a1,... ,dn:=an] defines the value of the contents function
A(!si) for di ∈ A(ref(si)) as ai for every i = 1, . . . , n while the interpretation of all other
symbols, including the interpretation of the sorts, in A[d1:=a1,... ,dn:=an] is, up to isomorphism,
the same as in A.

A method is either a create method, a delete method, or a transformation. A create methods
increases the domain of the contents functions, a delete method decreases the domain, and a
transformation changes the value of the contents functions.

A transformation method m of type w, p ∈ S∗ is written as m : ref(w); p where ref(w) is
an abbreviation for ref(s1), . . . , ref(sn) if w = s1, . . . , sn. A method definition for method
m is a set of rules

u =e= v → m(∆1, . . . ,∆n, t1, . . . , tm) := r1, . . . , rn

where u and v are terms of the same sort, ∆i is either a constant or a variable of sort ref(si),
ti a term of sort pj, and ri a term of sort si for every i = 1, . . . , n, j = 1, . . . , m, and
p = p1 . . . pm.

For a given model A of BaseSPEC and values ai of A(pi) for all i = 1, . . . , m a method
expression of the form m(a1, . . . , am) determines a relation between states ASt and ASt′ as
follows: If ASt has the form

A[d1:=a1,... ,dn:=an,dn+1:=an+1,... ,dn+m′ :=an+m′]

and there exists a variable assignment ρ such that the evaluation of ti with respect to ρ is the
same as ai for i = 1, . . . , n and the guard u =e= v is true with respect to ρ, then ASt′ has
the form A[d1:=b1,... ,dn:=bn,dn+1:=an+1,... ,dn+m′ :=an+m′] where bi is the evaluation of ri with respect
to ρ for i = 1, . . . , n.

A create method is defined similar to a transformation method with the restriction that the
evaluation of ∆i with respect to ρ for every i = 1, . . . , n yields a value of reference sort not
in the domain of the corresponding contents function !si .

A delete method is given by the expression del(d1, . . . , dn) where di is an element of the set
A(ref(si)) for every i = 1, . . . , n. It transforms a state ASt where di is in the domain of the
contents function !si into a state ASt′ where di is not in the domain of the contents function
!si for every i = 1, . . . , n.

12 Introduction

COLD-K In COLD-K [22] the states are many sorted algebras with partial functions and
predicates. The state transitions are specified using Harel’s dynamic logic [35] or given
directly as an expression involving other state transitions.

A class consists of a the definition of a many sorted signature Σ = (S,Ω) with annotations
which sort-, function-, and predicate symbols are variable, together with a set of procedures
of the form

PROC p : s1,..., sn -> MOD f1,...,fm

where p is the procedure name, si are sorts from S, and fj are either sort-, function-, or
predicate symbols which have been marked variable. The intention is that p describes a state
transition with parameters of sort si which is only allowed to change the state components
given after the MOD keyword.

The semantics of a class consists of

• a set of states St together with a function assigning to each state σ in St a Σ-algebra
A(σ),

• an initial state σ0 in St and

• a transition relation Tp for each procedure p.

A transition relation Tp is a relation consisting of tuples (σ, x1, . . . , xn, τ); σ and τ are states
from St, and each xi is an element of the carrier set for sort si of algebra A(σ). The
interpretation of a symbol from Σ may only differ in A(σ) and A(τ) if it occurs after the MOD
keyword in the definition of the procedure.

The possible interpretations of classes are constrained by a set of dynamic logic formulas. In
addition to the usual first-order language, dynamic logic formulas contain assertions of the
form

INIT, [p]ϕ, <p>ϕ and PREV ϕ

and expression of the form PREV t.

INIT is true only in the initial state σ0 with an empty history. INIT can be used to constrain
the initial state. For example, the formula INIT ⇒ ∀i : N. f(i) = 0 ensures that in the initial
state A(σ0) the interpretation of the operation f is the constant function returning 0.

An assertion [p]ϕ is true in a state σ with history (σ0, . . . , σn) if ϕ is true in all possible
successor states τ of σ given by the transition relation Tp with history (σ1, . . . , σn, σ). An
assertion <p> is true in a state σ with history (σ0, . . . , σn) if there exists a successor state
τ given by the transition relation T such that ϕ is true with history (σ1, . . . , σn, σ). The
assertion PREV ϕ is true in a state σ with history (σ0, . . . , σn−1, σn) if ϕ is true in σn with
history (σ0, . . . , σn−1). The evaluation of an expression PREV t in a state σ with history
(σ1, . . . , σn) is the evaluation of t in A(σn). Any other formulas ϕ not containing any of the
above assertions is true in a state σ with history (σ1, . . . , σn) if ϕ is true in A(σ).

1.3 Related Work 13

Usually the specification of a procedure follows a certain pattern. First, one defines the
conditions pre under which a procedure proc has a successor state. This is done by a formula
of the form pre ⇒ <proc>true. Then the effect of proc on the state is given by a formula
of the form [proc]post , which states that after any state transition associated with proc is
performed the formula post holds. The first formula is a liveness property and the second a
safety property.

State components not mentioned in the MOD clause of a procedure do not change by the state
transition associated to that procedure. Note that for variable state components that are
functions it does not suffice to give the new result value for an argument value as in the
ASM approach by Gurevich; instead, one also has to state that the function applied to the
other values yield the same results as in the previous state. That is, to specify a procedure
proc(p, x) intended to change the function f at value p to yield f(p) = x; but otherwise
remaining the same, one has to write [proc(p, x)]f(p) = x ∧ ∀i. (i 6= p ⇒ f(i) = PREV f(i)).

Equational Dynamic Logic In Wieringa [59, 60] Equational Dynamic Logic is defined
as a specification language for dynamic objects in the context of object oriented databases.

The environment of base types and sets for object identifiers is provided by the initial algebra
A of a conditional equational specification SpAdt. To define the set of possible states of an
object system, an enrichment SpStat of SpAdt by attribute functions and class invariants is
given. No new sorts are allowed. Attribute functions are operations having a sort of object
identifiers as their first argument. The set of possible states, or possible worlds, are all
extensions of A satisfying SpStat.

Transformations are modeled as terms of a special sort Event and are called events. The sort
Event together with operations of sort Event are given by a conservative extension SpEvent

of SpAdt. An algebra E satisfying SpEvent and having A as SpAdt-reduct is chosen as a model
for all events. Terms over SpEvent of sort Event denote (non-deterministic) functions on the
set of possible worlds defined by SpStat and A such that terms evaluating to the same value
in E are the same function on the possible worlds.

The interpretation of elements of sort Event as functions on possible worlds is constraint by
the use of dynamic equational logic. These are formulas requiring certain properties to hold
after performing a certain event. For example, the formula

age(p) = a ⇒ [inc Age(p)]age(p) = a+ 1

restricts the interpretation of the event inc Age(p) in such a way that if age(p) = a holds in
a state C, then age(p) = a+ 1 must hold in any of the possible successor states C given by
inc Age(p).

A problem with these kind of specifications is that the semantics of the event inc Age only
ensures that in the successor state age(p) = a + 1 holds, but it does not say anything
about age(q) for object identifiers q different from p, and similar it is not ensured that
attr(p) = a ⇒ [inc Age(p)]attr(p) = a for an attribute attr different from age.

2 Some Category Theory

The framework of institutions and the main results of this paper are formulated using category
theory. In the following chapter we shall summarize the results from category theory needed
in the rest of thesis. First we introduce categories, functors, and natural transformations and
give some examples. Then limits and colimits are defined and their construction is shown in
the categories Set and Cat. After that, adjunctions and indexed categories are presented.
For a more thorough treatment of category theory see the books of Mac Lane [43], Barr and
Wells [5], or Adamek, Herrlich and Strecker [2]. The material about indexed categories is
mainly from Tarlecki, Burstall and Goguen [58].

2.1 Categories, Functors and Natural Transformations

A category C consists of a collection of objects and a collection of arrows also calledmorphisms.
Each arrow f of a category C has associated two objects in C: the domain, dom(f), and the
codomain of f , cod(f). The composition g ◦ f of two arrows f and g of C is defined if the
codomain of f is the same object as the domain of g and yields again an arrow in C with
domain the domain of f and codomain the codomain of g. Composition is associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f,

and for each object c there exists an arrow idc, the identity on c, with domain and codomain
being c such that for all arrows f with domain c, and g with codomain c:

idc ◦ f = f and g ◦ idc = g.

For an arrow f with domain c and codomain d we shall use the function notation and write
f : c → d. We shall also use the diagrammatic notation f ; g for the composition of two
arrows f : c → c′ and g : c′ → c instead of g ◦ f .

An arrow f : c → c′ is an isomorphism if there exists an arrow f−1 : c′ → c, the inverse of
f , such that f ; f−1 = idc and f−1; f = idc′.

A discrete category is a category where all arrows are identities. Any set can be regarded
as a discrete category; the objects of the category are the elements of the set and the only
arrows are the identities ide : e → e for each element e in the set.

A subcategory D of C is a category such that the objects and arrows of D are included in
the objects and arrows of C. We write D ⊆ C to denote that D is a subcategory of C. A
full subcategory D of C is a subcategory of C such that for any two objects c and c′ from D:
if f : c → c′ is an arrow in C then f is an arrow in D.

16 Some Category Theory

Examples of categories are:

0 the empty category with no objects and arrows,

1 the category with one object and its identity as arrow,

2 the category with two objects 1 and 2 and just one arrow f : 1 → 2 not the identity,

↓↓ the category with two objects 1 and 2 and two arrows f : 1 → 2 and g : 1 → 2 not the
identity,

V the category with three objects 0, 1 and 2 and two arrows f : 0 → 1 and g : 0 → 2 not
the identity,

Kn the discrete category with objects {1, . . . , n},

Set the category having sets as objects and functions between sets as morphisms,

Grp the category having as objects groups and as morphisms group homomorphisms.

The opposite category Cop of C has as objects the objects of C and as morphisms f op : c′ → c
for every morphism f : c → c′ in C. The composition of arrows f op; gop in Cop is defined as
(g; f)op. Note that (Cop)op = C.

Sometimes it is convenient to depict a category C as a graph with nodes the objects of C
and edges the arrows of C. In general, the identity arrows and all arrows composed from
other arrows are not shown. For example, the category V is depicted as

1 2

0
f

^^❂❂❂❂❂❂❂ g

@@✁✁✁✁✁✁✁

A category C is freely generated by a graph if the objects of C are the nodes of the graph
and the arrows are the reflexive and transitive closure of the edges of the graph.

A (covariant) functor F : C → D is a pair of functions from the collection of objects of C
to the collection of objects of D and from the collection of arrows of C to the collection of
arrows of D such that

1. if f : c → d then F (f) : F (c) → F (d),

2. F (f ◦ g) = F (f) ◦ F (g),

3. F (idc) = idF (c).

Functors preserve isomorphisms. Consider a functor F : C → D and an isomorphism f :
c → c′ in c′ then F (f) is an isomorphism with inverse F (f)−1 = F (f−1) because

F (f);F (f)−1 = F (f);F (f−1) = F (f ; f−1) = F (idc) = idF (c)

and similar for F (f)−1;F (f) = idF (c′).

2.1 Categories, Functors and Natural Transformations 17

The composition of a functor G : D → D′ with a functor F : C → D is the composition of
their functions on objects and their functions on arrows:

(G ◦ F)(c) = G(F (c)) for all c ∈ C and

(G ◦ F)(f) = G(F (f)) for all f : c → c′ ∈ C.

A contravariant functor F from C to D maps objects in C to objects in D and arrows
f : c → c′ in C to arrows F (f) : F (c′) → F (c) respecting the identities and the composition
of arrows, that is, F (idc) = idF (c) and F (f ; g) = F (g);F (f). A contravariant functor F
from C to D can be either regarded as a covariant functor from Cop to D or as a covariant
functor from C to Dop , whatever is convenient. The composition of a contravariant functor
G from D to D′ with a contravariant functor F from C to D yields a covariant functor F ;G
from C to D′, and the composition of a contravariant functor G : D → D′ with a covariant
functor F : C → D (and vice versa) yields a contravariant functor F ;G from C to D′.

The category Cat has as objects categories and as arrows functors. The identity morphisms
are functors IdC which are the identity on objects and on arrows from C; the composition of
two functors is the composition of the functions on objects and on arrows.

The category FCat is the full subcategory of Cat having as objects only finite categories,
that is, categories with a finite set of objects and arrows.

In this thesis we use a naive approach to category theory in that we assume that Cat is
large enough to hold all categories of interest, ignoring the foundational problem that the
category Cat cannot be an object of itself and thus cannot be the category of all categories.
An overview of these problems and their solutions can be found at pages 21ff of Mac Lane’s
book [43].

The opposite to a functor F : C → D is the functor F op : Cop → Dop with F op(c) = F (c)
and F op(f op : c′ → c) = F (f : c → c′)op . Note that (F op)op = F . Thus op is a functor from
Cat to Cat mapping categories to their opposite categories and functors to their opposite
functor.

Given two functors F and G from C to D. A natural transformation µ : F ⇒ G is a family of
arrows µc : F (c) → G(c) in D such that for any arrow f : c → c′ in C the following diagram
commutes:

F (c)
F (f) //

µc

��

F (c′)

µc′

��
G(c)

G(f)
// G(c′)

Let F be a functor from D to D′ and µ a natural transformation from G to H , where G and
H are functors from C to D. The composition of µ with F is the natural transformation
from G;F to H ;F defined by:

(µ;F)c = F (µc).

18 Some Category Theory

Similarly, let F ′ be a functor from C ′ to C then the natural transformation F ′;µ from F ′;G
to F ′;H is defined by:

(F ′;µ)c′ = µF ′(c′)

Two functors F and G from C to D are natural isomorphic if there exists a natural trans-
formation µ : F ⇒ G such that µc : F (c) → G(c) is an isomorphism for each c ∈ C. Note
that the family of morphisms (µc)

−1 for each c ∈ C yields again a natural transformation
µ−1 : G ⇒ F .

Given two categories C andD, the objects of the functor categoryDC are functors F : C → D
and the morphisms are natural transformations.

The identity in DC for a functor F : C → D is the natural transformation idF : F ⇒ F
given by (idF)c = idF (c).

The composition of two natural transformations µ : F ⇒ G and ν : G ⇒ H is defined by
(µ; ν)c = µc; νc.

2.2 Colimits

An object c of a category C is an initial object of C if there exists for all objects d in C a
unique arrow h : c → d in C. A category may have no, one or several initial objects, which,
in the latter case, are all isomorphic.

Note that if c is an initial object then the identity is the unique arrow from c to c.

The initial object of Set is the empty set and the initial object of Cat is the category 0
with no objects and no arrows.

For categories C and J the diagonal functor ∆ : C → CJ maps an object c of C to the
constant functor ∆c : J → C given by

∆c(i) = c and ∆c(f : i → j) = idc

and an arrow g : c → c′ to the constant natural transformation ∆g : ∆c ⇒ ∆c′ given by
(∆g)i = g.

Definition 2.1 (Colimit) Given a functor F : J → C. The colimit of F consists of a
pair (ιF ,

∐

J F) where
∐

J F is an object of C and ιF is a natural transformation ιF : F ⇒
∆
∐

J F such that the following universal property is satisfied: For any object c and natural
transformation µ : F ⇒ ∆c from C there exists a unique arrow hµ :

∐

J F → c such that the
following diagram commutes for each i in J :

∐

J F
hµ // c

F (i)

ιFi

OO

µi

==⑤⑤⑤⑤⑤⑤⑤⑤⑤

2.2 Colimits 19

We call the ιFi co-cone morphisms from F (i) into
∐

J F and J the shape of F . Usually, we
will omit J in

∐

J F and write
∐

F instead.

Note that the colimit object is only unique up to isomorphism.

The initial object of a category C is the colimit object
∐

F of the unique functor F : 0 → C.
The co-cone morphisms are given by the unique natural transformation from F to ∆(

∐

F).
Since there exists for all objects c from C a unique natural transformation µ from F to ∆c,
the universal property of

∐

F guarantees the existence of a unique morphism hµ :
∐

F → c.

Let F and G be functors from J to C and µ a natural transformation from F to G. We write
∐

µ for the unique morphism from
∐

F to
∐

G given by the universal property of
∐

F and
the natural transformation ν from F to ∆(

∐

G) defined by νi = µi; ι
G
i .

∐

F
∐

µ //
∐

G

F (i) µi

//

ιFi

OO

νi

<<②
②

②
②

G(i)

ιGi

OO

Note that if G is ∆c then
∐

ν is the unique morphism given by the universal property of
∐

F and ν because
∐

(∆c) = c:

∐

F
∐

ν // c

F (i) νi
//

ιFi

OO

νi

>>⑦
⑦

⑦
⑦

⑦

c

Definition 2.2 (Cocomplete) A category C is (finitely) cocomplete if any (finite) functor
F : J → C has a colimit for (finite) categories J . A category is finite its collection of objects
and arrows are finite.

Fact 2.3 The categories Set and Cat are cocomplete.

It is well known that the categories Set and Cat are cocomplete. In Set a colimit of a
functor F from J to Set is the set {(i, a) | a ∈ F (i)}/≡. The relation ≡ is the smallest
equivalence relation such that (i, a) ≡ (j, b) if there exists f : i → j in J with F (f)(a) = b.

The co-cone morphisms ιFi from F (i) to the colimit of F are defined by ιFi (a) = [(i, a)]≡.

The construction of the colimit category of F : J → Cat is similar to the construction of
the colimit in Set. The objects of

∐

F are the equivalence classes of the relation ≡. The
relation ≡ is the smallest relation such that (i, ci) ≡ (j, cj) if there exists f : i → j in J with
F (f)(ci) = cj for objects ci ∈ F (i), cj ∈ F (j), and i, j ∈ J .

20 Some Category Theory

Similarly, the collection of arrows of
∐

F are the equivalence classes of the smallest equiva-
lence relation satisfying (i, gi : ci → c′i) S (j, gj : cj → c′j) if there exists f : i → j in J with
F (f)(gi) = gj.

Note that the category FCat of finite categories is only finitely cocomplete since, for example,
the colimit of the functor F from a discrete category J to Cat mapping each i ∈ J to the
category 1 is the discrete category with objects pairs (i, 1) for each i ∈ J . This category is
infinite if J is infinite.

Fact 2.4 The functor category DC is (finitely) cocomplete if D is.

Proof. Let F be a functor from J to DC. Define the family of functors Fc : J → D by
Fc(i) = F (i)(c) and Fc(f) = F (f)(c) for objects i and morphisms f : i → j in J . The colimit
∐

F is a functor from C to D given by (
∐

F)(c) =
∐

Fc and (
∐

F)(g : c → c′) =
∐

µ where
µ is the natural transformation from Fc to ∆(

∐

Fc′) defined by µi = F (i)(g) for each i ∈ J .
✷

In particular, the initial object in DC is the functor mapping every object in C to the initial
object in D and every morphism to the identity on the initial object.

In case where F is a functor from a discrete category {1, 2} to C, the colimit
∐

F is called
the coproduct F (1) ⊎ F (2) of F (1) and F (2). The disjoint union of two sets S1 and S2,

S1 ⊎ S2 = {(1, s1) | s1 ∈ S1} ∪ {(2, s2) | s2 ∈ S2},

is a coproduct of S1 and S2 with the co-cone morphisms ιi : Si → S1 ⊎ S2 being defined by
ιi(s) = (i, s) for all s in Si and i ∈ {1, 2}.

The coproduct of two categories C1 and C2 in Cat is the disjoint union of their collection of
objects and the disjoint union of their collection of arrows.

The notion of coproducts can be extended to functors of the form F : Kn → C for arbitrary
n. We may write F (1) ⊎ · · · ⊎ F (n) instead of

∐

Kn
F .

Definition 2.5 (Coequalizer) A coequalizer is the colimit of a functor F from ↓↓ to C.

This means that for any object c and arrow h : F (2) → c in C with F (f); h = F (g); h there
exists a unique arrow h′ from

∐

F to c such that ι2; h
′ = h:

F (1)
F (f) //

F (g)
// F (2)

ι2 //

h
##❍

❍❍
❍❍

❍❍
❍❍

∐

F

∃1h′

��✤
✤
✤

c

The coequalizer of two functions f1, f2 : S1 → S2 in Set is given by the quotient S2/≡ where
≡ is the smallest equivalence relation generated by the relation

{(s, s′) | ∃s1 ∈ S1 f1(s1) = s and f2(s1) = s′}.

2.2 Colimits 21

The co-cone morphism ι2 maps s2 ∈ S2 to [s2]≡ and ι1 is f1; ι2, which is the same as f2; ι2.

The collection of objects of the coequalizer in Cat of two functors F1, F2 : C → D is the
coequalizer of the collection of objects of C and D, and the collection of arrows of the
coequalizer is the coequalizer of the collection of arrows of C and D.

Definition 2.6 (Pushout) A pushout is the colimit of a functor F from V to C.

For any object c in C and pair of arrows µ1 : F (1) → c and µ2 : F (2) → c such that
F (g);µ1 = F (f);µ2 there exists a unique arrow hµ :

∐

F → c such that ι1; hµ = µ1 and
ι2; hµ = µ2:

c

∐

F

hµ

OO

F (1)

ι1 ;;①
①

①
①

µ1

DD✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠
F (2)

ι2cc❋
❋
❋
❋

µ2

ZZ✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺✺

F (0)
F (f)

cc❋❋❋❋❋❋❋❋ F (g)

;;①①①①①①①①

ι0

OO✤
✤
✤
✤
✤
✤
✤

For the pushout of a functor F : V → C we may write F (1) +(F (f),F (g)) F (2). We may write
F (1) +F (0) F (2) if F (f) and F (g) are “canonic”, for example, in Set this means that F (f)
and F (g) are the inclusions of F (0) into F (1) and F (g), respectively.

Pushouts can be constructed by first taking the coproduct F (1)⊎F (2) and then the coequal-
izer of F (f); ι1 and F (g); ι2

∐

F

F (1) ⊎ F (2)

ι

OO

F (1)

ι1

88qqqqqqqqqq

ιF1

AA✄
✄

✄
✄

✄
✄

✄
✄

✄

F (2)

ι2

ff▼▼▼▼▼▼▼▼▼▼

ιF2

]]❀
❀
❀
❀
❀
❀
❀
❀
❀

F (0)
F (f)

ff▼▼▼▼▼▼▼▼▼▼ F (g)

88qqqqqqqqqq

In Set the pushout is (F (1) ⊎ F (2))/≡ with ≡ being the smallest equivalence relation gen-
erated by

{((1, s1), (2, s2)) | ∃s0 ∈ F (0) F (f)(s0) = s1 and F (g)(s0) = s2}

The co-cone morphisms are ιi(si) = [(i, si)]≡ for i ∈ {1, 2} and

ι0(s0) = [(1, F (f)(s0))]≡ = [(2, F (g(s1)))]≡.

22 Some Category Theory

Fact 2.7 A category is cocomplete if it has initial objects and pushouts or initial objects,
coequalizer and all coproducts. A category C has all coproducts if every functor from a discrete
category to C has a colimit.

This fact is useful since it allows to show that a category is cocomplete by exhibiting initial
objects and the construction of pushouts.

A proof of Fact 2.7 can be found, for example, in the book by Mac Lane [43]. Above we
have seen how to construct pushouts in terms of coproducts and coequalizers. Conversly,
coproducts F (1) ⊎ F (2) can be expressed by pushouts F (1) +⊥ F (2) where ⊥ is the initial
object of the category.

Definition 2.8 (Preservation of Colimits) The functor G : C → D preserves colim-
its if for any functor F : J → C for which the colimit (ιF ,

∐

F) exists, (G(ιF), G(
∐

F)) is a
colimit of the functor F ;G.

The next fact is a consequence of Fact 2.7.

Fact 2.9 Let C be cocomplete then a functor F from C to D preserves colimits if it preserves
initial objects and pushouts, or if it preserves initial objects, all coproducts and coequalizers.

It is important that C is cocomplete to ensure that the colimit of a functor F : J → C can
be decomposed in initial objects and pushouts, or initial objects, coproducts and coequalizer.
If C is not cocomplete then the corresponding diagrams may not have colimits and thus one
cannot use the preservation of initial objects etc. to construct the colimit in D.

Definition 2.10 (Creation of Colimits) A functor G : C → D creates colimits if for
any functor F : J → C for which the colimit (ιF ;G,

∐

(F ;G)) of F ;G exists there exists a
colimit (ιF ,

∐

F) of F such that

G(
∐

F) =
∐

(F ;G) and ιF ;G = ιF ;G.

It is easy to see that if F : C → C ′ and G : C ′ → D both preserve colimits, so does the
composition F ;G, and similar for creation of colimits.

Fact 2.11 If a functor G : C → D creates colimits and D is cocomplete then C is cocom-
plete.

Proof. Consider a functor F : J → C. Since D is cocomplete, the colimit of F ;G always
exists and therefore the colimit of F exists since G creates colimits. ✷

2.3 Limits

A concept dual to that of colimits is the concept of limits. If we reverse the direction of all
arrows in the definition of colimits, we get the definition of limits.

2.3 Limits 23

Definition 2.12 (Limit) Given a functor F : J → C. The limit of F consists of a pair
(πF ,

∏

J F) where
∏

J F is an object of C and πF a natural transformation πF : ∆(
∏

J F) ⇒
F such that for any object c and natural transformation µ : ∆c ⇒ F from C there exists
a unique arrow hµ : c →

∏

J F such that hµ; π
F
i = µi for all i ∈ J , that is, the following

diagram commutes for all i ∈ J :

∏

J F

πF
i

��

c
hµoo

µi

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

F (i)

We call the morphisms πF
i the cone morphisms of the limit of F .

As with colimits, limits are only unique up to isomorphism.

A terminal object c of a category C is an object of C such that for all objects d in C there
exists a unique arrow h : d → c in C. The concept of terminal objects is dual to that of
initial objects. As with initial objects, terminal objects are only unique up to isomorphism.
The terminal object is the limit of the unique functor F : 0 → C.

Any set with one element is a terminal object in Set and any category with one object and
one arrow, the identity, is a terminal object in Cat. In particular the category 1 is a terminal
object in Cat.

We can now formally establish the duality between limits and colimits. Consider a functor
F : J → C with colimit (ιF ,

∐

F) then ((ιF)op ,
∐

F) is a limit of the functor F op : Jop → Cop .
Similarly, if (πF ,

∏

F) is a limit of F then ((πF)op ,
∏

F) is a colimit of F op .

Given two functors F and G from C to D such that both F and G have a limit. Let µ be
a natural transformation from F to G then

∏

µ denotes the unique morphism from
∏

F to
∏

G given by the limit property of
∏

G with respect to the natural transformation ν = πF ;µ.

∏

F

πF
i

��

∏
µ //

νi ""❊
❊

❊
❊

∏

G

πG
i

��
F (i) µi

// G(i)

The concept dual to that of coproducts is that of products. In case where F is a functor from
the discrete category {1, 2} to C, the limit of F is called the product F (1) × F (2) of F (1)
and F (2). The cartesian product of two sets S1 and S2 is a product of S1 and S2 in Set:

S1 × S2 = {(s1, s2) | s1 ∈ S1 and s2 ∈ S2}

The cone morphisms πi : S1 × S2 → Si are defined by πi((s1, s2)) = si for all si in Si and
i ∈ {1, 2}.

24 Some Category Theory

The product C1 ×C2 of two categories C1 and C2 is the cartesian product of their collection
of objects and arrows. Given a pair of arrows f : c1 → c′1 in C1 and g : c2 → c′2 in C2 then
(f, g) : (c1, c2) → (c′1, c

′
2) is an arrow in C1 × C2.

As with coproducts, we write F (1)× . . .× F (n) for the limit of a functor F : Kn → C.

Definition 2.13 (Equalizer) An equalizer is the limit of a functor F from ↓↓op to C.

This means that for any object c and arrow h : c → F (2) in C, with h;F (f) = h;F (g), there
exists a unique arrow h′ from c to

∏

F such that h′; π2 = h.

F (1) F (2)
F (f)
oo

F (g)oo ∏

F
π2oo

c
h

cc❍❍❍❍❍❍❍❍❍
∃1h′

OO✤
✤
✤

The equalizer of two functions f1, f2 : S1 → S2 in Set is the set

{s ∈ S2 | f1(s) = f2(s)}

with π2(s) = s as the cone morphism.

The equalizer of two functors F1, F2 : C1 → C2 in Cat is the subcategory of C2 with objects
c from C1 such that F1(c) = F2(c) and morphisms f : c → c′ such that F1(f) = F2(f).

Definition 2.14 (Pullback) A pullback is the limit of a functor F : Vop → C.

If µ1 : c → F (1) and µ2 : c → F (2) are two arrows in C with µ1;F (f) = µ2;F (g) then there
exists a unique h : c →

∏

F with µ1 = h; π1 and µ2 = h; π2.

c

µ1

��✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠✠
✠

µ2

��✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺

h
��

∏

F

π1{{①
①
①
①

π2 ##❋
❋

❋
❋

F (1)

F (f) ##❋
❋❋

❋❋
❋❋

❋
F (2)

F (g){{①①
①①
①①
①①

F (0)

For the pullback of a functor F : Vop → C we may write F (1) ×(F (f),F (g)) F (2) or, if F (f)
and F (g) are “canonic”, for example, inclusions in Set, we may write F (1)×F (0) F (2).

In Set the pullback is the set

{(s1, s2) ∈ F (1)× F (2) | F (f)(s1) = F (g)(s2)}

2.3 Limits 25

with cone morphisms πi((s1, s2)) = si for i ∈ {1, 2} and

π0((s1, s2)) = F (f(s1)) = F (g(s2))

The pullback in Cat is the subcategory of F (1)× F (2) with objects

{(s1, s2) ∈ F (1)× F (2) | F (f)(s1) = F (g)(s2)}

and morphisms (f, g) : (c1, c2) → (c′1, c
′
2) such that F (f)(f) = F (g)(g).

Definition 2.15 (Complete) A category C is (finitely) complete if every (finite) functor
F : J → C has a limit.

Fact 2.16 A category is complete if it has terminal objects and pullbacks or terminal objects,
equalizers and all products.

A category C has all products if the limit of every functor from a discrete category to C
exists.

Fact 2.17 The categories Set and Cat are complete and the category FCat is finitely
complete.

We have already shown that Set and Cat have terminal objects and pullbacks. However,
to give a feeling of limits in Set, we give one possible construction for them.

The limit of a functor F : J → Set is the set

{(m1, . . . , mi, . . .) | mi ∈ F (i), i ∈ J, F (f)(mi) = mj, f : i → j ∈ J}

with cone morphisms πF
i , mapping (m1, . . . , mi, . . .) to mi.

Fact 2.18 The functor category CD is complete if C is complete.

Proof. For a functor F : J → CD, the limit is the following functor
∏

F : D → C defined
by

(
∏

F)(d) =
∏

Fd,

where Fd is a functor from J to C defined as Fd(i) = F (i)(d) and Fd(f) = F (f)(d) for objects
i and morphism f : i → j in J .

Let µ be a natural transformation from ∆G to F . Define the natural transformation hµ :
G ⇒

∏

F with the help of the unique morphisms hµd
: G(d) →

∏

Fd given by the universal
property of

∏

Fd and µd : ∆(G(d)) ⇒
∏

Fd, defined by (µd)i = (µi)d. ✷

Theorem 2.19 Given two natural isomorphic functors G and H from J to C then G has a
(co)limit if and only if H has a (co)limit.

26 Some Category Theory

Proof. Let µ : G ⇒ H be the natural isomorphism from G to H with inverse µ−1 : H ⇒ G.
Let c be a colimit of G and ιG : G ⇒ ∆c the co-cone morphisms. Then c is a colimit of H
with co-cone morphisms ιH = µ−1; ιG.

Given a natural transformation ν : H ⇒ ∆c′ then ν̄ = µ; ν is a natural transformation from
G to ∆c′ and since (ιG, c) is a colimit of G, there exists a unique homomorphism h : c → c′

with ιGi ; h = ν̄i for all i ∈ J . We have to show that also ιHi ; h = νi for all i ∈ J holds. Let i
be an object of J then

ιHi ; h = µ−1
i ; ιG; h | ιHi = µ−1

i ; ιGi

= µ−1
i ; ν̄i | ιGi ; h = ν̄i

= µ−1
i ;µi; νi | ν̄i = µi; νi

= νi.

The proof for limits is analog. ✷

Theorem 2.20 Let G and H be two natural isomorphic functors from C to D then G
preserves (co)limits if and only if H preserves (co)limits.

Proof. Assume that G preserves colimits. Given a functor F : J → C with colimit (ιF , c)
then (G; ιF , G(c)) is a colimit of F ;G. Since G and H are natural isomorphic with isomor-
phism µ : G ⇒ H , so are F ;G and F ;H with isomorphism F ;µ and thus G(c) is a colimit
of F ;H . Because G(c) is isomorphic to H(c), H(c) is also a colimit of F ;H with co-cone
morphisms ιF ;G;µc.

The proof for limits is analog. ✷

2.4 Adjoints

Given two categories C and D. Two functors F : C → D and U : D → C form an adjunction
if there is a bijection ϕ between the morphisms from c to U(d) and the morphisms from F (c)
to d for each c ∈ C and d ∈ D:

c
f // U(d)

F (c)
ϕ(f) // d

.

An example of an adjunction in the domain of algebraic specifications is the free term functor,
which, given a signature Σ = (S,Ω), constructs the free term algebra TΣ(X) of an S-indexed
family of sets X , together with the forgetful functor that maps a Σ-algebra to its family of
carrier sets (cf. Section 3.1).

Let C be the category of S-indexed families of sets SetS and D the category Alg(Σ) of
Σ-algebras. The functor U takes a Σ-algebra A and yields the S-indexed family of carrier

2.4 Adjoints 27

sets of A. The functor F takes an S-indexed family of carrier sets X : S → Set and returns
the free term algebra TΣ(X) over X . The free term algebra has as carrier sets the smallest
family of sets such that

• X(s) ⊆ TΣ(X)(s) for s ∈ S and

• ω(t1, . . . , tn) ∈ TΣ(X)(s) for all ω ∈ Ω(s1, . . . , sn, s), ti ∈ TΣ(X)(si), s in S and si in
S for all 1 ≤ i ≤ n.

For operations ω in Ω(s1, .., sn, s) we define

TΣ(X)(ω)(t1, . . . , tn) = ω(t1, . . . , tn)

for each ti ∈ TΣ(si) and 1 ≤ i ≤ n.

Any S-indexed family of functions h between X and the carrier sets of a Σ-algebra B extends
uniquely to a homomorphism ϕ(h) from TΣ(X) to B by

• ϕ(h)s(x) = h(x) for x ∈ X(s) and

• ϕ(h)s(ω(t1, . . . , tn)) = B(ω)(ϕ(h)s1(t1), . . . , ϕ(h)sn(tn))
for ω ∈ Ω(s1, . . . , sn, s), ti ∈ TΣ(X)si and 1 ≤ i ≤ n.

On the other hand, if g is a homomorphism between TΣ(X) and a Σ-algebra B then a family
of functions ϕ−1(g) is given by ϕ−1(g)s(x) = gs(x) for all s ∈ S and x ∈ X(s).

Thus we have a bijection between natural transformations h : X ⇒ U(B), which are the
morphisms in SetS and homomorphisms ϕ(h) : TΣ(X) → B:

X
h +3 U(B)

TΣ(X)
ϕ(h) // B

.

Definition 2.21 (Adjunction) An adjunction from a category C to a category D is a
pair of functors F : C → D and U : D → C such that there exists a bijection ϕ between the
collection of arrows from c to U(d) in C and the collection of arrows from F (c) to d in D for
each object c ∈ C and d ∈ D, which is natural in c and d. The naturality conditions require
that

c

f1

��

g1 // U(d)

U(f2)
��

c′ g2
// U(d′)

commutes if and only if

F (c)

F (f1)
��

ϕ(g1) // d

f2

��
F (c′)

ϕ(g2)
// d′

commutes for morphisms g1, g2 and f1 in C and f2 in D.

An alternative definition of an adjunction is:

28 Some Category Theory

Definition 2.22 Let U be a functor from D to C then the functor F : C → D is left adjoint
for U , if there exists a natural transformation η : IdC ⇒ F ;U such that for every object d ∈ D
and morphism f : c → U(d) in C there exists a unique morphism f̃ : F (c) → d such that the
following diagram commutes:

c
ηc //

f ""❋
❋❋

❋❋
❋❋

❋❋
❋ U(F (c))

U(f̃)
��

U(d)

Similarly, let F be a functor from C to D then the functor U : D → C is right adjoint for F
if there exists a natural transformation ǫ : U ;F ⇒ IdD such that for every object c ∈ C and
arrow g : F (c) → d in D there exists a unique morphism g̃ : c → U(d) such that the following
diagram commutes:

d F (U(d))
ǫdoo

F (c)

g

cc❋❋❋❋❋❋❋❋❋❋
F (g̃)

OO

Given an adjunction (F, U, ϕ) from C to D then F is a left adjoint for U and U is a right
adjoint for F . We call the natural transformations η : IdC ⇒ F ;U the unit and ǫ : U ;F ⇒ IdD
the co-unit of the adjunction.

Theorem 2.23 Given functors F : C → D and U : D → C. The following definitions are
equivalent:

1. (F, U, ϕ) is an adjunction from C to D,

2. F is left adjoint for U and

3. U is right adjoint for F .

Proof. Let (F, U, ϕ) be an adjunction from C to D. Define η : IdC ⇒ F ;U by ηc =
ϕ−1(idF (c)) for every object c ∈ C, and for a given morphism f : c → U(d) let f̃ = ϕ(f).

The naturality of ϕ ensures that η is a natural transformation, that ηc;U(f̃) = f and that f̃
is unique with that property. This makes F a left adjoint for U .

Similarly, define ǫ : U ;F ⇒ IdD by ǫd = ϕ(idU(d)) for every object d in D, and given a
morphism g : F (c) → d in D let g̃ = ϕ−1(g). This makes U a right adjoint for F .

On the other hand, if F is a left adjoint for U , define ϕ(f) = f̃ for every morphism f :
c → U(d). Then naturality of ϕ is given by the uniqueness property of f̃ and the fact
that η̃c : F (c) → F (c) is the identity on F (c). Similarly, if U is right adjoint for F then
ϕ−1(g : F (c) → d) = g̃. ✷

2.5 Indexed Categories 29

Fact 2.24 Let (F, U, ϕ) be an adjunction from C to D and (F ′, U ′, ϕ′) an adjunction from
D to D′. Then (F ;F ′, U ′;U, ϕ;ϕ′) is an adjunction from C to D′.

This fact can be rephrased as follows: the composition F ;F ′ of a left adjoint F for U with a
left adjoint F ′ for U ′ yields a left adjoint for U ′;U and similar for right adjoints.

Theorem 2.25 A functor F preserves colimits if F has a right adjoint U .

Proof. Let (F, U, ϕ) be an adjunction from C to D and G : J → C a functor that has a
colimit (ιG,

∐

G). We want to show that F (
∐

G) is a colimit of G;F with co-cone morphisms
ιG;F . Assume an object d in D and a natural transformation ν : G;F ⇒ ∆d then we define
a natural transformation ν ′ : G ⇒ ∆U(d) by ν ′

i = ϕ−1(νi) for every i ∈ J . Because G has
a colimit, there exists a unique morphism h from

∐

G to U(d) making for each i ∈ J the
following diagram commute:

∐

G h // U(d)

G(i)

ιGi

OO

ν′i=ϕ−1(νi)

<<①①①①①①①①

Then ϕ(h) is a morphism from F (
∐

G) to d and for each i ∈ J the following diagram
commutes because of the naturality of ϕ:

F (
∐

G)
ϕ(h) // U(d)

F (G(i))

F (ιGi)

OO

νi

::ttttttttt

✷

Note that if F has a right adjoint U then F is left adjoint to U . Thus the last theorem is
equivalent to saying that left adjoint functors preserve colimits.

The dual of Theorem 2.25 is the following theorem:

Theorem 2.26 A functor U preserves limits if it has a left adjoint F .

2.5 Indexed Categories

In [58] Tarlecki, Burstall and Goguen develop indexed categories as a tool for theoretical
computer science. An indexed category models in a uniform way a family of categories
indexed by the objects of an index category. The morphisms in the index category generate
additional relations between the component categories.

30 Some Category Theory

An example of an indexed category is the family of the categories of Σ-algebras Alg(Σ) for
each many-sorted signature Σ. The index category is the category of many-sorted signatures
Sig and the component categories are the categories of Σ-algebras Alg(Σ). For each signature
morphism σ : Σ → Σ′ in Sig there exists a functor Alg(σ) : Alg(Σ′) → Alg(Σ), the σ-reduct
(cf. Section 3.1).

Each indexed category has associated a single category given by the disjoint union of the
objects of the component categories plus some additional morphisms. This category is the
flat category associated with an indexed category. Together with a projection functor from
the flat category to the index category, which assigns to each object in the flat category the
index of the category where it originates from, this yields the “fibered category” presented
by the indexed category (cf. Grothendieck [31]).

An indexed category C indexed by a category E is a family of categories Ce for each e ∈ E
and a family of functors Cf from Ce′ to Ce for each morphism f : e → e′ in E such that
Cide is the identity functor IdCe and if f : e → e′ and g : e′ → e′′ are morphisms in E then
Cf ;g = Cg;Cf .

Thus an indexed category C determines a contravariant functor C from E to Cat defined
by C(e) = Ce and C(f) = Cf for each object e and morphism f in E.

Flattening an indexed category C yields the category Flat(C), whose collection of objects
is the disjoint union of the collection of objects of Ce for every e ∈ E. Thus the objects of
Flat(C) are pairs (e, c) where e is an object of E and c is an object of Ce. An arrow from (e, c)
to (e′, c′) in Flat(C) is a pair (f, g) where f : e → e′ is a morphism in E and g : c → Cg(c

′)
is a morphism in Ce. The identity of an object (e, c) in Flat(C) is the pair (ide, idc). The
composition of two arrows (f1, g1) from (e, c) to (e′, c′) and (f2, g2) from (e′, c′) to (e′′, c′′) is
given by (f1; f2, g1;Cf1(g2)).

c
g1 // Cf1(c

′)
Cf1

(g2) // Cf1(Cf2(c
′′))

c′
❴

OO

g2
// Cf2(c

′′)
❴

OO

Flattening the indexed category Alg : Signop → Cat yields the category Flat(Alg). Objects
in Flat(Alg) are pairs (Σ, A) where Σ is a signature and A is a Σ-algebra. Morphisms from
(Σ, A) to (Σ′, A′) in Flat(Alg) are pairs (σ, h) where σ is a signature morphism from Σ to Σ′

and h is a homomorphism from A to A|σ.

Another example of flattening an indexed category is the category of many-sorted signatures
Sig (cf. Section 3.1). The indexed categoryMS is a contravariant functorMS : Setop → Cat.
An object Ω in MSS is an S+ indexed family of operation symbols, that is, an element of
SetS+

. A function σs : S → S ′ induces a function σs from S+ to S ′+ by σs(s1, . . . , sn) =

σs(s1), . . . , σs(sn). Then MSσs is a functor from SetS′+

to SetS+

given by MSσs(Ω
′) = σs; Ω

′,
that is, MSσs(Ω

′)(w) = Ω′(σs(w)) for every w ∈ S+, and MSσs(σΩ) = σs for a natural
transformation σΩ : Ω1 ⇒ Ω2, that is, MSσs(σΩ)w = (σΩ)σs(w) for every w ∈ S+.

2.5 Indexed Categories 31

Then Flat(MS) has as objects pairs (S,Ω) where S is a set and Ω is an S+-indexed family of
operations names. A morphism from (S,Ω) to (S ′,Ω′) in Flat(MS) is a pair (σs, σΩ) where
σs is a function from S to S ′ and σΩ a natural transformation from Ω to MSσs(Ω

′), which is
an S+ indexed family of functions (σΩ)w : Ω(w) → Ω′(σs(w)), mapping operation symbols
of type w in Ω to operations symbols of type σs(w) in Ω′. Thus Flat(MS) is the category of
many-sorted signatures Sig.

Similar to indexed categories one can define indexed functors between indexed categories.
An indexed functor F : C → D with index category E is a family of functors Fe : Ce → De

such the following diagram commutes

Ce

Fe

��

Ce′
Cfoo

Fe′

��
De De′Df

oo

for all morphisms f : e → e′ in E. In other words, F s a natural transformation between the
indexed categories C : Eop → Cat and D : Eop → Cat.

As with indexed categories, we can flatten an indexed functor, which yields the functor
Flat(F) : Flat(C) → Flat(D) given by

• Flat(F)((e, c)) = Fe(c) and

• Flat(F)((f, g)) = (f, Fe(g))

for each object (e, c) and morphism (f, g) : (e, c) → (e′, c′) in Flat(C). Fe(g) is indeed a
morphism from Fe(c) to Cf(Fe′(c

′)) because, by the definition of indexed functors, Fe′ ;Df is
the same as Cf ;Fe.

The limit of a functor F : J → Flat(C) in Flat(C) is a pair (e, c) where e is the limit of the
projection of F to the objects and morphisms in E; this requires E to have limits of shape
J . The object c in Ce is given by the limit of the functor F : J → Ce, which is defined by
constructing for each i ∈ J and F (i) = (ei, ci) an appropriate object ci in Ce. This requires
that Ce has colimits of shape J .

Theorem 2.27 (Tarlecki, Burstall and Goguen [58]) Given an indexed category C with index
the category E. The category Flat(C) has limits of shape J if

• E has limits of shape J and

• the category Ce has limits of shape J for every e ∈ E.

• the functor Cf : Ce′ → Ce preserves limits of shape J for every morphism f : e → e′ in
E.

Proof. Let F be a functor from J to Flat(C). Let F (i) be (ei, ci) where ei ∈ E and ci ∈ Cei

for i ∈ J and let F (f) be (f f : ei → ej , f
g : ci → Cff (cj)) for f : i → j ∈ J .

32 Some Category Theory

To construct the limit (e, c) of F , we first construct the limit of the functor FE : J → E
defined by FE(i) = ei and FE(f) = f f . The limit e of FE exists because E has limits of
shape J .

In the next step we define a functor F : J → Ce by F (i) = C
π
FE
i

(ci) for i ∈ J and F (f) =

C
π
FE
i

(f g) for f : i → j ∈ J .

Note that f g is a morphism from ci to Cff (cj) in Ci and C
π
FE
i

maps f g to a morphism from

C
π
FE
i

(ci) to C
π
FE
i

(Cff (cj)) in Ce. Because we have πFE

i ; f f = πFE

j we get

C
π
FE
i

(Cff (cj)) = C
π
FE
i ;ff (cj) = C

π
FE
j

(cj)

and thus F is well-defined.

Now the limit (e, c) of F is given by the limit e of FE in E and the limit c of F in Ce, which
exists because Ci has limits of shape J for all i ∈ J . The cone morphisms πF

i : (e, c) → (ei, ci)

are given by the pairs (πFE

i , πF
i) for each i ∈ J .

To show that (e, c) is indeed a limit of F , consider a natural transformation µ : ∆(e′, c′) ⇒
(e, c). Then we have to show that there exists a unique morphism h = (hf , hg) from (e′, c′)
such that the following diagram commutes for all i ∈ J :

(e, c)

(π
FE
i ,πF

i)
��

(e′, c′)
(hf ,hg)oo

(µf
i ,µ

g
i)zz✉✉

✉✉
✉✉
✉✉
✉

(ei, ci)

That is, we have to show that the following two diagrams commute for all i ∈ J :

e

π
FE
i

��

e′
hf

oo

µ
f
i��⑦⑦

⑦⑦
⑦⑦
⑦

ei

and

Chf (c)

C
hf

(πF
i)

��

c′
hg
oo

µ
g
i||③③

③③
③③
③③
③

C
µ
f
i
(ci)

The morphism hf : e → e′ with the property hf ; πFE

i = µf
i for all i ∈ J is uniquely given

by the limit property of e with respect to FE and the natural transformation given by the
family of morphisms µf

i : e′ → ei for all i ∈ J .

Now we have to find hg : c′ → Chf (c). Since Cg preserves limits of shape J for all g : e1 → e2
in E, we know that Chf (c) is a limit of the functor F ;Chf . Further, because hf ; πFE

i = µf
i ,

we get

C
µ
f
i
(ci) = C

hf ;π
FE
i

(ci) = Chf (F (i)).

Thus, µg
i : c′ → C

µ
f
i
(ci) for i ∈ J is also a family of morphisms from c′ to Chf (F (i)). Using

the limit property of F ;Chf we get a morphism hg : c′ → Chf (c), unique with the property

2.5 Indexed Categories 33

hg;Chf (πF
i) = µg

i for all i ∈ J :

Chf (c)

C
hf

(πF
i)

��

c′
hg

oo

µ
g
i{{✈✈

✈✈
✈✈
✈✈
✈✈

Chf (F (i))

✷

We can use the last theorem to check if the category of many-sorted signatures has limits of
shape J . To apply the theorem we have to check that Set has limits of shape J and that
SetS+

has limits of shape J . We have seen in the previous sections that Set is complete and
thus has limits for all categories J and that SetS+

has limits of shape J if Set has limits of
shape J .

It remains to show that MSσS
: SetS′+

→ SetS+

preserves limits for every function σS :

S → S ′. Let Ω′ be the limit of the functor F : J → SetS′+

and Ω be the limit of the functor
F ;MSσS

. It suffices if we can show that MSσS
(Ω′) = σS; Ω

′ is the same as Ω.

By the construction of limits in functor categories we get Ω′(w′) =
∏

J Fw′ where Fw′(i) =
F (w′)(i) and Fw′(f) = F (f)w′ for all w′ ∈ S ′+, f : i → j ∈ J and i ∈ J . Further, for each w ∈
S+ we have Ω(w) =

∏

J(F ;MSσS
)w where (F ;MSσS

)w(i) = (F ;MSσS
)(i)(w) = F (i)(σS(w))

and (F ;MSσS
)w(f) = F (f)σS(w) for each f : i → j ∈ J and i ∈ J

Thus for every w ∈ S+ we have

(σS ; Ω
′)(w) = Ω′(σS(w)) =

∏

J

FσS(w) =
∏

J

(F ;MSσS
)w = Ω(w).

As a result we get Sig = Flat(MS) has limits of shape J for all categories J , in other words,
Sig is complete.

Note that the terminal object Σ⊤ in Sig is ({1},Ω⊤) where Ω⊤ : {1}+ → Set maps each
non-empty word over {1} to the one element set. Thus Σ⊤ is a signature with one sort and
infinite many operation symbols, for each possible function type one.

Colimits in Flat(C) can be constructed in a similar way as limits, that is, as colimits of
functors FE : J → E and F : J → Ce. However, there is one problem in defining F . Since
the co-cone morphism ιFE

i is a morphism from ei to e and thus C
ι
FE
i

is a functor from Ce to

Cei, we cannot use C
ι
FE
i

to define F (i). A solution to this problem is to require that each

functor Cf : Ce′ → Ce has a left adjoint Lf : Ce → Ce′ for each f : e → e′ in E.

Note that, because Cf is required to have a left adjoint, Cf preserves limits; however, this
property is not used in the following proof.

Theorem 2.28 (Tarlecki, Burstall and Goguen [58]) Given an indexed category C with index
the category E. The category Flat(C) is cocomplete if

34 Some Category Theory

• E is cocomplete,

• the category Ce is cocomplete for every e ∈ E and

• the functor Cf : Ce′ → Ce has a left adjoint for every morphism f : e → e′ in E.

Proof. Let C be an indexed category from E to Cat and F a functor from J to Flat(C).
Let further F (i) be (ei, ci) where ei ∈ E and ci ∈ Cei for i ∈ J and let F (f : i → j) be
(f f : ei → ej, f

g : ci → Cff (cj)) for f ∈ J .

To construct the colimit (e, c) of F we first construct the colimit of the functor FE : J → E
defined by FE(i) = ei and FE(f) = f f . Since we have assumed that E is cocomplete, the
colimit e of FE with co-cone morphisms ιi : ei → e exists.

Then each ci is translated by the left adjoint of Cιi to an object c̄i of Ce and each morphism
f g : ci → Cff (cj) gives rise to a unique morphism f̄ g from c̄i to c̄j by the universal property
of c̄i. Note that ιi = f f ; ιj because ιi and ιj are co-cone morphism, which implies that Cιi

and Cιj ;Cff are the same. Let ηcj be the unit morphism from cj to Cιj (c̄j) given by the left
adjoint of Cιj . Then, for the morphism f g;Cff (ηcj) from ci to Cff (Cιj (c̄j) = Cιi(c̄j) there
exists a unique morphism f̄ g from c̄i to c̄j such that the following diagram commutes:

ci
ηci //

fg
%%❑❑

❑❑
❑❑

❑❑
❑❑

❑ Cιi(c̄i)

Cιi
(f̄g)

��
Cff (cj)

C
ff

(ηcj)
// Cιi(c̄j)

Thus the functor F : J → Flat(C) gives rise to a functor F̄ : J → Ce by F̄ (i) = c̄i and
F̄ (f) = f̄ g. Then c is the colimit of F̄ , which exists since we have assumed that Ce is
cocomplete. The co-cone morphisms of the colimit of F are the pairs (ιi, ι

F
i) given by the

co-cone morphisms of FE and F̄ where ιFi from ci to Cιi(c) is ηci ;Cιi(ι
F̄
i).

To show that (e, c) is a colimit of F , consider a natural transformation µ : F → ∆(e′, c′).
Then we have to show the existence of a unique morphism h = (hf , hg) from (e, c) to (e′, c′)
such that the following diagram commutes for all i ∈ J :

(e, c)
(hf ,hg)// (e′, c′)

(ei, ci)

(ιi,ιFi)

OO

(µf
i ,µ

g
i)

::✉✉✉✉✉✉✉✉✉

that is, we have to show

e hf
// e′

ei

ιi

OO

µ
f
i

??⑦⑦⑦⑦⑦⑦⑦

and Cιi(c)
Cιi

(hg)
// Cιi(Chf (c′))

ci

ιFi

OO

µ
g
i

77♣♣♣♣♣♣♣♣♣♣♣♣

2.5 Indexed Categories 35

The morphism hf is given unique with the above property by the colimit property of e with
respect to the functor FE and the natural transformation given by the family of functions µf

i

for each i ∈ J .

The morphism hg : c → Chf (c′) is given by colimit property of c with respect to F̄ and the
natural transformation given by µ̃g

i : F̄ (i) → Chf (c′) for each i ∈ J :

c hg
// Chf (c′)

c̄i

ιF̄i

OO

µ̃
g
i

;;①①①①①①①①①

We get µ̃g
i by the left adjoint of Cιi. First note that Cµf (c′) = Cιi(Chf (c′)) because ιi; h

f = µf
i

by the colimit property of e. Since c̄i is a free extension of ci with respect to Cιi , we can
extend a morphism µg

i : ci → Cιi(Chf (c′)) in a unique way to a morphism µ̃g
i : c̄i → Chf (c′)

such that the following diagram commutes:

ci
ηci //

µ
g
i $$❏

❏❏
❏❏

❏❏
❏❏

❏❏ Cιi(c̄i)

Cιi
(µ̃g

i)
��

Cιi(Chf
(c′))

The following diagram is a combination of the last two diagrams where the first diagram is
translated by Cιi :

Cιi(c)
Cιi

(hg)
// Cιi(Chf (c′))

Cιi(c̄i)

Cιi
(ιF̄i)

OO
Cιi

(µ̃g
i)

88qqqqqqqqqq

ci

ηci

OO µ
g
i

@@✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁✁

Note that ιFi is defined as ηci ;Cιi(ι
F̄
i) and thus we get ιFi ;Cιi(h

g) = µg
i , which finishes our

proof. ✷

To show that the category of many-sorted signatures has colimits of shape J , we have to
show that Set has colimits of shape J , that SetS+

has colimits of shape J for each set S and

that each functor MSσs : Set
S′+

→ SetS+

has a left adjoint Lσs : Set
S+

→ SetS′+

. Set is
cocomplete for categories J and SetS+

has colimits of shape J , whenever Set has colimits
of shape J . Thus it remains to show that each functor MSσs has a left adjoint Lσs .

Given a family of operation symbols Ω : S → Set, we define a family of operation symbols
Ω′ : S ′ → Set by letting Ω′(w′) be the disjoint union of all sets Ω(w) such that σs(w) = w′

for all w′ ∈ S ′+. If there is no such w then Ω′(w′) is the empty set. Given a natural

transformation σΩ; Ω1 ⇒ Ω2 in SetS+

then Lσs(σΩ) is a natural transformation from Lσs(Ω1)

36 Some Category Theory

to Lσs(Ω2). Let w
′ be a non-empty word over S ′ and op an operation symbol in Lσs(Ω1)(w

′)
then Lσs(σΩ)w′(op) = (σΩ)w(op) if op ∈ Ω1(w) and σs(w) = w′.

The unit morphism µ : IdΩ ⇒ Lσs is the family of inclusions of Ωw into Lσs(Ω)σs(w) for every
w ∈ S+.

Given a functor F : J → Sig with F (i) = (Si,Ωi) for i ∈ J and F (f) = (σf
s , σ

f
Ω) for

f : i → j in J then the colimit of F is given as (S,Ω) where S is the colimit of FS defined

by FS(i) = Si and FS(f) = σs and Ω is the colimit of the functor F : J → SetS+

defined by
F (f)w(op) = Lσs(f)w(op) for all w ∈ S+ and op ∈ F (i)(w).

3 Institutions

The notion of institutions is an attempt to formalize the informal notion of a logical system
and was developed by Goguen and Burstall [25] as a means to define the semantics of the
specification language Clear [13] independent from a particular logic. Many constructs and
results in the theory of abstract datatypes are independent of the underlying logical system,
and in Chapter 4 we shall give a brief presentation of these constructs and results.

The main aspect of an institution is the notion of satisfaction between formulas and models.
Both, formulas and models are given with respect to a certain vocabulary, called signature.
Signatures are related by signature morphisms and induce a translation from formulas over
one signature to formulas over the other, going in the direction of the signature morphism,
and a translation of models in the reverse direction. We require that the notion of satisfaction
is compatible with these translations; this requirement is called the satisfaction condition.

The notion of institutions does not cover proof theoretic aspects of a logical system like, for
example, a deduction system. To address this problem, for example, Meseguer [44] combines
institutions with entailment systems.

The main construction of this thesis will be the institution RI presented in Section 5.3, which
is parameterized by a another suitable institution I.

Here, we will only recall the definition of institutions; for more details see the article by
Goguen and Burstall [25].

Definition 3.1 (Institution) An institution I = 〈SignI , StrI , SenI , |=
I〉 consists of

• a category of signatures SignI,

• a contravariant functor StrI : Signop

I → Cat assigning to each signature Σ the category
of Σ-structures and to each signature morphism σ : Σ → Σ′ a forgetful functor |σ :
StrI(Σ

′) → StrI(Σ),

• a functor SenI : SignI → Set assigning to each signature Σ the set of Σ-formulas and
to each signature morphism σ : Σ → Σ′ a translation σ of Σ-formulas to Σ′-formulas,
and

• a family of satisfaction relations |=I
Σ ⊆ StrI(Σ) × SenI(Σ) for Σ ∈ SignI indicating

whether a Σ-formula ϕ is valid in a Σ-structure m, written m |=I
Σ ϕ or for short

m |=I ϕ,

such that the satisfaction condition holds: for all signature morphisms σ : Σ → Σ′, formulas

38 Institutions

ϕ ∈ SenI(Σ), and structures m′ ∈ StrI(Σ
′) we have

m′|σ |=I ϕ if and only if m′ |=I σ(ϕ).

For notational convenience we may write M |=I ϕ for a class of Σ-structures and a Σ-formula
instead of ∀m ∈ M.m |=I ϕ, and similar for m |=I Φ and M |=I Φ for a set Φ of Σ-formulas.
We may also write Φ |=I Φ′ for two sets of Σ-formulas Φ and Φ′ to denote that if m |=I Φ
then m |=I Φ′ for all m ∈ StrI(Σ). We shall omit the superscript I if the institution is clear
from the context.

In the following sections we give three examples of institutions. The first section presents
the well-known institution of equational logic EQ. Using the techniques of Goguen and
Burstall [25], we add data– and partitioned-by constraints to EQ and get the institution
EQC.

The last section introduces the institution LSL, which formalizes the logical system under-
lying the Larch Shared Language [34]. The Larch Shared Language will be used in some of
our examples. The main difference of LSL with respect to EQC is that signatures in LSL
contain the sort bool with its usual operations, and that for each sort in the signature we
have the equality as a boolean function. The structures in LSL are those algebras where
these symbols have their usual meaning. This makes it quite convenient to write specifi-
cations in LSL; however, since the sort bool with its operations and the equality can be
specified using equations and constraints, we can use EQC to reason about specifications in
LSL (cf. Theorem 3.42).

Another example of an institution is the institution SET presented in Section 9.1, which
formalizes the logical system underlying the specification language Z [56].

3.1 Equational Logic

To pave the road for the definition of the institution LSL in Section 3.4, we shall first present
the institutions EQ of equational logic and EQC of equational logic with constraints. Signa-
tures in these institutions are many sorted signatures, structures are algebras, and formulas
are equations ∀X s = t. In addition to equations EQC has generating and partitioned-by
constraints as formulas.

The institutions for equational logic and equational logic with data-constraints are already
given in Goguen and Burstall [25]. Adding partitioned-by constraints and the institution
LSL are new.

3.1 Equational Logic 39

Signatures

Definition 3.2 (Many-sorted Signatures) A many sorted signature Σ = (S,Ω) con-
sists of a set S of sorts and a functor Ω : S∗ × S → Set mapping pairs (w, s) to sets
of operation symbols Ω(w, s). We require that for all w ∈ S∗ and s, s′ ∈ S we have
Ω(w, s)∩Ω(w, s′) = {}. For an operation symbol ω ∈ Ω(w, s) we shall write ω : w → s. If w
is the empty string, ω is called a constant of sort s and we write ω : s. A signature is finite
if the set of sorts and the union of all Ω(w, s) is finite.

A signature morphism σ from (S,Ω) to (S ′,Ω′) is a pair of a function σ : S → S ′ and a
natural transformation σ : Ω ⇒ σ̂; Ω′ where σ̂ is the extension of σ : S → S ′ to a function
σ̂ : S∗ × S → S ′∗ × S ′ given by

σ̂((s1 . . . sn), s) = (σ(s1) . . . σ(sn), σ(s)),

that is, σ is an S∗ × S indexed family of functions

σ(w,s) : Ω((w, s)) → Ω(σ̂((w, s))).

We do not require that the sets Ω(w, s) are disjoint. This allows us to overload operation
names, that is, have the same operation symbol with different types. A possible application
is the use of the same symbol + for the addition of natural numbers and for the addition of
integers.

However, to ensure that certain constructions on terms, like the evaluation of terms, are
well-defined, we need that the sets of terms of sort s ∈ S are disjoint. A sufficient criteria
is that the sets Ω(w, s) and Ω(w, s′) are disjoint for all w ∈ S∗ and s, s′ ∈ S (cf. Loeckx et
al. [42]).

Note that in the definition of Ω as a functor from S∗ ×S to Set, S∗ ×S is viewed a discrete
category.

The category Sig has as objects many-sorted signatures and as arrows signature-morphisms.
The category FSig has as objects finite many-sorted signatures and is a full subcategory of
Sig.

The following fact is well-known, for example [19]:

Fact 3.3 The category Sig is cocomplete.

Proof. Let F : J → Sig be a functor with F (i) = (Si,Ωi) and F (f : i → j) = σf :
(Si,Ωi) → (Sj,Ωj) for i and f : i → j in J . In the following we construct the colimit
(Scl ,Ωcl) of F with the co-cone morphisms ιFi . The set Scl is given by the colimit of the functor
FS : J → Set, and Ωcl : S

∗
cl × Scl → Set is the colimit of the functor FΩ : J → SetS∗

cl
×Scl .

FS(i) is Si for objects i of J , and FS(f) is the sort function of σf for arrows f of J .

Let (w, s) be an element of S∗
cl ×Scl , then FΩ(i)(w, s) is the disjoint union of all sets Ωi(wi, si)

with ιFS

i (wi, si) = (w, s) for some (wi, ssi) ∈ S+
i .

40 Institutions

FΩ(f : i → j)(w, s) is the extension of the family of functions σf (wi, si) : Ω((wi, si)) →
Ω(σf ((wi, si))) with ιFS

i ((wi, si)) = (w, s) to a function from FΩ(i)(w, s) to FΩ(j)(w, s).

We have to take the disjoint union because we did not require the Ωi(wi, si) to be disjoint,
and if ιFS

i identifies sorts, then two operators with the same name but different sorts could be
mapped to the same operator. Note that the colimit of FΩ exists since the functor category
SetS∗

cl
×Scl is cocomplete because Set is cocomplete (cf. Fact 2.4).

The sort part of the co-cone morphisms ιFi is given by the co-cone morphism ιFS

i : Si → Scl ,
and the operation part is the composition of the inclusion of Ωi(wi, si) into FΩ(i)(w, s) with

ι
F

w,s
Ω

i for every i in J .

Then the colimit property of (Scl ,Ωcl) is a consequence of the definition of Scl and Ωcl as
colimits of FS and FΩ. ✷

The initial object in Sig is Σ⊥ = ({},Ω⊥) where Ω⊥ is the unique function from {} to Set
because {} is the initial object in Set.

Pushouts (Spo ,Ωpo) for functors

Σ(1) Σ(2)

Σ(0)

σ1

bb❋❋❋❋❋❋❋❋ σ2

<<①①①①①①①①

are given by the following pushouts in Set:

Spo

S1

ι1
>>⑤

⑤
⑤

⑤

S2

ι2
``❇
❇
❇
❇

S0

σ1

aa❇❇❇❇❇❇❇❇ σ2

==⑤⑤⑤⑤⑤⑤⑤⑤

ι0

OO✤
✤
✤
✤
✤
✤
✤

and

Ωpo(w, s)

Ω1(w, s)

ι1(w,s)
88r

r
r

r
r

Ω2(w, s)

ι2(w,s)
ff▲
▲
▲
▲
▲

Ω0(w, s)

σ1(w,s)

ff▲▲▲▲▲▲▲▲▲▲ σ2(w,s)

88rrrrrrrrrr

where Ωi(w, s) is the disjoint union of all Ωi(wi, si) such that ιi(wi, si) = (w, s) for every
(w, s) ∈ S∗

po × Spo , (wi, si) ∈ S∗
i × Si, and i ∈ {0, 1, 2}.

The union of signatures Σ1 ∪ Σ2 where Σi = (Si,Ωi) for i ∈ {1, 2} is the signature (S,Ω)
where S is the union of S1 and S2, and Ω(w, s) = Ω̄1(w, s) ∪ Ω̄2(w, s) for w ∈ S∗ and s ∈ S.

Ω̄i is the extension of Ωi from an S∗
i × Si-indexed family of sets to an S∗ × S-indexed family

of sets and is given by Ω̄i(w, s) = Ωi(w, s) if (w, s) ∈ S∗
i × Si and Ω(w, s) = {} otherwise for

i ∈ {1, 2}.

Note that the union of signatures can be viewed as a pushout of Σ1 and Σ2 with respect to
Σ1∩Σ2 and the inclusions of Σ1∩Σ2 into Σ1 and Σ2, respectively, where Σ1∩Σ2 has as sorts
S = S1 ∩ S2 and as operations Ω(w, s) = Ω1(w, s) ∩ Ω2(w, s) for (w, s) ∈ S∗ × S.

3.1 Equational Logic 41

Note that the colimit of an infinite diagram of signatures, in general, is not a finite signature.
For instance, consider a functor F : J → Sig where J is an infinite, discrete category.
For each i ∈ J , F (i) is the signature ({s}, {ω : s → s}). By the construction of colimits
in Sig the colimit of F is a signature with sorts the set {(i, s) | i ∈ J} and operations
{(i, ω) : (i, s) → (i, s) | i ∈ J}. Since J is infinite, the resulting signature has infinitely many
sorts and operations. Thus, while Sig is cocomplete, FSig is only finitely cocomplete.

Algebras

Definition 3.4 (Algebras and Homomorphisms) Let Σ = (S,Ω) be a signature. A
Σ-algebra A consists of a functor A from the set S, viewed as a discrete category, to Set
mapping each sort s in S to its carrier set A(s), together with a family of total functions A(ω)
from A(w) to A(s) for each ω ∈ Ω(w, s) where A(w) = A(s1)× . . .×A(sn) for w = s1 . . . sn.

A Σ-homomorphism h : A → B is a natural transformation h : A ⇒ B between the functors
A and B from S to Set compatible with the operations in Ω, that is, for each ω : w → s and
a1, . . . , an in A(w)

hs(A(ω)(a1, . . . , an)) = B(ω)(hs1(a1), . . . , hsn(an)).

Σ-algebras and Σ-homomorphisms form the category Alg(Σ). A homomorphism h : A → B
is an isomorphism if hs is an isomorphism between A(s) and B(s) for every sort s. Two
algebras A and B are isomorphic if there exists an isomorphism h : A → B.

The forgetful functor UΣ from the category of Σ-algebras to the functor category SetS maps
Σ-algebras A to their family of carrier sets and Σ-homomorphisms h : A → B to their natural
transformations h : A ⇒ B between their family of carrier sets.

Definition 3.5 (σ-Reduct) Given a signature morphism σ from (S,Ω) to (S ′,Ω′) and a
Σ′-algebra A, the σ-reduct of A, written A|σ, is the Σ-algebra defined by

A|σ = σ;A

(A|σ)(ω) = A(σ(ω)) for all ω : w → s and (w, s) ∈ S+.

For each Σ′-homomorphism h : A → B a Σ-homomorphism h|σ : A|σ → B|σ is defined by

h|σ = σ; h.

The σ-reduct is a functor from the category of Σ′-algebras to the category of Σ-algebras.

Definition 3.6 (Alg) Alg is a contravariant functor from Sig to Cat mapping every sig-
nature Σ to the category of Σ-algebras Alg(Σ) and every signature morphism σ : Σ → Σ′ to
the functor |σ : Alg(Σ′) → Alg(Σ).

42 Institutions

Equations

Definition 3.7 (Term-algebra) Let Σ = (S,Ω) be a signature and X an S-indexed fam-
ily of sets, the term algebra TΣ(X) has as carrier sets the smallest S-indexed family of sets
such that

X(s) ⊆ TΣ(X)(s) for each s ∈ S and

ω(t1, . . . , tn) ∈ TΣ(X)(s) for each ω : w → s in Ω and t1, . . . , tn ∈ TΣ(X)(w)

and for every operation symbol ω : w → s in Ω

TΣ(X)(ω)(t1, . . . , tn) = ω(t1, . . . , tn).

The elements in TΣ(X)(s) are called terms of sort s.

If X is the family of empty sets, that is, X(s) = {} for all sorts s in S, then TΣ(X) is called
the ground term algebra, and we may write TΣ instead of TΣ(X).

The functor TΣ from SetS to Alg(Σ) maps each family of sets X : S → Set to the term
algebra TΣ(X) and each natural transformation h : X ⇒ Y to the unique homomorphism
from TΣ(X) to TΣ(Y) satisfying TΣ(h)s(x) = hs(x) for every x ∈ X(s), s ∈ S and

TΣ(h)s(ω(t1, . . . , tn)) = ω(TΣ(h)s1(t1), . . . ,TΣ(h)sn(tn))

for every operation ω : w → s ∈ Ω.

The functor TΣ is left adjoint to the forgetful functor UΣ : Alg(Σ) → SetS, which means
that for each algebra B and natural transformation h : X ⇒ UΣ(B) there exists a unique
extension of h to a homomorphism h̃ from TΣ(X) to B such that h = η;UΣ(h̃) where η is the
natural transformation from X to UΣ(TΣ(X)) given by the inclusions of X(s) into TΣ(X)(s).
The homomorphism h̃ is uniquely defined by h̃s(x) = hs(x) for x ∈ X(s), and s ∈ S and
h̃(ω(t1, . . . , tn)) = B(ω)(h̃s1(t1), . . . , h̃sn(tn)) for ω : w → s ∈ Ω.

The natural transformation h̃ from TΣ(X) to B evaluates a term t ∈ TΣ(X) in B with respect
to h. If X is the family of empty sets then there exists a unique natural transformation
h : X ⇒ UΣ(B) for each Σ-algebra B, and we shall write B(t) for the evaluation of a ground
term t ∈ TΣ in B instead of h̃(t).

The ground-term-algebra TΣ is an initial object in Alg(Σ) because the family of empty sets
is an initial object in SetS and left adjoints preserve initial objects (cf. Section 2.4). The
unique homomorphism hB from TΣ to an arbitrary Σ-algebra B is given by hB(t) = B(t).

Note that in the definition of algebras and homomorphisms (cf. Definition 3.4) we used the
same symbol A for a Σ-algebra A and its family of carrier sets A : S → Set, and we used
the same symbol h for a Σ-homomorphism from A to B and the natural transformation
h : A ⇒ B in SetS. Thus, in the following, we shall leave the application of the forgetful
functor UΣ : Alg(Σ) → SetS implicit. For example, if A is a Σ-algebra, we write TΣ(A)
instead of TΣ(UΣ(A)).

3.1 Equational Logic 43

Fact 3.8 Let A be a Σ-algebra and η : IdSetS ⇒ TΣ;UΣ be the unit of the adjunction of TΣ

and UΣ. Then we have

ηA; ĩdA = idA

in SetS.

Proof. By definition, ĩdA is the the unique homomorphism from TΣ(X) to A such that
ηA; ĩdA = idA in SetS. ✷

Fact 3.9 The following diagram in Alg(Σ) commutes for every homomorphism h : A → B
in Alg(Σ):

TΣ(A)
TΣ(h) //

ĩdA

��

h̃

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

TΣ(B)

ĩdB

��
A

h
// B

Proof. Let Σ = (S,Ω) be a many-sorted signature. First, we show that

TΣ(A)

ĩdA

��

h̃

""❋
❋❋

❋❋
❋❋

❋❋

A
h

// B

commutes in Alg(Σ). Since we have

ηA; ĩdA; h = idA; h = h

in SetS, and the homomorphism h̃ is unique with the property ηA; h̃ = h, we have h̃ = ĩdA; h
in Alg(Σ).

Next, we show that the following diagram commutes in Alg(Σ):

TΣ(A)
TΣ(h) //

h̃
''◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
TΣ(B)

ĩdB

��
B

Since η is a natural transformation we have ηA;TΣ(h) = h; ηB. By composing both sides of
the equation with ˜idB we get

ηA;TΣ(h); ĩdB = h; ηB; ĩdB = h.

Again, since h̃ is unique with the property ηA; h̃ = h, we get that h̃ = TΣ(h); ĩdB in Alg(Σ).
✷

44 Institutions

Given a recursive enumerable set V . A functor X : S → Set is a family of variables for the
signature Σ = (S,Ω) if X(s) ⊆ V for each sort s in S and X(s) ∩ X(s′) = {} for two sorts
s 6= s′ in S.

For a Σ-algebra A and a family of variables X ∈ SetS, a natural transformation ρ from X
to the family of carrier sets of A is called a variable assignment .

In the following we may write, for example, X = {x, y : s1, z : s2} for the family of variables
X : {s1, s2, s3} → Set given by X(s1) = {x, y}, X(s2) = z and X(s3) = {}. If the sorts of
the variables are clear from the context we may omit the declaration of sorts and just write
X = {x, y, z}.

Definition 3.10 (Translation of Terms) Let σ : Σ → Σ′ be a signature morphism
with Σ = (S,Ω) and Σ′ = (S ′,Ω′), and let X : S → Set be a family of variables. Define a
new family of variables X ′ : S ′ → Set by taking for X ′(s′) the union of all X(s) such that
σ(s) = s′ for each s′ in S ′. We set X ′(s′) = {} if there is no s ∈ S with σ(s) = s′.

The signature morphism σ defines an S-indexed family of functions σs from TΣ(X)(s) to
TΣ(X

′)(σ(s)) by

σ(x) = x for x ∈ X(s) and s ∈ S

σ(ω(t1, . . . , tn)) = σ(ω)(σ(t1), . . . , σ(tn))

for ω ∈ Ω(w, s), t1, . . . , tn ∈ TΣ(w) and w ∈ S∗.

A Σ-equation has the form ∀X t = r where X is a family of variables and t and r are terms
in TΣ(X)(s) for some sort s ∈ S.

Definition 3.11 (Eqn) The functor Eqn from Sig to Set maps a signature Σ to the set
of Σ-equations and a signature morphism σ : Σ → Σ′ to the function Eqn(σ) mapping a
Σ-equation ∀X r = t to a Σ′-equation ∀X ′ σ(r) = σ(t).

Definition 3.12 (Satisfaction) A Σ-algebra A satisfies a Σ-equation ∀X t = r, written
A |= ∀X t = r, if ρ̃(t) = ρ̃(r) for all variable assignments ρ : X ⇒ A.

When writing an equation ∀{x1 : s1, . . . , xn : sn} r = t, we shall omit the braces and write
∀x1 : s1, . . . , xn : sn r = t instead, or ∀x1, . . . , xn r = t if the sorts of the variables are clear
from the context.

Lemma 3.13 If A and B are isomorphic Σ-algebras, then

A |= ∀X t = r if and only if B |= ∀X t = r

for all Σ-equations ∀X t = r.

Proof. (⇐) Let B |= ∀X t = r and ρ be an arbitrary variable assignment from X to A.
We have to show that ρ̃(t) = ρ̃(r).

3.1 Equational Logic 45

Define a variable assignment from X to B by ρ′ = ρ; ι where ι is the isomorphism from A to
B. Note that ρ̃′ is the same as ρ̃; ι. Then we have ρ̃′(t) = ρ̃′(r) because B |= ∀X t = r.

By applying ι−1 to each side of the equation ρ̃′(r) = ρ̃′(t) we get ρ̃′; ι−1(r) = ρ̃; ι; ι−1(r) = ρ̃(r)
and ρ̃′; ι−1(t) = ρ̃; ι; ι−1(t) = ρ̃(t) and thus ρ̃(r) = ρ̃(t).

(⇒) The argument is the same as for the previous case but with the rôles of ι an ι−1 reversed.
✷

Definition 3.14 (Institution EQ) The institution of equational logic EQ is given by the
category Sig of many sorted signatures, the contravariant functor Alg from Sig to Cat,
mapping many sorted signatures Σ to the category of Σ-algebras, the functor Eqn from Sig to
Set, mapping signatures Σ to the set of Σ-equations, and the family of satisfaction relations
|=Σ⊆ Alg(Σ)× Eqn(Σ).

It remains to show that the satisfaction conditions holds for EQ. To show this, the following
lemma is needed.

Lemma 3.15 Let σ : Σ → Σ′ be a signature morphism, A a Σ′-algebra, ρ : X ⇒ A|σ a
variable assignment ,and let ρ′ : X ′ ⇒ A be the variable assignment defined by ρ′s′(x) = ρs(x)
if x ∈ X(s) and s′ = σ(s) where X ′ is defined as in 3.10. Then

ρ̃(t) = ρ̃′(σ(t))

for all terms t from TΣ(X).

Note that ρ′ is well-defined because X(s) ∩X(s′) = {} for all s, s′ ∈ S with s 6= s′.

Proof. The proof is done by induction on the structure of terms from TΣ(X). If t = x and
x ∈ X(s), then

ρ̃s(x) = ρs(x) = ρ′σ(s)(x) = ρ̃′σ(s)(σ(x))

and if t = ω(t1, . . . , tn), then

ρ̃(ω(t1, . . . , tn)) = (A|σ)(ω)(ρ̃(t1, . . . , tn)) | Def. of ρ̃

= A(σ(ω))(ρ̃′(σ(t1), . . . , σ(tn))) | Def. of A|σ and Ind. Hyp.

= ρ̃′(σ(ω(t1, . . . , tn))) | Def. of ρ̃′

✷

Theorem 3.16 (Satisfaction condition) Let σ be a signature morphism from Σ to Σ′,
A a Σ′-algebra, and ∀X r = t a Σ-equation. Then

A|σ |= ∀X r = t if and only if A |= Eqn(σ)(∀X r = t)

46 Institutions

Proof. (⇐) Let A |= Eqn(σ)(∀X t = r). Fix an arbitrary ρ : X ⇒ A|σ and define
ρ′ : X ′ ⇒ A as in Lemma 3.15. Since A |= σ(∀X r = t), we have ρ̃′(σ(r)) = ρ̃′(σ(t)), and
because of Lemma 3.15 we get ρ̃(r) = ρ̃′(σ(r)) = ρ̃′(σ(t)) = ρ̃(t).

(⇒) Let A|σ |= ∀X r = t and ρ′ be a variable assignment from X ′ to A. Define ρ : X ⇒ A|σ
by ρs(x) = ρ′σ(s)(x). Since A|σ |= ∀X r = t and because of Lemma 3.15, we have ρ̃′(σ(r)) =

ρ̃(r) = ρ̃(t) = ρ̃′(σ(t)). ✷

3.2 Amalgamation

An important property of institutions, that is also required for the construction of the insti-
tution RI in Section 5.3, is that the contravariant structure functor StrI from SignI to Cat
preserves colimits. That is, if F is a functor from J to SignI such that the colimit (ιF ,

∐

F)
of F exists, then (ιF ; StrI , StrI(

∐

F)) is a limit of the functor F ; StrI : Jop → Cat.

Given a colimit diagram F : I → SignI with F (i) = Σi and a Σi-structure mi for each i ∈ I,
then the mi can be glued together to form one structure m over the colimit signature of F
provided that the colimit of F exists and that mj|F (f) = mi for all morphisms f : i → j in J .

StrI preserves colimits if StrI maps the initial object in SignI to the terminal object in Cat
and if pushouts in SignI are mapped to pullbacks in Cat.

Definition 3.17 We call an institution exact if the contravariant structure functor StrI
from SignI to Cat preserves colimits.

The institutions EQ, EQC, LSL, and SET all have amalgamation, and since their structure
functors also preserve initial objects, they are all exact.

Definition 3.18 (Amalgamated Sum) An institution I has amalgamation if for any
pushout diagram F : V → SignI for which a pushout

∐

F exists and for any pair of struc-
tures m1 ∈ StrI(F (1)) and m2 ∈ StrI(F (2)) such that m1|F (f) = m0 = m2|F (g) there exists a
unique m ∈ StrI(

∐

F) with m|ι1 = m1 and m|ι2 = m2. m is called the amalgamated sum of
m1 and m2 with respect to m0 and is written as m1 +m0 m2.

Similarly, there has to exist for each pair of homomorphisms h1 : m1 → m′
1 and h2 : m2 → m′

2

with h1|F (f) = h2|F (g) a unique homomorphism h from the amalgamated sum of m1 and m′
1

to the amalgamated sum of m2 and m′
2 such that h|ι1 = h1 and h|ι2 = h2.

Note that if an institution has amalgamation, the objects and homomorphisms in StrI(
∐

F)
are exactly the amalgamated sums of objects and homomorphisms from StrI(F (1)) and
StrI(F (2)). To see this, consider an object m in StrI(

∐

F) and let m0 = m|ι0 , m1 = m|ι1 ,
and m2 = m|ι2 . Because ι0, ι1, and ι2 are co-cone morphisms we have σ1; ι1 = ι0 = σ2; ι2,
and therefore m1|σ1 = m0 = m2|σ2 . Thus the amalgamated sum of m1 and m2 exists. Then
m1 +m0 m2 is the same as m because of the uniqueness of the amalgamated sum.

3.2 Amalgamation 47

Fact 3.19 An institution I has amalgamation if and only if the contravariant functor StrI
preserves pushouts.

Proof. (⇒) Assume that I has amalgamation. Let
∐

F be a pushout of the functor
F : V → SignI , then we have to show that StrI(

∐

F) is a pullback in Cat. Consider
a category C with two functors F : C → StrI(F (1)) and G : C → StrI(F (2)) such that
F ; StrI(σ1) = G; StrI(σ2). We have to construct a unique functor H : C → StrI(

∐

F) with
H ; StrI(ι1) = F and H ; StrI(ι2) = G. Define H(c) = F (c) +m0 G(c) where F (c)|σ1 = m0 =
G(c)|σ2 , and in a similar manner H(h : c → c′) = F (h) +h0 G(h). Note that H is unique
because of the uniqueness of the amalgamated sum. Now we have

StrI(ι1)(H(c)) = (F (c) +m0 G(c))|ι1 = F (c)

for all c ∈ C and similar

StrI(σ2)(H(c)) = (F (c) +m0 G(c))|ι2 = G(c).

(⇐) Assume that the StrI preserves colimits and let F be a functor from V to SignI .
We have to show that I has amalgamation. Consider a F (1)-structure m1 and a F (2)-
structure m2. These structures define functors M1 from 1 to StrI(F (1)) and StrI(F (2)) by
mapping the only element of 1 to m1 and m2, respectively. If m1|σ1 = m0 = m2|σ2 , then
M1; StrI(σ1) = M2; StrI(σ1), and thus there exists a unique functor M from 1 to StrI(

∐

F)
with M ; StrI(ι1) = M1 and M ; StrI(ι2) = M2 because StrI(

∐

F) is a pullback in Cat. Now
M(1) has all the required properties of an amalgamated sum of m1 and m2 with respect to
m0.

Similarly, two homomorphisms h1 : m1 → m′
1 and h2 : m2 → m′

2 define two functors H1 and
H2 from 2 to StrI(F (1)) and StrI(F (2)) by mapping the arrow f from 1 to 2 in 2 to h1 and
h2, respectively. As before, if h1|σ1 = h0 = h2|σ2 , then there exists a unique functor H from
2 to StrI(

∐

F) with H ; StrI(ι1) = H1 and H ; StrI(ι2) = H2 and H(f) is the amalgamated
sum of h1 and h2 with respect to h0. ✷

Fact 3.20 The institution EQ has amalgamation.

Proof. Given a pushout diagram F : V → Sig with pushout object
∐

F and co-cone
morphisms ιi : F (i) →

∐

F .
∐

F

F (1)

ι1
;;①

①
①

①

F (2)

ι2
cc❋
❋
❋
❋

F (0)

σ1

cc❋❋❋❋❋❋❋❋ σ2

;;①①①①①①①①

ι0

OO✤
✤
✤
✤
✤
✤
✤

Let A1 be in Alg(F (1)) and A2 in Alg(F (2)) such that A1|σ1 = A0 = A2|σ2 . The amalgamated
sum of A1 and A2 with respect to A0 is given by:

(A1 +A0 A2)(s) = Ai(si) for ιi(si) = s and si is a sort of F (i)

48 Institutions

for each sort s of
∐

F and

(A1 +A0 A2)(ω) = Ai(ωi) for ιi(ωi) = ω and ωi is an operation of F (i)

for each operation ω of
∐

F .

To show that A = A1 +A0 A2 is well-defined, consider si and sj with ιi(si) = s = ιj(sj).
It suffices to assume that there exists a morphism f from i to j in V and thus a signature
morphism Σ(f) = σ from Σ(i) to Σ(j). In this case we have σ(si) = sj and Aj |σ = Ai, and
therefore A(s) = Ai(si) = Aj|σ(si) = Aj(σ(si)) = Aj(sj).

A similar argument shows that A(ω) is well-defined.

Let g : A1 → A′
1 be a F (1)-homomorphism and h : A2 → A′

2 be a F (2)-homomorphism such
that g|σ1 = f = h|σ2 . Then a

∐

F -homomorphism g +f h from A1 +A0 B to A′
1 +A′

0
A′

2 is
defined by:

(g +f h)s =

{

gs1 if ι1(s1) = s and s1 is a sort of F (1)

hs2 if ι2(s2) = s and s2 is a sort of F (2)

✷

Corollary 3.21 The contravariant functor Alg : Sigop → Cat preserves colimits.

Proof. A functor preserves colimits if it preserves pushouts and initial objects (cf. Lemma
2.9). Since EQ has amalgamation, the functor Alg preserves pushouts. The initial object of
Sig is the signature ({},Ω⊥) with no sorts and no operations. The only object of the category
of ({},Ω⊥)-algebras is the algebra with no carrier sets and no functions. Thus Alg(({},Ω⊥))
is isomorphic to 1 and therefore a terminal object of Cat. ✷

3.3 Constraints

The problem with the institution EQ is that EQ is not powerful enough to express certain
classes of algebras by sets of equations only. For example, it is impossible to specify a class
of algebras where the carrier set of a sort is isomorphic to the natural numbers.

One reason for this is that algebras whose carrier sets contain junk, that is, some elements
in their carrier sets cannot be expressed by ground-terms, cannot be excluded.

Another reason is that the class of algebras satisfying a set of equations always contains
the trivial algebra T . The trivial algebra for a signature Σ = (S,Ω) has either T (s) = {1}
or T (s) = {} for a sort s from S depending on whether the ground term algebra has an
element of this sort or not. The operations ω : s1 . . . sn → s ∈ Ω are interpreted as the
unique function from the empty set to any other set if T (si) = {} for some 1 ≤ i ≤ n, that
is, T (s1) × . . .× T (sn) is isomorphic to the empty set, or T (ω)(1, . . . , 1) = 1. Note that, if
T (si) is not empty for 1 ≤ i ≤ n, then T (s) cannot be empty because if T (si) is not empty,

3.3 Constraints 49

there exists ground terms ti of sort si. Then ω(t1, . . . , tn) is a ground term of sort s and thus
T (s) = {1}.

The trivial algebra T satisfies all equations ∀X t = r from Eqn(Σ). In order to see this,
consider a variable assignment ρ : X ⇒ T . If a variable assignment ρ from X to T exists,
then either X(s) is empty or X(s) is non-empty; in this case T (s) has to be non-empty too.
Then ρ(x) = 1 for all x ∈ X(s) which implies ρ̃(r) = 1 = ρ̃(t) and thus T |= ∀X t = r.

Adding constraints as formulas to Eqn(Σ) enhances the expressive power of equational speci-
fications. Generating constraints address the junk-problem by requiring that each element of
a generated sort can be expressed by an appropriate term of that sort. For proving properties
of elements of generated sorts one can use induction over the term structure. Free generat-
ing constraints add disequalities between the constructors of a generated sort and thus help
exclude the trivial algebra while partitioned-by constraints add a limited form of behavioral
equivalence.

For example, the constraint

N generated by zero, succ

ensures that for each algebra A satisfying that constraint and each element e of A(N) there
exists a term t of the form succ(. . . (zero) . . .) such that A(t) = e. Since each element of
A(N) can be represented by a term, one can use induction on the structure of terms to
prove properties ϕ about elements of sort N , i.e. if A |= ϕ[x/zero] and if A |= ϕ implies
A |= ϕ[x/succ(x)], then A |= ϕ. However, the generating constraint does not ensure that
different terms correspond to different elements in A(N). Thus an algebra A with A(N) =
{0}, A(zero) = 0 and A(succ) = λx.x satisfies the generating constraint. To make sure that
A(succ)(x) 6= x one has to use the following free generating constraint:

N generated freely by zero, succ.

Let S be the sort of sets with elements of sort E, isEmpty a function from S to bool testing
whether a set is empty or not, and a function ∈ from E × S to bool yielding true if the
element e is in the set s and false otherwise. For all algebras A that satisfy the constraint

S partitioned by isEmpty,∈

and elements s1 and s2 of A(S): if s1 and s2 are not equal, then they can be distinguished by
using the operations isEmpty or ∈, that is, either isEmpty(s1) and not isEmpty(s2) or vice
versa, or there exists an element e of A(E) such that e ∈ s1 and e 6∈ s2 or e 6∈ s1 and e ∈ s2.

Thus we can assume the following deduction rule:

if isEmpty(s1) ⇔ isEmpty(s2) and ∀e : E e ∈ s1 ⇔ e ∈ s2 then s1 = s2.

This rule cannot be expressed as an equation even if we have the boolean operations with
their usual meanings in our signature since the universal quantification of e appears on the
left side of an implication. Replacing the implication by a disjunction we get an existential
quantifier

∀s1, s2 : S isEmpty(s1) 6⇔ isEmpty(s2) ∨ ∃e : E. e ∈ s1 6⇔ e ∈ s2 ∨ s1 = s2.

50 Institutions

Data Constraints

In the following we add data-constraints to EQ using the method of Goguen and Burstall
[25].

Definition 3.22 (Σ-generating constraints) Let Σ′ = (S ′,Ω′) be a signature, s a sort
from S ′, Ωc ⊆ Ω′ a set of operations and σ a signature morphism from Σ′ to Σ = (S,Ω). The
following are Σ-constraints:

s generated by Ωc wrt σ

s generated freely by Ωc wrt σ

If σ is the identity we write

s generated (freely) by Ωc

instead of s generated (freely) by Ωc wrt id.

Definition 3.23 (Satisfaction) Given a Σ-algebra A and a Σ-constraint

c = s generated (freely) by Ωc wrt σ.

Then A satisfies c, A |= c, if A|σ satisfies the constraint

c′ = s generated (freely) by Ωc wrt id.

Let Σc be (S,Ωc). The Σ-algebra A satisfies the constraint s generated by Ωc,

A |= s generated by Ωc,

if for all a in A(s) there exists a term t in TΣc(Ā) such that h̃(t) = a where Ā ∈ SetS is
defined by Ā(s′) = A(s′) for every sort s′ 6= s in S and Ā(s) = {}; and h : Ā ⇒ A is given
by hs′(a) = a for every sort s′ 6= s in S and every a ∈ Ā(s′) and hs is the unique function
from the empty set to A(s).

A satisfies s generated freely by Ωc if t is unique.

Definition 3.24 (Translation of constraints) Let σ from Σ1 to Σ2 and µ from Σ to
Σ1 be two signature morphisms then

σ(s generated (freely) by Ωc wrt µ) = s generated (freely) by Ωc wrt µ; σ

Note that σ(c) is not defined as σ(s) generated (freely) by σ(Ωc) as it is done in the Larch
Shared Language because the satisfaction condition would not hold. Consider a signature Σ
with one sort and two constants c1 and c2 and a signature morphism from Σ to a signature
Σ′ with one sort and one constant c, mapping c1 and c2 to c. Let A be a Σ′-algebra and let
A(s) contain two elements then A|σ is generated by c1 and c2, however A is not generated by
σ(c1) = c = σ(c2).

3.3 Constraints 51

Theorem 3.25 Given a Σ′-algebra A, a Σ-constraint s generated by Ωc wrt µ and a signa-
ture morphism σ : Σ → Σ′ then

A |= σ(s generated by Ωc wrt µ; σ) iff A|σ |= s generated by Ωc wrt µ.

and similar for a constraint s generated freely by Ωc wrt µ.

Proof.

A |= s generated by Ωc wrt µ; σ iff A|(µ;σ) |= s generated by Ωc

iff (A|σ)|µ |= s generated by Ωc

iff A|σ |= s generated by Ωc wrt µ

✷

Theorem 3.26 The satisfaction of data-constraints is closed under isomorphism.

Proof. Let A and A′ be two isomorphic Σ-algebras with isomorphism ι : A → A′. We have
to show that A |= s generated (freely) by Ωc if and only if A′ |= s generated (freely) by Ωc.

Assume that A |= s generated (freely) by Ωc then we have to find for each a′ ∈ A′(s) a term
t′ ∈ TΣ(Ā

′) with h̃′(t′) = a′ where Ā′(s′) = A(s′) for all sorts s′ 6= s and Ā′(s) = {}, and
h′
s′(a) = a for all a ∈ Ā′ and sorts s′ 6= s and h′

s is the unique morphism from {} to A′(s).

Since A |= s generated (freely) by Ωc and ι−1(a′) is in A(s), there exists a term t ∈ TΣ(Ā)
such that h̃(t) = ι−1(a′) where Ā and h : Ā → A are defined as in Definition 3.23. Let ῑ be
the natural transformation from Ā to Ā′, given by ῑs′(a) = ιs′(a) for every sort s′ 6= s and ῑs
is the unique function from the empty set to the empty set.

Choose t′ as TΣ(ῑ)(t). It remains to show that h̃′(t′) = a′.

The definition of h, h′ and ῑ makes the following diagram commute in SetS:

Ā
h //

ῑ

��

A

ι

��
Ā′

h′

// A′

By the functor property of TΣ this implies that the left rectangle of the following diagram in
Alg(Σ) commutes:

TΣ(Ā)
h //

TΣ(ῑ)
��

TΣ(A)

TΣ(ι)

��

ĩdA // A

ι

��
TΣ(Ā

′)
TΣ(h

′)
// TΣ(A

′)
ĩdA′

// A′

52 Institutions

The right rectangle commutes because of Theorem 3.9. Also because of theorem 3.9, we have
that h̃ = TΣ(h); ĩdA and h̃′ = TΣ(h

′); ĩdA′ . Thus we get:

h̃′(t′) = h̃′(TΣ(ῑ)(t)) = ι(h̃(t)) = ι(ι−1(a′)) = a′.

For free generating constraints, the uniqueness of t′ is a consequence of the facts that ι and
ῑ are isomorphisms and that functors preserve isomorphisms.

The proof for the other direction, that is, if A′ satisfies the data-constraint then A satisfies
the data-constraint, is similar. ✷

Partitioned-By Constraints

A partitioned-by constraint s partitioned by Ωo defines with Ωo a set of observers that can
be used to distinguish between elements of the sort s. An algebra A satisfies a partioned-by
constraint if for two values a and b of sort s there exists an operation ω in Ωo and values
a1, . . . , an such that A(ω)(a1, . . . , a, . . . , an) does not equal A(ω)(a1, . . . , b, . . . , an). On the
other hand, if for all operations ω in Ωo and values a1, . . . , an we have

A(ω)(a1, . . . , a, . . . , an) = A(ω)(a1, . . . , b, . . . , an)

then a = b.

For example, when given a specification of sets, one would like to have each model A of that
specification satisfy the constraint

Set partitioned by isEmpty,∈ ,

as we would like to regard to sets s1 and s2 as equal, if either both sets are empty or not
empty or if e is an element of s1 then e is also an element of s2 and vice versa.

Behavioral abstraction [49, 24, 9] is similar to the partioned-by constraint in that it de-
fines observations used to distinguish elements from some sort. The difference is that with
behavioral abstraction, in general, infinitely many observations have to be checked, while
with the partitioned-by constraint only finitely many observations need to be checked. How-
ever, Bidoit and Hennicker [9] have shown that with the help of additional function symbols
it is possible to check behavioral equivalence with finite many observations and to express
behavioral equivalence using partitioned-by constraints.

Definition 3.27 (Partitioned-by) Given a signature Σ = (S,Ω), a sort s in S and a set
of operation symbols Ωo ⊆ Ω. A partitioned-by constraint over Σ is of the form

s partitioned by Ωo

Given a signature morphism σ : (S,Ω) → (S ′,Ω′) then the translation of s partitioned by Ωo

by σ is

σ(s) partitioned by σ(Ωo).

3.3 Constraints 53

Definition 3.28 (Satisfaction) Given a signature Σ and Σ-algebra A then A satisfies
the constraint s partitioned by Ωo,

A |= s partitioned by Ωo,

if for all elements a 6= b of A(s) there exists an operation ω : s1 . . . sn → s in Ωo, elements
ai ∈ A(si) for i = 1 . . . n and an argument position j ∈ {1, . . . , n} with sj = s such that

A(ω)(a1, . . . , aj−1, a, aj+1, . . . , an) 6= A(ω)(a1, . . . , aj−1, b, aj+1, . . . , an).

Theorem 3.29 For all signature morphisms σ : Σ → Σ′ and Σ′-algebras A we have:

A|σ |= s partitioned by Ωo iff A |= σ(s) partitioned by σ(Ωo).

Proof. (⇒) For two elements a 6= b in A(σ(s)) we have to find an operation ω′ : s′1 . . . s
′
n →

σ(s) in σ(Ωo) and values a′i ∈ A(s′i) such that

A(ω′)(a′1, . . . , a, . . . , a
′
n) 6= A(ω′)(a′1, . . . , b, . . . , a

′
n).

Since A|σ(s) is defined as A(σ(s)), the values a and b are in A|σ(s) and because A|σ satisfies
s partitioned by Ωo there exists ω : s1 . . . sn → s and values ai ∈ A|σ(si) with

A|σ(ω)(a1, . . . , a, . . . , an) 6= A|σ(ω)(a1, . . . , b, . . . , an).

Now choose ω′ as σ(ω) and a′i as ai. Then

A(σ(ω))(a1, . . . , a, . . . , an) = A|σ(ω)(a1, . . . , a, . . . , an)

6=

A|σ(ω)(a1, . . . , b, . . . , an) = A(σ(ω))(a1, . . . , b, . . . , an)

(⇐) This direction is similar to ⇒. However, for one operation ω′ in σ(Ωo) there may be
several operations ωi such that σ(ωi) = ω′. This does not pose a problem because they have
all the same interpretation, that is, A|σ(ωi) = A(σ(ωi)) = A(ω′). ✷

Theorem 3.30 The satisfaction of partitioned-by constraints is closed under isomorphism.

Proof. Let A and A′ be isomorphic Σ-algebras where the isomorphism is ι : A → A′ then
we have to show that A |= s partitioned by Ωo if and only if A′ |= s partitioned by Ωo.

Assume that A |= s partitioned by Ωo. Then we have to find for every pair (a′, b′) from A′(s)
such that a′ 6= b′ an operation ω′ : s1 . . . sn → s in Ωo, elements a′i ∈ A′(si) and an argument
position j′ ∈ {1, . . . , n} with

A′(ω′)(a′1, . . . , a
′
j′−1, a

′, a′j′+1, . . . , a
′
n)

6= A′(ω′)(a′1, . . . , a
′
j′−1, b

′, a′j′+1, . . . , a
′
n).

54 Institutions

Let (a′, b′) be an arbitrary pair from A′(s) with a′ 6= b′ then (ι−1(a′), ι−1(b′)) is a pair
of elements from A(s) with ι−1(a′) 6= ι−1(b′) because ι is an isomorphisms. Since A |=
s partitioned by Ωo, we have an operation ω : s1 . . . sm → s in Ωo, elements ai ∈ A(si) and an
argument position j ∈ {1, . . . , m} with

A(ω)(a1, . . . , aj−1, ι
−1(a′), aj+1, . . . , am)

6= A(ω)(a1, . . . , aj−1, ι
−1(b′), aj+1, . . . , am).

Now set ω′ = ω, n = m, a′i = ι(ai) for all i ∈ {1, . . . , m} and j′ = j. Then we have

A′(ω′)(a′1, . . . , aj′−1, a
′, a′j′+1, . . . , a

′
n)

= A′(ω)(ι(a1), . . . , ι(aj−1), ι(ι
−1(a′)), ι(aj+1), . . . , ι(am))

= ι(A(ω)(a1, . . . , aj−1, ι
−1(a′), aj+1, . . . , am))

because ι; ι−1 = idA and ι is a homomorphism, and similar

A′(ω′)(a′1, . . . , a
′
j′−1, b

′, a′j′+1, . . . , a
′
n)

= ι(A(ω)(a1, . . . , aj−1, ι
−1(b′), aj+1, . . . , am)).

Since

A(ω)(a1, . . . , aj−1, ι
−1(a′), aj+1, . . . , am)

6= A(ω)(a1, . . . , aj−1, ι
−1(b′), aj+1, . . . , am)

and ι is an isomorphism, we have

A′(ω′)(a′1, . . . , a
′′
j′−1, a

′, a′j+1, . . . , a
′
n) 6= A′(ω′)(a′1, . . . , aj′−1, b

′, a′j+1, . . . , a
′
n).

The proof that A′ |= s partitioned by Ωo implies A |= s partitioned by Ωo is similar. ✷

The Institution EQC

The institution EQC of equational logic with constraints is similar to EQ; the difference being
that data-constraints and partitioned-by constraints are added to the sentences of EQ.

Definition 3.31 (Institution EQC) The institution EQC has Sig as its category of sig-
natures, Alg as its structure functor and EqnC as the sentence functor where EqnC(Σ) is
the union of Eqn(Σ) with the set of (free) generating and partitioned-by constraints over Σ.
The satisfaction relation is the satisfaction relation of EQ extended by the satisfaction of
constraints.

The satisfaction condition of EQC is a consequence of Facts 3.16, 3.25 and 3.29.

Note that, because the category of signatures and the structure functor of EQC are the same
as in the institution EQ, the category of signatures of EQC is finitely cocomplete and EQC
is exact.

3.4 The Institution LSL 55

3.4 The Institution LSL

In the following section we define the institution LSL, which is an approximation of the logic
used by the Larch Shared Language [34]. Basically LSL is the institution EQC of equational
logic with constraints. The differences are that each signature in LSL includes the sort bool
together with its usual operations ¬, ∧, ∨, ⇒, and ⇔; for each sort s of the signature the
equality symbol as a boolean function ≡ : s, s → bool; and the conditional

if then else : bool, s, s → s.

Σ-structures in LSL are Σ-algebras such that the interpretation of the equality symbols,
conditionals, and the sort bool with its operations have their usual meaning.

This allows to write formulas in LSL in a more natural form than possible in EQC. If we
adopt the convention that we write p instead of p = true for terms p of sort bool, then we
can write formulas like ∀X s1 ≡ t1 ⇔ s0 ≡ t0, instead of ∀X (s1 ≡ t1 ⇔ s0 ≡ t0) = true.

Note that ≡ is different from =. While the first is a boolean function that can appear
anywhere where a term of sort bool is expected, the second is the logical equality only
allowed to build formulas ∀X r = t from EqnC(Σ). But due to the restrictions we pose on
the structures of LSL, ≡ and = are interpreted as the identity, that is,

A |= ∀X (s ≡ t) = true

iff

A |= ∀X s = t

iff

ρ̃(s) = ρ̃(t) for all ρ : X ⇒ A.

For this reason we shall use the symbol = for both types of equality in later sections. For
example, we shall write ∀X s1 = t1 ⇔ s0 = t0 instead of ∀X (s1 ≡ s1 ⇔ s0 ≡ t0) = true.

Bool

The signature ΣBool is given by the sort bool, the constants true and false of sort bool and
operation symbols ⇒, ⇔, ∧ and ∨ of type bool, bool → bool and ¬ of type bool → bool.
The set ΦBool is given by the following list of equations and constraints.

bool freely generated by true, false

¬ true = false

¬ false = true

∀ b:bool (true ∧ b) = b

∀ b:bool (false ∧ b) = false

∀ b:bool (false ∨ b) = b

∀ b:bool (true ∨ b) = true

∀ b:bool (true ⇒ b) = b

∀ b:bool (false ⇒ b) = true

56 Institutions

∀ b:bool (true ⇔ b) = b

∀ b:bool (false ⇔ b) = ¬ b

The generating constraint ensures that if a ΣBool-algebra A satisfies ΦBool then A(bool) =
{A(true), A(false)} and A(true) 6= A(false).

For all Σbool-algebras A satisfying ΦBool the operation symbols in Σbool are interpreted as
expected. For example the graph of A(∧) is:

A(∧) = { (A(true), A(true), A(true)),

(A(true), A(false), A(false)),

(A(false), A(true), A(false)),

(A(false), A(false), A(false)) }.

This can be checked by choosing for each element in the graph of A(bool) an appropriate
axiom from ΦBool and a variable assignment from the variables of the axiom to A. For
example, to show that (A(false), A(true), A(false)) is in the graph of A(∧) we choose the
axiom false ∧ b = false and define ρ from {b : bool} to A by ρ(b) = A(true). Now we get

ρ̃(false ∧ b) = A(∧)(A(false), ρ(b)) = A(false) = ρ̃(false)

and therefore A(∧)(A(false), A(true)) = A(false).

Theorem 3.32 Let A be a Σ-algebra, σ a signature-morphism from ΣBool to Σ such that
A|σ |= ΦBool and p and q two terms in TΣ(X)σ(bool) then

A |= ∀X p ∧ q = true iff A |= ∀X p = true and A |= ∀X q = true.

Though it is possible that σ renames ∧ and bool, we assume this is not the case to avoid
writing σ(∧) and σ(bool) all the time.

Proof. (⇒) Let ρ1 and ρ2 from X to A be two arbitrary variable assignments then we have
to show that ρ̃1(p) = A(true) and ρ̃2(q) = A(true). Since A |= ∀X p ∧ q = true we have

ρ̃1(p ∧ q) = A(∧)(ρ̃1(p), ρ̃1(q))

= A(true)

which implies ρ̃1(p) = A(true) because the graph of A(∧) is the same as the graph of ∧.
Similar we get ρ̃2(q) = A(true).

(⇐) Let ρ be a variable assignment from X to A then we have to show that A(∧)(ρ̃(p), ρ̃(q)).
Since we have A |= ∀X p = true and A |= ∀X q = true we have ρ̃(p) = true and ρ̃(q) = true
and thus A(∧)(ρ̃(p), ρ̃(q)) = A(true). ✷

Note that, in general, A |= ∀X p ∨ q = true is not equivalent to A |= ∀X p = true
or A |= ∀X q = true. Consider: ∀x x = 3 ∨ x = 4 and (∀x x = 3) ∨ (∀x x = 4).
However, if we first rename x to y in the second equation and then from the disjunction then
∀{x, y} x = 3 ∨ y = 4 and (∀x x = 3) ∨ (∀x x = 4) are equivalent.

3.4 The Institution LSL 57

Lemma 3.33 Let A be a Σ-algebra, σ a signature-morphism from ΣBool to Σ such that A|σ |=
ΦBool, p ∈ TΣ(X1)σ(bool) and q ∈ TΣ(X2)σ(bool) then

A |= ∀X p′ ∨ q′ = true iff A |= ∀X1 p = true or A |= ∀X2 q = true,

where X(s) is the disjoint union of X1(s) and X2(s) for each sort s of Σ and p′ and q′ are p
and q translated by the injections ι1 and ι2 from X1 and X2 into X, respectively.

Proof. (⇒) Assuming that ρ̃(p′ ∧ q′) = A(true) for all variable assignments ρ : X ⇒ A,
we have to show that ρ̃1(p) = A(true) for all variable assignments ρ1 : X1 ⇒ A or ρ̃2(q) =
A(true) for all variable assignments ρ2 : X2 ⇒ A.

Let the variable assignment ρ : X ⇒ A be the unique family of morphisms with the property
(ι1)s; ρs = (ρ1)s and (ι2)s; ρs = (ρ2)s for every sort s in Σ, given by the universal property of
the disjoint union. Then ρ̃1(p) = (ι1; ρ̃)(p) = ρ̃(p′) and ρ̃2(q) = ρ̃(q′). Thus we have to show

ρ̃(p′) = A(true) or ρ̃(p′) = A(true), for all ρ : X ⇒ A.

Assume now that A |= ∀X p′ ∨ q′ = true then ρ̃(p′ ∨ q′) = A(true), which is equivalent to
ρ̃(p′) = A(true) or ρ̃(q′) = A(true).

(⇐) Because of the universal property of disjoint union, the class of variable assignments ρ
from X to A is the same the as the class of variable assignments ρ1 from X1 to A and ρ2
from X2 to A. Therefore all steps above are equivalent transformations. ✷

Equality

The signature ΣEq(s) for some sort s includes the signature Σbool and has as sorts s and bool

with two operation symbols ≡ and 6≡ of type s, s → bool. The set ΦEq(s) is given by the
union of ΦBool with the following list of EQC-formulas:

s partitioned by ≡
∀ x:s (x ≡ x) = true

∀ x,y:s (x ≡ y) = (y ≡ x)

∀ x,y:s ((x ≡ y) ∧ (y ≡ z) ⇒ (x ≡ z)) = true

∀ x,y:s (x 6≡ y) = ¬ (x ≡ y)

Note that the signature ΣEq(bool) has only one sort, which is bool.

Note that the partitioned-by constraint cannot be replaced by the formula ∀{x, y : s}.(x ≡
y) = true ⇒ x = y because this is not a formula of EQC.

If an algebra A satisfies ΦEq(s) then the interpretation of ≡ in A is the same as the identity,
that is:

Theorem 3.34 Let A be ΣEq(s)-algebra with A |= ΦEq(s) then

A(≡)(a, b) = A(true) if and only if a = b,

for all a, b in A(s).

58 Institutions

Proof. Note that A(≡) can be viewed as relation in the following way:

(a, b) ∈ A(≡) iff A(≡)(a, b) = A(true).

Then A(≡) is reflexive, transitive and symmetric because of the corresponding axioms of
Eq(s).

(⇐) This direction is trivial since A(≡)(a, a) = A(true) holds because of the reflexivity
axiom of Eq(s).

(⇒) Assume that a 6= b then we have to show that A(≡)(a, b) 6= A(true). Note that
this is equivalent to A(≡)(a, b) = A(false) because ΦEq(s) includes ΦBool. Since A models
s partitioned by ≡, we can find a value c from A(s) with A(≡)(c, a) = A(true) and A(≡
)(c, b) 6= A(true). Assume now that A(≡)(a, b) is A(true) then by transitivity of A(≡) we
get A(c, b) is A(true), which contradicts A(c, b) 6= A(true). ✷

Theorem 3.35 Given a Σ-algebra A and a signature morphism σ from ΣEq(s) to Σ such that
A|σ |= ΦEq(s) then

A |= ∀X (t ≡ r) = true if and only if A |= ∀X t = r.

Proof. Assume that ρ : X ⇒ A is a variable assignment then

ρ̃(s ≡ t) = A(true) iff

A(≡)(ρ̃(s), ρ̃(t)) = A(true) iff

ρ̃(s) = ρ̃(t)

Thus we have A |= ∀X (s ≡ t) = true if and only if A |= ∀X s = t. ✷

Conditional

The signature ΣCond(s) contains for some sort s the signature Σbool, the sorts s and bool and
an operation if then else of type bool, s → s. ΦCond(s) is the union of ΦBool with:

∀ x,y:s (if true then x else y) = x

∀ x,y:s (if false then x else y) = y

Bse(S)

For a sort s, the signature ΣBse(s) is the union of the signatures ΣEq(s) and ΣCond(s). For a set
of sorts S, the signature ΣBse(S) is the union of all signatures ΣBse(s) for s ∈ S. Similar ΦBse(s)

is the union of ΦEq(s) and ΦCond(s) for a sort s and ΦBse(S) is the union of all ΦBse(s) for s ∈ S.

Fact 3.36 Let S be a set of sorts and ν be a signature morphism from ΣBool(S) to ΣBool(ν(S)),
which is the identity on operation symbols and on the sort bool. Then

ν(ΦBse(s)) = ΦBse(ν(s)).

3.4 The Institution LSL 59

Fact 3.37 For two sets of sorts S1 and S2 we have

ΣBse(S1∪S2) = ΣBse(S1) ∪ ΣBse(S2) and ΦBse(S1∪S2) = ΦBse(S1) ∪ ΦBse(S2).

Signatures The category SignLSL is a subcategory of Sig such that each Σ = (S,Ω) in
SignLSL contains the sort bool and such that there exists a signature morphism ιΣ from
ΣBse(S) to Σ which is the identity on sorts. Note that, because bool is a sort of Σ, the
signature ΣBse(bool) is included into ΣBse(S). In the following we shall use the notation ιboolΣ

for the corresponding inclusion morphism.

A signature morphism σ from Σ = (S,Ω) to Σ′ = (S ′,Ω′) in SignLSL is a signature morphism
from Sig, that is, the identity on the sort bool and commutes with ιΣ and ιΣ′ in the following
way:

Σ
σ // Σ′

ΣBse(S) νσ
//

ιΣ

OO

ΣBse(S′)

ιΣ′

OO

ΣBse(bool)

ιboolΣ

ee▲▲▲▲▲▲▲▲▲▲ ιbool
Σ′

88rrrrrrrrrr

where νσ is the same as σ on sorts and the identity on the operation symbols.

Theorem 3.38 The category SignLSL is cocomplete.

Proof. Given a functor F : J → SignLSL then we show that the colimit of F in SignLSL

is the colimit of F⊥ : J⊥ → Sig in Sig. The difference between the functors F⊥ and F is
that F⊥ has in addition to the nodes and edges of F a node F⊥(⊥) for ΣBse(bool) and edges
from ΣBse(bool) to each Σi given by ιboolΣi

; ιΣi
. This ensures that the sort for boolean with its

operations is included only once in the colimit of F .

Because colimits are only unique up to isomorphism, we choose
∐

F⊥ = (Scl ,Ωcl) such that
bool ∈ Scl and ιF⊥

i (bool) = bool for all i ∈ J⊥.

The category J⊥ is the category freely generated by adding ⊥ to J and morphisms fi : ⊥ → i
for each i ∈ J where ⊥ and the fi do not occur in J . Note that ⊥ is not necessarily an initial
object in J⊥, as there is no guarantee that fi = fj; f , where f is a morphism from i to j in
J .

Then F⊥ is defined by

• F⊥(i) = F (i) for i ∈ J ,

• F⊥(⊥) = ΣBse(bool),

• F⊥(f : i → j) = F (f) for f : i → j ∈ J and

60 Institutions

• F⊥(f : ⊥ → i) = ιboolF (i) for i ∈ J .

To show that
∐

F⊥ = Σcl = (Scl ,Ωcl) is the colimit of F we have to verify

1. that
∐

F⊥ is in SignLSL, for which we have to provide morphisms ιΣcl
from ΣBse(Scl) to

Σcl and ιboolΣcl
from ΣBse(bool) to ΣBse(Scl),

2. that the co-cone morphisms ιFi = ιF⊥

i , for i ∈ J , are morphisms in SignLSL and

3. that for each natural transformation µ : F ⇒ ∆(Σ,Ω) there exists a unique morphism
hµ from

∐

F to (Σ,Ω).

For 1) we define ιΣcl
from ΣBse(Σcl) to Σcl as follows: ιΣcl

is the identity on sorts and maps an

operation symbol ω : w → s to ιF⊥

i (ιΣi
(ωi : wi → si)) where ιF⊥

i (ωi : wi → si) = ω : w → s
and ωi : wi → si is in ΣBse(Si) for some i ∈ J . ιΣcl

is well-defined because ΣBse(Scl) is the union
of Σ

Bse(ι
F⊥
i (Si))

.

For 2) we have to show that the following family of diagrams commutes for each i ∈ J :

Σi

ι
F⊥
i // Σcl

ΣBse(Si) ν
ι
F⊥
i

//

ιΣi

OO

ΣBse(Scl)

ιΣcl

OO

This follows directly from the definition of ιΣcl
and because ν

ι
F⊥
i

is the identity on operation

symbols and the same as ιF⊥

i on sorts.

For 3) define hµ as the unique morphism given by the colimit property of
∐

F⊥ and a natural
transformation µ⊥ : F⊥ ⇒ ∆Σ. The natural transformation µ⊥ is defined by (µ⊥)i = µi for
i ∈ J and (µ⊥)⊥ = ιboolΣ ; ιΣ. We have to show that hµ is a morphism in SignLSL, that is, we
have to show that the following diagram commutes

Σcl

hµ // Σ

ΣBse(Scl) νhµ
//

ιΣcl

OO

ΣBse(S)

ιΣ

OO

where Σ = (S,Ω). The sort parts of the diagram commute because ιΣcl
and ιΣ are the identity

on sorts and νh is defined as h on sorts. The operation part is the same because the µi are
required to be morphisms in SignLSL.

✷

The initial object of SignLSL is ΣBse(bool) because for any other signature Σ there exists
a signature morphism ιboolΣ ; ιΣ from ΣBse(bool) to Σ. This signature morphism is unique in
SignLSL since if there were another signature morphism σ from ΣBse(bool) to Σ then, because
of the definition of signature morphisms in SignLSL, we have ιboolΣBse(bool)

; ιΣBse(bool)
; σ = ιboolΣ ; ιΣ.

Since ιboolΣBse(bool)
and ιΣBse(bool)

are the identity this gives us σ = ιboolΣ ; ιΣ.

3.4 The Institution LSL 61

Structures Let Σ be a signature from SignLSL and let B be an arbitrary but fixed ΣBse(bool)-
algebra satisfying the formulas of ΦBse(bool). The category StrLSL(Σ) of Σ-structures is the
full subcategory of Σ-algebras A such that A|ιboolΣ ;ιΣ = B and A|ιΣ |=EQC ΦBse(S) where S are
the sorts of Σ. The functor StrLSL(σ) from StrLSL(Σ

′) to StrLSL(Σ) is the same as Alg(σ) for
a signature morphism σ : Σ → Σ′ in SignLSL. For StrLSL(σ) to be well-defined we have to
show that A′|σ is an object of StrLSL(Σ) for each algebra A′ ∈ StrLSL(Σ

′).

That is, we have to show A′|ιboolΣ ;ιΣ;σ = B and A′|ιΣ;σ |=EQC ΦBse(S), provided that A′|ιbool
Σ′ ;ιΣ′

= B

and A′|ιΣ′
|=EQC ΦBse(S′) where S ′ are the sorts of Σ′.

Because σ is a signature morphism in SignLSL, we have ιΣ; σ = νσ; ιΣ′ and thus A′|ιΣ;σ =
A′|νσ;ιΣ′

.

The satisfaction condition of EQC implies that A′|νσ;ιΣ′
|=EQC ΦBse(S) is equivalent to

A′|ιΣ′
|=EQC νσ(ΦBse(S)),

which is the equivalent to A′|ιΣ′
|=EQC ΦBse(νσ(S)) (cf. Fact 3.36).

By definition of ΦBse(S) we have that ΦBse(νσ(S)) is a subset of ΦBse(S′) because νσ(S) is a subset
of S ′ and since A′|ιΣ′

|=EQC ΦBse(S′) we are done.

In addition we have ιboolΣ ; ιΣ; σ = ιboolΣ′ ; ιΣ′ and thus

A′|ιboolΣ ;ιΣ;σ = A′|ιbool
Σ′ ;ιΣ′

= B.

Note that it is not enough to require that A|ιboolΣ ;ιΣ satisfies Bse(bool) for A to be in StrLSL(Σ)
because in this case the functor StrLSL would not preserve the initial object, as the initial
object of SignLSL, ΣBse(bool), would be mapped to a category of ΣBse(bool)-algebras containing
isomorphic algebras. Requiring A|ιboolΣ ;ιΣ to be B ensures that StrLSL(ΣBse(bool)) contains only
one object and one morphism — the identity — and thus is a terminal object of Cat.

Theorem 3.39 The institution LSL has amalgamation.

Proof. Consider a functor F : V → SignLSL with colimit Σcl = (Scl ,Ωcl) and co-cone
morphisms ιFi : F (i) → Σcl :

Σcl

F (1)

ιF1

;;✇✇✇✇✇✇✇✇
F (2)

ιF2

cc●●●●●●●●

F (0)

F (f)

cc❋❋❋❋❋❋❋❋ F (g)

;;①①①①①①①①

Assume further a F (1)-algebra A1 and a F (2)-algebra A2 with A1|F (f) = A0 = A2|F (g) then
we have to show the existence of a unique Σcl -algebra A with A|ιF1 = A1 and A|ιF2 = A2.

62 Institutions

Σcl is the colimit of the functor F⊥ : J⊥ → Sig in Sig:

Σcl

F (1)

ιF1

99ssssssssss
F (2)

ιF2

ee❑❑❑❑❑❑❑❑❑❑

F (0)

F (f)
ee❏❏❏❏❏❏❏❏❏

F (g)
99ttttttttt

ΣBse(bool)

ιbool
F (1)

;ιF (1)

[[✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽

OO ιbool
F (2)

;ιF (2)

CC✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝

Note that we have A1|ιbool
F (1)

;ιF (2)
= B = A2|ιbool

F (2)
;ιF (2)

because A1 and A2 are algebras from

StrLSL(F (1)) and StrLSL(F (2)), respectively. Since Alg preserves colimits, there exists a
unique

∐

F⊥-algebra A with A|
ι
F⊥
1

= A1 and A|
ι
F⊥
2

= A2. ✷

Theorem 3.40 The contravariant functor StrLSL from Sign to Cat preserves colimits.

Proof. Since LSL has amalgamation (cf. Lemma 3.39) we only have to show that the initial
object of SignLSL is mapped to the terminal object of Cat.

The initial object in SignLSL, ΣBse(bool), is mapped to the class of algebras A with

A|ιboolΣBse(bool)
;ιΣBse(bool)

= B.

Since ιboolΣBse(bool)
and ιΣBse(bool)

are the identity we have A = B. As a consequence, the category

StrLSL(ΣBse(bool)) has only one element and one morphism (the identity) and is therefore a
terminal object in Cat. ✷

Definition 3.41 (Institution LSL) The institution LSL has SignLSL as its category of
signatures and StrLSL as its structure functor. The sentence functor SenLSL is defined by
SenLSL(Σ) = EqnC(Σ) and SenLSL(σ) = EqnC(σ) for every signature Σ and every signature
morphism σ in SignLSL, and the family of satisfaction relations (|=LSL

Σ)Σ∈SignLSL
is given by

A |=LSL
Σ ϕ if and only if A |=EQC

Σ ϕ for all signatures Σ ∈ SignLSL, algebras A ∈ StrLSL(Σ)
and formulas ϕ ∈ SenLSL(Σ).

The satisfaction condition holds for LSL because StrLSL(Σ) is a subcategory of Alg(Σ),
SenLSL(Σ) is the same as EqnC(Σ) and A |=LSL ϕ if and only if A |=EQC ϕ for every A ∈
StrLSL(Σ), ϕ ∈ SenLSL(Σ) and Σ ∈ SignLSL.

As noted before, in case where p is a term of sort bool, we shall write ∀X p as an abbreviation
of ∀X p = true.

The following theorem establishes the relation between the consequence relation in LSL and
the consequence relation in EQC. The idea is that the set

{A ∈ StrLSL(Σ) | A |= Φ}

3.4 The Institution LSL 63

is almost the same as

{A ∈ Alg(Σ) | A |= Φ ∪ ιΣ(ΦBse(S))}.

Almost means that, while the second set is closed under isomorphisms with respect to Alg(Σ),
the first is not closed under isomorphisms with respect to Alg(Σ) because A|ιΣ is fixed to be B.
Note however that the first set is still closed under isomorphisms with respect to StrLSL(Σ).

Theorem 3.42 Suppose we are given a set of Σ-formulas Φ and a Σ-formula ϕ where Σ has
sorts S. Then

Φ |=LSL ϕ if and only if Φ ∪ ιΣ(ΦBse(S)) |=
EQC ϕ.

Proof. (⇐) Assume that A ∈ StrLSL(Σ) and A |=LSL Φ then, because A ∈ StrLSL(Σ), we
have that A|ιΣ |=EQC ΦBse(S) and A |=EQC Φ. Since Φ∪ ιΣ(ΦBse(S)) |=

EQC ϕ we get A |=EQC ϕ,
which implies A |=LSL ϕ.

(⇒) Assume that Φ |=LSL ϕ, A ∈ Alg(Σ) and A |=EQC Φ∪ ιΣ(ΦBse(S)). We have to show that
A |=EQC ϕ. To use Φ |=LSL ϕ, we have to find an algebra A′ and in StrLSL(Σ), such that
A′ |=LSL Φ. Then we have A′ |=LSL ϕ. Because of the definition of |=LSL this is equivalent
to A′ |=EQC ϕ. If we choose A′ such that A′ is isomorphic to A then A′ |=EQC ϕ implies
A |=EQC ϕ because |=EQC is closed under isomorphisms (cf. Lemmata 3.13, 3.26 and 3.30).

In the following, we shall abbreviate ιboolΣ ; ιΣ by σ.

The carrier sets of A′ are defined by A′(σ(bool)) = B and A′(s) = A(s) for every s 6=
σ(bool) ∈ S. The natural transformation ι : A′ ⇒ A is the identity on all sorts s 6= bool and
maps true to A(true) and false to A(false) for bool. Note that ιbool and therefore ι is an
isomorphism because, since A satisfies ιΣ(ΦBse(S)), we have A(bool) = {A(true), A(false)}.
Then we define for operations ω : w → s in Ω:

A′(ω)(a1, . . . , an) = ι−1(A(ω)(ι(a1), . . . , ι(an))).

ι is a homomorphism because

ι(A′(ω)(a1, . . . , an)) = ι(ι−1(A(ω)(ι(a1), . . . , ι(an))))

= A(ω)(ι(a1), . . . , ι(an)).

It remains to show that A′ is in StrLSL(Σ) and that A′ |=LSL Φ. Since A satisfies Φ ∪
ιΣ(ΦBse(bool)) and |=EQC is closed under isomorphisms we get A′ |=EQC Φ and A′ |=EQC

ιΣ(ΦBse(bool)), which is equivalent to A′|ιΣ |=EQC ΦBse(bool) because of the satisfaction con-
dition of EQC. Since by construction we have A′|ιboolΣ ;ιΣ = B, we have A′ ∈ StrLSL(Φ), and by

the definition of |=LSL we have A′ |=LSL Φ. ✷

4 Specifications of Abstract Datatypes

4.1 Abstract Datatypes

Traditionally, an abstract datatype (Σ,M) is a specification of a datatype in a software
system. The signature Σ defines the external interface as a collection of sort and function
symbols, and M is a class of Σ-algebras considered admissible implementations of that data-
type.

In the context of an arbitrary institution I an abstract datatype is a pair (Σ,M) where Σ is
an element of SignI and M is a full subcategory of StrI(Σ). Depending on the institution,
Σ may be a many sorted signature with sorts and function symbols, and M a category of
Σ-algebras; or it may denote something totally different. The main construction of this thesis
is the definition of an institution such that abstract datatypes in this institution are relations
between abstract datatypes from another institution (cf. Section 5.3).

The category of abstract datatypes AdtI has as objects abstract datatypes and as morphisms
σ : (Σ,M) → (Σ′,M ′) signature morphisms σ : Σ → Σ′ such that m′|σ is in M for all m′ in
M ′.

A structure m of StrI(Σ) is a model of (Σ,M) if m is in M . In this case we may write
m |=I (Σ,M). An abstract datatype is called monomorphic if all its models are isomorphic.
As before we shall omit the subscript I if the institution is clear from the context.

Note that we do not require the category of models of an abstract datatype to be closed
under isomorphism as done, for example, in Loeckx, Ehrich and Wolf [42]. One reason is
that nothing in the definition of an institution guarantees that a class of structures satisfying
a set of formulas is closed with respect to isomorphism, though, using the institution EQ,
EQC or LSL they will. A second reason is that the derive operation introduced in Section 4.2
does not necessarily preserve isomorphism classes, for example, in EQ this is the case if the
signature morphism is not injective on sorts (cf. Sannella and Tarlecki [50]).

Two forgetful functors are associated with the category Adt: the covariant functor SigA from
Adt to Sign and the contravariant functor ModA from Adt to Cat. The functor SigA maps
abstract datatypes to their signatures and abstract datatype morphisms to the their signature
morphisms while the functor ModA maps abstract datatypes to their category of models and
an abstract datatype morphism σ : (Σ,M) → (Σ′,M ′) to the functor |σ : Str(Σ′) → Str(Σ)
restricted to M ′.

SigA creates colimits, and if StrI preserves colimits, then so does ModA. The fact that SigA

creates colimits implies that one can paste together a collection of abstract datatypes in a

66 Specifications of Abstract Datatypes

unique way if one can paste together their signatures.

Fact 4.1 The functor SigA : AdtI → SignI creates colimits.

Proof. Let F : J → Adt be a functor such that the functor F ; SigA : J → Sign has a
colimit (ιF;Sig

A

,
∐

(F ; SigA)) in Sign. We have to show that there exists a colimit (ιF ,
∐

F)
in Adt with

SigA(
∐

F) =
∐

(F ; SigA) and SigA(ιF) = ιF ;SigA .

Let F (i) = (Σi,Mi) for each i ∈ J and (ιF ;SigA ,Σcl) be a colimit of F ; SigA. A colimit of F

is given by the co-cone morphisms ιF defined by SigA(ιF) = ιF ;SigA and the colimit object
(Σcl ,Mcl) where Mcl is the full subcategory of Str(Σcl) with objects

{m ∈ Str(Σcl) | ∀i ∈ J m|ιFi ∈ Mi}.

To show that the abstract datatype (Σcl ,Mcl) with co-cone morphisms ιF is indeed a colimit
of F we have to show that

1. ιFi : (Σi,Mi) → (Σcl ,Mcl) is an Adt-morphisms for i ∈ J and that

2. for each natural transformation µ : F ⇒ ∆(Σ,M) there exists a unique Adt-morphism
hµ from (Σcl ,Mcl) to (Σ,M) such that

ιFi ; hµ = µi

for all i ∈ J .

(1) The reduct m|ιFi is in Mi for each m ∈ Mcl and i ∈ J by the definition of Mcl .

(2) Note that µ; SigA is a natural transformation from F ; SigA to ∆(Σ), thus there exists a

unique signature morphism hµ from the colimit Σcl of F ; SigA to Σ with ιF ;SigA

i ; hµ = (µ; SigA)i
for all i ∈ J .

It remains to show that the signature morphism hµ is also an Adt-morphism, that is, m|hµ

is in Mcl for all m ∈ M . The reduct m|hµ is in Mcl if (m|hµ)|ιF ;SigA

i

is in Mi for all i ∈ J by

the definition of Mcl . Because µi is an Adt-morphism we have m|µi
is in Mi, and because

µi = ιF ;SigA

i ; hµ we get

(m|hµ)|ιF ;SigA

i

= m|
ι
F ;SigA

i ;hµ
= m|µi

.

✷

A diagram F : J → Adt has a colimit if the diagram F ; SigA : J → SignI has a colimit.
Thus, if every diagram in Sign has a colimit, then every diagram in Adt has a colimit
(cf. Theorem 2.11).

Corollary 4.2 The category AdtI of abstract datatypes is (finitely) co-complete if the
category of signatures SignI is (finitely) co-complete.

4.1 Abstract Datatypes 67

The initial object in Adt is (Σ⊥, Str(Σ⊥)) where Σ⊥ is the initial object in Sign.

Note that it could well be that the colimit of a functor F : J → AdtI exists while F ; SigA

has no colimit. However, in the following theorem we prove that SigA has a right adjoint
which implies that SigA preserves colimits (c.f. Theorem 2.25).

Theorem 4.3 Let USig be the functor from SignI to AdtI defined by

USig(Σ) = (Σ, {}) and USig(σ) = σ.

Then USig is a right adjoint for SigA.

Proof. The unit of the adjunction is the natural transformation η : IdAdtI
⇒ SigA;USig

where η(Σ,M) : (Σ,M) → (Σ, {}) is given by the identity on Σ.

If σ is an AdtI-morphism from (Σ,M) to USig(Σ
′) for some signature Σ′, then the unique

morphism σ̃ from (Σ,M) to (Σ′, {}) is given by the signature morphism σ. Since η(Σ,M) is
the identity on Σ we get η(Σ,M); Sig

A(σ̃) = σ. ✷

Corollary 4.4 The functor SigA preserves colimits.

If the contravariant functor StrI from SignI to Cat preserves colimits, so does the con-
travariant functor ModA from Adt to Cat. This means that every model m of the colimit
of a functor F : J → AdtI is uniquely determined by a family of models mi ∈ ModA(F (i))
for each i ∈ J . This is the amalgamation lemma of Ehrig and Mahr [19].

Fact 4.5 The contravariant functor ModA from AdtI to Cat preserves (finite) colimits if
the contravariant functor StrI from SignI to Cat does.

Proof. Let F from J to Adt be a functor with colimit (ιF , (Σcl ,Mcl)). To show that
(ModA(ιF),ModA((Σcl ,Mcl)) is a limit of F ;ModA consider a natural transformation µ :
∆C ⇒ F ;ModA where C is a category. Let F (i) = (Σi,Mi). Since, by the definition of
abstract datatypes, ModA(F (i)) is a subcategory of StrI(Sig

A(F (i))), µ is also a natural
transformation from ∆C to F ; SigA; StrI . Because StrI and SigA preserve colimits, the cat-
egory StrI(Sig

A((Σcl ,Mcl))) = StrI(Σcl) is a limit object of F ; SigA; StrI and therefore there
exists a unique functor hµ from C to StrI(Σcl) with

hµ(c)|ιFi = µi(c)

for each c ∈ C and i ∈ J .

It remains to show that hµ is also a functor from C to Mcl , that is, hµ(c) is an object of Mcl

and hµ(f) is a morphism of Mcl for all objects c and morphisms f in C. Let c be an object
of C, then hµ(c)|ιFi equals µi(c), which is an element of ModA(F (i)) because of the definition
of µ. If f is a morphism in C, then a similar argument shows that hµ(f) is a morphism in
Mcl . ✷

68 Specifications of Abstract Datatypes

4.2 The Specification Language SLI

In this section we are going to define an ASL-like specification language SLI based on the
operations Σ (signature), IΦ (impose), Dσ (derive), Tσ (translate), and + (union) (cf. Sannella
and Wirsing [53]). The semantics of an SLI-expression is an abstract datatype in AdtI . A
signature Σ, as a specification expression, denotes the abstract datatype with signature Σ
and with the category of models the category of Σ-structures.

Impose allows to impose additional requirements on a specification. The semantics of an
expression IΦSp is the abstract datatype with the same signature as the signature of the
abstract datatype denoted by Sp and with models all the models of Sp satisfying the set of
formulas Φ.

The translate operation can be used to rename symbols in a signature, but also to add new
symbols to a signature. If σ is a signature morphism from Σ to Σ′, then the expression TσSp
denotes an abstract datatype of signature Σ′ with models all extensions of models of Sp with
respect to StrI(σ).

The derive operation allows to hide parts of a signature. DσSp denotes the abstract datatype
having as signature the domain of σ and as models the translations of the models of Sp by
StrI(σ).

At last, the union operation is used to combine two specifications. Since for arbitrary in-
stitutions the union of signatures is not defined, we have to require that both specifications
have the same signature.

The semantics of Sp1 + Sp2 is the abstract datatype with signature the signature of Sp1,
which is the same as the signature of Sp2, and as models the intersection of the category of
models of Sp1 and Sp2.

To form the union of two specifications Sp1 and Sp2 of different signatures Σ1 and Σ2, one
has to provide a signature Σ, signature morphisms σ1 : Σ1 → Σ and σ2 : Σ2 → Σ, and write
Tσ1Sp1 + Tσ2Sp2. In an institution where the union of two signatures is defined, like EQ
(cf. Section 3.1), Σ could be the union of Σ1 and Σ2. In this case σi is the inclusion of Σi

into Σ for i ∈ {1, 2}.

In Chapter 8 we add disjunction (Sp1 ∨ Sp2) to SLI having as semantics the union of the
category of models of Sp1 and Sp2. This operation will be useful in the construction of new
relations (cf. the example in Chapter 8).

The specification language SLI is mainly intended for theoretical studies and not as a spec-
ification language used in practice. However, the semantics of more practical specification
languages like Pluss [8], CASL [45], and the Larch Shared Language [34] can be given in the
terms of the constructs of SLI .

Note that SLI does not contain constructs for behavioral abstraction and restriction to mini-
mal models, which, for example, can be found by Sannella and Tarlecki [50] or Farrés-Casals

4.2 The Specification Language SLI 69

[21]. We assume that these issues are dealt with on the level of the institution itself by means
of appropriate constraints, like generating and partitioned-by constraints (cf. Section 3.3).

In Section 5.9 we use SLI as the basis for the language RSL used for the construction of
relations.

Definition 4.6 (Abstract Syntax of SLI) Given an institution I, signatures Σ, Σ1,
and Σ2, the abstract syntax of the specification language SLI is given by:

Sp ::= Σ | IΦSp | DσSp | TσSp | Sp+ Sp

where Φ is a finite set of Σ-formulas and σ is a signature morphism. The signature Sig(Sp)
of a specification expression Sp is defined inductively as follows:

Sig(Σ) = Σ Sig(IΦSp) = Sig(Sp)

Sig(DσSp) = dom(σ) Sig(TσSp) = cod(σ)

Sig(Sp1 + Sp2) = (Sig(Sp1) = Sig(Sp2))

A specification expression Sp from SLI is well-formed if

• Sp = Σ and Σ ∈ SignI .

• Sp = IΦSp
′, Φ ⊆ SenI(Sig(Sp

′)), and Sp′ is well-formed.

• Sp = DσSp
′, σ is a signature morphism from Σ to Sig(Sp′), and Sp′ is well-formed.

• Sp = TσSp
′, σ is a signature morphism from Sig(Sp′) to Σ, and Sp′ is well-formed.

• Sp = Sp1 + Sp2, Sig(Sp1) = Sig(Sp2), and Sp1 and Sp2 are well-formed.

The semantics of a well-formed specification expression in SLI is an abstract datatype in
AdtI with the same signature.

Definition 4.7 (Semantics of SLI) Given well-formed specification expressions Sp, Sp1,
and Sp2, then the semantics [[]] : SLI → AdtI is defined as follows:

• [[Σ]] = (Σ, StrI(Σ))

• [[IΦSp]] = (Sig(Sp), {m ∈ ModA([[Sp]]) | m |=I Φ})

• [[DσSp]] = (dom(σ), {m|σ | m ∈ ModA([[Sp]])})

• [[TσSp]] = (cod(σ), {m ∈ StrI(cod(σ)) | m|σ ∈ ModA([[Sp]])})

• [[Sp1 + Sp2]] = (Sig(Sp1),ModA([[Sp1]]) ∩ModA([[Sp2]]))

For any specification expression Sp from SLI we have Sig(Sp) = SigA([[Sp]]).

The objects of the category SLI are specification expressions and the morphisms σ : Sp1 →
Sp2 are those signature morphisms σ from Sig(Sp1) to Sig(Sp2) which are also AdtI-
morphisms σ from [[Sp1]] to [[Sp2]].

70 Specifications of Abstract Datatypes

We extend [[]] to a functor form SLI to AdtI by mapping SLI-morphisms σ to their corre-
sponding AdtI-morphisms.

In analogy to M |=I ϕ we write Sp |=I ϕ and Sp |=I Φ to denote ModA([[Sp]]) |=I ϕ and
ModA([[Sp]]) |=I Φ, respectively, and further we write Sp1 |=

I Sp2 to denote ModA([[Sp1]]) ⊆
ModA([[Sp2]]) for two specification expressions Sp1 and Sp2 of the same signature. We also
write m |=I Sp and m ∈ Sp for m ∈ ModA([[Sp]]). We have Sp1 = Sp2 if Sp1 |=I Sp2 and
Sp2 |=

I Sp1 or, equivalently, if [[Sp1]] = [[Sp2]].

Fact 4.8 The operations IΦ, Dσ, Tσ, and + are monotonic with respect to model inclusion,
for example, if

ModA([[Sp]]) ⊆ ModA([[Sp′]])

then

ModA([[IΦSp]]) ⊆ ModA([[IΦSp
′]]).

Monotonicity allows to conclude from Sp1 |= Sp2 the facts that TσSp1 |= TσSp2, DσSp1 |=
DσSp2, and IΦSp1 |= IΦSp2. Similar union is monotonic if one argument is fixed, that is,
Sp+ Sp1 |= Sp+ Sp2 holds if Sp1 |= Sp2 holds.

Union is associative and commutative, and therefore we may write Sp1 + · · ·+ Spn instead
of, e.g., (· · · (Sp1 + Sp2) + · · ·) + Spn).

What follows are some useful equalities relating the operations of SLI to each other.

Fact 4.9 Let Sp, Sp1 and Sp2 be specification expressions and σ, σ1, and σ2 signature
morphisms.

First some special cases:

I{}Sp = Sp Sp+ Sp = Sp

Sp+ Σ = Sp DidSp = Sp

TidSp = Sp

Rules for Impose:

IΦ1IΦ2Sp = IΦ1∪Φ2Sp IΦ(Sp1 + Sp2) = IΦSp1 + IΦSp2

IΦSp = IΦΣ+ Sp IΦDσSp = DσIσ(Φ)Sp

Rules for Translate:

Tσ1Tσ2Sp = Tσ2;σ1Sp TσIΦSp = Iσ(Φ)TσSp

Tσ1Dσ2Sp = Dσ′
2
Tσ′

1
Sp Tσ(Sp1 + Sp2) = TσSp1 + TσSp2

Tσdom(σ) = cod(σ)

4.2 The Specification Language SLI 71

The equation Tσ1Dσ2Sp = Dσ′
2
Tσ′

1
Sp is true only if the pushout of σ1 and σ2 exists and I has

amalgamation. In this case σ′
1 and σ′

2 are the co-cone morphisms of the following pushout in
SignI:

Σcl

Σ1

σ′
2

==⑤⑤⑤⑤⑤⑤⑤⑤
Σ2

σ′
1

aa❇❇❇❇❇❇❇❇

Σ

σ1

aa❈❈❈❈❈❈❈❈ σ2

==④④④④④④④④

Rules for Derive:

Dσ1Dσ2Sp = Dσ1;σ2Sp Dσ(Sp1 + TσSp2) = DσSp1 + Sp2

Dσcod(σ) |= dom(σ) DσIΦSp |= Iσ−1(Φ)DσSp

Dσ(Sp1 + Sp2) |= DσSp1 +DσSp2 DσTσSp |= Sp

σ−1(Φ) is the set of all dom(σ)-formulas ϕ such that σ(ϕ) is in Φ.

Proof. As examples we show

1. DσSp1 + Sp2 = Dσ(Sp1 + TσSp2) and

2. Tσ1Dσ2Sp = Dσ′
2
Tσ′

1
Sp.

(1)(⊆) Let m be in DσSp1 + Sp2, we have to show that there exists m1 in Sp1 + TσSp2 such
that m1|σ = m. Since m ∈ DσSp1, there exists a model m′ of Sp1 such that m′|σ = m.
Set m1 = m′. Then we have to show that m1 ∈ TσSp2, which is implied by m |= Sp2 and
m1|σ = m.

(⊇) Let m be in Dσ(Sp1 + TσSp2), which means there exists m1 with m1 |=I Sp1, m1 |=I

TσSp2, and m1|σ = m. Then we have m |= DσSp1 and m |= Sp2.

(2)(⊆) To show that Tσ1Dσ2Sp = Dσ′
2
Tσ′

1
Sp, let first m1 be a model of Tσ1Dσ2Sp. Then we

have to show that m1 is a model of Dσ′
2
Tσ′

1
, that is, there exists m ∈ StrI(Σcl) with m|σ′

2

being a model of Sp and m|σ′
1
= m1.

Since m1 is a model of Tσ1Dσ2Sp, there exists a model m2 of Sp such that m1|σ1 = m2|σ2 .
Then m is the amalgamated sum of m1 and m2.

(⊇) On the other hand, if m1 is a model of Dσ′
2
Tσ′

1
Sp, then we have to show that there

exists a model m2 of Sp with m1|σ1 = m2|σ2. Since m1 is a model of Dσ′
2
Tσ′

1
Sp, there exists

m ∈ StrRI
(Σcl) with m|σ′

1
= m1 and we have

m|σ1;σ′
2
= (m|σ′

2
)|σ1 = m|σ2;σ′

1
= m1|σ2

because σ1; σ
′
2 = σ2; σ

′
1. Then m2 is m|σ′

2
. ✷

72 Specifications of Abstract Datatypes

Note that dom(σ) |=I Dσcod(σ) holds only if each dom(σ)-structure can be extended to a
cod(σ)-structure. In EQ this is for example not possible if the signature morphism is not
injective. Consider a signature morphism with σ(s1) = σ(s2) = s and a dom(σ)-algebra A
with A(s1) 6= A(s2), then it is impossible to find a cod(σ)-algebra A′ with A′|σ = A because
A′|σ(s1) = A′(s) = A′|σ(s2).

Also note that DσSp1 +DσSp2 does not imply Dσ(Sp1 + Sp2). The problem is that in the
first case two extensions m1 |=

I Sp1 and m2 |=
I Sp2 of a structure m have to exist while in

the second case one extension m̄ |=I Sp1 + Sp2 has to exist.

Let Sp1 be an extension of Nat by a constant c : N with the constraint c = 3 and Sp2 be an
extension of Nat with c = 4. Then Sp1 + Sp2 has no models while DσSp1 = Nat = DσSp2

and therefore DσSp1 +DσSp2 = Nat.

However, we have the following theorem:

Theorem 4.10 Provided that the institution I has amalgamation and that the pushout of
σ1 : Σ0 → Σ1 and σ2 : Σ0 → Σ2 exists with co-cone morphisms σ′

1 and σ′
2, then

Dσ1;σ′
2
(Tσ′

2
Sp1 + Tσ′

1
Sp2) = Dσ1Sp1 +Dσ2Sp2.

Proof. The problematic direction is to show

Dσ1Sp1 +Dσ2Sp2 |=
I Dσ1;σ′

2
(Tσ′

2
Sp1 + Tσ′

1
Sp2)

because we are given two extensions m1 ∈ ModA([[Sp1]]) and m2 ∈ ModA([[Sp2]]) of every m
in Dσ1Sp1 +Dσ2Sp2, but we have to find just one extension m′ in Tσ′

2
Sp1 + Tσ′

1
Sp2.

Since the pushout of σ1 and σ2 exists and I has amalgamation, we set m′ to be the amalga-
mated sum of m1 and m2 with respect to m. Then we have m′|σ′

2
is a model of Sp1 because

m′|σ′
2
= m1 and similar m′|σ′

1
is a model of Sp2. ✷

The above theorem is related to the middle distributive law of Goguen and Diaconescu [27].
The difference is that Goguen and Diaconescu define hiding on theories and not on model
classes as it is done here. Thus they have to require other properties in addition to amalga-
mation.

It is well-known, for example Ehrig, Wagner and Thatcher [18], Breu [11], Bergstra, Heering
and Klint [7], and Cengarle [14], that using the equalities given in Fact 4.9 any specification
expression Sp in SLI can be brought into the form DσIΦΣ.

Theorem 4.11 (Normal-form) Given an institution I with a cocomplete category of sig-
natures SignI and such that I has amalgamation. For any well-formed specification expres-
sion Sp in SLI there exists a well-formed specification expression DσIΦΣ such that [[Sp]] =
[[DσIΦΣ]].

4.2 The Specification Language SLI 73

Proof. The theorem follows from the application of the equalities of Fact 4.9. For example,
Σ is equivalent to DidI{}Σ, and

Dσ1IΦ1Σ1 +Dσ2IΦ2Σ2 = Dσ1(IΦ1Σ1 + Tσ1Dσ2IΦ2Σ2)

= Dσ1(IΦ1Σ1 +Dσ′
2
Tσ′

1
IΦ2Σ2)

= Dσ1Dσ′
2
(Tσ′

2
IΦ1Σ1 + Tσ′

1
IΦ2Σ2)

= Dσ1;σ′
2
(Iσ′

2(Φ1)Σcl + Iσ′
1(Φ2)Σcl)

= Dσ1;σ′
2
Iσ′

2(Φ1)∪σ′
1(Φ2)Σcl

where σ′
1 and σ′

2 are the co-cone morphisms from Σ1 and Σ2 into the pushout signature Σcl .
✷

Derived Operations

The category SLI is finitely cocomplete if SignI is. Let F : J → SLI be a functor such that
J is finite, and its collection of objects is given by the set {i1, . . . , in}. Then the expression

T
ι
F ;Sig
i1

F (i1) + · · ·+ T
ι
F ;Sig
in

F (in)

is the colimit of F . The co-cone morphisms are the co-cone morphisms of the colimit of
F ; Sig. Assume that µ is a natural transformation from F to ∆Sp, then µ; Sig is a natural
transformation from F to ∆Sig(Sp), and thus there exists a unique signature morphism σ
from

∐

F ; Sig to Sig(Sp) with ιF ;Sig
i ; σ = µi for all i ∈ J . Let m be a model of Sp, we have

to show that m|σ is a model of
∐

F . By the definition of
∐

F this is equivalent to showing
that (m|σ)|ιF ;Sig

i
is a model of F (i) for all i ∈ J . This is true because ιF ;Sig

i ; σ = µi and µi is

an SLI-morphism.

Note that SLI still has only finite colimits even if SignI has also colimits of infinite diagrams
because it is impossible to express a union of infinitely many specifications in SLI .

The existence of finite colimits in SLI , provided that SignI is finitely cocomplete, motivates
the following extensions to SLI

Sp ::= . . . | colim F | Sp1 +(σ1,σ2) Sp2 | Sp1 +Sp0 Sp2

where F is a functor from J to SLI with J being a finite category, and σ1 : Sp0 → Sp1 and
σ2 : Sp0 → Sp2 are SLI-morphisms.

Then colim F is defined as an abbreviation for the specification expression

T
ι
F ;Sig
i1

F (i1) + · · ·+ T
ι
F ;Sig
in

F (in)

where i1, . . . , in are the objects of J . For the special case where F is a pushout diagram, we
write Sp1 +(σ1,σ2) Sp2 instead of colim F . Also we may write Sp1 +Sp0 Sp2 if σ1 and σ2 are
the “canonic” SLI-morphisms from Sp0 to Sp1 and Sp2, for example in LSL this would be
given by the inclusion of signatures.

The following theorem shows that the semantics of colim F is a colimit of F ; [[]] in AdtI .

74 Specifications of Abstract Datatypes

Theorem 4.12 The functor [[]] from SLI to AdtI preserves colimits, that is, given a spec-
ification expression colim F then

[[colim F]] =
∐

F ; [[]] ,

for functors F : J → SLI .

Proof. The theorem is a consequence of the construction of colimits in AdtI , given in the
proof of Theorem 4.1. ✷

If each F (i) has the form IΦi
Σi, then the following is a consequence of the definition of

colim F and the equalities IΦ1Sp+ IΦ2Sp = IΦ1∪Φ2Sp and TσIΦSp = Iσ(Φ)TσSp:

Theorem 4.13 Given a functor F mapping objects in J to specification expressions of the
form IΦi

Σi in SLI and morphisms f : i → j to SLI-morphisms F (f) from IΦi
Σi to IΦj

Σj,
then

colim F = IΦΣcl

where Σcl is the colimit of F ; Sig and Φ is the union of all Φi translated by the co-cone
morphisms ιF ;Sig

i for i ∈ J .

For institutions with many sorted signatures, like EQ, EQC and LSL, we use

introduces sorts S
introduces Ω
asserts Φ

as an abbreviation for IΦΣ where Σ is the signature with sorts S and operation symbols Ω,
and

includes Sp[y1 for x1, ..., yn for xn]

introduces sorts S
introduces Ω
asserts Φ

as an abbreviation for IΦTσSp where σ is a signature morphism from Sig(sp) = (S1,Ω1)
to (S1 ∪ S,Ω1 ∪ Ω) such that σ(xi) = yi for compatible operation or sort symbols xi and
yi (1 ≤ i ≤ n). We may not mention the set of sorts explicitly if it can be deduced from
the family of operations Ω. We are omitting any of the introduces or asserts part if the
corresponding family of operation symbols or set of axioms is empty. These abbreviations are
modeled after the syntax of the Larch Shared Language [34]. If we want to give a specification
expression a name, for example, Name = IΦTσSp, we write

Name : trait

includes Sp
introduces Ω
asserts Φ

For specification expressions Sp, Sp1 and Sp2 and signature inclusions ι1 from Sig(Sp) to
Sig(Sp1) and ι2 from Sig(Sp) to Sig(Sp2), we write Sp1 +Sp Sp2 instead of Sp1 +(ι1,ι2) Sp2.

4.3 Proving Specification Entailment in SLI 75

4.3 Proving Specification Entailment in SLI

We are interested in the problem of proving that a formula ϕ is a consequence of the spec-
ification Sp and that Sp′ is entailed by Sp for specification expressions Sp and Sp′ in SLI .
Since proving that ϕ is a consequence of Sp is the same as proving that the specification
expression I{ϕ}Σ is entailed by Sp, we restrict our attention to specification entailment.

Using the normal-form theorem of the previous section, the problem of showing Sp1 |= Sp2

can be reduced to the problem of showing Dσ1IΦ1Σ1 |= Dσ2IΦ2Σ2. Consider for now that σ2

is the identity, the case where σ2 is not the identity is treated in Section 4.4.

If we are given a sound inference system, that is, a family of relations

(⊢I
Σ ⊆ 2SenI(Σ) × SenI(Σ))Σ∈SignI

such that Φ ⊢I
Σ ϕ, or for short Φ ⊢I ϕ, implies Φ1 |=

I ϕ, then to prove Dσ1IΦ1Σ1 |= IΦ2Σ2, it
suffices to prove Φ1 ⊢

I σ1(Φ2), which is short for Φ1 ⊢
I ϕ for all ϕ ∈ σ1(Φ2).

However, this strategy does not make use of the structure of Sp1 and Sp2. For example, to
prove Sp+Sp1 |= Sp+Sp2, it suffices to prove Sp+Sp1 |= Sp2, and therefore we need only
compute the normal-form of Sp2 instead of Sp + Sp2. In addition, in Chapter 8 we shall
extend the specification language SLI with disjunction, and for the extended specification
language the normal-form theorem does not hold anymore for all specification expressions.
Therefore, we introduce a set of inference rules that allow to reduce the goal of proving a
specification entailment into a sequence of subgoals which, for example, could be proved using
the strategy of computing the normal-form, in case it exists.

A first set of inference rules are extensions of the rules for proving Sp ⊢ ϕ using the structure
of Sp found by Sannella and Tarlecki [50] or Wirsing [61] to rules for proving specification
entailment. For example,

Sp ⊢ σ(ϕ)

DσSp ⊢ ϕ

is extended to

Sp ⊢ TσSp
′

DσSp ⊢ Sp′

The first rule is an instance of the second rule if we set Sp′ to I{ϕ}Σ.

L1
Sp ⊢ Sp′

IΦSp ⊢ Sp′ L2
IΦΣ ⊢ Sp′

IΦSp ⊢ Sp′ L3
I{}Σ ⊢ Sp′

Σ ⊢ Sp′

L4
Sp ⊢ Sp′

TσSp ⊢ TσSp
′ L5

Sp ⊢ TσSp
′

DσSp ⊢ Sp′

L6
Sp ⊢ Sp1

Sp+ Sp′ ⊢ Sp1

L6’
Sp′ ⊢ Sp1

Sp+ Sp′ ⊢ Sp1

76 Specifications of Abstract Datatypes

The next two rules connect the inference system for proving Sp ⊢ Sp′ with the inference
system for proving Φ ⊢I Φ′, which depends on the institution I.

L7
Φ′ ⊆ Φ

IΦΣ ⊢ IΦ′Σ
L8

Sp ⊢ IΦ1Σ . . . Sp ⊢ IΦnΣ (
⋃n

i=1Φi) ⊢
I Φ′

Sp ⊢ IΦ′Σ

Note that the inference system is to be understood modulo the equalities of specification
expressions given in Fact 4.9. For example, if we want to prove DσSp ⊢ IΦΣ, we have to
show Sp ⊢ TσIΦΣ. Since TσIΦΣ equals Iσ(Φ)Σ

′, it suffices showing Sp ⊢ Iσ(Φ)Σ
′. Thus the

consequent can be guaranteed to be of the form IΦΣ after the application of the above rules
if the consequent was in that form before.

The next set of rules allows the decomposition of the consequent into a set of rules Spi ⊢ IΦi
Σi.

Similar rules can be found in Wirsing [61] and Hennicker, Wirsing, and Bidoit [38].

R1
Sp ⊢ Sig(Sp)

R2
Sp ⊢ IΦΣ Sp ⊢ Sp′

Sp ⊢ IΦSp
′

R3
Sp ⊢ DσSp

′′ Sp′′ ⊢ Sp′

Sp ⊢ DσSp
′ R5

DσSp ⊢ Sp′

Sp ⊢ TσSp
′

R4
Sp ⊢ Sp1 Sp ⊢ Sp2

Sp ⊢ Sp1 + Sp2

The third set of rules allows to exploit similarities between Sp and Sp′ in the proofs of
Sp ⊢ Sp′. The rules for monotonicity of impose, union, and derive are derived rules using
the above rules. The rule for monotonicity of translate is rule L4.

Id
Sp ⊢ Sp

Cut
Sp ⊢ Sp′′ Sp′′ ⊢ Sp′

Sp ⊢ Sp′

M1
Sp ⊢ Sp′

DσSp ⊢ DσSp
′ M2

Sp ⊢ Sp′

IΦSp ⊢ IΦSp
′

M3
Sp ⊢ Sp′

Sp+ Sp′′ ⊢ Sp′ + Sp′′ M3’
Sp ⊢ Sp′

Sp′′ + Sp ⊢ Sp′′ + Sp

For convenience we also provide rules for the four inequalities of Fact 4.9, although they are
derived rules. Rule I3 is a consequence of rules R6, L4, and the monotonicity of derive; I4
can be proved using rule L5; I2 exploits the fact that σ(σ−1(Φ)) ⊆ Φ; and I1 is an instance
of rule R1.

I1
Dσcod(σ) ⊢ dom(σ)

I2
DσIΦSp ⊢ Iσ−1(Φ)DσSp

I3
Dσ(Sp1 + Sp2) ⊢ DσSp1 +DσSp2

I4
DσTσSp ⊢ Sp

4.4 Problems with Derive 77

4.4 Problems with Derive

Proving DσSp ⊢ Sp′ poses no problems for this is the same as

∀m (∃m′ m′|σ = m ∧m′ ⊢ Sp) ⇒ m |= Sp′

which is equivalent to

∀m,m′ m′|σ = m ∧m′ |= Sp ⇒ m |= Sp′,

and using m′|σ = m we get

∀m′ m′ |= Sp ⇒ m′|σ |= Sp′.

Note that m′|σ |= Sp′ is the same as m′ |= TσSp
′, and therefore DσSp |= Sp′ can be proved

by showing Sp |= TσSp
′.

However, if Dσ occurs at the top of the consequent, i.e., Sp |= DσSp
′, then we have to show

that

∀m m |= Sp ⇒ ∃m′ m′ |= Sp′ ∧m′|σ = m.

The problem is to prove that all models m of Sp can be extended to a model m′ of Sp′.

One way to prove this is to provide a refinement Sp′′ of Sp′, that is, we have Sp′′ |= Sp′, and
show that each model of Sp can be extended to a model of Sp′′. The idea is that it is easier
to prove Sp |= DσSp

′′ than to prove Sp |= DσSp
′. Thus we have the following rule, which is

a consequence of the cut rule and monotonicity of derive:

R3
Sp ⊢ DσSp

′′ Sp′′ ⊢ Sp′

Sp ⊢ DσSp
′

The problem is to find an appropriate Sp′′ such that proving Sp |= DσSp
′′ is easier than

proving Sp |= DσSp
′.

For example, if we choose Sp′′ = Sp′, then we get the original problem back.

On the other hand, if we choose Sp′′ = Σ′ where Σ′ is the codomain of σ, the proof obligations
are Sp ⊢ DσΣ

′ and Σ′ ⊢ Sp′. Since Sp′ ⊢ Σ′ by rule R1, it follows that Σ′ |= Sp′ if and only
if Str(Σ′) = ModA(Sp′).

One way to find Sp′′ comes from the observation that DσSp
′ corresponds to a, possible

higher-order, existential quantifier. The idea is to provide an implementation SpI of the
hidden symbols of Sp′ and prove TσSp + SpI ⊢ Sp′. However we have to ensure that the
implementation of the hidden symbols can be added to any Sp-model. Thus we have to
ensure that TσSp+SpI is a persistent extension of Sp, that is, Sp = Dσ(TσSp+SpI). Since
Sp |= Dσ(TσSp + SpI) if and only if Sp |= DσSpI , we get the following rule, which is an
instantiation of rule R3

∃2 TσSp+ SpI ⊢ Sp′ Sp ⊢ DσSpI

Sp ⊢ DσSp
′

78 Specifications of Abstract Datatypes

A similar rule is used by Wirsing [61] and Hennicker, Wirsing, and Bidoit [38].

Farrés-Casals [21] remarks that the problem with the ∃2-rule is that one has to provide an
implementation SpI for the hidden symbols for the proof. However, in a lot of cases Sp′

can be decomposed in the union of two specifications Sph and Spv where Sph provides an
implementation of the hidden symbols and Spv defines part of the visible symbols in terms
of the hidden symbols. Then SpI in the ∃2-rule is the same as Sph, and we get a somewhat
simplified version of the inheriting rule of Farrés-Casals [21].

Ih
TσSp+ Sph ⊢ Spv Sp ⊢ DσSph

Sp ⊢ Dσ(Spv + Sph)

4.5 Completeness

It is easy to check that the above inference system for Sp ⊢ Sp′ is sound, that is, Sp ⊢ Sp′

implies Sp |= Sp′. If one restricts entailment to Sp ⊢ I{ϕ}Σ, then the inference system is also
complete. This assumes that the category of signatures is cocomplete, the institution has
amalgamation, and that ⊢I is complete.

To see this, assume that Sp |= ϕ, that is, m |= ϕ for each m ∈ ModA([[Sp]]). Because
of Theorem 4.11, there exists a specification expression DσIΦΣ

′ which has the same class of
models as Sp. Given a Σ′-structure m′ such that m′ |= Φ, then m′|σ is a model of DσIΦΣ

′ and
thus a model of Sp. Since we have Sp |= ϕ, we get that m′|σ |= ϕ which implies m′ |= σ(ϕ)
by the satisfaction condition. Thus we have Φ |= σ(ϕ), and because of completeness of ⊢I

we get Φ ⊢I ϕ. Because the inference system presented here is given modulo the equalities
needed to show that Sp equals DσIΦΣ

′, we just have to give a derivation for DσIΦΣ
′ ⊢ I{ϕ}Σ

to prove completeness of the inference system.

IΦΣ
′ ⊢ IΦΣ

′ Φ ⊢I {σ(ϕ)}
L8

IΦΣ
′ ⊢ I{σ(ϕ)}Σ

′

L5
DσIΦΣ

′ ⊢ I{ϕ}Σ

For completeness it is important that we are able to restructure Sp, in particular, that we
could replace Sp by its normal-form (cf. Wirsing [61]). If we only use the rules L1–L8 and
are not allowed to apply the equalities of Fact 4.9 to the antecedent, only to the consequent
to ensure that it remains in the form IΦΣ, then completeness depends on the institution
I. In her PhD-thesis Cengarle [14] has shown that the inference system is complete for the
institution of first-order logic, and Borzyszkowski [10] extends this proof to any institution
that has a cocomplete category of signatures, amalgamation, is closed under conjunction and
negation, and has the interpolation property.

An institution is closed under (finite) conjunction if for any (finite) set of formulas Φ of
SenI(Σ), there exists a formula ϕ in SenI(Σ) such that m |= Φ if and only if m |= ϕ for

4.5 Completeness 79

all m ∈ StrI(Σ). If the institution is compact, that is, for any set of Σ-formulas Φ and a
Σ-formula ϕ with Φ |= ϕ there exists a finite set Ψ ⊆ Φ with Ψ |= ϕ, then it suffices for
completeness to require that the institution is closed under finite conjunction only instead of
arbitrary conjunction.

An institution is closed under negation, if for any formula ϕ in SenI(Σ), there exists ¬ϕ such
that m |= ¬ϕ if and only if m 6|= ϕ for all m ∈ StrI(Σ).

Finally, an institution has the interpolation property if given the pushout Σcl of σ1 : Σ0 → Σ1

and σ2 : Σ0 → Σ2, a Σ1-formula ϕ1, and a Σ2-formula ϕ2 such that {σ′
1(ϕ1)} |= σ′

2(ϕ2), then
there exists a Σ0 formula ϕ such that {ϕ1} |= σ1(ϕ) and {σ2(ϕ)} |= ϕ2 where σ′

1 and σ′
2 are

the co-cone morphisms of the pushout.

For arbitrary specification expressions Sp′ the inference system for proving Sp ⊢ Sp′ is not
complete. Consider Σ |= DσΣ

′ where σ is a signature morphism from Σ to Σ′. We have to
find a derivation for Σ ⊢ DσΣ

′. The only applicable rule is rule R31:

R3
Sp ⊢ DσSp

′′ Sp′′ ⊢ Sp′

Sp ⊢ DσSp
′ .

Thus we have to find Sp′′ such that Σ ⊢ DσSp
′′ and Sp′′ ⊢ Σ′. The second condition holds

trivially (rule R1), but the first condition is even more difficult than the original problem
because instead of showing that each Σ-structure can be extended to a Σ′-structure we have
to show that each Σ-structure can be extended to a Σ′-structure that is a model of Sp′′.

The problem is that to decide whether for a given signature morphism σ each Σ-structure can
be extended to a Σ′-structure or not, requires knowledge about the particular institution that
is not provided by the notion of institutions. For example, in the institution of equational
logic a sufficient condition that each Σ-structure can be extended to a Σ′-structure is that
σ is injective on sorts and operations, and that for each sort in Σ there exists at least one
ground term of that sort. Thus there cannot be a complete, institution independent inference
system for Sp ⊢ Sp′ that does not use, in one way or another, an explicit judgment of the
form Sp1 |= Sp2.

For example the inference system introduced by Wirsing [61] and Hennicker, Wirsing, and
Bidoit [38] is complete because they use the following variant of the ∃2-rule:

TσSp+ SpI ⊢ Sp′ Sp |= DσSpI

Sp ⊢ DσSp
′

Note that in the second premise of the ∃2-rule ⊢ is replaced by |=.

To see the completeness of this rule, assume that Sp |= DσSp
′. Then we have to give a

derivation for Sp ⊢ DσSp
′. Let SpI be Sp′, then Sp |= DσSp

′ holds trivially because that
is our assumption; thus we only have to show TσSp + Sp′ ⊢ Sp′ to apply the variant of the

1The rules ∃2 and Ih need not be considered because they are instantiations of R3.

80 Specifications of Abstract Datatypes

∃2-rule:

Sp′ ⊢ Sp′

L6’
TσSp+ Sp′ ⊢ Sp′ Sp |= DσSp

′

Sp ⊢ DσSp
′

Therefore, to trivially complete our inference system, we add the rule

T
Sp |= Sp′

Sp ⊢ Sp′ .

5 Relations as Abstract Datatypes

In this chapter we present the main construction of this thesis the institution RI , which is
based on an exact institution I with a cocomplete category of signatures. Abstract datatypes
in RI denote relations between abstract datatypes from I. First we motivate the construc-
tion by an example. Next the institution RI is defined, and we show that RI is exact and
has a cocomplete category of signatures. Then we study the relationship between abstract
datatypes in RI and abstract datatypes in I which is later used in Section 7.1 to prove entail-
ment of relations and in Section 9.3 to write Z-style specifcations of dynamic behavior using
the Larch Shared Language instead of Z. The operations of the specification language SLI
defined in Section 4.2 are then used as a basis for the definition of RSLI , a kernel specification
language for the specifiation of relations.

5.1 Introduction

In the state as algebra approach the state space of a software system is modeled by an
abstract datatype St = (ΣSt,MSt), and an operation transforming the state of the software
system as a relation R ⊆ MSt ×MSt. As an example consider a counter with an increment
relation. The state of the counter is an algebra A with carrier set A(N) = N and a constant
A(c) ∈ A(N). The set of possible states of a counter is given by the following specification:

Counter : trait

includes Nat

introduces c : N

where Nat is:

Nat : trait

introduces

zero : N

succ : N → N

pred : N → N

+ : N, N → N

< : N, N → bool

≤ : N, N → bool

> : N, N → bool

≥ : N, N → bool

asserts

N generated freely by zero, succ

equations forall x,y : N

82 Relations as Abstract Datatypes

zero + y = y;

succ(x) + y = succ(x + y)

pred(succ(x)) = x

x 6= zero ⇒ succ(pred(x)) = x

¬ (s(x) ≤ zero)

zero ≤ x

x ≤ y ⇒ s(x) ≤ s(y)

x ≤ y ∧ x 6= y ⇒ x < y

¬ (x < y) ⇒ x ≥ y

x ≥ y ∨ x 6= y ⇒ x > y

The increment operation increments the value of c by one. It is a relation

Inc ⊆ ModA([[Counter]])×ModA([[Counter]])

with the property

if (A,B) ∈ Inc then B(c) = A(succ)(A(c))

For this equation to be defined, we have to require that A(N) = B(N). In addition we would
like that succ and + are interpreted the same in A and B. That is, if ι is the inclusion of
[[Nat]] into [[Counter]] then we require that A|ι = B|ι.

In Section 2.3 we have seen that {(A,B) | A,B ∈ ModA([[Counter]]), A|ι = B|ι} is a pullback
∏

F of a functor F : Vop → Set given by the following diagram:

ModA([[Counter]])

|ι))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘
ModA([[Counter]])

|ιuu❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧

ModA([[Nat]])

The functor F can be given as the composition of the functor Γ : V → Adt:

[[Counter]] [[Counter]]

[[Nat]]

ι

ee▲▲▲▲▲▲▲▲▲▲ ι

99rrrrrrrrrr

with ModA : Adtop → Cat, ignoring for the moment that ModA(Γ(i)) yields a category
instead of a set for every i ∈ V.

Thus, the increment relation is a subset of
∏

(Γ;ModA) such that (A,B) ∈ Inc if and only if
B(c) = A(succ)(A(c)).

In each institution that has amalgamation, such as LSL, there exists for each pair (A,B)
in

∏

(ΓInc;ModA) a unique algebra A +C B in ModA(
∐

ΓInc), the amalgamated sum of A
and B with respect to C, such that (A+C B)|ι1 = A and (A+C B)|ι2 = B. ι1 and ι2 from
[[Counter]] to [[DeltaCounter]] are the co-cone morphisms of the colimit of ΓInc. ι1 is the

5.1 Introduction 83

inclusion of [[Counter]] into [[DeltaCounter]], and ι2 maps c to c′ and all other symbols to
themselves.

The pushout
∐

ΓInc in Adt can be represented by the specification

DeltaCounter : trait

includes Nat

introduces c, c’ : N

Therefore, the relation Inc is isomorphic to a class of algebras MInc from ModA(
∐

ΓInc) such
that, if A Inc B, then A+C B ∈ MInc, and if D ∈ MInc, then D|ι1 Inc D|ι2.

For D ∈ MInc we have D(c′) = D(succ)(D(c)), which is equivalent to writing D |= c′ =
succ(c) by the definition of satisfaction in LSL and since c′ = succ(c) is an equation of
signature SigA(

∐

ΓInc).

Thus we can define a binary relation R by providing its type, a functor from V to Adt,
together with a set of formulas Φ from Sen(SigA(

∐

Γ)). Then we have A R B if and only if
(A,B) ∈

∏

(ΓInc;ModA) and A+C B |= Φ.

Operations with Input

If we have operations with inputs, like an Add operation that adds its argument to the counter,
we can use the category

Vin =

in 1 2

0

``❅❅❅❅❅❅❅❅

OO @@✁✁✁✁✁✁✁

and a functor ΓAdd : Vin → Adt as the type of the relation instead of a functor from V to
Adt. We model the input parameter by

AddIn : trait

includes Nat

introduces nin : N

Then the type of the Add operation is the functor ΓAdd : Vin → Adt depicted by

ΓAdd =

[[AddIn]] [[Counter]] [[Counter]]

[[Nat]]

ιn

ff▼▼▼▼▼▼▼▼▼▼▼
ι

OO

ι

77♦♦♦♦♦♦♦♦♦♦♦

with ιn being the inclusion of [[Nat]] into [[AddIn]]. Now Add is a subset of the limit of
ΓAdd;ModA such that if (C,A,B) ∈ Add then

B(c) = A(+)(A(c), C(nin)).

84 Relations as Abstract Datatypes

Note that the properties of limits guarantee that C|ιn = A|ι = B|ι which implies C(N) =
A(N) = B(N) = N and that the above equation is well-defined.

As before we have that in an institution where Str and thus ModA preserves colimits of shape
Vin we can find for each triple (C,A,B) in

∏

(ΓAdd;ModA) a unique D ∈ ModA(
∐

ΓAdd) with
D|ιin = C, D|ι1 = A and C|ι2 = B.

The colimit of ΓAdd is given by the specification

DeltaCounter1 : trait

includes Nat

introduces nin, c, c’ : N

and we have that if (C,A,B) ∈ Add then D(c′) = D(+)(D(c), D(nin)). As before we can
define Add by all triples (C,A,B) ∈

∏

(ΓAdd;ModA) such that D |= c′ = c+ nin.

Arbitrary D

This treatment can be generalized from categories V and Vin to arbitrary categories D
and from the institution LSL to arbitrary institutions I. We only have to require that
the category of signatures of I has all colimits of shape D and that the structure-functor
preserves colimits of shape D.

Take for example the discrete category Kn with objects {1, . . . , n}. Let Γ be a functor from
Kn to Adt, then R ⊆

∏

(Γ;ModA) is an n-ary relation

R ⊆ ModA(Γ(1))× . . .×ModA(Γ(n)).

Each morphism f : d → d′ in D adds the requirement that md′ |Γ(f) = md for each m ∈
∏

(Γ;ModA) where md = πd(m), md′ = πd′(m), and πd and πd′ are the projections from
∏

Γ;ModA to ModA(Γ(d)) and to ModA(Γ(d′)), respectively.

Given that SignI and thus AdtI have colimits of shape D and StrI preserves them, we can
use sets of formulas Φ from SenI(Sig

A(
∐

D Γ)) to define relations R ⊆
∏

D Γ;ModA

Note, if we want to use equations to specify relations, we have to make sure that the signatures
of the nodes SigA(Γ(i)) share, at least, a sort. For example, with D = K2 equations in
SenI(

∐

Γ; SigA) are of the form ∀X s = t where both s and t are terms over SigA(Γ(1)) or
SigA(Γ(2)). Thus the only type of relations R ⊂ ModA(Γ(1)) × ModA(Γ(2)) we can define
using these equations are relations R = A × B, where A and B are subsets of ModA(Γ(1))
and ModA(Γ(2)).

Changing the shape of relations

Consider a relation R ⊆ A × B × C. We can make R a relation R̄ ⊆ A × C by defining
R̄ = {(a, c) | ∃b ∈ B (a, b, c) ∈ R}. On the other hand, if we are given a relation S ⊆ A×C,
we can make S a relation Ŝ ⊆ A× B × C by defining Ŝ = {(a, b, c) | b ∈ B, (a, c) ∈ S}.

5.2 The Category Rel 85

This can be generalized to relations of shape D and D′ provided there is a functor F from
D to D′. In the example above D = K2, D

′ = K3, F (1) = 1, and F (2) = 3.

Given a relation R of type Γ′ : D′ → AdtI , we define the relation R̄ of type Γ = F ; Γ′ by

R̄ = {F̄ (m) | m ∈ R}

where F̄ is a functor from
∏

D′ Γ′;ModA to
∏

D Γ;ModA given by the universal property of
∏

D Γ;ModA with respect to the natural transformation ν from ∆(
∏

Γ′;ModA) to Γ;ModA

given by νd = πΓ′;ModA

F (d) :

∏

Γ;ModA

π
Γ;ModA

d
��

∏

Γ′;ModA

νd=π
Γ′;ModA

F (d)
tt❥❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

F̄oo

Γ(d) = Γ′(F (d))

In the example above πΓ′,ModA

i maps a triple (a, b, c) to its i-th component and πΓ,ModA

j a
tuple (a, b) to its j-th component where i ∈ {1, 2, 3} and j ∈ {1, 2}. Then we get

πΓ;ModA

1 (F̄ (a, b, c)) = πΓ′;ModA

F (1) (a, b, c) = πΓ′;ModA

1 (a, b, c) = a

and

πΓ;ModA

2 (F̄ (a, b, c))2 = πΓ′;ModA

F (2) (a, b, c) = πΓ′;ModA

3 (a, b, c) = c.

Thus F̄ maps a triple (a, b, c) to a tuple (a, c).

In the same spirit we define for a relation S of shape Γ a relation of shape Γ′ by

Ŝ = {m′ ∈
∏

Γ′;ModA | F̄ (m′) ∈ S}.

5.2 The Category Rel

The category Rel of relations between abstract datatypes from I has as objects relations
(Θ,M) where Θ = (D,Γ : D → Adt) is the type of the relation, the category D is the shape
of the relation, and M , a full subcategory of

∏

(Γ;ModA), is the graph of the relation.

A morphism f = (fF , fµ) in Rel from (Θ,M) to (Θ′,M ′) has two components; the first
component is a functor fF : D → D′ from the shape category of Θ to the shape category
of Θ′, and the second component is a natural transformation fµ : Γ ⇒ fF ; Γ′, which is a
D-indexed family of AdtI-morphisms fF

d : Γ(d) → Γ′(fF (d)).

The functor fF and the natural transformation fµ give rise to a functor |f from
∏

D′ Γ′;ModA

to
∏

D Γ;ModA by the universal property of
∏

D Γ;ModA and the natural transformation

86 Relations as Abstract Datatypes

νf : ∆(
∏

D′ Γ′;ModA) ⇒ Γ;ModA given by (νf)d = πΓ′;ModA ;ModA(fµ
d) for d ∈ D:

∏

Γ;ModA

π
Γ;ModA

d
��

∏

Γ′;ModA
|foo

π
Γ′;ModA

fF (d)
��(νf)dtt❥❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

ModA(Γ(d)) ModA(Γ′(fF (d)))
ModA(fµ

d
)

oo

Then we require M ′|f ⊆ M for f = (fF , fµ) to be a Rel-morphism, that is, m′|f ∈ M for
all m′ ∈ M ′.

As an example take R = ((K2,ΓR),MR) and S = ((K3,ΓS),MS). A Rel-morphism f
from R to S is a pair (fF , fµ) of a functor fF : K2 → K3 and a natural transformation
fµ : ΓR ⇒ fF ; ΓS. Let fF (1) = 1 and fF (2) = 3, then fµ

1 is an Adt-morphism from ΓR(1)
to ΓS(1), and fµ

2 is an Adt-morphism from ΓR(2) to ΓS(3). For f to be a Rel-morphism
we have to check that (m1|fµ

1
, m3|fµ

2
) is in MR for each (m1, m2, m3) in MS.

The identity idR for an object R = (Θ,M) in Rel is the pair (IdD, idΓ).

Let f = (fF , fµ) be a Rel-morphism from (Θ1,M1) to (Θ2,M2) and g = (gF , gµ) a Rel-
morphism from (Θ2,M2) to (Θ3,M3). The composition of f and g is the Rel-morphism
(fF ; gF , fµ; (gµ; fF)):

Γ1
fµ

+3 fF ; Γ2

gµ;fF

+3 fF ; gF ; Γ3

Γ2 gµ
+3

❴
fF

OO

gF ; Γ3

❴
fF

OO

We have to show that M3|f ;g ⊆ M1. This holds because |f ;g = |g; |f . The proof of this will
be given in the next section.

Theorem 5.1 The category Rel is (finitely) cocomplete if the category of signatures from
the institution I is (finitely) cocomplete.

Proof. This follows from fact that Rel is the same as the category AdtRI
of abstract

datatypes in the institution RI = < SignRI
, StrRI

, SenRI
, |=RI> defined in the next sec-

tion. Then AdtRI
is (finitely) cocomplete because SignI and thus SignRI

are (finitely)
cocomplete. ✷

5.3 The Institution RI

In the previous sections we have seen how relations between classes of algebras, given as
abstract datatypes, can be defined by a category D, a functor Γ from D to Adt, and a
subset of

∏

(Γ;ModA); and how sets of formulas over the signature
∐

(Γ; SigA) can be used

5.3 The Institution RI 87

to define these subsets. What we have given are the ingredients of an institution RI based
on an institution I.

The category of signatures SignRI
has as objects pairs (D,Γ : D → AdtI), the type of the

relation, and morphisms f from Θ1 = (D1,Γ1) to Θ2 = (D2,Γ2) are pairs (f
F , fµ) of a functor

fF from D1 to D2 and a natural transformations fµ : Γ1 ⇒ fF ; Γ2. The Θ-structures are
elements of

∏

(Γ;ModA), Θ-formulas are
∐

(Γ; SigA)-formulas from I, and the satisfaction
relation |=RI is defined as m |=RI ϕ if m |=I ϕ. Here m refers to the isomorphism between
∏

(Γ;ModA) and ModA(
∐

Γ), which exists in any exact institution I. That is, if m is an
object in

∏

(Γ;ModA), then m is the isomorphic object in ModA(
∐

Γ).

The institution RI can be constructed for any exact base institution I with a cocomplete
category of signatures. Examples of such institutions are EQ, EQC, LSL, SET (cf. Sections 3
and 9.1), and the institution of first-order logic (cf. [25, 17]). Thus, in the following, we assume
that I = 〈SignI , StrI , SenI , |=

I〉 is an institution with a cocomplete category of signatures
SignI and a functor StrI that preserves colimits.

Signatures Instead of directly defining SignRI
as the category with objects Θ = (D,Γ)

and morphisms pairs f = (fF , fµ), as indicated above, we define SignRI
as an instance of

the category of diagrams over a category T which is defined by Tarlecki et al. [58].

Definition 5.2 (Fun(T)) Given a category T , then we define the indexed category Fun(T) :
Catop → Cat as follows:
For an object D ∈ Cat we set Fun(T)D = TD, and for a functor F : D → D′ we define a
functor Fun(T)F : TD′

→ TD by

• Fun(T)F (Γ
′) = F ; Γ′ for Γ′ ∈ TD′

, that is, (Fun(T)F (Γ
′))(d) = Γ′(F (d)) for every

d ∈ D, and

• Fun(T)F (µ) = µ;F for a natural transformations µ : Γ′
1 ⇒ Γ′

2 between functors Γ′
1 and

Γ′
2 in TD′

, that is, (Fun(T)F (µ))d = µF (d) for every d ∈ D.

Let IdD be the identity functor on D, then Fun(T)IdD is the identity on TD because

Fun(T)IdD(Γ) = IdD; Γ = Γ

and

Fun(T)IdD(µ) = µ; IdD = µ

for functors Γ : D → T and natural transformations µ : Γ ⇒ Γ′.

For two functors F : D → D′ and G : D′ → D′′ we have Fun(T)F ;G = Fun(T)G; Fun(T)F
because

Fun(T)F ;G(Γ
′′ : D′′ → T) = F ;G; Γ′′

= Fun(T)F (G; Γ′′)

= Fun(T)F (Fun(T)G(Γ
′′)),

88 Relations as Abstract Datatypes

and similar for the composition of natural transformations. Thus Fun(T) is indeed an indexed
category.

Flattening Fun(T) yields the category Flat(Fun(T)) of diagrams over T (cf. Section 2.5), which
has as objects pairs (D,Γ) — diagrams — where D is a category and Γ a functor from D
to T . Morphisms f from (D,Γ) to (D′,Γ′) in Flat(Fun(T)) are pairs (fF , fµ) where fF is a
functor from D to D′ and fµ is a natural transformation from Γ to fF ; Γ′.

The identity on Θ is the pair (idF , idµ) where idF is the identity functor for D and id
µ
d is

the identity on Γ(d) for all d ∈ D. The composition of (fF , fµ) from Θ1 to Θ2 with (gF , gµ)
from Θ2 to Θ3 is defined as

f ; g = (fF ; gF , fµ; (gµ; fF)),

that is, (f ; g)µd = fµ
d ; g

µ

fF (d)
for all d ∈ D.

Now we define SignRI
as the category of diagrams over AdtI .

Definition 5.3 (SignRI
) Let I be an institution, then define

SignRI
= Flat(Fun(AdtI)).

Structures The category of Θ = (D,Γ)-structures — StrRI
(Θ) — is given by an arbitrary,

but fixed limit of the contravariant functor Γ;ModA : Dop → Cat in Cat. Thus we can
view objects in StrRI

(Θ) as D-indexed families of structures md ∈ ModA(Γ(i)) such that if
f : d → d′ is a morphism in J , then md′ |Γ(f) = md.

For a morphism f = (fF , fµ) from (D,Γ) to (D′,Γ′) in SignRI
the functor StrRI

(f), from
the limit of Γ′;ModA to the limit of Γ;ModA, maps a D′-indexed family of objects m′

d′ ∈
ModA(Γ′(d′)) to a D-indexed family of objects md = m′

fF (d)|fµ

fF (d)
.

Definition 5.4 (StrRI
) Given an institution I. The functor StrRI

maps a signature (D,Γ)
to an arbitrary but fixed limit of Γ;ModA in Cat and a signature morphism (fF , fµ) from
(D,Γ) to (D′,Γ′) to the unique functor from StrRI

((D,Γ)) to StrRI
((D′,Γ′)) given by the

universal property of StrRI
((D,Γ)) and the natural transformation ν from ∆(StrRI

(Θ2)) to
StrRI

(Θ1) defined by νd = π′
fF (d);ModA(fµ

d) for all d ∈ D:

StrRI
((D,Γ))

πd

��

StrRI
((D,Γ))

StrRI
(f)

oo❴ ❴ ❴ ❴ ❴ ❴

νdtt❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥
π′

fF (d)
��

ModA(Γ(d)) ModA(Γ′(fF (d)))
ModA(fµ

d
)

oo

The functors πd for d ∈ D and π′
d′ for d

′ ∈ D′ are the cone morphisms of the limit of Γ;ModA

and Γ′;ModA, respectively.

5.3 The Institution RI 89

The definition of StrRI
(Θ) as the limit of Γ;ModA is well-defined because Cat is complete.

We still have to show that StrRI
is a functor, that is, StrRI

preserves identity and composition.

The identity (idF , idµ) in SignRI
is mapped to the identity functor because, on the one

hand, StrRI
((idF , idµ)) is unique as a functor from StrRI

(Θ) to StrRI
(Θ), and, on the other

hand, the identity on StrRI
(Θ) is a functor from StrRI

(Θ) to StrRI
(Θ).

Consider two morphisms f from (D1,Γ1) to (D2,Γ2) and g from (D2,Γ2) to (D3,Γ3) in
SignRI

. StrRI
(f ; g) is defined as the unique functor from StrRI

((D3,Γ3)) to StrRI
((D1,Γ1))

satisfying

StrRI
(f ; g); πd = π′′

gF (fF (d));ModA(fµ
d ; g

µ

fF (d)
)

for all d ∈ D1. However, looking at the following diagram and using the fact that ModA is
a functor, we see that StrRI

(g); StrRI
(f) has the same property, and therefore StrRI

(f ; g) =
StrRI

(g); StrRI
(f).

∏

D Γ;ModA

πd

��

∏

D′ Γ′;ModA
StrRI

(f)
oo❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

π′

fF (d)
��

∏

D′′ Γ′′;ModA
StrRI

(g)
oo❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

π′′

gF (fF (d))
��

ModA(Γ(d)) ModA(Γ′(fF (d)))
ModA(fµ

d
)

oo ModA(Γ′′(gF (fF (d))))
ModA(gµ

fF (d)
)

oo

Formulas Formulas inRI are defined by using co-completeness of SignI . Co-completeness
of SignI ensures that for each type Θ = (D,Γ) in SignRI

there exists a signature
∐

D Γ; SigA

in SignI . Note that, because SigA preserves and creates colimits, this is the same as
SigA(

∐

D Γ) (cf. Theorem 5.8). Then the set of Θ-formulas in RI is the same as the set
of

∐

Γ; SigA-formulas in I.

SenRI
is given as the composition of the functors

• Flat(Fun(SigA)) : Flat(Fun(AdtI)) → Flat(Fun(SignI)),

• climSignI
: Flat(Fun(SignI)) → SignI and

• SenI : SignI → Set:

Flat(Fun(SigA)) maps a diagram over AdtI to a diagram over SignI ; then climSignI
maps

this diagram over SignI to its colimit in SignI , and at last SenI maps the colimit signature
to the set of sentences in I over this signature.

SignRI

Flat(Fun(SigA))//
89 :;

SenRI

OOFlat(Fun(SignI))
climSignI // SignI

SenI // Set

90 Relations as Abstract Datatypes

The functor Flat(Fun(SigA)) is the result of flattening the indexed functor

Fun(SigA) : Fun(AdtI) ⇒ Fun(SigA).

Given a functor F : T → T ′, then F induces an indexed functor Fun(F) from Fun(T) to
Fun(T ′) as follows:

Definition 5.5 For each category D, Fun(F)D is the functor from TD to TD′

given by

• Fun(F)D(Γ : D → T) = Γ;F and

• Fun(F)D(µ : Γ ⇒ Γ′) = µ;F .

We have to show that Fun(F) is indeed an indexed functor, that is, Fun(F) is a natural
transformation from Fun(T) to Fun(T ′). Let G be a functor from D to D′, then we have to
show that the following diagram commutes:

Fun(T)D

Fun(F)D
��

Fun(T)D′

Fun(T)Goo

Fun(F)D′

��
Fun(T ′)D Fun(T ′)D′

Fun(T ′)G

oo

For a functor Γ : D → T we have

Fun(F)D′(Fun(T)G(Γ)) = Fun(F)D′(G; Γ)

= (G; Γ);F

= G; (Γ;F)

= Fun(T ′)G(Γ;F)

= Fun(T ′)G(Fun(F)D(Γ)),

and similar for natural transformations.

The functor climT maps objects (D,Γ : D → T) to the colimit of Γ in T .

Definition 5.6 (climT) Given a cocomplete category T , then the functor climT from the
category Flat(Fun(T)) defined as:

• climT ((D,Γ : D → T)) is an arbitrary, but fixed colimit of Γ in T for every (D,Γ) ∈
Flat(Fun(T)), and

• climT (f) =
∐

D (fµ; (fF ; ιΓ
′

)) for every morphism f = (fF , fµ) from (D,Γ) to (D′,Γ′)
in Flat(Fun(T)).

Because T is cocomplete, the functor climT is well defined, and since we have chosen a fixed
colimit for each (D,Γ) in Flat(Fun(T)), the identity (IdF , idΓ) in Flat(Fun(T)) maps to the
identity on climT ((D,Γ)) in T .

5.3 The Institution RI 91

climT preserves the composition of morphisms, that is,

climT (f ; g) = climT (f); climT (g)

for all morphisms f from (D1,Γ1) to (D2,Γ2) and g from (D2,Γ2) to (D3,Γ3) because
climT (f ; g) is the unique morphism from climT (Θ1) to climT (Θ3) making the outer rectangle
commute for all d ∈ D1 in the following diagram:

climT (Θ1)
climT (f) // climT (Θ2)

climT (g) // climT (Θ3)

Γ1(d)

ιΓ1 (d)

OO

f
µ
d

// Γ2(f
F (d))

ι
Γ2
fF (d)

OO

g
µ

gF (fF (d))

// Γ3(g
F (fF (d)))

ι
Γ3
gF (fF (d))

OO

To define SenRI
as Flat(Fun(SigA)); climSignI

; SenI , we have to require that SignI is cocom-
plete because otherwise the functor climSignI

would not be defined.

Definition 5.7 (SenRI
) Let I be an institution with a cocomplete category of signatures.

Then

SenRI
= Flat(Fun(SigA)); climSignI

; SenI .

Note that we can always choose the colimits of Γ : D → AdtI and Γ; SigA : D → SignI in
such a way that SigA(

∐

Γ) =
∐

Γ; SigA because there is a one-to-one correspondence between
the class of colimits of Γ and the class of colimits of Γ; SigA. Assume that Γ has as a colimit
(Σ,M) then, because SigA preserves colimits (cf. Theorem 4.4), we have that Σ is a colimit of
Γ; SigA. On the other hand, if we have given a colimit Σ of Γ; SigA then, because SigA creates
colimits (cf. Theorem 4.1), we can construct a class of Σ-structures M , such that (Σ,M) is
a colimit of Γ. This leads to the following theorem:

Theorem 5.8 Provided that AdtI is cocomplete, we have

Flat(Fun(SigA)); climSignI
= climAdtI

; SigA.

Proof. Let (D,Γ) be an object of Flat(Fun(Adt)), then

Flat(Fun(SigA))((D,Γ)) = (D,Γ; SigA)

and climSignI
((D,Γ; SigA)) =

∐

D Γ; SigA. For the right-hand side we get:

SigA(climAdtI
((D,Γ))) = SigA(

∐

D

Γ).

Since SigA preserves and creates colimits, we have
∐

D

Γ; SigA = SigA(
∐

D

Γ).

✷

92 Relations as Abstract Datatypes

However, this relationship does not hold, in general, for limits of Γ;ModA and colimits of
Γ. Consider for example the functor Γ : K2 → AdtEQ in the institution EQ of equational
logic. One possible choice for a limit of Γ;ModA is the cartesian product ModA(Γ(1)) ×
ModA(Γ(2)). For this limit it is impossible to find an abstract datatype (Σ,M) such that
M = ModA(Γ(1))×ModA(Γ(1)) since there does not exist a many-sorted signature Σ = (S,Ω)
such that Σ-structures are pairs of algebras (A1, A2). However, we can find an abstract
datatype (Σ′,M ′) such that M ′ and ModA(Γ(1)) × ModA(Γ(2)) are isomorphic. This leads
to the following theorem:

Theorem 5.9 The contravariant functor StrRI
: Signop

RI
→ Cat is natural isomorphic to

the contravariant functor climAdtI
;ModA provided that the structure functor StrI preserves

colimits.

Proof. Since StrI preserves colimits, so does ModA (cf. Theorem 4.5). Thus, the natural
isomorphism µ : StrRI

⇒ climAdtI
;ModA is given for each Θ = (D,Γ) in SignRI

by the
isomorphism between ModA(

∐

Γ) and an arbitrary limit
∏

Γ;ModA of Γ;ModA. We have to
show that the family of all isomorphisms µΘ : StrRI

(Θ) → ModA(
∐

Γ) is indeed a natural
transformation, that is, the following diagram commutes for all morphisms f : Θ → Θ′ in
SignRI

.

ModA(
∐

Γ) StrRI
(Θ)

µΘoo

ModA(
∐

Γ′)

ModA(climAdtI
(f))

OO

StrRI
(Θ′)

StrRI
(f)

OO

µΘ′

oo

First consider the following family of diagrams for d ∈ D:

ModA(
∐

Γ)

ModA(ιΓd)

$$■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

StrRI
(Θ)

µΘoo

π
Γ;ModA

d

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇✇
✇

(1)

(2) Mod(Γ(d)) (4)

ModA(Γ′(fF (d)))

ModA(fµ
d
)

OO

(3)

ModA(
∐

Γ′)

ModA(ιΓ
′

fF (d)
)

::✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈✈

ModA(climAdtI
(f))

OO

StrRI
(Θ′)

StrRI
(f)

OO

µΘ′

oo

π
Γ;ModA

fF (d)

cc●●●●●●●●●●●●●●●●●●●●●●●

The diagrams (1) and (3) commute because the functorModA preserves colimits and StrRI
(Θ)

is defined as
∏

D Θ;ModA. Diagram (4) commutes because StrRI
(f) is defined as the unique

5.3 The Institution RI 93

morphism making (4) commute, and similar diagram (2) commutes because of the definition
of climAdtI

(f) and because a functor preserves composition.

Note that for this type of diagram, if the subdiagrams (1), (2), (3), and (4) commute for
all d ∈ D, this does not immediately imply that the functors µΘ′;ModA(climAdtI

(f)) and
StrRI

(f);µΘ are the same.

However, because ModA(
∐

Γ) is a limit of Γ;ModA, there exists a unique functor

H : StrRI
(Θ′) → ModA(

∐

Γ)

which makes the following diagram commute for all d ∈ D:

ModA(
∐

Γ)

ModA(ιΓd)
��

StrRI
(Θ′)Hoo

π
Γ;ModA

fF (d)
;ModA(fµ

d
)ww♦♦♦

♦♦
♦♦
♦♦
♦♦

ModA(Γ(d))

Since µΘ′;ModA(climAdtI
(f)) and StrRI

(f);µΘ have the same property, we get:

µΘ′;ModA(climAdtI
(f)) = H = StrRI

(f);µΘ.

✷

Satisfaction Theorems 5.8 and 5.9 from the previous section allow us to define the satis-
faction relation |=RI .

On one hand, there exists a unique element m = µΘ(m) in ModA(climAdtI
(Θ)) for each

m in StrRI
(Θ) given by the natural isomorphism µ between StrRI

and climAdtI
;ModA

(cf. Theorem 5.9), which, by the definition of the category AdtI , is also an element of
StrI(Sig

A(climAdtI
(Θ))).

On the other hand, since Flat(Fun(SigA)); climSignI
and climAdtI

; SigA are equal (cf. Theo-
rem 5.8), each formula ϕ ∈ SenRI

(Θ) is also an element of SigA(climAdtI
(Θ)). This allows us

to define:

Definition 5.10 (|=RI) Let Θ be a signature in SignRI
, m a structure in StrRI

(Θ), and
ϕ a formula in SenRI

(Θ), then

m |=RI ϕ if and only if m |=I ϕ.

For RI to be an institution, it remains to show that the satisfaction condition holds.

Theorem 5.11 For all signature morphisms f : Θ → Θ′ in SignRI
, Θ′-structures m, and

Θ-formulas ϕ we have:

m |=RI SenRI
(f)(ϕ) if and only if m|f |=RI ϕ.

94 Relations as Abstract Datatypes

Proof. Let f be a morphism from Θ to Θ′ in SignRI
, m a Θ′-structure, and ϕ a Θ-formula,

then we have:

m |=RI SenRI
(f)(ϕ)

iff m |=I SenI(Sig
A(climAdtI

(f))) | Def. |=RI

iff m|SigA(climAdtI
(f)) |=

I ϕ | Sat. Cond. I

iff m|climAdtI
(f) |=

I ϕ | Def. AdtI-morph.

iff m|f |=I ϕ | *

iff m|f |=RI ϕ | Def. |=RI

Equivalence (∗) holds because the naturality of the isomorphism between the functors StrRI

and climAdtI
;ModA implies m|climAdtI

(f) = m|f . ✷

Definition of RI To sum up the previous paragraphs, we define:

Definition 5.12 (RI) Given an institution I with a cocomplete category of signatures
SignI and a colimit preserving structure functor StrI . The institution

RI = (SignRI
, StrRI

, SenRI
, |=RI)

is defined as follows:

• SignRI
= Flat(Fun(AdtI)),

• StrRI
(Θ) =

∏

D Γ;ModA and StrRI
(f) =

∏

D(f
F ; πΓ′;ModA); (fµ;ModA) for all mor-

phisms f : Θ → Θ′ and objects Θ = (D,Γ) and Θ′ = (D′,Γ′) in SignRI
,

• SenRI
= Flat(Fun(SigA)); climSignI

; SenI, and

• m |=RI ϕ iff m |=I ϕ for all m ∈ StrRI
(Θ), ϕ ∈ SenRI

(Θ), and Θ ∈ SignRI
.

Note that the construction of the functors StrRI
and SenRI

are very similar. Given an
object (D,Γ) then StrRI

((D,Γ)) is given by
∏

D Γ;ModA, while SenRI
((D,Γ)) is given by

SenI(
∐

D Γ; SigA). However, we have given an explicit definition of StrRI
while SenRI

was
given as a composition of functors. And indeed, we can define StrRI

similar to SenRI
as

StrRI
= Flat(Fun(ModA)); limCat.

Note, however, since ModA is a contravariant functor, Fun(ModA) is a family of contravariant
functors indexed by Cat, that is, Fun(ModA)D is a contravariant functor from the functor cat-
egory of covariant functors, Fun(AdtI)D = AdtD

I , to the category of contravariant functors
from D to Cat, which we denote by CFun(AdtI)D = CatDop

. Then flattening a family of
contravariant functors yields a covariant functor from Flat(Fun(AdtI)) to Flat(CFun(Cat)op).
That is, a morphism

(fF : D → D′, fµ : Γ ⇒ fF ; Γ′)

5.3 The Institution RI 95

in Flat(Fun(AdtI)) is mapped to the morphism

(fF : D → D′,ModA(fµ) : fF ; Γ′;ModA ⇒ Γ;ModA)

in Flat(CFun(Cat)op).

Then limCat maps an object (D,Γ : Dop → Cat) in Flat(CFun(Cat)op) to
∏

D Γ in Cat and
a morphism (fF : D → D′, fµ : fF ; Γ′ ⇒ Γ) in Flat(CFun(Cat)op) to the unique morphism
∏

D′(fF ; πΓ′

); fµ from
∏

D Γ′ to
∏

D Γ given by the limit property of
∏

D Γ.

Note the similarity between the category of many-sorted signatures Sig (cf. Section 3.1) and
the category SignRI

. Both can be defined by flattening an indexed category, MS : Setop →
Cat for Sig (cf. Section 2.5) and Fun(AdtI) : Catop → Cat for SignRI

. For a set S,
MSS is the set of functions from S+ to Set, and for a category D, Fun(AdtI)D is the set
of functors from D to AdtI . We shall see in the next section that also the construction of
colimits is very similar.

Abstract datatypes in RI , objects in AdtRI
, are pairs (Θ,M) where M is a full subcategory

of StrRI
(Θ) =

∏

Γ;ModA. Morphisms f from (Θ1,M1) to (Θ2,M2) in AdtRI
are type

morphisms f = Θf from Θ1 to Θ2 such that StrRI
(f)(M2) ⊆ M1. Thus we have the following

fact:

Fact 5.13 The category of relations between abstract datatypes Rel, defined in Section 5.2,
is the same as the category of abstract datatypes AdtRI

in RI for an institution I with a
cocomplete category of signatures and a structure preserving structure functor.

Note that the definition ofRel does not require SignI to be cocomplete and StrRI
to preserve

colimits. This is only needed for the definition of formulas and satisfaction in RI .

Example In the example of the counter the increment operation is the abstract datatype
(ΘInc,M) in the institution RLSL with LSL as the base institution where ΘInc ∈ SignRLSL

is the type (V,ΓInc). ΓInc can be depicted by the following diagram

ΓInc =

[[C]] [[C]]

[[Nat]]
1 Q

b❋❋❋❋❋❋❋❋ -

<①①①①①①①①

where

C : trait

includes Nat

introduces c: N

and M is given by all pairs (A,B) in

∏

ΓInc;ModA = ModA([[C]])×ModA([[Nat]]) ModA([[C]]),

96 Relations as Abstract Datatypes

with B(c) = A(succ)(A(c)).

To fix a colimit of ΓInc; Sig
A for the definition of SenRLSL

(ΘInc) we use the convention that
the components of the state after an operation is performed are decorated with a prime. Then
the formulas in SenRLSL

(ΘInc) are the formulas in SenLSL(
∐

ΓInc; Sig
A) where

∐

ΓInc; Sig
A

is the signature

({N}, {zero : N, succ : N → N, c : N, c′ : N}).

Using the formulas in SenRLSL
(ΓInc), M can be characterized by all pairs (A,B) from

StrRLSL
(ΓInc) such that

(A,B) |=RLSL c′ = succ(c),

which is, by the definition of satisfaction in RLSL, equivalent to

A+C B |=LSL c′ = succ(c),

where A +C B is the amalgamated of A and B with respect to C = A|ι = B|ι.

With the specification language SLI introduced in Section 4.2 and instantiated with I =
RLSL, we can write

Inc = I{c′=succ(s)}ΘInc

to define the increment operation.

5.4 Colimits in SignRI

Since SignRI
is defined as Flat(Fun(AdtI)), we can use Theorem 2.28 to prove that SignRI

is cocomplete. To apply this theorem, we have to check that

1. Cat is cocomplete,

2. AdtD
I is cocomplete for each category D, and

3. the functor Fun(AdtI)F : AdtD′

I → D has a left adjoint for all functors F : D → D′.

Cat is cocomplete and since in the construction of RI we have assumed that SignI is
cocomplete, so is AdtI and thus AdtD

I is cocomplete for all categories D.

Thus it remains to show that Fun(AdtI)F has a left adjoint for every functor F : D → D′.
Given a functor Γ : D → AdtI , we are looking for a functor LF (Γ) : D′ → AdtI such that
for each functor Γ′′ : D′ → AdtI and natural transformation µ : Γ ⇒ F ; Γ′′ there exists a
unique natural transformation µ : LF (Γ) ⇒ Γ′′:

Γ
µ +3 F ; Γ′′

LF (Γ)
µ +3 Γ′′

.

5.4 Colimits in SignRI
97

As observed by Tarlecki, Burstall and Goguen [58], finding for each Γ : D → AdtI a functor
LF (Γ) : D′ → AdtI with the above properties is the same as finding the left Kan extension
of Γ along F : D → D′.

Definition 5.14 (Left Kan Extension) Given categories T , D, and D′ and a functor
F : D → D′. Let Γ be an object of TD, that is, a functor from D to T , then the left Kan
extension of Γ along F is a pair (Γ′, η) consisting of a functor Γ′ from D′ to T and a natural
transformation η from Γ to F ; Γ′ such that for all natural transformations ν : Γ ⇒ F ; Γ′′ in
TD′

there exists a unique natural transformation ν̄ : Γ′ ⇒ Γ′′ such that the following diagram
commutes in TD:

Γ
η +3

ν
�%

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

❈❈
❈❈

F ; Γ′

F ;ν̄
��

F ; Γ′′

Note that if each Γ in TD has a left Kan extension Γ′ along F , then this determines a functor
LF : TD → TD′

left adjoint to Fun(T)F by LF (Γ) = Γ′ and LF (ν : Γ ⇒ Γ′′) = ν; η′′ where η′′

is the natural transformation associated to the left Kan extension of Γ′′ along F :

Γ
ν +3 Γ′′

η′′ +3 F ;LF (Γ′′)

LF (Γ)
LF (ν) +3 LF (Γ′′)

.

As an example consider the following categories

D =

1 2

0
f

^^❂❂❂❂❂❂❂ g

@@✁✁✁✁✁✁✁
and D′ =

3

1

f ′
@@✁✁✁✁✁✁✁

2

g′
^^❂❂❂❂❂❂❂

0
f

^^❂❂❂❂❂❂❂ g

@@✁✁✁✁✁✁✁

,

Let F be the inclusion of D into D′ and Γ an arbitrary functor from D to T .

The problem is to find Γ′(0), Γ′(1), Γ′(2), and Γ′(3). While it seems natural to choose
Γ′(0) = Γ(0), Γ′(1) = Γ(1), and Γ′(2) = Γ(2), the question remains what to choose for Γ′(3).
Intuitively Γ′(3) is the “smallest” object in T which “includes” Γ′(1) and Γ′(2), that is, Γ′(3)
is the coproduct of Γ′(1) and Γ′(2).

To see that this indeed defines the left Kan extension of Γ along F , consider a functor
Γ′′ : D′ → T and a natural transformation µ : Γ ⇒ F ; Γ′′. Then we have to be able to extend
µ to a natural transformation µ from Γ′ to Γ′′. Again it is natural to choose µ0 = µ0, µ1 = µ1

and µ2 = µ2. Now µ3 : Γ′(3) → Γ′′(3) is given by the universal property of the coproduct
Γ′(3) = Γ′(1)⊎Γ′(2) and because µ1; Γ

′′(f ′) is a morphism from Γ′(1) to Γ′′(3) and µ2; Γ
′′(g′)

is a morphism from Γ′(2) to Γ′′(3).

98 Relations as Abstract Datatypes

Theorem 1 on page 233 of Mac Lane’s book [43] provides a construction of the right Kan
extension. The notion of right Kan extension is a dual to the notion of left Kan extension.
Thus by reversing the arrows in the construction of the right Kan extension we get a left
Kan extension.

Theorem 5.15 (Mac Lane [43]) Under the assumptions of Definition 5.14 the left Kan
extension of Γ along F exists provided that T is cocomplete.

Proof. Here, we only provide the construction of the left Kan extension; the proof that this
is indeed a left Kan extension can be found in [43]. Let Γ be a functor from D to T , then we
have to provide a functor Γ′ from D′ to T . For each d′ ∈ D′ we take Γ′(d′) as the “smallest
element” including Γ(d) if there exists a morphism f from F (d) to d′ in D′. Thus Γ′(d′) is
the colimit of a functor Fd′ from an appropriate category to T . The appropriate category is
the comma category (F ↓ d′). Objects of (F ↓ d′) are pairs (d, f) consisting of an object d
of D and an arrow f from F (d) to d′ in D′. Morphisms from (d1, f1) to (d2, f2) are arrows
g : d1 → d2 in D such that the following diagram commutes in D′:

F (d1)
F (g) //

f1 ""❊
❊❊

❊❊
❊❊

❊
F (d2)

f2||②②
②②
②②
②②

d′

Then Fd′ : (F ↓ d′) → T is given by

Fd′((d, f)) = Γ(d) and Fd′(g) = Γ(g)

for objects (d, f) and morphisms g : (d1, f1) → (d2, f2) in (F ↓ d′).

Now we can define Γ′(d′) as
∐

Fd′ and Γ′(g : d1 → d2) as
∐

ν where ν is the natural

transformation from Fd1 to ∆(
∐

Fd2) given by ν(d,f) = ι
Fd2

(d,f ;g).

Note that if (d, f) is an object of (F ↓ d1) and g is a morphism from d1 to d2, then (d, f ; g)
is an object of (F ↓ d2) and Fd1((d, f)) = Γ(d) = Fd2((d, f ; g)).

The colimit of Fd′ exists because T is cocomplete.

✷

As an example of the construction of the left Kan extension, we define Γ′ : D′ → T from the
previous example.

The category (F ↓ 0) has one object (0, id) and the identity as the only arrow. The functor
F0 maps (0, id) to Γ(0). The colimit of F0 is Γ(0) and thus Γ′(0) = Γ(0).

The category (F ↓ 1) has two objects (0, f) and (1, id) and one arrow f from (0, f) to (1, id)
other than the identity. Then Γ′(1) is Γ(1) because the colimit of F1 is Γ(1). Similar we get
Γ′(2) = Γ(2).

5.4 Colimits in SignRI
99

(F ↓ 3) is the category freely generated by

(1, f ′) (2, g′)

(0, f ; f ′)

f

OO

(0, g; g′)

g

OO

and F3 can be depicted by

Γ(1) Γ(2)

Γ(0)

Γ(f)

OO

Γ(0)

Γ(g)

OO

which has the coproduct of Γ(1) and Γ(2) as its colimit. Note that (0, f ; f ′) and (0, g; g′) are
two different objects in (F ↓ 3), and therefore the colimit of F3 is the coproduct of Γ(1) and
Γ(2) and not the pushout of Γ(1) and Γ(2) with respect to Γ(0).

The morphism Γ′(f) is Γ(f), Γ′(g) = Γ(g), Γ′(f ′) is the injection ι1 of Γ(1) into the coproduct
Γ(1) ⊎ Γ(2), and Γ′(g′) the injection ι2 of Γ(2) into Γ(1) ⊎ Γ(2). Thus Γ′ can be depicted as:

Γ(1) ⊎ Γ(2)

Γ(1)

ι1
99rrrrrrrrrr

Γ(2)

ι2
ee▲▲▲▲▲▲▲▲▲▲

Γ(0)
Γ(f)

ee▲▲▲▲▲▲▲▲▲▲ Γ(g)

99rrrrrrrrrr

In the proof of the existence of a left Kan extension (cf. Theorem 5.15) we had to require co-
completeness of T because we needed the colimit of the functor Fd′ : (F ↓ d′) → T . However,
provided that D and D′ are finite categories, it suffices that T is finitely cocomplete because
(F ↓ d)′ will be always finite if D and D′ are finite.

Corollary 5.16 Under the assumptions of Definition 5.14 the left Kan extension of Γ
along F exists provided that T is finitely cocomplete and that D and D′ are finite.

Let T be a (finitely) cocomplete category, then Theorem 5.15 implies the existence of a
left adjoint functor for Fun(T)F for every functor F from a (finite) category D to a (finite)
category D′. Together with Theorem 2.28 we get:

Theorem 5.17 The category Flat(Fun(T)) is (finitely) cocomplete if T is (finitely) cocom-
plete.

Since AdtI is cocomplete, we get as a direct consequence:

100 Relations as Abstract Datatypes

Corollary 5.18 The category SignRI
is cocomplete.

The initial object in SignRI
is (0,Γ⊥) where Γ⊥ is the unique functor from 0 to Adt.

In the following we study types of functors F : J → SignRI
which do not require the existence

of left adjoint functors to construct their colimit. An example of these type of diagrams can be
found in the definition of the sequential composition of relations fromAdtRI

(cf. Section 6.3).

Instead of proving the next theorem for SignRI
= Flat(Fun(AdtI)), we give a proof for

Flat(Fun(T)) where T is any category. Note that for this theorem we do not have to require
that T is (finitely) cocomplete.

Theorem 5.19 Given a functor F from J to Flat(Fun(T)). Let F (i) = (Di,Γi) and F (f) =
(fF , fµ) such that fµ is the identity on Γi, that is, Γi = fF ; Γj for all objects i and morphisms
f : i → j in J . Let further FCat be the functor from J to Cat defined by FCat(i) = Di and
FCat(f) = fF for every i and f in J . Then the colimit (Dcl ,Γcl) of F is given by the colimit
Dcl of FCat and the unique functor Γcl from Dcl to T given by the colimit property of Dcl

w.r.t. the natural transformation ν : FCat ⇒ ∆T with νi = Γi for every i ∈ J .

Proof. First note that ν is indeed a natural transformation because

νi = Γi = fF ; Γj = FCat(f); νj

for all morphisms f : i → j in J :

Di
νi=Γi //

FCat(f)=fF

��

T

(∆T)(f)=idT

Dj
νj=Γj

// T

Using the representation of colimits in Cat from Theorem 2.3 we can write the functor Γcl

as

Γcl([(i, d)]≡) = Γi(d) and Γcl([(i, f : d → d′)]≡) = Γi(f).

The co-cone morphisms ιFi are given by ιFi = (ιFCat
i , id) where ιFCat

i (d) = [(i, d)]≡ for all i ∈ J
and d ∈ Di.

To show that (ιF ,
∐

F) is a colimit in Flat(Fun(T)), consider an object (D′,Γ′) and a natural
transformation ǫ from F to ∆(D′,Γ′). We have to find a unique morphism h = (hF , hµ) from
∐

F to (D′,Γ′) such that the following diagram commutes for all i ∈ J :

∐

F
(hF ,hµ) //❴❴❴❴❴ (D′,Γ′)

(Di,Γi)
ǫi=(ǫi

F ,ǫi
µ)

77♣♣♣♣♣♣♣♣♣♣♣
(ιFCat ,id)

OO

5.4 Colimits in SignRI
101

hF is given by the colimit property of
∐

FCat with respect to the natural transformation η
from FCat to ∆D′ given by ηi = ǫi

F and is unique with the property ιFCat; hF = ǫi
F . Using

the explicit representation of
∐

FCat the functor hF can be written as:

hF ([(i, d)]≡) = ǫi
F (d) and hF ([(i, f : d → d′)]≡) = ǫi

F (f).

Define the natural transformation hµ by (hµ)[(i,d)]≡ = (ǫi
µ)d for [(i, d)]≡ ∈

∐

FCat. We have
to show that hµ is well defined, that hµ is a natural transformation from Γcl to Fhµ ; Γ′, and
that ιF ; h = ǫ.

For proving the well-definedness of hµ consider (i, d) ≡ (j, d′) and f : i → j in J with
d′ = FCat(f)(d):

1

(hµ)[(j,d′)]≡ = (ǫj
µ)d′ | Def. of hµ

= (ǫj
µ)FCat(f)(d) | FCat(f)(d) = d′

= (FCat(f); ǫj
µ)d | Def. of FCat(f)(ǫi

µ)

= (ǫi
µ)d | *

= (hµ)[(i,d)]≡ | Def. of hµ

The equation (*) holds because ǫ is a natural transformation from F to ∆(D′,Γ′) and thus ǫi =
F (f); ǫj, which implies ǫi

µ = fµ;FCat(f)(ǫj) by the definition of composition in Flat(Fun(T)).
Then ǫi

µ = FCat(f)(ǫj) because fµ is the identity natural transformation.

To show that hµ is a natural transformation from Γcl to hF ; Γ′, consider a morphism [(i, f :
d → d′)]≡ : [(i, d)]≡ → [(i, d′)]≡ in

∐

FCat. We have to show that the following diagram
commutes

Γcl([(i, d)]≡)
(hµ)[(i,d)]≡ //

Γcl ([(i,f)]≡)

��

Γ′(hF ([(i, d)]≡))

Γ′(hF)([(i,f)]≡)
��

Γcl([(i, d
′)]≡)

(hµ)[(i,d′)]≡

// Γ′(hF ([(i, d′)]≡))

However, by the definition of
∐

F and hµ this is the same as

Γi(d)
(ǫiµ)d //

Γi(f)

��

Γ′(ǫi
F (d))

Γ′(ǫi
F (f))

��
Γi(d

′)
(ǫi

µ)d′
// Γ′(ǫi

F (d′))

for all i ∈ J , which commutes since ǫi
µ is a natural transformation from Γi to ǫi

F ; Γ′.

Now we have to show that ιF ; h = ǫ, that is, we have to show

ιFCat; hF = ǫi
F and ιFCat

i (hµ) = ǫi
µ

1To show the well-definedness of a function h : A/≡R → B defined by h([a]≡R
) = g(a), it suffices to show

that g(a) = g(a′) if a R a′ because equality is an equivalence relation.

102 Relations as Abstract Datatypes

for each i ∈ J . The first equation holds because of the definition of hF and for the second
equation consider d ∈ Di and

(ιFCat
i (hµ))d = (hµ)

(ι
FCat
i (d))

= (hµ)[(i,d)]≡ | Def. ιFCat
i

= (ǫi
µ)d | Def. of hµ.

✷

Note that the construction of the above theorem does not work for arbitrary diagrams since, in
general, ν, as defined above, is not a natural transformation because instead of νi(d) = Γi(d)
being equal to (FCat(f); νj)(d) = Γj(f

F (d)) for all d ∈ Di we only know that Γi(d) and
Γj(f

F (d)) are related by the T -morphism fµ
d .

5.5 Preservation of Colimits

In this section we prove that StrRI
preserves colimits, that is, StrRI

(
∐

F) is a limit of
F ; StrRI

for functors F : J → SignRI
. Because of Theorem 5.9, we know that StrRI

is
natural isomorphic to climAdtI

;ModA, and Theorem 2.20 allows us to deduce from that fact
and the fact that climAdtI ;ModA preserves colimits that StrRI

preserves colimits.

We have that StrI preserves colimits, and thus ModA preserves colimits. Because the compo-
sition of (co)limit preserving functors is again a (co)limit preserving functor, we are done if
we can show that climAdtI

preserves colimits. To this end we prove that climAdtI
has a right

adjoint functor U : AdtI → SignRI
.

Lemma 5.20 Let U be the functor from AdtI to SignRI
defined by

U((Σ,M)) = (1,Γ(Σ,M)) and U(σ) = (Id1, σ
µ)

for each abstract datatype (Σ,M) and morphism σ in AdtI where Γ(Σ,M) maps the only
object of 1 to (Σ,M) and σµ

1 = σ. Then U is a right adjoint for climSignRI
.

Proof. The co-unit ε : IdAdtI
⇒ U ; climAdtI

of the adjunction is given by ε(Σ,M) = id(Σ,M)

for every (Σ,M) in Adt. And for a morphism σ from climSignI
(Θ) to (Σ,M) the morphism

σ̃ from Θ to U((Σ,M)) is given by (σ̃F , σ̃µ) where σ̃F is the unique morphism from D to 1
because 1 is the terminal object in Cat and σ̃µ

d = ιΓd ; σ for each object d in D. ✷

Theorem 2.25 and the previous lemma imply:

Corollary 5.21 The functor climSignI
: SignRI

→ AdtI preserves colimits.

Altogether we get the main theorem of this section:

Theorem 5.22 The contravariant functor StrRI
from SignRI

to Cat preserves colimits.

5.6 Relation between AdtRI
and AdtI 103

5.6 Relation between AdtRI
and AdtI

There is a strong relationship between objects (ΘR,MR) in AdtRI
and objects (Σ,M) in

AdtI resulting from the preservation of colimits of StrI and the fact that SignI and thus
AdtI are cocomplete.

Definition 5.23 The functor GA : AdtRI
→ AdtI is defined by

GA((ΘR,MR)) = (
∐

DR

ΓR; Sig
A, {m | m ∈ MR})

GA(f) = climAdtI
(f)

where ΘR = (DR,ΓR) and f is an AdtRI
-morphism from R = (ΘR,MR) to S = (ΘS,MS),

that is, f is an SignRI
-morphism from ΘR to ΘS such that MS|f ⊆ MR.

For GA to be well-defined we have to check that GA(f) is indeed an AdtI-morphism from
GA(R) to GA(S), that is,

ModA(GA(S))|GA(f) ⊆ ModA(GA(R)).

Let mS be a model of ModA(GA(S)), that is, mS is an object of MS . Then we have to
show that mS|climAdtI

(f) is in ModA(GA(R)). Since the isomorphism between StrRI
and

climAdtI
;ModA is natural, this is equivalent to showing that mS|f is in ModA(GA(R)). This

holds by definition of GA and because f is an AdtRI
-morphism, and therefore mS|f is in

MR.

In the example of the counter GA((ΘInc,MInc)) is the abstract datatype (ΣI ,MI) in the
institution LSL where

ΣI =
∐

V

ΓInc; Sig
A = ΣCounter +ΣNat

ΣCounter

and

MI = {A +C B | (A,B) ∈ MInc}.

Conversely, if we are given MI , we can get MInc by

MInc = {(D|ι1, D|ι2) | D ∈ MI}

where ι1 and ι2 are the co-cone morphism of the colimit of ΓInc; Sig
A.

Fact 5.24 For every R in AdtRI
there exists an isomorphism between the model category

of R and the model category of GA(R).

Proof. This is obvious since GA((Θ,M)) is defined as (
∐

Γ; SigA,M) where M is the cate-
gory with objects all m such that m ∈ M . ✷

104 Relations as Abstract Datatypes

Note however, though the model categories of R and GA(R) are isomorphic, there is no
isomorphism between AdtRI

and AdtI because it is impossible to recover the type of R
from GA(R).

Still, it is possible to define for each abstract datatype (Σ,M) a relation U((Σ,M)) in AdtRI

which is universal in the sense that if σ is an Adt-morphism from GA((Θ,M ′)) to (Σ,M)
for some object (Θ,M ′) in AdtRI

, then there exists a unique morphism σ̃ from (Θ,M ′) to
U((Σ,M)) with GA(σ̃) = σ.

Let (Σ,M) be an abstract datatype in AdtI , then

U((Σ,M)) = ((1,ΓΣ),M
′′)

where ΓΣ : 1 → AdtI maps 1 to (Σ, {}) and M ′′ is the same as M .

Further, given an Adt-morphism σ from (Σ,M) to (Σ′,M ′), then σ extends to an AdtRI
-

morphism f = (fF , fµ) from U((Σ,M)) to U((Σ′,M ′)) by

fF (1) = 1 and fµ
1 = σ.

Theorem 5.25 U as defined above is a functor from Adt to AdtRI
right adjoint for GA.

Proof. The co-unit ε : IdAdtI
⇒ U ;GA of the adjunction is given by ε(Σ,M) = id(Σ,M) for

abstract datatypes (Σ,M). For a morphism σ from GA((Θ,M ′)) to (Σ,M) the morphism
σ̃ from (Θ,M ′) to U((Σ,M)) is given by (σ̃F , σ̃µ) where σ̃F is the unique morphism from

D to 1 since 1 is the terminal object in Cat and σ̃µ
d = ιΓ;Sig

A

d ; σ for each object d in D.

The morphism ιΓ;Sig
A

d is the co-cone morphism from SigA(Γ(d)) to
∐

Γ; SigA, the signature
of GA((Θ,M)), where Θ = (D,Γ).

Let U((Σ,M)) = ((1,ΓΣ),M
′′). Note that by the definition of U we have M ′′ = M .

For σ̃ to be an AdtRI
-morphism it remains to show that M ′′|σ̃ ⊆ M ′. Note that, because σ̃

is unique with the property GA(σ̃); ε(Σ,M) = σ and ε(Σ,M) is the identity, we have GA(σ̃) = σ.
Using the fact that the isomorphism between StrRI

and climAdtI
;ModA is natural and noting

that GA(σ̃) = climAdtI
(σ̃) = σ, we getM ′′|σ̃ = M ′′|σ = M |σ. Since σ is an Adt-morphism,

we have M |σ ⊆ M ′ and thus M ′′|σ̃ ⊆ M ′, which implies M ′′|σ̃ ⊆ M ′. ✷

The existence of a right adjoint for GA implies:

Corollary 5.26 The functor GA from AdtRI
to AdtI preserves colimits.

The following theorem is the core theorem for proving properties of relations (cf. Chapter 7).
It allows us to prove (ΘR,MR) |=

RI ϕ by proving GA((ΘR,MR)) |=
I ϕ and is a consequence

of the isomorphism of the model categories of R and GA(R).

Theorem 5.27 Let R = (Θ,M) be a relation in AdtRI
and ϕ a formula in SenRI

(Θ), then

R |=RI ϕ if and only if GA(R) |=I ϕ.

5.7 Operations on relations 105

Note though that this does not imply that if we are given a sound and complete inference
system ⊢I for proving Φ1 |=I Φ2, then we get a sound and complete inference system for
proving Φ1 |=

RI Φ2. We can only conclude that if Φ1 ⊢
I Φ2, then Φ1 |=

RI Φ2. The reason is
that the category of all ΘR-structures that satisfy Φ1 with respect to |=RI is only isomorphic
to the subcategory of all Σ-structures that satisfy Φ1 with respect to |=I where Σ is the
signature of GA(R) (cf. Section 7).

5.7 Operations on relations

One advantage of representing relations as abstract datatypes of the institution RI is to use
the language SLI′ (cf. Section 4.2) where I ′ is RSLI with its operations impose, translate,
derive, and union to define relations.

A relation R = Θ is the universal relation. For example, if Θ = (Kn,Γ), then

(m1, . . . , mn) ∈ R iff (m1, . . . , mn) ∈ StrRI
(Θ)

iff (m1, . . . , mn) ∈ StrI(Γ(1))× · · · × StrI(Γ(n)).

Impose Let R = (ΘR,MR) be a relation in AdtRI
. The operation IΦR allows to restrict

the tuples in MR to those satisfying Φ:

(m1, . . . , mn) ∈ IΦR

if and only if

(m1, . . . , mn) ∈ R and (m1, . . . , mn) |=
RI Φ

For example, the increment operation of the counter can be defined using the impose opera-
tion as

Inc = I{c′=succ(c)}ΘInc

and the decrement operation as

Dec = I{succ(c′)=c, c 6=zero}ΘInc.

Union The union operation can be used to combine several relations of the same type such
that

(m1, . . . , mn) ∈ R1 +R2

if and only if

(m1, . . . , mn) ∈ R1 and (m1, . . . , mn) ∈ R2

for relations R1 = (Θ,MR1) and R2 = (Θ,MR2).

106 Relations as Abstract Datatypes

Translate The translate operation allows to change the type of a relation, for example,
so that the union of relations is defined. It can be used to add new state components and
nodes/edges to the type of a relation.

Given a relation R of type ΘR and a SignRI
-morphism from ΘR to some type ΘS, then TfR

yields a relation of type ΘS as follows:

(m1, . . . , mn) ∈ TfR if and only if (m1, . . . , mn)|f ∈ R.

For example, assume that we want to add a new component d of sort N to the state of the
counter, that is, the new state is given by the following specification:

New : trait

includes Counter

introduces d : N

Further, we would like to extend the increment relation Inc to an increment relation Inc′ on
the new state, that is, Inc′ is of the type

ΘInc′ =

[[New]] [[New]]

[[Env]]

cc❍❍❍❍❍❍❍❍❍

;;✈✈✈✈✈✈✈✈✈

Let ιC denote the inclusion of [[Counter]] into [[New]] and let f = (IdV, f
µ) be the SignRLSL

-
morphism from ΘInc to ΘInc′ such that fµ

0 : [[Env]] → [[Env]] is the identity, fµ
1 : [[Counter]] →

[[New]] = ιC , and fµ
2 : [[Counter]] → [[New]] = ιC . Then Inc′ is TfInc, and we have:

ModA(Inc′) = {(A,B) ∈ ModA([[New]])×ModA([[New]]) | (A|ιC , B|ιC) ∈ [[Inc]]}.

Note that Inc′ does not fix the relationship between A(d) and B(d). Thus any values for
A(d) and B(d) are possible in case of A Inc′ B. To establish a relationship between these
two values, we can use, for example, the impose operation as follows:

I{d′=succ(succ(d))}Inc
′

This ensures that B(d) = A(succ)(A(succ)(d)) for all (A,B) ∈ Inc2.

Derive By hiding state components the derive operation can be used to adapt the state
space of relations so that, for example, the union of relations is defined. Hiding nodes by the
derive operation is used in the definition of sequential composition (cf. Section 6.3), in the
computation of the precondition of a state transformation (cf. Section 7.2), and can be used
to define a relation with the help of auxiliary symbols, like the tracking map between sorts
in Section 6.1.

If R is a relation of type ΘR and f a SignRI
-morphism from a type ΘS to ΘR, then DfR

yields a relation of type ΘS as follows:

(m1, . . . , mn) ∈ DfR

if and only if

∃(m′
1, . . . , m

′
k) ∈ R with (m′

1, . . . , m
′
k)|f = (m1, . . . , mn)

5.7 Operations on relations 107

One use of the derive operation is to define the identity relation. Suppose, we are interested
in specifying the identity relation for some abstract datatype St, that is, we want to define
a relation IdSt of type

Θ =

[[St]] [[St]]

[[Env]]

cc●●●●●●●●

;;✇✇✇✇✇✇✇✇

such that (m1, m2) ∈ IdSt if and only if m1 = m2 for structures m1 and m2 from ModA(St).

Consider the type

Θ′ =

[[St]]

[[Env]]

OO

and the morphism ι = (ιF , ιµ) from Θ to Θ′ mapping each St in Θ to St in Θ′ and which is
the identity on Env. That is, ιF maps 0 of V to 0 of 2 and 1 and 2 of V to 1 of 2. ιµ0 is the
identity on [[Env]], and ιµ1 = ιµ2 is the identity on [[St]]. Then IdSt is given by IdSt = DιΘ

′.

To show that IdSt really is the identity, let (A,B) in IdSt, that is, there exists some C in
StrRI

(Θ′) with C|ι = (A,B). By the definition of StrRI
(ι) we have

C|ι = (C|ιµ
ιF (1)

, C|ιµ
ιF (2)

)

= (C|ιµ1 , C|ιµ1) | ιF (1) = 1 = ιF (2)

= (C,C) | ιµi = id

Thus we have (A,B) = (C,C) and therefore A = B = C.

On the other hand, it is obvious that (A,A) is in IdSt for each A ∈ ModA(St).

Colimit The colimit construction can be used to combine different relations on the same
state sharing some common part or to combine relations on different states with the possibility
of sharing state components. If F : J → SLRI

is a diagram of relations such that the colimit
of F ; Sig exists, then

(m1, . . . , mn) ∈ colim F iff (m1, . . . , mn)|ιi ∈ F (i) for all i ∈ J

where ιi is the co-cone morphism from F (i) to the colimit of F ; Sig for all i ∈ J .

As an example we define the relation Inc2 on the state space

C ′ = [[Counter]] +[[Nat]] [[Counter]]

108 Relations as Abstract Datatypes

incrementing both copies of the counter simultaneously as Inc +IdNat Inc where IdNat is the
identity relation on Nat, which has type

ΘNat =

[[Nat]] [[Nat]]

[[Nat]]

;;✈✈✈✈✈✈✈✈✈

cc❍❍❍❍❍❍❍❍❍

Let ι = (IdV, ι
µ) be the SignRI

-morphism from ΘNat to ΘInc where ιµ0 is the identity on Nat

and ιµ1 = ιµ2 is the inclusion of Nat into Counter. The pushout ΘInc +(ι,ι) ΘInc is the type

ΘInc2 =

[[Counter]] +[[Nat]] [[Counter]] [[Counter]] +[[Nat]] [[Counter]]

[[Nat]]

hh◗◗◗◗◗◗◗◗◗◗◗◗◗◗

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠

Let

PO : trait

include Counter[c1 for c]

Counter[c2 for c]

be the pushout [[Counter]] +[[Nat]] [[Counter]]. Then the co-cone morphism ι1 from ΘInc to
ΘInc2 is (IdV, ι1

µ) where (ι1
µ)0 is the identity morphism on [[Nat]] and (ι1

µ)1 = (ι1
µ)2 maps

c : N to c1 : N and is the identity otherwise. The second co-cone morphism ι2 from ΘInc to
ΘInc2 is (IdV, ι2

µ) where (ι2
µ)0 is the identity morphism on [[Nat]] and (ι2

µ)1 = (ι2
µ)2 maps

c : N to c2 : N .

Using the definition of the colim operator from Section 4.2 and the equalities of Fact 4.9 we
get

Inc2 = Inc +IdNat Inc

= Tι′1
Inc+ Tι′2

Inc

= Tι′1
I{c′=succ(c)}ΘInc + Tι′2

I{c′=succ(c)}ΘInc
= Iι′1({c′=succ(c)})ΘInc2 + Iι′2({c′=succ(c)})ΘInc2

= I{c′1=succ(c1)}I{c′2=succ(c2)}ΘInc2

= I{c′1=succ(c1)}∪{c′2=succ(c2)})ΘInc2

= I{c′1=succ(c1), c′2=succ(c2)}ΘInc2

5.8 Finite Diagrams

In the previous sections we have assumed that SignI is cocomplete. However, in many
interesting institutions SignI is only finitely cocomplete. For example, if we restrict the
signatures of the institutions EQ and EQC to finite many-sorted signatures, that is, instead

5.9 The Language RSLI 109

of Sig we use the category of finite many-sorted signatures FSig. FSig is a full subcategory
of Sig, but only finitely cocomplete (cf. Section 3.1).

To use an institution I with a finitely cocomplete category of signatures for the construction
of RI , we have to restrict the objects in SignRI

to pairs (D,Γ) where D is a finite category
because the definition of SenRI

depends on taking colimits of shape D in SignI . Since all
diagrams are finite, StrI needs to preserve only finite colimits instead of arbitrary colimits.
The definitions of StrRI

, SenRI
, and |=RI are, in principle, unaffected.

Formally, instead of defining SignRI
as Flat(Fun(AdtI)), we define

SignRI
= Flat(FFun(AdtI))

where FFun(T) : FCatop → Cat is the indexed category FFun(T)D = TD for finite categories
D and FFun(T)(Γ′) = F ; Γ for functors F : D → D′ and Γ′ : D′ → T . Similar to Fun(G)
we define FFun(G)D(Γ) = Γ;G and FFun(G)D(µ) = µ;G for finite categories D, functors
Γ : D → T , and natural transformations µ : Γ1 ⇒ Γ2.

Note that Flat(FFun(T)) is a full subcategory of Flat(Fun(T)), thus the new structure functor
StrRI

is the old structure functor StrRI
with its domain restricted to Flat(FFun(T)).

Similarly, we get a functor climT : Flat(FFun(T)) → T by restricting the domain of the
functor climT : Flat(Fun(T)) → T . Note that for climT : Flat(FFun(T)) → T to be well-
defined we only have to require that T is finitely cocomplete. Then SenRI

is again defined
as Flat(FFun(SigA)); climSignI

; SenI .

The results that StrRI
is natural isomorphic to climAdtI ;ModA and that

Flat(FFun(SigA)); climSignI
= climAdtI

; SigA

carry over from Theorems 5.8 and 5.9. This allows again to define m |=RI ϕ by m |=I ϕ for
all types Θ ∈ SignRI

, m ∈ StrRI
(Θ), and ϕ ∈ SenRI

(Θ).

Theorem 5.17 ensures that SignRI
is also finitely cocomplete because SignI and thus AdtI

are finitely cocomplete.

Similarly, StrRI
preserves colimits because StrRI

is isomorphic to the composition climAdtI

followed by ModA, ModA preserves finite colimits if StrI preserves them, and climAdtI
pre-

serves colimits and thus also finite colimits.

5.9 The Language RSLI

In the following we present the language RSLI for the definition of relations and introduce
some useful abbreviations. At first glance RSLI expressions are the same as SLI′ expressions
introduced in Section 4.2 where I ′ is the institution RI . However, the difference is that
instead of functors Γ : D → AdtI functors Γ : D → SLI are used, where SLI is the
specification language for the base institution I of RI . The idea is that not only the relations

110 Relations as Abstract Datatypes

are defined by expressions but also the type of the relations. In addition this allows to define
the translation of expressions in RSLI to expressions in SLI given in Section 7.1, which would
be impossible otherwise.

To this end we define the category TypeI . TypeI is similar to SignRI
, however, using pairs

(D,Γ : D → SLI) instead of pairs (D,Γ : D → AdtI). The morphisms f from Θ = (D,Γ) to
Θ′ = (D′,Γ′) in TypeI are pairs (fF , fµ) where fF is a functor from D, and fµ is a natural
transformation from Γ to fF ; Γ′.

Note that the category TypeI is the same as the flattened indexed category FFun(SLI).
Since SLI is finitely cocomplete, this implies that TypeI = Flat(FFun(SLI)) is also finitely
cocomplete (cf. Section 5.8).

The semantics functor [[]] : SLI → AdtI (cf Section 4.2) is extended to a functor [[]]
from TypeI to SignRI

that maps an object (D,Γ : D → SLI) in TypeI to an object
(D,Γ; [[]] : D → AdtI) in SignRI

and similar a TypeI-morphism fµ to a SignRI
-morphism

(fF , fµ; [[]]).

Definition 5.28 (Abstract Syntax of RSLI)
Given the institution RI based on the institution I, types Θ and Θ′ in TypeI , and a TypeI-
morphism f : Θ → Θ′, then the abstract syntax of the language RSLI is given by

R ::= Θ | IΦR | TfR | DfR | R +R

where Φ is a set of formulas in the institution RI .

The type type(R) of an expression R in RSLI is an object of TypeI and is defined inductively
on the structure of RSLI as follows:

• type(Θ) = Θ

• type(IΦR) = type(R)

• type(TfR) = cod(f)

• type(DfR
′) = dom(f)

• type(R1 +R2) = type(R1) = type(R2).

An expression R from RSLI is well-formed if

• R = IΦR
′, Φ ⊆ SenRI

([[type(R′)]]), and R′ is well-formed.

• R = TfR
′, f is a morphism from type(R′) to type(R) in TypeI , and R′ is well-formed.

• R = DfR
′, f is a morphism from type(R) to type(R′) in TypeI, and R′ is well-formed.

• R = R1 +R2, type(R1) = type(R2), and R1 and R2 are well-formed.

The semantics of a well-formed expression in RSLI is an object of AdtRI
and is defined in

two steps: first an expression in RSLI is converted to an expression in SLRI
, and then the

semantics of this expression yields a relation in AdtRI
.

5.9 The Language RSLI 111

Let Θ be a type in TypeI , R a well-formed expression in RSLI , f a TypeI-morphism from
type(R) to Θ′, and g a TypeI-morphisms from Θ′ to type(R) for some Θ′ in TypeI , then

• [[Θ]]
SLRI

= [[Θ]]

• [[IΦR]]
SLRI

= IΦ [[R]]
SLRI

• [[TfR]]
SLRI

= T[[f]] [[R]]
SLRI

• [[DgR]]
SLRI

= D[[g]] [[R]]
SLRI

• [[R1 +R2]]SLRI

= [[R1]]SLRI

+ [[R2]]SLRI

.

Finally, the semantics of an expression R in RSLI is given by

[[R]]R =
[[

[[R]]
SLRI

]]

.

Similar as with SLI (c.f. Section 4.2), we make RSLI a category by defining the morphsims
f from R1 to R2 to be the TypeI morphisms (fF , fµ) having the property that [[f]] =
(fF , fµ; [[]]) is an AdtRI

-morphism from [[R1]]R to [[R2]]R.

Fact 5.29 For any expression R in RSLI we have

SigA([[R]]R) = [[type(R)]] and ModA([[R]]R) ⊆ StrRI
([[type(R)]]).

We say that a type Θ = (D,Γ) is included in a type Θ′ = (D′,Θ′) if Γ is a sub-diagram of
Γ′. However, we also talk about inclusion if there are obvious inclusion morphisms between
corresponding nodes. For example, given the following diagrams

Γ =

Γ(1) Γ(2)

Γ(0)

Γ(f1)

bb❊❊❊❊❊❊❊❊ Γ(f2)

<<②②②②②②②②

and

Γ′ =

Γ′(3)

Γ′(1)

Γ(f3)
;;✇✇✇✇✇✇✇✇

Γ′(2)

Γ′(f4)
cc●●●●●●●●

Γ′(0)
Γ′(f1)

cc●●●●●●●● Γ′(f2)

;;✇✇✇✇✇✇✇✇

then Γ is included in Γ′ if Γ(0) = Γ′(0), Γ(1) = Γ′(1), Γ(2) = Γ′(2), Γ(f1) = Γ′(f1), and
Γ(f2) = Γ′(f2), or if there are inclusion morphisms ι0 from Γ(0) to Γ′(0), ι1 from Γ(1) to
Γ′(1), and ι2 from Γ(2) to Γ(2).

Formally, we require that there exists a unique morphism ι = (ιF , ιµ) from Θ to Θ′ such that
ιF : D → D′ is faithful and ιµd : Γ(d) → Γ′(ιF (d)) is “canonic” for all d ∈ D.

112 Relations as Abstract Datatypes

Abbreviations

Since TypeI is finitely cocomplete, so is RSLI , and, similar as with SLI , we extend RSLI by
a colimit construct

R ::= . . . | colim F | R1 +(σ1,σ2) R2 | R1 +R0 R2

where F is a functor from a finite category J to RSLI . Then colim F is an abbreviation for

T
ι
F ;type
i1

(F (i1)) + · · ·+ T
ι
F ;type
in

(F (in))

where ιF ;type
ik

are the co-cone morphisms of the colimit of F ; type. Similarly, we use R1+(f1,f2)

R2 for the pushout of R1 with R2 with respect to f1 and f2, and R1 +R0 R2 if f1 and f2 are
the unique inclusion of R0 in R1 and R2.

In Chapter 6 we mainly have to deal with relations whose types have the form

Sp1
. . . Spn

Env

<<①①①①①①①①

bb❋❋❋❋❋❋❋❋

where the morphisms from Env to Spi are canonic, for example, in LSL this means that Env
is included into Spi and that the morphisms are the corresponding inclusions of Env into Spi.
We shall write <Sp1 × . . .× Spn>Env for types of this form.

Then [e : E] in <[e : E]× Sp>Env is an abbreviation for

includes Env

introduces e : E

For example, the type of the Add operation from page 83 can be now written as

<[nin : Nat]× Counter × Counter>Nat.

If R is a relation defined by IΦΘ then we may also write

R : Θ
asserts Φ

And

R : Θ
includes R’

asserts Φ

is the same as IΦTιR
′ where ι is the canonic morphism from the type of R′ to Θ.

6 Abstract Machines

The motivation to study relations between classes of algebras is to model state-transitions in
software systems. An example of such software systems are abstract machines. An abstract
machines offers a set of operations to its clients. Depending on the operations that have been
requested before, the same operation may yield different results. Thus abstract machines
have memory. A typical abstract machine is the abstract machine of a stack. It provides
the operations Push and Pop. The Push operation pushes its argument on the stack, and the
Pop operation removes the topmost element of the stack and returns it. Depending on what
Push and Pop operations have been performed before, different results are returned by the
Pop operation. Thus an abstract machine consists of a set of states, a set of initial states, a
subset of the set of states, and a set of services. A service is a relation between states with
possible input and output values.

Abstract machines are often called abstract datatypes with states or simply abstract data-
types. However, to not confuse abstract datatypes with state with the notion of abstract
datatypes introduced in Chapter 4, we stick to the term abstract machines.

In the framework of this thesis, the signature of an abstract machine is a 4-tuple (Env, I, O, τ)
where the environment Env is an SLI-expression, I is the name of the set of initial states, O
is a set of names for the operations, and τ a function assigning to an operation name op in
O a type τ(op) from TypeI . We require that τ(op) has the form

I1 . . . In O1
. . . Om

Env

f1

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

fn
aa❈❈❈❈❈❈❈❈

g1
<<③③③③③③③③

gm

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

We shall also write τ(op) = <I1 × . . .× In> → <O1 × . . .× Om> assuming that the mor-
phisms fi : Env → Ii and gj : Env → Oj are “canonic”, which, for example, in LSL means
that fi and gj are inclusions.

Since abstract machines encapsulate the state, the signature does not contain an SLI-expres-
sion for the state, and similar the type of an operation does not contain the state.

For the example, the signature of the stack is (Env, Empty, {Push, Pop}, τ) where τ(Push) =
<[e : E]> → <>, τ(Pop) = <> → <[e : E]>, and Env is an abstract datatype containing at
least the sort E.

Whenever convenient, we may also write

(Env, Empty, {Push : <[e : E]> → <>, Pop : <> → <[e : E]>})

114 Abstract Machines

for the the signature (Env, Empty, {Push, Pop}, τ).

An abstract machine M = (StM, IM,MO) of signature (Env, I, O, τ) consists of an abstract
datatype StM from AdtI such that Env is included in StM, defining the state space; a
relation IM of type <StM>Env and a set of relations MO = {opM | op ∈ O} from AdtRI

such that if τ(op) = <I1 × . . .× In> → <O1 × . . .× Om>, then the type of opM is

<I1 × . . . In × StM × StM × O1 × . . . Om>Env.

The initial states IM are given as a unary relation of type <StM>Env instead of an abstract
datatype from AdtI because this ensures that the class of initial states are models of StM,
and this simplifies writing the condition of simulation in Section 7.2.

The abstract machine of a stack is given by

S = (StackS , EmptyS , {PushS , PopS})

where StackS is the abstract datatype:

StackS : trait

includes Env

introduces s : Stack

and EmptyS is the abstract datatype

EmptyS : <StackS>
asserts s = empty

We assume that the following specification is part of the environment Env:

Stack : trait

introduces empty : Stack

push : E, Stack → Stack

pop : Stack → Stack

top : Stack → E
asserts
Stack freely generated by empty, push

∀ e:E, s:Stack top(push(e,s)) = e

∀ e:E, s:Stack pop(push(e,s)) = s

The PushS operation is defined as

PushS : <[e:E] × StackS × StackS>
asserts s’ = push(e,s)

and the type of the operation PopS is <StackS × StackS × [e : E]>Env and the operation is
given by

PopS : <[e:E] × StackS × StackS>
asserts s’ = pop(s)

e = top(s)

6.1 State as Algebra Approach 115

6.1 State as Algebra Approach

In the state as algebra approach the state of a software system is modeled by an algebra.
This corresponds to using one of the institutions EQ, EQC, or LSL as the base institution
I for RI . The state components in the state as algebra approach are constants (null-ary
functions), functions, and sorts.

Constants

Let us first consider constants as state components. Suppose we are given the following state
space:

State : trait

includes Env

introduces c : S

and a type Θ = <State× State>Env. The formulas that can be used to define relations of
type Θ are the formulas from LSL over the signature

Σcl = Sig(State) +Sig(Env) Sig(State)

= Sig(Env) ∪ {c : S, c′ : S}.

For example, a relation R = I{c′=t[c]}Θ where t is a term of signature Σcl not containing an
occurrence of c′, defines for each algebra A a unique algebra B by B|Sig(Env) = A|Sig(Env) and
B(c) = A(t) such that A R B. An example for this type of relation is the Inc relation on a
counter from Section 5.1

Inc = I{c′=succ(c)}ΘInc.

However, there are also other kinds of relations, like, for example the decrement operation
on a counter, which has the form:

Dec = I{succ(c′)=c}ΘInc.

Note that the decrement operation is undefined for an algebra A if A(c) = A(zero) as there
is no n ∈ A(Nat) such that A(succ)(n) = A(zero).

If one wants to describe that the value of a state component c : S does not change one can
define the relation R = I{c=c′}Θ. Then A R B implies A(c) = B(c). A more general way
to define the identity on (part of) the state was shown in Section 5.7; the method presented
there has also the advantage that it is independent of the base institution.

Functions

Consider the state space of a dictionary, which we model by a function map from keys to
values and a function dom from keys to bool. The intention is that only in the case where
dom(x) yields true the value of map(x) is valid.

116 Abstract Machines

Dict : trait

includes Env

introduces

map : Key → Value

dom : Key → Bool

Then type Θ of the add operation, adding a new key, value pair to the dictionary, is

Θ = <[k : Key]× [v : Value]× Dict× Dict>Env

A possible way to define the add operation seems to be as

Add = I{map′(k)=v, dom′(k)=true}Θ.

However, this does not define the expected relation. Consider the relation defined by the
above add operation. Add is the set of 4-tuples (A,B,C,D) such that A + B + C +
D |=LSL {map′(k) = v, dom′(k) = true}. Thus the only restrictions on map′ and dom′ are
D(map)(A(k)) = B(v) and D(dom)(A(k)) = D(true). Nothing else is assumed, in particular
it need not hold that D(map)(a) is the same as C(map)(a) if a 6= A(k). This is in contrast, for
example, to the Abstract State Machine approach of Gurevich, where D(map)(a) = C(map)(a)
for a 6= A(k) would be implied.

Therefore, to get the intended meaning of the add operation, we have to write Add = IΦΘ
with Φ being the set:

∀ x:Key map’(x) = (if x = k then v else map(x))

∀ x:Key dom’(x) ⇔ x = k ∨ dom(x)

Note also that it is important that the sorts Key and Value are defined in the environment
Env because otherwise, A(Key), C(Key) and D(Key) need not be the same set and thus a
term of the form D(map)(A(k)) would be meaningless since A(k) ∈ A(Key) may not be an
element of D(Key) as required by D(map) : D(Key) → D(Value).

Our choice to model dom and map as functions depends strongly on the base institution. For
example, dom could have been a predicate instead of a boolean function in an institution with
predicates, like first-order logic [25], or one could have omitted dom altogether and used a
partial function map instead of a total one, in the institution of partial algebras [48]. And
using SET (cf. Section 9.1) as the base institution, map could be a set of key, value pairs.

Sorts

Similar to constants and functions, sorts can be used as state components. Consider for
example a state with a sort OID of object identifies, with a constant nil of sort OID:

State : trait

includes Env

introduces sorts OID

introduces nil : OID

6.1 State as Algebra Approach 117

We want to define a relation R that adds a new element to OID. However, how can two sorts
be related? In an algebraic institution no operations are defined on sorts, thus we cannot
write OID′ = OID ∪ {o}. Another way to relate the sorts OID and OID′ is by a function
f : OID → OID′, called tracking map in the D-oids approach of Astesiano and Zucca [4]. The
problem with this approach is that in Sig(State) +Env Sig(State), which is the same as

Spcl : trait

includes Env

introduces sorts OID, OID’

introduces nil : OID

nil’ : OID’

there are no functions between the sorts of the pre- and the post-state. However this can be
helped by the use of the derive operation and a specification expression of type Θ′, where Θ′

is

[f : OID → OID′, o : OID′]

State

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦
State

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

Env

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

The notation [f : OID → OID′, o : OID′] is an abbreviation for

includes SPcl
introduces
f: OID → OID’

o: OID’

Then adding a new element to OID is the following relation R = DιIΦΘ
′, where Φ is:

f(nil) = nil’

f(x) = f(y) ⇒ x = y % f is injective

f(x) 6= o % o is a new object identifier.

The type-morphism ι is the inclusion Θ = <State× State>Env into Θ′.

An alternative is to define OID′ with the help of a generating constraint as R′ = DιIΦ′Θ′ with
Φ′ = {OID′ generated freely by {f, o}}. The derive operation Dι forgets the node defining f
and o.

Another problem is to access the newly created object identifier o. Since OID and OID′ are
state components, we cannot use the following type for the new operation:

State State [o : OID]

Env

ee❏❏❏❏❏❏❏❏❏❏

OO 99rrrrrrrrrr

as the sort OID and the constant o have nothing to do with the sort OID in State and the
constant o used in the type Θ′. A solution is to allow the output parameter to be an extension

118 Abstract Machines

of the state instead of the environment. This gives the output parameter direct access to the
state components, which, in this case, is desirable. Thus the type of the new operation is

State State // [o : OID]

Env

;;✈✈✈✈✈✈✈✈✈

cc❍❍❍❍❍❍❍❍❍

Then we have to adapt Θ′ to

[f : OID → OID′, o : OID′] [o : OID]

State

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦
State

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

99rrrrrrrrrr

Env

jj❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

Note that still o in the output parameter and o in the hidden part of R are not identified,
but the colimit

∐

Θ′ is:
∐

Θ’ : trait

includes Env

introduces sorts OID, OID’

introduces nil: OID

nil’ : OID’

f: OID → OID’

o: OID’

o’: OID’

contains both constants o as o and o′. Note that the constant o′ is of sort OID′ because the
sort OID of the post-state and the parameters are the same since the post-state is included
into the output parameter. Then we can define R by DιIΦΘ

′ with Φ being:

OID’ generated freely by f, o

o = o’

6.2 Models of the State

In the following we use different approaches to model the state of an abstract machine.
Though they are described using LSL as the base institution, the approaches are not limited
to algebraic institutions.

One way to model the state is by providing a possible implementation of the state, that is,
we give a concrete model of the state. A characteristic of the concrete model of the state is
the existence of states which cannot be distinguished by the operations of the abstract ma-
chine. In this case the specification is biased towards an implementation of the specification

6.2 Models of the State 119

(cf. Jones [40]). Note that a concrete model of the state does not prescribe the representation
of the state space used by the final implementation of the abstract machine (cf. Section 7.3).

An abstract model of the state, or a two tiered model, uses a functional abstract datatype
modeling the state space and as a component a constant of the sort of the functional abstract
datatype. This approach is, for example, used in the Larch approach to specifications [34].
The Larch Shared Language is used to define functional abstract datatypes, which are then
used in one of the Larch Interface Languages tailored to a specific programming language to
specify an abstract datatype with state.

A third approach uses as state components possible observations on the state. In general, it
is not possible to model all abstract machines with this technique because not all abstract
machines can be defined in a finite way by the effect the state changing operations have
on the observations. An example of this is the abstract machine of a stack as noted by
Schoett [55]. The observers of a stack are isEmpty and top. However, just with these two
state components it is impossible to describe the intended behavior of the Pop operation.

As an example of the different styles, we shall give the specification of a birthday book from
the Z reference manual of Spivey [57] in each of the three styles. The task is to model a
birthday book recording the names of people and their birthday. We define three operations
on the birthday book: AddBirthday adds a name and a date to the birthday book assuming
that not already a birthday for that name is recorded, FindBirthday returns the date of
birth associated to a name in the birthday book, and Remind returns a set of names for
persons whose birthday is recorded in the birthday book for a given date.

Thus the signature of the birthday book is

(Env, InitBirthday, {AddBirthday, FindBirthday, Remind}, τ),

where τ is:

τ(AddBirthday) = <[n : Name]× [d : Date]> → <>

τ(FindBirthday) = <[n : Name]> → <[d : Date]>

τ(Remind) = <[d : Date]> → <[s : NameSet]>.

The environment Env contains at least sorts Name, Date and the sort NameSet, of finite sets
of sort Name.

Concrete State

In the concrete model of the state, the state of the birthday book is modeled by a finite set
of names known, containing the names for which the birthday book contains an entry and
a finite map birthday between names and dates. known is modeled as a constant of sort
NameSet, defined in the specification Set and birthdate as a constant of sort NameToDate,
defined in the specification FiniteMap. The environment Env is given by the specification:

120 Abstract Machines

Env : trait

includes Set[Name for E, NameSet for C]

FiniteMap[Name for F, Date for T, NameToDate for M]

introduces sorts Name, Date

The specifications for Set and FiniteMap can be found in the appendix A.

The state of the birthday book is given by

BirthdayBookBC : trait

includes Env

introduces

known: NameSet

birthday: NameToDate

asserts

∀ n : Name n ∈ known ⇔ defined(birthday,n)

The state invariant requires that if n is in known then the association with n as its key is valid
in birthday. Note that, because in LSL all functions are total, apply(birthday, n) always
has a value, however, the value is not specified, if defined(birthday, n) does not hold.

Of the three versions of the birthday book example presented here, this version is the closest
to the original Z specification of Spivey [57].

The initial birthday book contains no entries.

InitBirthdayBC : <BirthdayBookBC>
asserts

known = { }

The operation AddBirthday adds a new association to birthday provided that n is not in
known. The type ΘAB of the AddBirthday operation is:

<[n : Name]× [d : Date]× BirthdayBookBC × BirthdayBookBC>Env

Then AddBirthdayBC = IΦΘAB with Φ the set

not(n ∈ known);

birthday’ = update(birthday,n,d)

As in Spivey [57] we have not defined the effect of AddBirthday to known′. In particular we
would like to show that n is an element of known after executing the AddBirthday operation.
This should be a consequence of the definition of AddBirthday and the state invariant of
BirthdayBook. Thus we would like to show

AddBirthday |=RI n ∈ known′

In Chapter 7 we shall develop methods to do this.

FindBirthday returns the birthday d of a person with name n. The type ΘFB of FindBirthday
is:

<[n : Name]× BirthdayBookBC × BirthdayBookBC × [d : Date]>Env

6.2 Models of the State 121

Then FindBirthdayBC = IΦΘFB with Φ given as:

n ∈ known

d = apply(birthday,n)

birthday’ = birthday

known’ = known

For a given date d, the remind operation returns the set of names of persons whose birthday
is recorded in the birthday book and who have their birthday at that date. The type of the
remind operation is ΘR:

<[d : Date]× BirthdayBookBC × BirthdayBookBC × [s : NameSet]>Env

And RemindBC = IΦΘR with Φ being the set

known’ = known

birthday’ = birthday

∀ n : Name n ∈ s ⇔ known(n) ∧ apply(birthday,n) = d

Abstract State

In the abstract state approach, the state space is modeled by a sort BBook defined in
the environment, and the state consists of a constant bdb of this sort. The specification
BirthdayBookSpec defines the sort BBook with the functions initBirthday, addBirthday,
known, and findBirthday. These functions are later used to define the operations
AddBirthday, FindBirthday, and Remind.

BirthdayBookSpec : trait

introduces

initBirthday : BBook

addBirthday : BBook, Name, Date → BBook

known : BBook, Name → Bool

findBirthday : BBook, Name → Date

asserts

BBook generated by initBirthday, addBirthday

forall b:BBook, n,n1:Name, d,d1:Date

¬ known(initBirthday,n);

known(addBirthday(b,n1,d),n) ⇔
n = n1 ∨ known(b,n);

findBirthday(addBirthday(b,n1,d),n) =
(if n1 = n

then d

else findBirthday(b,n));

Note that it is possible to add several dates for the birthday of one person to the birthday
book. However, only the birthday added last will be found using the operation findBirthday.

We require that Env includes BirthdayBookSpec:

122 Abstract Machines

Env : trait

includes BirthdayBookSpec,

Set[Name for E, NameSet for C]

Then the state space of the birthday book is given by:

BirthdayBookBA : trait

includes Env

introduces bdb: BBook

The initial state InitBirthdayBA initializes bdb to the constant initBirthday of type BBook.

InitBirthdayBA : <BirthdayBookBA>
asserts bdb = initBirthday

The operations on BirthdayBook may, but need not, rely on the operations provided by
BirthdayBookSpec. For example, the AddBirthday-operation is given by:

AddBirthdayBA:<[n:Name]×[d:Date]×BirthdayBookBA×BirthdayBookBA>Env

asserts

known(bdb,n)

bdb’ = addBirthday(bdb,n,d)

and FindBirthday:

FindBirthdayBA:<[n:Name]×BirthdayBookBA×BirthdayBookBA×[d:Date]>Env

asserts

known(bdb,n)

d = findBirthday(bdb,n)

bdb’ = bdb

Both, AddBirthday and FindBirthday have used in their definition the corresponding func-
tions addBirthday and findBirthday from the specification BirthdayBookSpec.

RemindBA:<[d:Date]×BirthdayBookBA×BirthdayBookBA×[s:NameSet]>Env

asserts

∀ n:Name n ∈ s ⇔ findBirthday(bdb,n) = d ∧ known(bdb,n)

bdb’ = bdb

The abstract state approach is similar to the two tiered approach of Larch. First we have
given a functional abstract datatype of a birthday book in an algebraic institution LSL. Then
we have used this trait to specify an abstract data type with state using formulas relating
the components of the pre- and post-states of an operation. But instead of using a Larch
Interface Language tailored to a specific programming language, we use the specification
language RSLLSL as a kind of abstract interface language that makes no references to a
specific programming language.

Using Observers

The basic observations one can make about a birthday book are whether a name is in the
birthday book or not and what the birth date is for a given name. Thus the state has two

6.2 Models of the State 123

components, a function known : Name → Bool and birthday : Name → Date.

BirthdayBookBO : trait

includes Env

introduces

known: Name → Bool

birthday : Name → Date

In the initial state of a birthday book no names are known, that is,

InitBirthdayBO : <BirthdayBookBO>
asserts

∀ n : Name known(n) = false

The effect of the operations are described by their effect on the observers. Thus the
AddBirthday operation is given by:

AddBirthdayBO:<[n:Name]×[d:Date]×BirthdayBookBO×BirthdayBookBO>Env

asserts

¬ known(n)

∀ n’ : Name known’(n’) ⇔ n’ = n ∨ known(n’)

∀ n’ : Name birthday’(n’) = if n’ = n then d else birthday(n’)

The FindBirthday operation does not change the observers and returns for a given person
with name n its birthday d, if known(n) is true.

FindBirthdayBO:<[n:Name]×BirthdayBookBO×BirthdayBookBO×[d:Date]>Env

asserts

known(n);

d = birthday(n)

∀ n’ : Name known’(n’) = known(n’)

∀ n’ : Name birthday’(n’) = birthday(n’)

Instead of explicitly writing the formulas that the state of the birthday book does not change,
we can define a relation IDBirthdayBookBO that expresses this:

IDBirthdayBook:<BirthdayBookBO×BirthdayBookBO>
asserts

∀ n’ : Name known’(n’) = known(n’)

∀ n’ : Name birthday’(n’) = birthday(n’)

then we can write

FindBirthdayBO:<[n:Name]×BirthdayBookBO×BirthdayBookBO×[d:Date]>Env

includes IDBirthdayBook

asserts

known(n);

d = birthday(n)

to stand for

IΦTσIDBirthdayBookBO

where σ is the inclusion of the type of IDBirthdayBookBO into the type of FindBirthdayBO,
and Φ is the set {known(n), d = birthday(n)}.

124 Abstract Machines

Another way to define IDBirthdayBookBO is by using the derive operation with a morphism
σ from ΘIDB to ΘIDB′ = <BirthdayBookBO>Env, mapping the environment component of
ΘIDB to the environment component of ΘIDB′ and both state components to the single state
component of ΘIDB′ (cf. Section 5.7). Then IDBirthdayBookBO = DσΘIDB′ . To see that the
definition of IDBirthdayBookBO really does what it is supposed to do, we prove

IDBirthdayBookBO |=RLSL ∀n′ : Name known′(n′) = known(n′)

The proof that

∀n′ : Name birthday′(n′) = birthday(n′)

follows from IDBirthdayBookBO is analog.

Using the rules for proving properties of specification expressions SLI from Section 4.3, it
suffices to prove

ΘIDB′ |=
RLSL σ(∀n′ : Name known′(n′) = known(n′))

Since the state components of ΘIDB are mapped to the same state component of ΘIDB′ , we get
that σ(known′) = known = σ(known) and therefore it suffices to show

ΘIDB′ |=
RLSL ∀n′ : Name known(n′) = known(n′),

which holds trivially.

The Remind operation is defined as follows:

RemindBO:<[d:Date]×BirthdayBookBO×BirthdayBookBO×[s:NameSet]>Env
includes

IDBirthdayBook

asserts

∀ n : Name n ∈ s ⇔ birthday(n) = d ∧ known(n)

∀ n : Name known(n) = known(n)

∀ n : Name birthday’(n) = birthday(n)

6.3 Extensions to RSLI

In the following we shall introduce operations on relations that are useful for defining the
operations of abstract machines, and that can be explained in terms of derive, translate, and
union.

Sequential Composition

Consider two relations R ⊆ A× B and S ⊆ B × C. In the first step of the construction we
extend R and S to three place relations in the following way:

(a, b, c) ∈ R̄ iff (a, b) ∈ R for every c ∈ C and

(a, b, c) ∈ S̄ iff (b, c) ∈ S for every a ∈ A.

6.3 Extensions to RSLI 125

In the next step we form the intersection of R̄ and S̄, which yields

R̄ ∩ S̄ = {(a, b, c) | (a, b, c) ∈ R̄, (a, b, c) ∈ S̄}

= {(a, b, c) | (a, b) ∈ R, (b, c) ∈ S}

In the last step we forget about the middle component of R̄ ∩ S̄ and get a binary relation

ˆ(R̄ ∩ S̄) = {(a, c) | ∃b.(a, b, c) ∈ R̄ ∩ S̄}

= {(a, c) | ∃b.(a, b) ∈ R, (b, c) ∈ S},

which is the sequential composition R;S of the relation R with S.

Now let R be a relation of type <Sp1 × Sp2>Env and S a relation of type <Sp2 × Sp3>Env

in RSLI . In a first step we form the pushout of S and R with respect to the inclusions of
<Sp2>Env into R and S.

R S

<Sp2>Env

s1

ee❏❏❏❏❏❏❏❏❏❏ s2

::tttttttttt

where s1 and s2 are the inclusions of the relation <Sp2>Env into R and S.

To construct the pushout in RSLI we first take the pushout of the types of R and S, translate
R and S by the co-cone morphism and form their union.

Theorem 5.19 can be used to form the pushout of the following diagram in TypeI :

Sp1 Sp2 Sp2 Sp3

Env

bb❋❋❋❋❋❋❋❋

<<①①①①①①①①
Env

bb❋❋❋❋❋❋❋❋

<<①①①①①①①①

Sp2

(s1µ)1=id

YY✸
✸
✸
✸
✸
✸
✸
✸

(s2µ)1=id

EE☛
☛

☛
☛

☛
☛

☛
☛

Env

OO(s1µ)0=id

bb❋
❋
❋
❋
❋
❋
❋
❋
❋
❋
❋

(s2µ)0=id

<<①
①

①
①

①
①

①
①

①
①

①

which is

Θcl =

Sp1 Sp2 Sp3

Env

bb❋❋❋❋❋❋❋❋

OO <<①①①①①①①①

with co-cone morphisms s′1

Sp1 Sp2 Sp3

Sp1

id

66❧❧❧❧❧❧❧❧
Sp2

<<②
②

②
②

Env

bb❊❊❊❊❊❊❊❊

<<②②②②②②②②

OO

Env

bb❋❋❋❋❋❋❋❋

<<①①①①①①①① id

55❧❧❧❧❧❧❧❧

126 Abstract Machines

and s′2

Sp1 Sp2 Sp3

Env

bb❊❊❊❊❊❊❊❊

<<②②②②②②②②

OO

Sp2

bb❊
❊
❊
❊

Sp3

id

hh❘ ❘ ❘ ❘ ❘ ❘ ❘ ❘

Env

bb❋❋❋❋❋❋❋❋

<<①①①①①①①①id

ii❘ ❘ ❘ ❘ ❘ ❘ ❘ ❘

Then the pushout of R and S with respect to morphism s1 and s2 in RSLI is Ts′1
R + Ts′2

S.

In the next step, we have to forget the Sp2 component of the pushout. This is done with the
help of the derive operation. Then we get

R;S = Dι(R +(<Sp2>Env,s1,s2) S) = Dι(Ts′1
R + Ts′2

S),

where ι is the inclusion of <Sp1 × Sp3>Env into <Sp1 × Sp2 × Sp3>Env.

Sp1 Sp2 Sp3

Sp1

id

OO✤
✤
✤

Env

bb❊❊❊❊❊❊❊❊

<<②②②②②②②②

OO

Sp3

id

OO✤
✤
✤

Env

bb❋❋❋❋❋❋❋❋

<<①①①①①①①①
id

OO✤
✤
✤

Definition 6.1 (Sequential Composition)
Let R be a relation of type <Sp1 × Sp2>Env and S a relation of type <Sp2 × Sp3>Env. Further,
let s1 and s2 be the obvious inclusion morphisms of <Sp2>Env into the type of R and S. The
type Θ = <Sp1 × Sp2 × Sp3> is the colimit of s1 and s2. Let further s be the morphism from
<Sp1 × Sp3> into Θ mapping Sp1 to the first component and Sp3 to the last component of
Θ.

Then the sequential composition of R with S, R;S, is a relation of type <Sp1 × Sp3> and
defined by

R;S = Ds(R +(<Sp2>Env,s1,s2) S).

This definition can be extended to arbitrary relations R of type

<Sp1 × . . .× Spn × Sp′
1 × . . .× Sp′

m>Env

and S of type

<Sp′
1 × . . .× Sp′

m × Sp′′
1 × . . .× Sp′′

k>Env.

6.3 Extensions to RSLI 127

Let Θ be <Sp′
1 × . . .× Sp′

m>Env and s1 = (s1
F , id) a morphism from Θ to the type of R and

s2 = (s2
F , id) a morphism from Θ to the type of S. The result type of the composition of R

with S is

Θ′ = <Sp1 × . . .× Spn × Sp′′
1 × . . .× Sp′′

k>Env.

Let s be the inclusion of Θ′ into the pushout of the type of R and S with respect to s1 and
s2, then we have

R;S = Ds(R +(Θ,s1,s2) S).

Instantiation

If R is a binary relation R ⊆ A×B and S a subset of A then the instantiation of R with S,
R(S), is the set {b | ∃a. (a, b) ∈ R, a ∈ S}. One can extend this to arbitrary relations R and
S, where the type of S is a subtype of R. For example, let R ⊆ A×B×C be a relation and
S ⊆ A×B. Then

R(S) = {c | ∃a, b. (a, b, c) ∈ R, (a, b) ∈ S}.

Definition 6.2 (Instantiation of Relations)
Let R be a relation of type ΘR = <Sp1 × . . .× Spn>Env and S a relation of type ΘS =
<Sp1 × · · · × Spm>Env for m ≤ n. The instantiation of R with S, R(S), is a relation of type
ΘR(S) = <Spm+1 × · · · × Spn>Env defined by

R(S) = Dι(R + TιSS),

where ι is the inclusion of ΘR(S) into ΘR and ιs the inclusion of ΘS into ΘR.

The section about refinement (cf. Section 7.2) contains an example of the use of instantiation.

7 Proving Entailment of Relations

We are interested in methods for showing that a relation R entails another relation S, which,
for example, is needed to prove the correctness of refinement (cf. Section 7.2). Applying the
results of Section 4.3, the goal of proving R |=RI S, where R and S are expressions in SLRI

,
can be reduced to subgoals Ri |=

RI Si for 1 ≤ i ≤ n, which, in a lot of cases, can be further
reduced to Φj |=

RI Φ′
j for 1 ≤ j ≤ m. Thus the problem is how to prove Φ |=RI Φ′.

In Section 5.3 we have defined m |=RI ϕ iff m |=I ϕ. This might lead to the conclusion that
Φ |=RI Φ′ if and only if Φ |=I Φ′. However, while Φ |=I Φ′ implies Φ |=RI Φ′, the converse is
not always true.

Theorem 7.1 Let Φ and Φ′ be subsets of SenRI
(Θ) for Θ ∈ SignRI

, then Φ |=I Φ′ implies
Φ |=RI Φ′.

Proof. Let m be a Θ-structure. We have to show that m |=RI Φ implies m |=RI Φ′. By
the definition of |=RI we have m |=RI Φ if and only if m |=I Φ. Because Φ |=I Φ′, we have
m |=I Φ′ and thus m |=RI Φ′. ✷

Let Θ be (D,Γ), the problem with the inverse direction is that the class of Θ-structures in
RI that satisfy Φ is usually only isomorphic to a subclass of

∐

Γ; SigA-structures in I that
satisfy Φ because StrRI

(Θ) is only isomorphic to a subcategory of StrI(
∐

Γ; SigA). However,
if StrRI

(Θ) is isomorphic to StrI(
∐

Γ; SigA) then we get:

Theorem 7.2 Let Φ and Φ′ be subsets of SenRI
(Θ) for Θ = (D,Γ) in SignRI

, and let
ModA(climAdtI

(Θ)) be the same as StrI(
∐

Γ; SigA). Then Φ |=RI Φ′ implies Φ |=I Φ′.

Proof. Assume that m is in StrI(
∐

Γ; SigA) with m |=I Φ, then m is in ModA(climAdtI
(Θ))

because we have assumed that StrI(
∐

Γ; SigA) is the same as ModA(climAdtI
(Θ)). Since

StrRI
and climAdtI

;ModA are isomorphic, there exists m′ in StrRI
(Θ) such that m′ = m. By

the definition of |=RI we have m |=I Φ if and only if m′ |=RI Φ. Because Φ |=RI Φ′, we have
m′ |=RI Φ′ and therefore m |=I Φ′. ✷

However, in general, the condition ModA(climAdtI
Θ) = StrI(

∐

Γ; SigA) does not hold as
climAdtI

Θ contains restrictions given by the datatypes defined in the environment and possi-
ble state invariants. Take the birthday book with the AddBirthday operation from Section 6.2
as an example.

Env : trait

includes Set[Name for E, NameSet for C]

FiniteMap[Name for F, Date for T, NameToDate for M]

introduces sorts Name, Date

130 Proving Entailment of Relations

BirthdayBook : trait

includes Env

introduces

known: NameSet

birthday: NameToDate

asserts

∀ n:Name n ∈ known ⇔ defined(birthday,n)

AddBirthday = IΦΘAB with

Φ = {n 6∈ known, birthday′ = update(birthday, n, d)}

and

ΘAB = <[n : Name]× [d : Date]× BirthdayBook × BirthdayBook>Env

We would expect the formula n 6∈ known ⇒ n ∈ known′ to follow from Φ inRI since otherwise
the state invariant

∀n : Name n ∈ known′ ⇔ defined(birthday′, n)

would not hold for the state after the AddBirthday operation; however, it is easy to see
that the above formula is not a consequence of Φ in I. The problem is that we need, in
addition to the formulas in Φ, the state invariant, which is part of the type ΘAB, and the
definition of defined, which is part of the FiniteMap trait included in the environment, to
prove n 6∈ known ⇒ n ∈ known′.

7.1 Translation of RSLI-Expressions

Thus, to prove Φ |=RI Φ′, we have to prove that Φ′ holds in all models that satisfy Φ and are
models of

∐

Γ. If we use the specification language SLI to specify the abstract datatypes Γ(d)
for d ∈ D, that is, if we provide a functor Γ′ from D to SLI such that [[Γ′(d)]] = Γ(d), then
we can reduce the task of proving Φ |=RI Φ′ to the task of proving that the SLI-expression
I{Φ′}Σcl is entailed by IΦΣcl + colim Γ′ in I where Σcl is

∐

Γ; SigA.

Theorem 7.3 Let Γ be a functor from D to SLI then Θ = (D,Γ; [[]]) is an object of SignRI
.

Let Φ and Φ′ be sets of Θ-formulas then

Φ |=RI Φ′ iff IΦΣcl + colim Γ |=I IΦ′Σcl ,

where Σcl =
∐

D Γ; Sig

We do not directly prove this theorem, but use a more general approach. To an RSLI-
expression R we associate an SLI-expressions tr(R) such that GA([[R]]R) = [[tr(R)]]. For two
RSLI-expressions R and S this implies that R |=RI S if and only if tr(R) |=I tr(S).

7.1 Translation of RSLI-Expressions 131

Definition 7.4 Let R and S be well-formed expressions in RSLI of type ΘR and ΘS =
(DS,ΓS), respectively, Γ a functor from D to SLI , Φ a set of (D,Γ; [[]])-formulas and f :
ΘR → ΘS an arrow in TypeI. Then

• tr((D,Γ)) = colim Γ

• tr(IΦR) = IΦtr(R)

• tr(TfR) = Ttr(f)tr(R) + colim ΓS

• tr(DfS) = Dtr(f)tr(S)

• tr(R + S) = tr(R) + tr(S)

and tr maps a morphism f in RSLI to a morphism climSLI (f) in SLI .

Theorem 7.5 (Correctness of tr) Let R be an expression in RSLI then

GA([[R]]R) = [[tr(R)]] .

Proof. The proof is done by induction over the structure of R.

GA([[Θ]]R) = GA(([[Θ]] , StrRI
([[Θ]]))) | Def. [[]]R

= (
∐

[[Γ]] ; SigA, StrRI
([[Θ]]))

because of the definition of GA and because Θ = (D,Γ),

= (
∐

[[Γ]] ; SigA,ModA(climAdtI
([[Θ]])))

because StrRI
is natural isomorphic to climAdtI

;ModA

= climAdtI
([[Θ]])

because (SigA(Sp),ModA(Sp)) is the same as Sp,

=
∐

D

[[Γ]] | Def. climAdtI

= [[colim Γ]] | Theorem 4.12

= [[tr(Θ)]] | Def. tr,

where Θ = (D,Γ).

132 Proving Entailment of Relations

Impose Let [[R]]R = (ΘR,MR) and ΣR =
∐

ΘR; Sig
A.

GA([[IΦR]]R) = GA((ΘR, {m | m |=RI Φ, m ∈ MR})) | Def. [[]]R

= (ΣR, {m | m |=RI Φ, m ∈ MR}) | Def. GA

= (ΣR, {m | m |=I Φ, m ∈ MR})

because m |=RI Φ if and only m |=I Φ,

= (ΣR, {m | m |=I Φ, m ∈ ModA(GA([[R]]R))})

because GA((Θ,MR)) is the same as (ΣR,MR),

= (ΣR, {m | m |=I Φ, m ∈ ModA([[tr(R)]])})

because of the induction hypotheses,

= [[IΦtr(R)]] | Def. [[]]

= [[tr(IΦR)]] | Def. tr.

Union Let [[R]]R = (Θ,MR), [[S]]R = (Θ,MS) and Σcl =
∐

Θ; SigA.

GA([[R + S]]R) = GA((Θ,MR ∩MS)) | Def. [[]]R

= (Σcl ,MR ∩MS) | Def. GA

= (Σcl ,ModA(GA([[R]]R)) ∩ModA(GA([[S]]R)))

because GA((Θ,MR)) = (Σcl ,MR) and GA((Θ,MS)) = (Σcl ,MS)

= (Σcl ,ModA([[tr(R)]]) ∩ModA([[tr(S)]]))

because of the induction hypotheses we have GA([[R]]R) is the same as [[tr(R)]] and GA([[S]]R)
is the same as [[tr(S)]],

= [[tr(R) + tr(S)]] | Def. [[]]

= [[tr(R + S)]] | Def. tr.

Derive Let [[R]]R = (ΘR,MR), [[f]] : ΘS → ΘR, ΣS =
∐

ΘS; Sig
A and ΣR =

∐

ΘR; Sig
A.

GA([[DfR]]R) = GA((ΘS, {m|[[f]] | m ∈ MR})) | Def. [[]]R

= (ΣS, {m|[[f]]
R
| m ∈ MR}) | Def. GA

= (ΣS, {m|climAdtI
([[f]]

R
) | m ∈ MR})

7.1 Translation of RSLI-Expressions 133

because StrRI
is natural isomorphic to climAdtI

;ModA,

= (ΣS, {m|climAdtI
([[f]]

R
) | m ∈ ModA(GA([[R]]R))})

because GA(R) = (ΣR,MR),

= (ΣS, {m|[[tr(f)]] | m ∈ ModA([[tr(R))]])})

because of the induction hypotheses,

=
[[

Dtr(f)tr(R)
]]

| Def. [[]]

= [[tr(DfR)]] | Def. tr

Translate Let [[R]]R = (ΘR,MR), [[f]] : ΘR → ΘS, ΘS = (DS,ΓS), ΣR =
∐

ΘR; Sig
A and

ΣS =
∐

ΘS; Sig
A.

GA([[TfR]]R) = GA((ΘS, {m | m|[[f]]
R
∈ MR, m ∈ StrRI

(ΘS)}))

= (ΣS , {m | m|[[f]]
R
∈ MR, m ∈ StrRI

(ΘS)})

= (ΣS , {m | m|climAdtI
([[f]]

R
)] ∈ MR, m ∈ ModA(climAdtI

(ΘS))})

= (ΣS , {m | m|[[tr(f)]] ∈ ModA(GA([[R]]R)), m ∈ ModA(
∐

ΓS)})

= (ΣS , {m | m|[[tr(f)]] ∈ ModA([[tr(R)]]), m ∈ ModA(
∐

[[type(S)]])})

= (ΣS , {m | m|[[tr(f)]] ∈ ModA([[tr(R)]])} ∩ModA([[colim type(S)]]))

= (ΣS ,ModA(
[[

Ttr(f)tr(R)
]]

) ∩ModA([[colim type(S)]]))

=
[[

Ttr(f)tr(R)) + colim type(S)
]]

= [[tr(TfR)]]

✷

Since GA preserves colimits, tr commutes with the construction of colimits, that is, the
abstract datatypes denoted by tr(colim F) and colim F ; tr are the same.

Theorem 7.6 Given a functor F from a finite category J to RSLI , then

[[tr(colim F)]] = [[colim F ; tr]] .

134 Proving Entailment of Relations

Proof.

[[tr(colim F)]] = GA([[colim F]]R) | Thm. 7.5

= GA(
∐

J

F ; [[]]R) | Thm. 4.12

=
∐

J

F ; [[]]R ;GA | Thm. 5.26

=
∐

J

F ; tr; [[]] | Thm. 7.5

= [[colim F ; tr]] | Thm. 4.12

✷

Corollary 7.7 Let R and S be expressions in RSLI then

R |=RI S iff tr(R) |=I tr(S)

Proof. By Fact 5.24 we have R |=RI S if and only if GA(R) |=I GA(S) and by Theorem 7.5
we get tr(R) |=I tr(S). ✷

Now we can finish the proof of Theorem 7.3.

Proof of Theorem 7.3. We have

Φ |=RI Φ′ if and only if IΦΘ |=RI I ′ΦΘ.

By Corollary 7.7 we have IΦΘ |=RI I ′ΦΘ if and only if

tr(IΦΘ) |=I tr(I ′ΦΘ).

Because tr(IΦΘ) = IΦcolim Γ and tr(IΦ′Θ) = IΦ′colim Γ we are done if we can prove

IΦcolim Γ |=I IΦ′colim Γ iff IΦΣcl + colim Γ |=I IΦ′Σcl .

Note that R and S are RSLI-expressions and not SLRI
-expressions. However, the semantics

of RSLI-expressions are defined by translating them to SLRI
-expressions and therefore we can

apply all the techniques developed in Section 4.3 to entailment of RSLI expressions. Then we
are done by the following derivations:

(⇒)

IΦcolim Γ |=I IΦ′colim Γ

IΦΣcl + colim Γ |=I IΦ′Σcl + colim Γ

Id
IΦ′Σcl |=

I IΦ′Σcl
L6’

IΦ′Σcl + colim Γ |=I IΦ′Σcl
Cut

IΦΣcl + colim Γ |=I IΦ′Σcl

7.2 Refinement 135

(⇐)

IΦΣcl + colim Γ |=I IΦ′Σcl

Id
colim Γ |=I colim Γ

L6’
IΦΣcl + colim Γ |=I colim Γ

R4
IΦΣcl + colim Γ |=I IΦ′Σcl + colim Γ

IΦcolim Γ |=I IΦ′colim Γ

✷

The translation of AddBirthday yields:

tr(AddBirthday) = tr(IΦΘAB)

= IΦ(tr(ΘAB))

= IΦ(colim ΓAB),

where colim ΓAB is

colim ΓAB : trait

includes Env
introduces

n: Name

d: Name

known: NameSet

birthday: NameToDate

known’: NameSet

birthday’: NameToDate

asserts

∀ n:Name n ∈ known ⇔ defined(birthday,n)

∀ n:Name n ∈ known’ ⇔ defined(birthday’,n)

and

Φ = {n 6∈ known, birthday′ = update(birthday, n, d)}

To show that AddBirthday |=RI I{n 6∈known⇒n∈known′}ΘAB holds, we have to show

IΦ(colim ΓAB) |=
I n 6∈ known ⇒ n ∈ known′,

which is implied by ∀n : Name n ∈ known′ ⇔ defined(birthday′, n), n 6∈ known and
defined(birthday′, n) and the definition of defined in the trait FiniteMap, included in
the environment.

7.2 Refinement

Usually an abstract datatype denotes the class of possible realizations of a software system
(cf. [51, 42, 52]). By making design decisions, the class of possible realizations is refined until

136 Proving Entailment of Relations

one realization or a class of isomorphic realizations remain. Given a specification Sp, each
design decision introduces a new specification Sp′, a refinement of Sp, such thatModA(Sp′) ⊆
ModA(Sp). In general, we have several refinement steps Sp1, Sp2, . . . ,Spn with ModA(Sp) ⊇
ModA(Sp1) ⊇ . . . ⊇ ModA(Spn). To prove that Spi is a refinement of Spi−1, we have to show
that Spi |= Spi−1. Of course, for a specification to be sensible, we require that ModA(Sp) is
not empty.

A software component m is correct with respect to a specification Sp if m is a model of Sp.
Let p[m] be a program that uses the software component m. Then p is correct with respect
to specifications Sp′ and Sp if whenever m is a model of Sp′, then p[m] is a model of Sp.

In contrast, an abstract datatype in the institution RI denotes one relation and not a class
of relations. Therefore the above notion of refinement does not apply directly to objects
from AdtRI

. To apply the above notion of refinement, we use a function spec which given
a relation R yields a set of relations spec(R). Then a relation S refines a relation R if
spec(S) ⊆ spec(R).

In principle, the choice of the set spec(R) can be arbitrary because if p is proved correct with
respect to spec(S) and spec(R), then for any relation S ′ in spec(S) the result of p[S ′] is in
spec(R) regardless how spec is defined. For example, an extreme case is to define spec(R) as
{R}.

The usual definition for spec(R) is as the set of all relations R′ such that R can be substituted
by R′ in any context where R can be used. If R′ can substitute R in all contexts, we call R′ a
simulation of R and write R′ ⊑ R. We get different sets spec(R) depending on the meaning of
“context” and “R can be substituted by R′”. For example, compare the definition of Hehner
[37], where R′ ⊑ R if R′ is a subset of R, with the definition of ⊑ below. Usually one requires
⊑ to be a partial order, that is, ⊑ is reflexive and transitive.

Note that, if spec(R) is defined as {R′ | R′ ⊑ R} where ⊑ is a partial order, then proving that
S is a refinement of R, that is spec(S) is a subset of spec(R), can be simplified to proving
S ⊑ R, and, similarly, it suffices to show that p[S] ⊑ R to show that a program p is correct
with respect to spec(S) and spec(R).

The problem in defining ⊑ is to determine what the context where a relation can be used
in is and what does it mean that R′ can substitute R in that context. In the following we
use the most common approach [39, 36, 46, 40, 57], where a context is a program p which is
viewed as partial, non-deterministic function from some input values I to some output values
O. A program p′ implements a program p, denoted by p′ ≤ p, if p′ is defined on the same
input values as p and produces correct output values, that is, if o is a possible output value
of p′ for a given input value then o is also a possible output value of p for the same input
value. Then R′ ⊑ R holds if for all programs p[R] that use R, R′ can be used instead of
R, and p[R′] is an implementation of p[R]. Note that ≤, and therefore ⊑, are reflexive and
transitive and that ⊑ ⊆ ≤ because R itself can be viewed as the program p[R] ≡ R.

In the literature, e.g. [39, 36, 46], it is shown that ⊑ is the same as ≤ for a suitable class of
programming languages. Suitable means, for example, that a program p[R] can use a relation

7.2 Refinement 137

R as a component only as a partial, non-deterministic function fR, that is, if R is a relation
R ⊆ I × O, then fR is a partial, non-deterministic function from I to O such that fR is
defined for all values i in the domain of R and if fR(i) returns the value o, then (i, o) ∈ R.
However, it is not possible for p to have access to all possible outcomes of fR, that is, the set
R(i) = {o | (i, o) ∈ R}.

As a counter-example consider the program

p[R] ≡ if R(1) = {1, 2} then 1 else 2.

Let R′ = {(1, 1)} and R = {(1, 1), (1, 2)}, although R′ ⊑ R, we have p[R′] 6≤ p[R] since p[R′]
yields the relation {(i, 2) | i ∈ I} while p[R] yields the relation {(i, 1) | i ∈ I}.

Thus, for the rest of this section we assume that relations are interpreted as partial, non-
deterministic functions and that ⊑ = ≤. Then R′ ⊑ R if dom(R) ⊆ dom(R′) and R′(i) ⊆ R(i)
for all i ∈ dom(R) where dom(R) is the set of all input values of R for which there exists an
output value, that is, dom(R) = {i | ∃o (i, o) ∈ R}. Let S be a set, then R|S denotes the
restriction of the domain of R to S, that is, R|S = {(i, o) | ∃o (i, o) ∈ R, i ∈ S}. Then we
have R′ ⊑ R if and only if

dom(R) ⊆ dom(R′) and R′|dom(R) ⊆ R.

In the framework of this thesis we are dealing with relations R = (ΘR,MR) of type ΘR =
<I1 × . . .× In × O1 × . . .× On>Env where Θi = <I1 × . . .× In> is the input type of R and
Θo = <O1 × . . .×Om>Env is the output type of R. Let fi be the injection of Θi in ΘR and
fo the injection of Θo in ΘR. Then we define

dom(R) = DfiR.

As an example consider the Push operation on stacks. Push has the type

<[e : E]× Stack× Stack>E.

The morphism fi from <[e : E]× Stack>E to type(Push) maps [e : E] to [e : E] and
Stack to the first Stack component. Then the domain of Push is a relation of type Θi =
<[e : E]× Stack>Env given by

dom(Push) = DfiPush.

Let S be of type Θi then we define

R|S = TfiS +R.

TfiS describes the relation {m ∈ StrRI
(ΘR) | m|fi ∈ ModA(S)}, that is, the domain of TfiS

is S and the output values are all possible output values. Then the union of TfiS with R is
the relation R with its domain restricted to S.

Now we can formulate R′ ⊑ R as an entailment of relations as follows:

138 Proving Entailment of Relations

Definition 7.8 (Simulation) Given relations R′ and R of type

ΘR = <I1 × . . .× In × O1 × . . .× Om>Env.

R′ simulates R, denoted by R′ ⊑ R, if

1. dom(R) |=RI dom(R′)

2. R′|dom(R) |=
RI R

We prove that simulation is a preorder as an example of the use of the inference system of
Section 4.3.

Theorem 7.9 Simulation ⊑ is a preorder.

Proof. We have to show that ⊑ is reflexive and transitive.

For reflexivity we have to show dom(R) |=RI dom(R) and R|dom(R) |=
RI R. The first condition

is trivial and the second condition also if rewritten as TfiDfiR +R |=RI R.

For transitivity we have to show that S ′ ⊑ R if S ′ ⊑ S and S ⊑ R. Thus we have to show
DfR |=RI DfS

′ and TfDfR+S ′ |=RI R. Since S ′ ⊑ S we have DfS |=RI DfS
′ and therefore

DfR ⊢ DfS DfS ⊢ DfS
′

Cut
DfR ⊢ DfS

′

Because S ′ ⊑ S, we have TfDfS + S ′ |=RI S ′, and then we get

TfDfS + S ′ ⊢ S
M3’

TfDfR + TfDfS + S ′ ⊢ TfDfR + S TfDfR + S ⊢ R
Cut

TfDfR + TfDfS + S ′ ⊢ R

and

DfR ⊢ DfS
L4

TfDfR ⊢ TfDfS

Using the following derived rule (*)

Sp1 + Sp2 + Sp4 ⊢ Sp3 Sp1 ⊢ Sp2

Sp1 + Sp4 ⊢ Sp3

we get

TfDfR + TfDfS + S ′ ⊢ R TfDfR ⊢ TfDfS
(*)

TfDfR + S ′ ⊢ R

7.3 Data-Refinement 139

The derivation for rule (*) is:

Sp1 ⊢ Sp2
M3’

Sp1 + Sp4 + Sp1 ⊢ Sp1 + Sp4 + Sp2 Sp1 + Sp2 + Sp4 ⊢ Sp3
Cut

Sp1 + Sp4 + Sp1 ⊢ Sp3

Sp1 + Sp4 ⊢ Sp3

✷

7.3 Data-Refinement

The following section extends the notion of refinement of relations to refinement of abstract
machines. Consider an abstract machine A = (StA, IA,AO) of signature Σ = (Env, I, O, τ).
Similar to the previous section, we have the problem that, to talk about the refinement of
A, we have to define the class spec(A) of abstract machines for a given abstract machine
A. One way to define spec(A) is to extend the definition of ⊑ to abstract machines. For an
abstract machine C = (StC, IC, CO) we have C ⊑ A if and only if StC = StA, IC = IA, and
opC ⊑ opA for all o ∈ O. Then spec(A) = {C | C ⊑ A}.

However, this definition does not take into account the fact that the state of an abstract
machine is only accessible by the operations of that abstract machine. That is, there may be
abstract machines C and A for which C ⊑ A does not hold, but which cannot be distinguished
by programs p, that is, p[C] ≤ p[A] holds for all programs p. As in the previous section
p[A] and p[C] are programs whose semantics are non-deterministic, partial functions between
input and output. The differences to the previous section are that the programs may refer
to complete abstract machines instead of single relations only and that ⊑ now compares
abstract machines while ≤ still compares non-deterministic, partial functions.

Therefore we can weaken the above definition and get:

Definition 7.10 (Simulation II)
Let A and C be two abstract machines of signature (Env, I, O, τ), then C simulates A, denoted
by C ⊑ A, if there exists a relation Sim of type <StA × StC>Env such that IC |=RI Sim(IA)
and for all operations op ∈ O:

1. Simi(dom(opA)) |=
RI dom(opC)

2. (Simi; opC)|dom(opA) |=
RI opA; Simo

where Simi is the extension of Sim to a relation of type

<I1 × . . .× In × StA × StC × I1 × . . .× In>

by the identity on the inputs. If τ(op) = <I1 × . . .× In> → <O1 × . . .× Om>, then Simi is
the colimit of IdI1 , . . . , IdIn, and Sim with respect to the identity on the environment. Simi-
larly, Simo is the colimit of Sim and IdO1 . . . IdOm.

140 Proving Entailment of Relations

The second condition can be depicted by:

I1 × . . .× In × dom(opA)
opA //

Simi

��

StA × O1 × . . .× Om

Simo

��
I1 × . . .× In × StC opC

// StC ×O1 × . . .×Om

Note that Sim is a relation between abstract and concrete state values instead of a function
from the concrete state space to the abstract state as, for example, in the seminal work of
Hoare [39]. However, later work by Nipkow [46], Schoett [55], and He, Hoare and Sanders [36]
have shown that A may be biased towards a particular implementation (cf. Section 6.2), that
is, some states in StA cannot be distinguished by the operations in A. In this case one
concrete state may be related to several indistinguishable abstract states.

Note also that not every concrete state value needs to be related to an abstract state value
since some of the states of StC may not be reachable from the initial states and the operations
of C.

In general, choosing the empty relation for Sim will not work because Sim has to relate at
least the initial states of A to the initial states of C.

It was shown by He et al [36] and Nipkow [46] that simulation is sound and complete with
respect to implementation, that is, C ⊑ A if and only if p[C] ≤ p[A] for all programs p
provided that the programming language ensures the encapsulation principle.

7.4 An Example of Data-Refinement

As a non-trivial example of doing proofs using the methods introduced in this chapter and
Chapter 4, we show that the abstract machine SI of a stack is a correct refinement of the
abstract machine S introduced in Chapter 6.

The abstract machine SI uses the abstract machine C of a counter and an abstract machine
A of an array to implement its operations.

Counter The abstract machine C of a counter has the following signature:

(Env, Zero, {Inc : <> → <>, Dec : <> → <>}),

The elements of the state space StC of the counter have a state component c of type N . We
assume that the specification Nat (cf. Section 5.1) is part of the environment Env.

StC : trait

includes Env

introduces c : N

In the initial states ZeroC, c is set to the constant zero of sort N .

7.4 An Example of Data-Refinement 141

Zero : <StC>
includes Counter

asserts c = zero

The increment operation is given by

IncC = I{succ(c)=c′}<StC × StC>Env.

The decrement operation decrements c only if c is not zero and is defined by

DecC = I{c 6=zero, succ(c′)=c}<StC × StC>Env.

Array The abstract machine A of an array has an operation to update the array at a
position i with a new value v and an operation to return the value of the array at a given
position. Thus the signature of A is

(Env, Empty, { Update : <[i : N]× [v : E]> → <>,

Get : <[i : N]> → <[v : E]> }),

We assume that Env contains a sort E and that Nat is part of Env. The state StA of A is
similar to the state of the dictionary defined in Section 6.1. StA has two functions map and
dom as components. If dom(i) is true, map(i) yields the value of the array at position i. In
the empty array, the function dom always yields false.

StA : trait

includes Env

introduces

map : N → E

dom : N → Bool

EmptyA : trait

includes StA
asserts ∀ n : N ¬ dom(n)

The update operation changes the function map such that map(i) = v is true and for all other
j 6= i map(i) remains the same.

UpdateA : <[i:N] × [v:E] × StA × StA>
asserts

∀ n: N map’(n) = if n = i then v else map(n)

∀ n: N dom’(n) ⇔ n = i ∨ dom(n)

The get operation returns the value v for an index value i

GetA : <[i:N] × StA × StA × [v:E]>
asserts

dom(i)

∀ n:N map’(n) = map(n)

∀ n:N dom’(n) = dom(n)

v = map(i)

142 Proving Entailment of Relations

Stack Implementation In Chapter 6 we have given the definition of an abstract machine
of a stack S. Here we define another abstract machine for a stack SI, based on the abstract
machine C of a counter and A of an array.

The state space of SI is the pushout of the state spaces for the counter and the array with
respect to the environment Env and inclusions ι1 : Env → StC and ι2 : Env → StA such that
all values smaller than the value of the counter have a value associated by the array.

StSI = I{∀n : N n < c ⇒ dom(n)}(StC +(ι1,ι2) StA).

For simplicity we assume that the environment of C and A and are the same. If this is not
the case, one can always use the translate operation to adapt the environments.

The initial states EmptySI of the stack are basicly given by the pushout of the initial states
of the counter and the array with respect to the inclusions e1 : <Env>Env → StC and e2 :
<Env>Env → StA. However, the result type of ZeroC +(e1,e2) EmptyA is <StC +(ι1,ι2) StA>Env,
which does not include that state-invariant {∀n : N n < c ⇒ dom(n)}. Thus we have to
translate the pushout of ZeroC with EmptyA by σe, the inclusion of <StC +(ι1,ι2) StA>Env into
<StSI>Env, yielding

EmptySI = Tσe(ZeroC +(e1,e2) EmptyA).

Similarly, the push operation can be given as the pushout of the increment operation on
counters and the update operation on arrays:

PushSI = Tσps
(IncC +(ps1,ps2) UpdateA).

The parameter [i : N] of the update operation is given by the pre-state of the increment op-
eration. Thus the TypeI-morphism ps1 has domain <[i : N]× Env× Env>Env and codomain
<StC × StC>, mapping [i : N] and the first Env to the first StC. The morphism ps2 has
the same domain as ps1 and codomain <[i : N]× [e : E]× StA × StA>, mapping [i : N] to
[i : N], the first Env to the first StA and the second Env to the second StA. Thus we get the
following pushout diagram:

<[e : E]× StC +(ι1,ι2) StA × StC +(ι1,ι2) StA>Env

<StC × StC>Env

ps ′2
55❧❧❧❧❧❧❧

<[i : N]× [e : E]× StA × StA>Env

ps ′1
kk❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱

<[i : N]× Env× Env>Env

ps1

ii❘❘❘❘❘❘❘❘❘❘❘❘❘❘ ps2

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

Note that ps1 maps [i : N] and the first Env to the same StC implies that the co-cone morphism
ps ′1 identifies the argument [i : N] of the update operation with the c : N component of the
counter. This means that the first input to the update operation is provided by the pre-state
of increment operation.

7.4 An Example of Data-Refinement 143

As with EmptySI , we have to add the state-invariant to the pre- and post-states of the
push operation by translating IncC +(ps1,ps2) UpdateA by σps , where σps is the inclusion of
<[e : E]× StC +(ι1,ι2) StA × StC +(ι1,ι2) StA>Env into <[e : E]× StSI × StSI>Env.

The normal-form of the push operation is

PushSI : <[v:E] × StSI × StSI>
asserts

c’ = succ(c)

∀ n:N map’(n) = (if n = i then v else map(n))

∀ n:N dom’(n) ⇔ n = i ∨ dom(n)

The pop operation removes the top element from the stack and returns it in v. The pop
operation is defined using the pushout of the decrement and the get operations. This time
the c : N component of the post-state of the counter is identified with the i : N argument of
the get operation:

PopSI = Tσpo
(DecC +(po1,po2) GetA).

The morphisms po1 and po2 form the following pushout diagram:

<StC +(ι1,ι2) StA × StC +(ι1,ι2) StA × [v : E]>Env

<StC × StC>Env

po′
2

55❧❧❧❧❧❧❧
<[i : N]× StA × StA × [e : E]>Env

po′
1

kk❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱ ❱

<[i : N]× Env× Env>Env

po1

ii❘❘❘❘❘❘❘❘❘❘❘❘❘❘ po2

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

po1 maps [i : N] and the second Env to the second StC and po2 maps [i : N] to [i : N] and
the first Env to the first StA and the second Env to the second StA.

σpo is again the inclusion of

<StC +(ι1,ι2) StA × StC +(ι1,ι2) StA × [v : E]>Env

into

<StSI × StSI × [e : E]>Env.

The normal-form of PopSI is

PopSI : <StSI × StSI × [v:E]>
asserts

c 6= zero

succ(c’) = c

dom(c’)

∀ n:N map’(n) = map(n)

∀ n:N dom’(n) = dom(n)

v = map(c’)

144 Proving Entailment of Relations

Proof of Refinement

To show that SI is a refinement of S, we have to provide a simulation Sim of type
<StS × StSI>Env. The relation Sim is defined with the help of a function α : N → Stack,
where α(n) is the stack consisting of the first n−1 entries of map. Then the relation between
StS and StSI is established by the equation s = α(c).

Formally Sim is defined as Da(Alpha + Sim′) where Alpha defines the function α and Sim′

relates c to s:

Alpha : ΘAlpha

asserts
α(zero) = empty

∀ n:Nat succ(n) ≤ c ⇒ α(succ(n)) = push(map(n),α(n))

Sim’ : ΘAlpha

asserts
s = α(c)

The type ΘAlpha is

ΘAlpha =

[α : N → Stack]

StSI

77♥♥♥♥♥♥♥♥♥♥♥♥
StS

gg❖❖❖❖❖❖❖❖❖❖❖❖

Env

hhPPPPPPPPPPPPP

77♥♥♥♥♥♥♥♥♥♥♥♥♥

with a being the inclusion of <StS × StSI>Env into Θ.

To facilitate the following refinement proofs we use the following lemma:

Lemma 7.11

<StS × StSI>Env |=
RI DaAlpha

Proof. We have to show that each <StS × StSI>Env-structure (m1, m2) can be extended
to an element m of StrRI

(Θ) such that m|a = (m1, m2) and m |=RI Alpha. What we have
to do is to define the appropriate function m(α) : m1(N) → m1(N). Note that because
(m1, m2) ∈ StrRI

(<StS × StSI>Env) and N is a sort in Env we have m1(N) = m2(N).
Provided that Env restricts the interpretations of the sort N to be isomorphic to the natural
numbers, the equations used in Alpha can be viewed as a functional program defining m(α)
for each pair (m1, m2) in StrRI

(<StS × StSI>Env). ✷

Initial States

For the initial states of S and SI we have to show

EmptySI ⊢RI Sim(EmptyS)

7.4 An Example of Data-Refinement 145

This means that given a model m of EmptySI , we have to find a pair (m1, m2) such that
m1 = m, m2 is model of EmptyS and (m1, m2) is a model of Sim.

However, we prove a stronger result:

1. for each model m of EmptySI there exists a pair (m1, m2) such that m1 = m and m2 is
a model of EmptyS and

2. for all models m of EmptySI and models m2 of EmptyS , the pair (m,m2) is a model of
Sim.

The first condition is formally written as

EmptySI ⊢RI DfTf ′EmptyS ,

where f is the inclusion of <StSI> into <StS × StSI> and f ′ is the inclusion of <StS> into
<StS × StSI>. The second condition is

TfEmptySI + Tf ′EmptyS ⊢RI Sim.

This decomposition is an instance of Rule R3 because the original proof obligation can be
rewritten as

EmptySI ⊢RI Df (Sim + Tf ′EmptyS),

using the definition of instantiation.

To show that EmptySI ⊢RI DfTf ′EmptyS , we observe that f and f ′ are the co-cone morphisms
of the following pushout:

<StS × StSI>Env

<StS>Env

f ′
55❧❧❧❧❧❧❧

<StSI>Env

f
ii❙ ❙ ❙ ❙ ❙ ❙ ❙

<>Env

g

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙ g′

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦

,

where <>Env denotes the type (1,ΘEnv : 1 → SLI) with ΘEnv(1) = Env. Using the equalities of
Fact 4.9 we can rewrite our proof obligation as EmptySI ⊢RI Tg′DgEmptyS and using Rule R5
we have to show

Dg′EmptySI ⊢RI DgEmptyS .

This means that given a model m of EmptySI , we have to show that m|g′ , call it mEnv, can be
extended to some model m′ of EmptyS such that m′|g′ = mEnv. We are done, if we can show
that any model mEnv of Env can be extended to a model m′ of EmptyS such that m′|g = mEnv,
that is, if we can show

<>Env ⊢
RI DgEmptyS

146 Proving Entailment of Relations

because we have Dg′EmptySI ⊢RI <>Env by Rule R1. By the definition of EmptyS we thus
have to show:

<>Env ⊢
RI DgI{s=empty}StS .

Let mEnv be a model of <>Env then define m′ by m′|g = mEnv and m′(s) = m′(empty) =
mEnv(empty). Then m′ satisfies s = empty and thus m′ is a model of EmptyS . Therefore we
have <>Env |=RI DgI{s=empty}StS . Since we have trivially completed our inference system
(cf. Section 4.5) we get <>Env ⊢

RI DgI{s=empty}StS .

In the next step we have to show that TfEmptySI + Tf ′EmptyS ⊢RI Sim holds. Given the
definition of Sim as Da(Alpha + Sim′), we can use again Rule R3 to decompose our proof
obligation into

1. TfEmptySI + Tf ′EmptyS ⊢RI DaAlpha and

2. Ta(TfEmptySI + Tf ′EmptyS) + Alpha ⊢RI Sim′.

1. is a consequence of Lemma 7.11 and for 2. we note that

• TfEmptySI + Tf ′EmptyS ⊢RI I{s=empty}Θ,

• TfEmptySI + Tf ′EmptyS ⊢RI I{c=zero}Θ and

• TfEmptySI + Tf ′EmptyS ⊢RI I{α(zero)=empty}Θ

because the formula s = empty is included in the definition of EmptySI , the formula c = zero

is included in the definition of ZeroC and α(zero) = empty is part of the definition of Alpha.
Since Sim′ = I{s=α(c)}ΘAlpha and using Rule L8, we are done if we can show that

{s = empty, c = zero, α(zero) = empty} ⊢RI {s = α(c)}.

Using Theorem 7.1 it suffices if we can show

{s = empty, c = zero, α(zero) = empty} |=LSL {s = α(c)},

which is easy to see.

Operations

Next we have to show for the operations Push and Pop:

Simi(dom(PushS)) ⊢
RI dom(PushSI)

(Simi; PushSI)|dom(PushS) ⊢
RI PushS ; Simo

and

Simi(dom(PopS)) ⊢
RI dom(PopSI)

(Simi; PopSI)|dom(PopS)
⊢RI PopS ; Simo

As an example, we give the proof for Pop.

7.4 An Example of Data-Refinement 147

Entailment of Preconditions

Step 1 First we have to prove

Simi(dom(PopS)) ⊢
RI dom(PopSI).

By applying the definition of dom this is the same as

Simi(dom(PopS)) ⊢
RI Dpoi

PopSI ,

where poi maps <StSI> to the first component of <StSI × StSI × [v : E]>.

That is, for each model m of Sp = Simi(dom(PopS)) we have to show that there exists a
triple of structures (m1, m2, m3), such that m1 = m and (m1, m2, m3) is a model of PopS .

To this end we define a relation Sp1 such that each <StSI>Env-structure m can be extended
to a model (m,m2, m3) of Sp1, that is, we prove

<StSI> ⊢RI Dpoi
Sp1,

and show that each model of Tpoi
Sp+ Sp1 is also a model of PopS , that is,

Tpoi
Sp+ Sp1 ⊢

RI PopSI .

This procedure is justified by Rule R3, if we let Sp′′ in Rule R3 be Tpoi
Sp + Sp1. Then

Sp ⊢RI Dpoi
(Tpoi

Sp+ Sp1) is implied by <StSI> ⊢RI Dpo1
Sp1 using monotonicity of union

and the equalities of Fact 4.9.

Sp1 is given by

Sp1 : <StSI × StSI × [v:E]>
asserts

c’ = pred(c)

v = map(c)

∀ n : N map’(n) = map(n)

∀ n : N dom’(n) ⇔ dom(n)

Now let m be a <StSI> then we define a <StSI>-structure m2 by

• m2|Env = m|Env.

• m2(map) = m(map),

• m2(dom) = m(dom),

• m2(c) = m(pred)(m(c)) and

and a <[v : E]>-structure m3 by

• m3|Env = m|Env and

• m3(v) = m(map)(m(c)),

148 Proving Entailment of Relations

It is obvious that (m,m2, m3) is a model of Sp1 and thus we have

<StSI> |=RI Dpoi
Sp1,

which implies

<StSI> ⊢RI Dpoi
Sp1.

Step 2 In the second step we have to prove

Tpoi
Sp+ Sp1 ⊢

RI PopSI .

Bringing PopSI into its normal-form we get IΦ1<StSI × StSI × [v : E]>, where Φ1 is the set

{ dom(c)

c 6= zero

succ(c’) = c

∀ n:N map’(n) = map(n)

∀ n:N dom’(n) = dom(n)

v = map(c) }

The normal-form of Tpoi
Sp+ Sp1 is DσIΦ2Θ

′, where Φ2 is the set

{ α(zero) = empty

n ≤ c ⇒ α(succ(n)) = push(map(n), α(n))
s = α(c)
s 6= empty

s’ = pop(s)

v’ = top(s)

c’ = pred(c)

∀ n:N map’(n) = map(n)

∀ n:N dom’(n) = dom(n)

v = map(c) }

and σ is the inclusion of <StSI × StSI × [v : E]> into Θ′, with Θ′ being the type:

[α : N → Stack]

StS

77♣♣♣♣♣♣♣♣♣♣♣♣
StS StSI

gg❖❖❖❖❖❖❖❖❖❖❖❖
StSI [v : E]

Env

kk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

ggPPPPPPPPPPPPPP

OO ;;✇✇✇✇✇✇✇✇✇

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

Note that we have two components v and v′; v′ denotes the result of the operation PopS of
the abstract stack, which is hidden by the dom operation and thus is distinct from the result
v of the operation PopSI of the stack implementation.

Now we have to prove:

DσIΦ1Θ
′ ⊢RI IΦ2<StSI × StSI × [v : E]>,

7.4 An Example of Data-Refinement 149

which is, by Rule L5, equivalent to

IΦ1Θ
′ ⊢RI Iσ(Φ2)Θ

′.

Because of Rule L7 we have nothing to do for formulas in Φ2 that also occur in Φ1. The only
formulas in Φ2 not already in Φ1 are dom(c), c 6= zero and succ(c′) = c.

Thus it remains to show that dom(c), c 6= zero and succ(c′) = c are consequences of Φ1

in the institution RLSL. However, to prove this, we cannot apply Theorem 7.1 and simply
prove

Φ1 |=
I {dom(c), c 6= zero, succ(c′) = c},

as we did in the proof for EmptySI ⊢RI EmptyS ; Sim given in the previous section. The reason
is that we need the state invariant ∀n : N n ≤ c ⇒ dom(n) given in StSI and the definition
of predecessor, given in the environment Env. Thus we have to apply Theorem 7.3 and prove

IΦ1Σ + colim Θ′ |=I I{dom(c), c 6=zero, succ(c′)=c}Σ,

where Σ is the signature of SLLSL-expression colim Θ′. Then dom(c) is a consequence of
∀n : N n ≤ c ⇒ dom(n), c 6= zero is a consequence of α(zero) = Empty, s 6= Empty and
α(c) = s, and succ(c′) = c is a consequence of ∀n : N n 6= zero ⇒ succ(pred(n)) = n and
c′ = pred(c).

Entailment of Postconditions We have to show:

(Simi; PopSI)|dom(PopS)
⊢RI PopS ; Simo

Let Sp = Simi; PopSI . Using the definition of sequential composition, we have to show:

Sp|dom(PopS)
⊢RI Df3(PopS +(f1,f2) Simo),

where f1 and f2 are TypeI-morphisms from <StS × [v : E]> to the type of PopS and the
type of Simo, respectively, and f3 is the inclusion of

<StS × StSI × [v : E]>Env

into the pushout of the type of PopS and the type of Simo with respect to f1 and f2, which
is Θ = <StS × StS × [v : E]× StSI × [v : E]>Env.

Θ

type(PopS)

f ′
2

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦
type(Simo)

f ′
1

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

<StS × [v : E]>Env

f1

ii❘❘❘❘❘❘❘❘❘❘❘❘❘❘ f2

55❧❧❧❧❧❧❧❧❧❧❧❧❧

We can apply Rule R3 if we can show

1. Sp|dom(PopS)
⊢RI Df3Tf ′

2
PopS and

2. Tf3(Sp|dom(PopS)
) + Tf ′

2
PopS ⊢RI Tf ′

1
Simo.

150 Proving Entailment of Relations

Step 1 First we show:

Sp|dom(PopSI)
⊢RI Df3Tf ′

2
PopS

That is, given a model (m1, m2, m3) of Sp|dom(PopS)
, we have to find structures m′

2 and m′
3,

such that (m1, m
′
2, m

′
3) is a model of PopS . Since we have restricted the domain of Sp|dom(PopS)

to dom(PopS), we know that if (m1, m2, m3) is a model of Sp|dom(PopS)
thenm1 is in dom(PopS)

and thus there exists models m′
2 and m′

3 such that (m1, m
′
2, m

′
3) is a model of PopS .

We prove this formally by observing that R|S ⊢RI TfS because R|S is defined as R + TfS.
Thus we have

Sp|dom(PopS)
⊢RI Tf(dom(PopS)),

where f maps StS in <StS>Env to the first component of <StS × StSI × [v : E]>Env. Using
the definition of dom we get

Sp|dom(PopS)
⊢RI TfDgPopS ,

where g maps StS of <StS>Env to the first component of <StS × StS × [v : E]>Env.

Note that f3 and f ′
2 are the co-cone morphisms of the pushout of <StS × StS × [v : E]>Env

with <StS × StSI × [v : E]>Env with respect to the morphisms f and g.

Θ

type(PopS)

f ′
2

77♦♦♦♦♦♦♦♦♦♦♦♦♦
type(PopS ; Simo)

f3

hh❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘

<StS>Env

g

gg❖❖❖❖❖❖❖❖❖❖❖ f

66❧❧❧❧❧❧❧❧❧❧❧❧❧

Using the equalities of Fact 4.9 we have TfDgPopS = Df3Tf ′
2
PopS and thus we get

Sp|dom(PopS)
⊢RI Df3Tf ′

2
PopS .

Step 2 Thus it remains to show

Tf3(Sp|dom(PopS)
) + Tf ′

2
PopS ⊢RI Tf ′

1
Simo.

Because Sp|dom(PopS)
⊢RI Sp we get

Tf3(Sp|dom(PopS)
) + Tf ′

2
PopS ⊢RI Tf3Sp+ Tf ′

2
PopS

by monotonicity of translate and union. By the Cut rule, we are done, if we can prove

Tf3Sp+ Tf ′
2
PopS ⊢RI Tf ′

1
Simo.

7.4 An Example of Data-Refinement 151

Simo is defined as Da(Alpha + Sim′) +(ι1,ι2) Id<[v:E]>, where ι1 is the inclusion of <>Env into
the type of Sim, ι2 the inclusion of <>Env into the type of Id[v:E] and Id[v:E] is defined as
I{v=v′}<[v : E]× [v : E]>Env.

Using the equalities of Fact 4.9 we get that

Tf ′
1
(Da(Alpha + Sim′) +(ι1,ι2) Id[v:E]),

denotes the same relation as

Da′(Th1Alpha + Th1Sim
′ + Th2Id[v:E]),

where a′ is the inclusion of Θ into Θ′, which is

[α : N → Stack]

StS StS

77♣♣♣♣♣♣♣♣♣♣♣♣
[v : E] StSI

gg❖❖❖❖❖❖❖❖❖❖❖❖
[v : E]

Env

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

gg❖❖❖❖❖❖❖❖❖❖❖❖❖

OO 77♥♥♥♥♥♥♥♥♥♥♥♥♥

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

h1 is the inclusion of ΘAlpha into Θ′ and h2 is the inclusion of <[v : E]× [v : E]> into Θ′.

To apply Rule R3 we have to show

1. Tf3Sp+ Tf ′
2
PopS ⊢RI Da′Th1Alpha and

2. Ta′(Tf3Sp+ Tf ′
2
PopS) + Th1Alpha ⊢RI Th1Sim

′ + Th2 Id[v:E].

Step 3 We have <StS × StSI>Env ⊢RI DaAlpha (cf. Lemma 7.11) and h1 and a′ are the
co-cone morphisms of the pushout of a and f ′

1. Thus we get

Tf ′
1
<StS × StSI>Env = Θ ⊢RI Tf ′

1
DaAlpha = Da′Th1Alpha

Since we have Tf3Sp+ Tf ′
2
PopS |= Θ, we get

Tf3Sp+ Tf ′
2
PopS ⊢RI Da′Th1Alpha.

Step 4 In the next step we show

Ta′(Tf3Sp+ Tf ′
2
PopS) + Th1Alpha ⊢RI Th1Sim

′ + Th2 Id<[v:E]>Env
.

Using the equalities

Sim′ = I{s=α(c)}<StS × StSI>Env

152 Proving Entailment of Relations

and

Id<v:E>Env
= I{v′=v}<[v : E]× [v : E]>Env,

and using the equalities of Fact 4.9 to form the normal-form of the left and right hand side,
we have to show:

DσIΦΘ
′′′ ⊢RI I{s′=α(c′), v′=v}Θ

′.

Note that s and c are renamed to s′ and c′ by the SLI-morphism

climSLI(h1) : climSLI (type(PopS)) → climSLI (Θ
′)

because s is from the post-state of the operation PopS and c is from the post-state of the
operation PopSI .

Θ′′′ is the type

[α : N → Stack] [α : N → Stack]

StS

OO

StSI

gg❖❖❖❖❖❖❖❖❖❖❖❖
StS

77♣♣♣♣♣♣♣♣♣♣♣♣
[v : E] StSI

gg❖❖❖❖❖❖❖❖❖❖❖❖
[v : E]

Env

jj❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱❱

cc❋❋❋❋❋❋❋❋❋

OO 77♦♦♦♦♦♦♦♦♦♦♦♦

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

22❡❡

and σ the inclusion of Θ′ into Θ′′′.

Let s correspond to the first occurrence of StS ; map, dom and c to the first occurrence of StSI ;
α1 to the first occurrence of [α : N → Stack]; α2 to the second occurrence of [α : N → Stack];
s′ to the second occurrence of StS and map′, dom′ and c′ to the second occurrence of StSI .
Then the set Φ is given by the following list of formulas:

% Alpha: Def α1
α1(zero) = empty

∀ n:Nat n < c ⇒ α1(succ(n)) = push(map(n),α1(n))

% Sim

s = α1(c)

% PopSI = Get + Dec
dom(c)
c 6= zero

succ(c’) = c

∀ n:Nat dom’(n) = dom(n)

∀ n:Nat map’(n) = map(n)

v’ = map(c’)

% PopS

s 6= empty

s’ = pop(s)

7.4 An Example of Data-Refinement 153

v = top(s)

% Alpha: Def α2
α2(zero) = empty

∀ n:Nat n < c’ ⇒ α2(succ(n)) = push(map’(n),α2(n))

To prove DσIΦΘ
′′′ ⊢RI I{s′=α(c′), v′=v}Θ

′, we can use Rule L5 and show

IΦΘ
′′′ ⊢RI I{s′=α2(c′), v′=v}Θ

′′′.

Step 5 Note that we cannot prove Φ |=I {v′ = v, s′ = α2(c
′)} because we need properties

of natural numbers and stacks for the proof, which are not present in Φ. Therefore we cannot
use Theorem 7.1 to prove Φ ⊢RI {v′ = v, s′ = α2(c

′)}, instead we have to use Theorem 7.7
and show

IΦΣcl + colim Θ′′′ |=I I{v′=v, s′=α2(c′)}Σcl ,

where Σcl is the signature of the colimit of Θ′′′.

Now we have v′ = map(c′) and v = top(s) and s = α1(c) and succ(c′) = c thus v =
top(α1(c)). Since we have c ≤ c because ∀n : N n ≤ n is derivable from colim Θ′′′, we get
v = top(push(map(c′), α1(c

′))) which yields v = map(c′) because

∀e : E, s : Stack top(push(e, s)) = e

is derivable from colim Θ′′′.

To prove s′ = α2(c
′) we need the lemma

∀n : N n ≤ c′ ⇒ α1(n) = α2(n),

which can be shown by induction on n as follows:

• n = zero: We have α1(zero) = empty = α2(zero).

• n = succ(n′): Assume that succ(n′) ≤ c′ then

α1(n) = push(map(n), α1(n
′)).

Since n′ ≤ succ(n′) ≤ c′ we can apply the induction hypotheses and with n ≤ c we
get α1(n) = push(map(n′), α2(n

′)) and because ∀m : N map′(m) = map(m), we get
α1(n) = push(map′(n′), α2(n

′)), which is α2(n), by the definition of α2.

Note that the justification to use induction over n : N comes from the constraint that N is
generated by zero and succ, derivable from colim Θ′′′.

154 Proving Entailment of Relations

Now we have

s′ = pop(s) | s = pop(s) ∈ Φ

= pop(α1(c)) | s = α1(c) ∈ Φ

= pop(α1(succ(c
′)) | succ(c′) = c ∈ Φ

= pop(push(map(c′), α1(c
′))) | c ≤ c

= α1(c
′) | c′ ≤ c′

= α2(c
′)

7.5 Conclusion

The proof that the abstract machine of a stack SI is an implementation of S is surprisingly
quite complex.

One of the reasons is that we have to make explicit the relationship between the type of
the relations by using TypeI-morphisms. This is due to the fact that we assumed that
everything which is not related by morphisms is different even if the components have the
same name. This requires to make explicit even simple inclusions of one type into another
and to adapt the type of relations by using the translate operation.

In practice though it should be possible to hide a lot of these morphisms and the corresponding
translate operations from the user.

Another reason for the complexity of the proofs is the use of the derive operation in the
definition of the relations that occur on the right hand side of a turnstile. For example,
expanding the right hand side of

(Simi; PopSI)|dom(PopS)
⊢RI PopS ; Simo

yields

Df3(Tf ′
2
PopS +Da′(Th1Alpha + Th1Sim

′ + Th2 Id[v:E])),

which contains two derive operations. To get rid of the derive operations we have to use two
times the Rule R3, which introduces two proof obligations involving again derive: . . . ⊢RI

Df3Tf ′
2
PopS and . . . ⊢RI Da′Th1Alpha.

On some occasions, it helps to view the derive operation as an existential quantifier, and
then use the base institution to deal with that quantifier. For example, let

PopS = I{s′=pop(s), v=top(s)}ΘPopS

where ΘPopS
= (DPopS

,ΓPopS
). Df3Tf ′

2
PopS corresponds to

I{∃s′:Stack,v:E s′=pop(s)∧v=top(s)}ΘPopS
.

7.5 Conclusion 155

Then for any RSLI-expression R we have R |=RI Df3Tf ′
2
PopS if and only if

R |=RI I{∃s′:Stack,v:E s′=pop(s)∧v=top(s)}ΘPopS
,

and because of Theorem 7.5 if and only if

tr(R) |=I I{∃s′:Stack,v:E s′=pop(s)∧v=top(s)}colim ΓPopS
.

Now we can use a theorem prover for the institution I to proof this entailment and thus deal
with the derive operation.

However, this correspondence does not hold for all logics, for example, the above formula is
not admissible in LSL. Also Da′Th1Alpha requires a second order existential quantifier as it
states the existence of an operation α : N → Stack.

8 Disjunction

A useful operation to define new relations is the disjunction of relations. Disjunction allows
to define separate relations for each subset of input values and then define a relation on all
input values by the disjunction of the component relations. For example in Spivey [57], the
AddBirthday operation (cf. Section 6.2) is extended to yield an error message if n is already
in known.

Let us recall the definition of the state space of the birthday book

BirthdayBookBC : trait

includes Env

introduces

known: NameSet

birthday: NameToDate

asserts

∀ n:Name n ∈ known ⇔ defined(birthday,n)

and the definition of the AddBirthday operation

AddBirthdayBC: ΘAB

not(n ∈ known)

birthday’ = update(birthday,n,d)

where the type ΘAB is:

<[n : Name]× [d : Date]× BirthdayBook × BirthdayBook>Env

We define a new operation SuccessBC of type:

ΘR = <[result : Report]>Env

SuccessBC : ΘR

result = ok

We assume that Env contains a sort Report which is freely generated by constants ok and
alreadyKnown. Given the type ΘRAB as

<[n : Name]× [d : Date]× BirthdayBook × BirthdayBook × [result : Report]>Env

with inclusions f of ΘAB into ΘRAB and g of ΘR into ΘRAB then

TfAddBirthday + TgSuccess

is a relation that adds a name to the birthday book and has ok as the value of result. The
relation AlreadyKnownBC is defined by

158 Disjunction

AlreadyKnownBC : <[n:Name]×BirthdayBook×BirthdayBook×[result:Report]>
asserts

known’ = known

birthday’ = birthday

n ∈ known

result = alreadyKnown

AlreadyKnownBC does not change known and birthday and the value of result is
alreadyKnown. Then a robust version of the AddBirthdayBC is

RAddBirthdayBC = (TfAddBirthdayBC + TgSuccessBC) ∨ ThAlreadyKnownBC

with h being the inclusion of the type of AlreadyKnownBC into ΘRAB. The operation
RAddBirthdayBC adds a birthday for a person which is not already in the birthday-book
and reports ok, or does not change known and birthday and reports alreadyKnownBC.

8.1 Adding Disjunction to SLI

Similar to the union of two specification expressions Sp1 and Sp2, which denotes the inter-
section of their model classes, we can define the disjunction of Sp1 and Sp2 in any institution
I, having the union of their model classes as the semantics. If Sp1 is given as IΦ1Σ and Sp2

as IΦ2Σ then m is a model of Sp1 ∨ Sp2 if and only if m |= Φ1 or m |= Φ2.

Disjunction as an operation to form abstract datatypes has not been treated in the literature
(cf. Sannella and Wirsing [54], Sannella and Tarlecki [50], Loeckx, Ehrich and Wolf [42] and
Farrés-Casals [21]). One reason for this is that in contrast to union, disjunction does not
have a semantics on the presentation level independent from the choice of the institution.
For example, for union we have

IΦ1Σ+ IΦ2Σ = IΦ1∪Φ2Σ,

while for disjunction

IΦ1Σ ∨ IΦ2Σ = IΦΣ

only holds in institutions, where one can express the disjunction of two sets of formulas again
by a set of formulas (cf. Section 8.2).

The abstract syntax of specification expressions of section 4.2 is extended by

Sp ::= . . . | Sp ∨ Sp,

where Sp1∨Sp2 is well-formed if Sig(Sp1) = Sig(Sp2) and Sp1 and Sp2 are well-formed. The
signature of Sp1 ∨ Sp2 is the signature of Sp1 and the semantics of disjunction is

[[Sp1 ∨ Sp1]] = (Σ,M1 ∪M2)

with [[Sp1]] = (Σ,M1) and [[Sp2]] = (Σ,M2).

8.2 Proving Properties with Disjunction 159

8.2 Proving Properties with Disjunction

One problem with proving entailment Sp1 |=I Sp2 for specification expressions in SLI with
disjunction is that the normal-form result of Section 4.2 does not hold anymore.

In the case of union we could use the equation DσSp1 + Sp2 = Dσ(Sp1 + TσSp2) to pull Dσ

out from the union (cf. Section 4.2). However for disjunction only

Dσ(Sp1 ∨ TσSp2) |=
I DσSp1 ∨ Sp2

is valid, while

DσSp1 ∨ Sp2 |=
I Dσ(Sp1 ∨ TσSp2)

does not hold in general. Let σ be a signature morphism from Σ to Σ′ and let m |=I

DσSp1∨Sp2, thus either there exists a Σ′-structure m′, which is a model of Sp1 and satisfies
m′|σ = m or m is a model of Sp2. Assume that m is a model of Sp2. Then, in general, m
cannot be extended to a Σ′-structure m′ with m′|σ = m. For example, in LSL this is the
case if σ is not injective on sorts and function symbols.

In RI this happens if σ identifies parts of the shape of a relation. Consider the relation

R = Df<[c : N]> ∨ I{c′=0}<[c : N]× [c : N]>,

where f is a morphism from <[c : N]× [c : N]> to <[c : N]> identifying both states. Then
(m1, m2) ∈ R if m1 = m2 or m2(c) = 0. However

S = Df<[c : N]> ∨ TfI{c′=0}<[c : N]× [c : N]>,

is the same as Df<[c : N]> because Θ ∨ Sp has the same models as Θ (cf. the equalities on
page 161). Thus S and R do not describe the same relation.

Another problem with computing the normal-form is to find a set of formulas Φ that ex-
presses the union of two model classes defined by sets of formulas Φ1 and Φ2 in an arbitrary
institution. That is, Φ has the property

ModA([[IΦSp]]) = ModA([[IΦ1Sp ∨ IΦ2Sp]]).

In some institutions, like the institution of first-order logic, the disjunction of two (finite)
sets can be expressed as one formula.

Definition 8.1 Given two sets of Σ-formulas Φ1 and Φ2. In the case, where a Σ-formula
ϕ in an institution I exists such that for each Σ-structure m we have m |=I ϕ if and only if
m |= Φ1 or m |= Φ2, we call ϕ the disjunction of Φ1 and Φ2 and write ϕ = ‘Φ1 ∨ Φ2’.

Theorem 8.2 Given an institution I and a signature Σ in SignI . If ‘Φ1 ∨ Φ2’ exists for
sets of Σ-formulas Φ1 and Φ2 then for a specification expression Sp in SLI with signature Σ
we have

IΦ1Sp ∨ IΦ2Sp = I{‘Φ1 ∨Φ2’}Sp.

160 Disjunction

Proof. (⊆) Assume m |=I IΦ1Sp, that is, m |=I Φ1 and m |=I Sp. Because of the definition
of ‘Φ1 ∨ Φ2’, m |=I Φ1 implies m |=I ‘Φ1 ∨ Φ2’ and therefore m |=I I‘Φ1 ∨Φ2’Sp. A similar
argument holds if we assume m |=I IΦ2Sp.

(⊇) If m |=I I‘Φ1 ∨ Φ2’Sp then m |=I ‘Φ1 ∨ Φ2’ and m |=I Sp. Because of the definition of
‘Φ1 ∨ Φ2’ we have m |=I Φ1 orm |= Φ2. Assume now that m |=I Φ1 then m |=I IΦ1Sp∨IΦ2Sp
and similar if m |=I Φ2. ✷

In first-order logic the disjunction of two sets of formulas

Φ1 = {∀X F1, ∀Y F2} and Φ2 = {∀Z F3}

is

‘Φ1 ∨ Φ2’ = (∀X F1 ∧ ∀Y F2) ∨ ∀Z F3.

In LSL the situation is more complex because formulas in LSL can only be equations or
constraints but not arbitrary first-order formulas, in particular, they cannot contain quanti-
fied sub-formulas. However, since each signature Σ in SignLSL contains the sort Bool with
its operations and the equality symbol, and further each structure in StrLSL(Σ) is required
to satisfy the property of booleans, we get the following theorems:

Lemma 8.3 Given a finite set of Σ-formulas Φ = {ϕ1, . . . , ϕn} such that each ϕi has the
form ∀X si = ti. Define ‘∧Φ’ as the equation ∀X (s1 ≡ t1 ∧ · · · ∧ sn ≡ tn) = true and let A
be a Σ-algebra in StrLSL(Σ) then

(∀ϕ ∈ Φ A |= ϕ) if and only if A |= ‘∧Φ’.

Proof.

A |= ‘∧Φ’ iff A |= ∀X (s1 ≡ t1 ∧ · · · ∧ sn ≡ tn) = true | Def. ‘∧Φ’

iff ∀1 ≤ i ≤ n A |= ∀X (si ≡ ti) = true | Lemma 3.32

iff ∀1 ≤ i ≤ n A |= ∀X si = ti | Lemma 3.35

✷

Note that it is important that each equation ∀X si = ti in Φ has the same set of variables
X . An alternative could have been to allow each equation its own set of variables Xi and
to define X in ‘∧Φ’ as the union of all Xi for 1 ≤ i ≤ n. However, this does not work in
the presence of empty carrier-sets as the following example shows. Let Σ be the signature
with two sorts S1 and S2 and with two constants c1 and c2 of sort S2. Let Φ be the set
consisting of the equations ∀x1 : S1 x1 = x1 and c1 = c2. Let A be a Σ-algebra such that
A(S1) = {} and A(c1) 6= A(c2). Then we have A |= ∀x1 : S1 x1 = x1 ∧ c1 = c2 because
there cannot be a variable assignment ρ from X to A because that would imply the existence
of a function from a non-empty set, {x1}, to the empty set. On the other hand, we have
A |= ∀x1 : S1 x1 = x1 but also A 6|= c1 = c2. However, if we change Φ to be the set containing
the equations ∀x1 : S1 x1 = x1 and ∀x1 : S1 c1 = c2 then we have A |= ∀x1 : S1 c1 = c2.

8.2 Proving Properties with Disjunction 161

Theorem 8.4 Given finite sets of Σ-formulas Φ1 and Φ2 such that

1. Φ1 and Φ2 do not contain constraints and

2. Φi has the form {∀X i si1 = ti1, . . . , ∀X
i sini

= tini
} for i ∈ {1, 2}.

Let X be the co-product of X1 and X2 with injections ι1 : X
1 ⇒ X and ι2 : X

2 ⇒ X and let
‘∧Φ1’ be ∀X1 c1 = true and ‘∧Φ2’ be ∀X2 c2 = true.

Then the disjunction ‘Φ1 ∨ Φ2’ of Φ1 and Φ2 is given by

∀X ι1(c1) ∨ ι2(c2) = true.

Proof. We have to show that for each Σ-algebra A in StrLSL(Σ) we have

A |= Φ1 or A |= Φ2 if and only if A |= ‘Φ1 ∨ Φ2’.

A |= ‘Φ1 ∨ Φ2’ iff A |= ∀X ι1(c1) ∨ ι2(c2) = true | Def. ‘Φ1 ∨ Φ2’

iff A |= ∀X1 c1 = true or A |= ∀X2 c2 = true | Lemma 3.33

iff A |= ‘∧Φ1’ or A |= ‘∧Φ2’

iff A |= Φ1 or A |= Φ2 | Lemma 8.3

✷

If either Φ1 or Φ2 contains constraints then the disjunction ‘Φ1 ∨ Φ2’ is not defined since a
constraint cannot be used as a sub formula in LSL.

The Inference Rules

To the inference rules of Section 4.3 we add the following rules:

R6
Sp ⊢ Sp1

Sp ⊢ Sp1 ∨ Sp2
R6’

Sp ⊢ Sp2

Sp ⊢ Sp1 ∨ Sp2
,

L9
Sp1 ⊢ Sp Sp2 ⊢ Sp

Sp1 ∨ Sp2 ⊢ Sp

and the rules for monotonicity of ∨:

M4
Sp ⊢ Sp′

Sp ∨ Sp′′ ⊢ Sp′ ∨ Sp′′ M4’
Sp ⊢ Sp′

Sp′′ ∨ Sp ⊢ Sp′′ ∨ Sp′ .

Disjunction is associative and commutative and the following equalities hold:

Sp ∨ Σ = Σ Dσ(Sp1 ∨ Sp2) = DσSp1 ∨DσSp2

Sp ∨ Sp = Sp IΦ(Sp1 ∨ Sp2) = IΦSp1 ∨ IΦSp2

Tσ(Sp1 ∨ Sp2) = TσSp1 ∨ TσSp2

and

IΦ1Sp ∨ IΦ2Sp = I‘Φ1 ∨ Φ2’Sp

if ‘Φ1 ∨ Φ2’ exists.

162 Disjunction

8.3 Adding Disjunction to RSLI

The language RSLI is extended by disjunction as follows:

R ::= . . . | R ∨ R.

Then R ∨ S is well-formed if R and S are well-formed and have the same type. The type of
R ∨ S is the type of R. The semantics of disjunction is defined by reduction to expressions
in SLRI

:

[[R ∨ S]]
SLRI

= [[R]]
SLRI

∨ [[S]]
SLRI

.

We also extend the translation of RSL expressions to SLI expressions (cf. Chapter 8) to
disjunction:

tr(R ∨ S) = tr(R) ∨ tr(S).

Then we have to show that GA([[R ∨ S]]R) = [[tr(R) ∨ tr(S)]]. Let [[R]]R = (Θ,MR) and
[[S]]R = (Θ,MS), where Θ = (D,Γ), and let

GA([[R]]R) = (
∐

Γ; SigA,MR) and GA([[S]]R) = (
∐

Γ; SigA,MS).

The induction hypothesis gives us further GA([[R]]R) = [[tr(R)]] and GA([[S]]R) = [[tr(S)]].
Then we have:

GA([[R ∨ S]]R) = GA((Θ,MR ∪MS)) | Def. ∨

= (
∐

Γ; SigA,MR ∪MS) | Def. GA

= (
∐

Γ; SigA,ModA(GA([[R]]R)) ∪ModA(GA([[S]]R)))

= [[tr(R) ∨ tr(S)]]

The Birthday-Book Example

As an example, the robust version of the AddBirthdayBookBC relation from the beginning of
this chapter is translated to SLLSL.

tr(RAddBirthdayBC)

= (Tftr(AddBirthdayBC) + Tgtr(SuccessBC)) ∨ Thtr(AlreadyKnownBC)

And we have tr(AddBirthdayBC):

includes colim ΘAB

asserts
not(n ∈ known)

birthday’ = update(birthday,n,d)

8.3 Adding Disjunction to RSLI 163

And colim ΘAB is

includes
BirthdayBookBC,

BirthdayBookBC[known’ for known, birthday’ for birthday]
introduces

n : Name

d : Date

Then tr(SuccessBC) yields

includes colim ΘR
asserts

result = ok

with colim ΘR being

includes Env
introduces

result : Result

And tr(AlreadyKnownBC) is

includes colim <[n:Name]×BirthdayBookBC×BirthdayBookBC×[result: Report]>
asserts

known’ = known

birthday’ = birthday

n ∈ known

result = alreadyKnown

and colim <[n : Name]× BirthdayBookBC × BirthdayBookBC × [result : Report]> is

includes
BirthdayBookBC,

BirthdayBookBC[known’ for known, birthday’ for birthday]
introduces

result : Result

n : Name

Then we get as tr(RAddBirthdayBC):

includes colim ΘRAB

asserts
not(n ∈ known)

birthday’ = update(birthday,n,d)

result = ok

∨

includes colim ΘRAB

asserts
known’ = known

birthday’ = birthday

n ∈ known

result = alreadyKnown

with colim ΘRAB being:

164 Disjunction

includes
BirthdayBookBC
BirthdayBookBC[known’ for known, birthday’ for birthday]

introduces
n : Name

d : Date

result : Result

If we use IΦ1(colim ΘRAB)∨ IΦ2(colim ΘRAB) = I‘Φ1 ∨Φ2’(colim ΘRAB), we get tr(RAddBirthday)
equals

includes colim ΘRAB
asserts

(not(n ∈ known)

∧ birthday’ = update(birthday,n,d)

∧ result = ok)
∨

(n ∈ known

∧ known’ = known

∧ birthday’ = birthday

∧ result = alreadyKnown)

9 Z Specifications

This chapter compares in more detail the approach presented in this thesis for the specification
of sequential system with the approach used by the model-oriented specification language
Z (cf. The Z Base Standard [12]). To this end we first define the institution SET , which
formalizes the logical system underlying Z. We show that the category of signatures SignSET

of SET is cocomplete and that the covariant structure functor StrSET : Signop

SET → Cat
preserves colimits. Thus SET can be used as a base institution to construct RSET .

As already noted by Spivey [56], schemata are closely related to signatures and schema-types
to abstract datatypes of SET . We shall investigate this relationship further and show a
correspondence between the operations on abstract datatypes given in Section 4.2 and the
schema-expressions.

This correspondence and the relationship between AdtRSET
and AdtSET , elaborated in Sec-

tion 5.6, allows to write Z-style specifications of sequential systems using any logical system,
for which there is an exact institution with a (finitely) cocomplete category of signatures. In
particular, we give an example specification using LSL.

9.1 The Institution SET

Signatures

A signature Σ in SignSET consists of a set of names for given-sets G and a set of identifiers
O. Each identifier id in O is associated with a type τ(id) built from the names of given-sets
and the constructors: cartesian product, power-set and schema-type.

Note that SET has no type constructors for function types. Instead, a function from T1 to
T2 is identified with its graph and is of type P(T1 × T2). This allows functions to be treated
as sets and admits higher-order functions, as functions may take as argument the graph of a
function and also return the graph of a function.

Definition 9.1 (Signatures) A signature Σ in SignSET is a tuple (G,O, τ) where G and
O are finite subsets of a recursive enumerable set of names F . The function τ maps names
in O to types in T (G) where T (G) is inductively defined by:

• G ⊆ T (G)

• (product) T1 × · · · × Tn ∈ T (G) for Ti ∈ T (G), 1 ≤ i ≤ n

• (power-set) P(T) ∈ T (G) for T ∈ T (G)

166 Z Specifications

• (schema-type) <x1 : T1, . . . , xn : Tn> ∈ T (G) for Ti ∈ T (G) and xi ∈ F and xi 6= xj

for 1 ≤ i, j ≤ n.

G and O need not be disjoint. If a name is used in an expression that occurs both in G and
in O then it is interpreted as an identifier from O and not as a given-set from G; this means
that the identifiers in O hide the identifiers in G.

The function T , mapping a given-set G to T (G), is extended to a functor from Set to Set
by the canonical extension of a function f : G → G′ to a function T (f) : T (G) → T (G′)
given by the definition of T (G), that is:

• T (f)(g) = g for g ∈ G,

• T (f)(T1 × . . .× Tn) = T (f)(T1)× . . .× T (f)(Tn) for T1, . . . , Tn ∈ T (G),

• T (f)(P(T)) = P(T (f)(T)) for T ∈ T (G),

• T (f)(<x1 : T1, . . . , xn : Tn>) = <x1 : T (f)(T1), . . . , xn : T (f)(Tn)> for T1, . . . , Tn ∈
T (G).

A signature morphism σ : (G,O, τ) → (G′, O′, τ ′) is a pair of maps between the given-sets
and the set of identifiers such that if id is the name of a given-set from G \O then it has to
be mapped to G′ \O′. This requirement is important for the proof of Lemma 9.14, which in
turn is needed in the proof of the satisfaction condition (cf. Theorem 9.15).

Definition 9.2 (Signature-Morphisms) A signature morphism σ from a signature
(G,O, τ) to signature (G′, O′, τ ′) is a pair of functions σG : G → G′ and σO : O → O′

such that σG and σO are compatible with τ and τ ′, that is τ ;T (σG) = σO; τ
′. We require that

if id is in G \O then σO(id) is in G \O.

Definition 9.3 (SignSET) The category SignSET has as objects signatures Σ = (G,O, τ)
and as morphisms signature morphisms σ = (σG, σO) as defined above.

The colimit of a functor F : J → SignSET is given by the colimits of the set of given-set
names and the set of identifiers. Note that SignSET is only finitely cocomplete because we
have assumed that the set of given-set names and the set of identifiers are finite.

Theorem 9.4 The category SignSET is finitely cocomplete.

Proof L. et F be a functor from J to SignSET and let F (i) = Σi = (Gi, Oi, τi) and
F (f) = σf = (σf

G, σ
f
O). Define FG : J → Set by FG(i) = Gi and FG(f) = σf

G, and define

FO : J → Set by FO(i) = Oi and FO(f) = σf
O. Then

∐

F = (G,O, τ), where G is the colimit
of FG, O the colimit of FO and τ is given as the unique function satisfying ιFO ; τ = τi;T (ι

FG)
for all i ∈ J given by the colimit property of FO.

O
τ // T (G)

Oi τi
//

ι
FO
i

OO

T (Gi)

T (ι
FG
i)

OO

9.1 The Institution SET 167

The co-cone morphisms ιFi = ((ιFG)i, (ι
F
O)i) from Σi to

∐

F are given by the co-cone morphisms
ιFG

i from Gi to G and ιFO

i from Oi to O. Note that, by the above diagram, (ιFG)i and (ιFO)i
are compatible and therefore ιFi is a signature morphism.

Given a natural transformation µ : F ⇒ ∆(G′, O′, τ ′) then the unique function µ̄ = (µ̄G, µ̄O)
from

∐

F to (G′, O′, τ ′) with the property ιFi ; µ̄ = µi for all i ∈ J is given by the unique
functions µ̄G and µ̄O given by the colimit property of G and O. For µ̄ to be a signature
morphisms we have to show that µ̄O; τ

′ = τ ;T (µ̄G). We show this by using the colimit
property of O in Set for the following J-indexed families of diagrams

O
τ // T (G)

T (µ̄G) // T (G′)

Oi

(ιFO)i

OO

τi
// T (Gi)

T ((ιFG)i)

OO

T ((µG)i)

::✉✉✉✉✉✉✉✉✉

O
µ̄O // O′ τ ′ // T (G′)

Oi

(ιFO)i

__❃❃❃❃❃❃❃❃
(µO)i

OO

τi
// T (Gi)

T ((µG)i)

OO

In the first family of diagrams the diagrams commute because the right triangle commutes
since µ̄G is defined as the unique function that satisfies (ιFG)i; µ̄G = (µG)i, and the left rectangle
commutes because ιF is a signature morphism. The diagrams in the second family commute
because the µi are signature morphisms (right rectangle) and µ̄O is defined as the unique
function satisfying (ιFO)i; µ̄O = (µO)i (left triangle). Then τ ;T (µ̄G) = µ̄O; τ

′ because of the
uniqueness of the function from O to T (G′) making the outer quadrangles of the diagrams
commute. ✷

The initial object in SignSET is ({}, {}, τ) where τ is the unique function from the empty
set to T ({}) = {}.

Structures

Given a signature Σ = (G,O, τ) a Σ-structure A interprets each given-set in G by a set from
Set and each identifier id in O by a value of the set corresponding to the type of id .

Definition 9.5 (Σ-structures) For a given signature Σ = (G,O, τ) the category
StrSET (Σ) of Σ-structures has as objects pairs (AG, AO), where AG is a functor from the
set G, viewed as a discrete category, to Set and AO is the set {(o1, v1), . . . , (on, vn)} for
O = {o1, . . . , on} and vi ∈ ĀG(τ(oi)), where the functor ĀG : T (G) → Set is given by:

• ĀG(T) = AG(T) for T = g and g ∈ G

• ĀG(T1 × · · · × Tn) = (ĀG(T1)× · · · × ĀG(Tn)) for T1 × · · · × Tn ∈ T (G)

• ĀG(P(T)) = 2ĀG(T) for P(T) ∈ T (G)

• ĀG(<x1 : T1, . . . , xn : Tn>)
= {{(x1, v1), . . . , (xn, vn)} | vi ∈ ĀG(Ti), i ∈ 1 . . . n}

for <x1 : T1, . . . , xn : Tn> ∈ T (G).

168 Z Specifications

A morphism h from a Σ-structure A to a Σ-structure B is a family of functions between the
interpretations of the given-sets which is compatible with the interpretations of the identifiers
in O.

Definition 9.6 (Σ-homomorphism) A Σ-homomorphism h from a structure A =
(AG, AO) to a structure B = (BG, BO) is a natural transformation h : AG ⇒ BG for which
h̄τ(o)(vA) = vB for all o ∈ O, (o, vA) ∈ AO and (o, vB) ∈ BO holds, where h̄ is the extension
of h : AG ⇒ BG to h̄ : ĀG ⇒ B̄G given by:

• h̄T (v) = hT (v) for T ∈ G

• h̄T ((v1, . . . , vn)) = (h̄T1(v1), . . . , h̄Tn(vn)) for T = T1 × · · · × Tn ∈ T (G)

• h̄P(T)(S) = {h̄T (v) | v ∈ S} for P(T) ∈ T (G)

• h̄T ({(x1, v1), . . . , (xn, vn)}) = {(x1, h̄T1(v1)), . . . , (xn, h̄Tn(vn))}
for T = <x1 : T1, . . . , xn : Tn> ∈ T (G)

Definition 9.7 (σ-reduct) Given a signature morphism σ from Σ = (G,O, τ) to Σ′ =
(G′, O′, τ ′) in SignSET and a structure A = (AG, AO) in StrSET (Σ

′) the σ-reduct of A, written
A|σ, is the structure B = (BG, BO) given by:

• BG = σG;AG

• BO = {(o, v) | (σO(o), v) ∈ AO, o ∈ O}

For a Σ′-homomorphism h : A → B the σ-reduct is defined as h|σ = σG; h.

Definition 9.8 (StrSET) The contravariant functor StrSET from SignSET to Cat assigns
to each signature Σ the category having as objects Σ-structures and as morphisms Σ-ho-
momorphisms, and to each SignSET -morphism σ from Σ to Σ′ a functor from the category
StrSET (Σ

′) to the category StrSET (Σ) mapping a Σ-structure A and a Σ-homomorphism to
their σ-reduct.

Theorem 9.9 The functor StrSET preserves finite colimits.

The functor StrSET maps the initial object ({}, {}, τ) in SignSET to the category with one
element (AG, {}) where AG is the unique functor from the category with no objects to the
category Set. If StrSET in addition preserves pushouts, then StrSET preserves finite colimits.
The functor StrSET preserves pushouts if the institution SET has amalgamation.

Theorem 9.10 The institution SET has amalgamation.

Proof L. et F be a pushout diagram with F (i) = Σi = (Gi, Oi) for i ∈ {0, 1, 2}, F (f) =
σf = (σf

G, σ
f
O) for f ∈ V, and let Σcl = (Gcl , Ocl) be the pushout of F with co-limit morphisms

ιi; Σi → Σcl for i ∈ {0, 1, 2}. Given Σi-structures Ai = (Ai
G, A

i
O) such that A1|σf

= A0 =

9.1 The Institution SET 169

A2|σg , where f : 0 → 1 and g : 0 → 2. Then we define the amalgamated sum A = (AG, AO)
of A1 and A2 with respect to A0 by

AG(g) = Ai
G(gi) if (ιG)i(gi) = g for some i ∈ {0, 1, 2} and gi ∈ Gi

and

AO = {(o, vi) | ∃i ∈ {0, 1, 2} (oi, vi) ∈ Ai
O, (ιO)i(oi) = o},

For AG to be well-defined consider i, j with (ιG)i(gi) = g = (ιG)j(gj). Then we have to show

that Ai
G(gi) = Aj

G(gj). Assume that there exists f : i → j in V then we have σf
O(gi) = gj

and Aj |σf
= Ai, which by the definition of σ-reduct implies σf

G;A
j
G = Ai

G, and therefore

Aj
G(gj) = Aj

G(σ
f
G(gi)) = Ai

G(gi).

A similar argument shows that if (o, vi) ∈ AO and (o, vj) ∈ AO then vi = vj . ✷

Formulas

The Σ-formulas are first-order formulas over expressions denoting sets and elements in sets.
Expressions can be tested for equality and membership. An important category of expres-
sions, called schema-expressions, denote sets of elements of schema-type.

Expressions Expressions describe either given-sets or values in sets constructed from given-
sets; the values can, of course, be themselves sets. These expressions are built from names in
G and O, formation of tuples, selection of an element in a tuple, formation of an element of
schema-type, selection of a component of an element of schema-type and function application.

E ::= id | (E, . . . , E) | E.i | <x1 := E, . . . , xn := E> | E.x | E(E)

An identifier id in O denotes a value of the set ĀG(τ(id)) and a given-set name g in G
denotes a given-set AG(g), which is an element of the set ĀG(P(g)) = 2AG(g). The function
application E1(E2) is well-defined if E1 is of type P(T1 × T2) and E2 is of type T1. The
result is of type T2. If E1 represents the graph of a total function then E1(E2) yields the
result of that function applied to E2. However, if E1 is the graph of a partial function or not
a functional at all then an arbitrary value from the ĀG(T2) is chosen as the result for the
situations where E2 is not in the domain of that function or if several results are associated
with E2 in E1.

The remaining expressions denote sets. These are set-extension and comprehension, power-
set construction, cartesian product and schemas.

E ::= . . . | {E, . . . , E} | {S •E} | P(E) | E × . . .× E | S

Let V be a recursive enumerable set of variable names such that V and F are disjoint.
Given a signature Σ = (G,O, τ) and a set of variables X ⊆ V together with a function
τX : X → T (G) then an environment ǫ is a pair (Σ, (X, τX)). An expression E is well-formed
with respect to ǫ if

170 Z Specifications

• E = id and id ∈ X ∪O ∪G. The type of E w.r.t. ǫ is

τ ǫ(E) =











τX(id) if id is in X ,

τ(id) if id is in O and

P(id) if id is in G \O.

• E = (E1, . . . , En) and each Ei is well-formed for all 1 ≤ i ≤ n. Then τ ǫ(E) =
τ ǫ(E1)× . . .× τ ǫ(En).

• E = E ′.i, τ ǫ(E ′) = T1 × . . .× Tn and 1 ≤ i ≤ n. The type of E is Ti.

• E = <x1 := E1, . . . , xn := En>, xi ∈ V , xi 6= xj and each Ei is well-formed. The type
of E is <x1 : τ

ǫ(E1), . . . , xn : τ ǫ(En)>.

• E = E ′.x, τ ǫ(E ′) = <x1 : T1, . . . , xn : Tn> and x = xi for some 1 ≤ i ≤ n. The type of
E is Ti.

• E1(E2), τ
ǫ(E1) = P(T1 × T2) and τ ǫ(E2) = T1. The type of E is T2.

• E = {E1, . . . , En}, each Ei is well-formed and all Ei have the same type T for 1 ≤ i ≤ n.
The type of E is P(T).

• E = {S • E ′}, S is well-formed and has type P(<x1 : T1, . . . , xn : Tn.> and E ′ is
well-formed with respect to ǫ[<x1 : T1, . . . , xn : Tn>], where ǫ[<x1 : T1, . . . , xn : Tn>] =
(Σ, (X ′, τ ′X)) is given by X ′ = X ∪ {x1, . . . , xn} and

τ ′X(id) =

{

Ti if id = xi for some 1 ≤ i ≤ n
τX(id) else

)

The type of E is P(τΣ
′

(E ′)).

• E = P(E ′) and E ′ is well-formed. The type of E is P(τ ǫ(E ′)).

• E = E1×. . .×En and each Ei is well-formed. The type of E is P(τ ǫ(Ei)×. . .×τ ǫ(En)).

• E = S and S is well-formed schema-expression with respect to Σ, where well-formedness
of schema-expressions are defined on page 172. The type of E is the type of S with
respect to ǫ.

Let E be an expression well-formed with respect to ǫ = (Σ, (X, τX)) and let A = (AG, AO)
be a Σ-structure. The semantics of an expression E with respect to the environment ?
β = (A,AX), where AX = {(x1, v1) . . . (xn, vn)}, X = {x1, . . . , xn} and vi ∈ ĀG(τX(xi)) for
all 1 ≤ i ≤ n, is defined as follows:

• [[id]]β = v if (id, v) ∈ AX and id ∈ X or (id, v) ∈ AO and id ∈ O or [[id]]β = AG(id) if
id is in G \O.

• [[(E1, . . . , En)]]
β = ([[E1]]

β , . . . , [[En]]
β).

• [[E.i]]β = vi if [[E]]β = (v1, . . . , vn).

9.1 The Institution SET 171

• [[<x1 := E1, . . . , xn := En>]]β = {(x1, [[E1]]
β), . . . , (xn, [[En]]

β)}.

• [[E.x]]β = vi if [[E]]β = {(x1, v1), . . . , (xn, vn)} and x = xi.

• [[E1(E2)]]
β = v if v is unique with ([[E2]]

β , v) in [[E1]]
β. If another v′ with ([[E2]]

β , v′) in
[[E1]]

β exists or if none exists then v is an arbitrary element of ĀG(T2), where τ ǫ(E1) =
P(T1 × T2).

• [[{E1, . . . , En}]]
β = {[[E1]]

β , . . . , [[En]]
β}.

• [[{S • E}]]β = {[[E]]β[v] | v ∈ [[S]]β}.
For a value v = {(x1, v1), . . . , (xn, vn)} from [[S]]β, β[v] is the environment (A,AX [v])
such that

AX [v] = AX \ {(id, v′) | (id, v′) ∈ AX , ∃1 ≤ i ≤ n : id = xi} ∪ v

• [[P(E)]]β = 2[[E]]β .

• [[E1 × . . .× En]]
β = [[E1]]

β × . . .× [[En]]
β.

Schema-expressions A schema denotes a set of elements of schema-type which have the
form {(x1, v1), . . . , (xn, vn)} and are called bindings. A simple schema of the form x1 :
E1, . . . , xn : En defines the identifiers of a schema and a set of possible values for each
identifier.

We require that the identifiers of a schema are not taken from the same set F as the given-set
names in G and the identifier names of O. Thus we assume a recursive enumerable set V
with V ∩ F = {} from which the identifiers of a schema are taken. The reason is that the
identifier names of a schema can be bound by a quantifier and that we have to prevent that
an identifier is renamed by a signature morphism to the name of a bound identifier. This
would lead to problems with the satisfaction condition for SET .

Given a schema S we can a define a new schema S|P having as elements all the elements of
S satisfying the predicate P . We can form the negation, disjunction, conjunction and impli-
cation of schema-expressions, which correspond to the complement, union and intersection
of the sets denoted by the arguments. For the disjunction, conjunction and implication of
schema-expressions the type of the arguments have to be compatible, that is, if two com-
ponents have the same name, they have to have the same type. The type of the result has
as components the union of the components of the arguments, with all duplicates removed.
Adjustments of the type of schemas can be made by using hiding and renaming, where hid-
ing hides some components of a schema-type and renaming renames some identifiers. An
existentially quantified schema ∃S1.S2 denotes the set of all bindings of the identifiers of S2

without the ones in S1 such that there exists a binding in S1 such that the union of the
bindings is an element of S2. An universally quantified schema ∀S1.S2 is an abbreviation for

172 Z Specifications

¬∃S1.¬S2.

S ::= x1 : E, . . . , xn : E | (S|P) | ¬S | S ∨ S | S ∧ S | S ⇒ S

| ∀S.S | ∃S.S | S \ [x1, . . . , xn] | S[x1/y1, . . . , xn/yn]

| S Decor | E

A schema-expression S is well-formed with respect to an envrionment ǫ = (Σ, (X, τX)) with
Σ = (G,O, τ), if

• S = x1 : E1, . . . , xn : En, xi ∈ V and Ei is well-formed and has type P(Ti) for each
1 ≤ i ≤ n. The type of S is P(<x1 : T1, . . . , xn : Tn>).

• S = S ′|P and P is well-formed with respect to ǫ′ = ǫ[T], where T is the type of S ′ with
respect to ǫ. The type of S is T .

• S = ¬S ′ and S ′ is well-formed. The type of S is τ ǫ(S ′).

• S = S1 op S2, S1 and S2 have compatible types, and S1 and S2 are well-formed for each
op ∈ {∨,∧,⇒}. Two schema-types <x1 : T1, . . . , xn : Tn> and <x′

1 : T
′
1, . . . , x

′
m : T ′

m>
are compatible if for all i, j such that xi = x′

j we have Ti = T ′
j . The type of S has as

components the union of the components of the type of S1 and S2 with the duplicates
removed.

• S = ∃S1.S2, S1 and S2 are well-formed with respect to ǫ and their types are compatible.
The type of S is the type of S2 with all the identifiers removed which occur in S1.

• S = S ′ \ [x1, . . . , xn] and S is well-formed. Note that it is not required that the xi have
to be identifiers of the type of S ′. The type of S is the type of S ′ without the identifier
xi if xi occurs in the type of S for all 1 ≤ i ≤ n.

• S = S ′[x1/y1, . . . , xn/yn] and S is well-formed. Note that it is not required that the
xi have to be identifiers of the type of S ′. The type of S is the type of S ′ where xi is
replaced by yi if xi is an identifier of S ′. Note that the function from the identifiers of
the type of S ′ to the identifiers of the type of S defined by this replacement has to be
injective.

• S = S ′ Decor and S ′ is well-formed. Decor is a finite sequence of elements from {′, !, ?}.
The type of S is P(<x̄1 : T1, . . . , x̄n : Tn>) if S ′ is of type P(<x1 : T1, . . . , xn : Tn>) x̄i

is the decorated form of xi, for example, if Decor is ! then x̄i is xi!.

• S = E and E is well-formed with type P(<x1 : T1, . . . , xn : Tn>) The type of S is
P(<x1 : T1, . . . , xn : Tn>)

If a schema-expression S is well-defined with respect to ǫ, its semantics [[S]]β with respect to
a structure A = (AG, AO) and an environment β = (A,AX) is defined as follows:

• [[x1 : E1, . . . , xn : En]]
β = {{(x1, v1), . . . , (xn, vn)} | vi ∈ [[Ei]]

β , 1 ≤ i ≤ n}.

• [[S|P]]β = {v ∈ [[S]]β | β[v] |=SET P}. The satisfaction relation |=SET is defined on
page 174.

9.1 The Institution SET 173

• [[¬S]]β = {v | v 6∈ [[S]]β}.

• [[S1 op S2]]
β = {v ∈ ĀG(T) | v = v1 ∪ v2, v1 ∈ [[S1]]

β op v2 ∈ [[S2]]
β} for op ∈ {∨,∧,⇒},

where T is the type of S1 op S2. Note that v ∈ ĀG(T) guarantees that if (x, a) ∈ v1,
(x, a′) ∈ v2 and v = v1 ∪ v2 then a = a′.

• [[∃S1.S2]]
β = {v ∈ ĀG(τ

ǫ(∃S1.S2)) | ∃v1 ∈ [[S1]]
β v1 ∪ v ∈ [[S2]]

β}. Note that the ele-
ments of [[S2]]

β contain at most one pair (xi, vi) for each identifier xi and therefore if
v1 ∪ v is in [[S2]]

β then for all (xi, vi) ∈ v and (x′
j , v

′
j) ∈ v1 with xi = x′

j we have vi = v′j .

• [[S \ [y1, . . . , yn]]]
β = {v|{x1,... ,xm} | v ∈ [[S]]β}, where {x1, . . . , xm} is the set of identi-

fiers of the type of S without the identifiers y1, . . . , yn and v|X denotes the binding v
restricted to the identifiers in the set X .

• [[S[y1/y
′
1, . . . , yn/y

′
n]]]

β = {f̄(v) | v ∈ [[S]]β}, where f is the function from the identifiers
of type S to the identifiers of type S ′ defined by [y1/y

′
1, . . . , yn/y

′
n] as follows:

f(id) =

{

y′i if yi = id for some 1 ≤ i ≤ n
id else

and f̄ is the extension of f to bindings.

• [[S ′ Decor]]β = {{(x̄1, v1), . . . , (x̄n, vn)} | {(x1, v1), . . . , (xn, vn)} ∈ [[S ′]]β}. x̄i is the
identifier xi decorated with Decor . For example, if Decor is ′ then x̄i is xi

′.

Formulas The formulas in SenSET (Σ) are the usual first-order formulas built on the mem-
bership predicate and the equality between expressions.

P ::= true | false | E ∈ E | E = E | ¬P | P ∨ P | P ∧ P

| P ⇒ P | ∀S.P | ∃S.P

A formula P is well-formed in an environment ǫ = (Σ, (X, τX)) if

• P = E1 ∈ E2, τ
ǫ(E2) = P(τ ǫ(E1)) and E1 and E2 are well-formed.

• P = (E1 = E2), τ
ǫ(E1) = τ ǫ(E2) and E1 and E2 are well-formed.

• P = ¬P ′ and P ′ is well-formed.

• P = P1 op P2 and P1 and P2 are well-formed for op ∈ {∨,∧,⇒}.

• P = ∀S.P ′, S is well-formed and has type T and P ′ is well-formed with respect to ǫ[T].

• P = ∃S.P ′, S is well-formed and has type T and P ′ is well-formed with respect to Σ[T].

Given a signature-morphism σ : Σ → Σ′ and a formula P well-formed with respect to
ǫ = (Σ, (X, τX)) then the formula σ̄(P) is well-formed with respect to (Σ′, (X, τ ′X)), where
τ ′X = τX ;T (σG), and σ̄(P) is given by:

• σ̄(id) = id if id ∈ X , σ̄(id) = σO(id) if id ∈ O and σ̄(id) = σG(id) if id ∈ G \O.

174 Z Specifications

• σ̄((E1, . . . , En)) = (σ̄(E1), . . . , σ̄(En)).

• σ̄(E.i) = σ̄(E).i.

• σ̄(<x1 := E1, . . . , xn := En>) = <x1 := σ̄(E1), . . . , xn := σ̄(En)>.

• σ̄(E.x) = σ̄(E).x.

• σ̄(E1(E2)) = σ̄(E1)(σ̄(E2)).

• σ̄({E1, . . . , En}) = {σ̄(E1), . . . , σ̄(En)}.

• σ̄({S • E}) = {σ̄(S) • σ̄(E)}.

• σ̄(P(E)) = P(σ̄(E)).

• σ̄(E1 × . . .×En) = σ̄(E1)× . . .× σ̄(En).

• σ̄(x1 : E1, . . . , xn : E) = x1 : σ̄(E1), . . . , xn : σ̄(En).

• σ̄(S|P) = σ̄(S)|σ̄(P).

• σ̄(¬S) = ¬σ̄(S).

• σ̄(S1 op Sn) = σ̄(S1) op σ̄(Sn) for op ∈ {∨,∧,⇒}.

• σ̄(∃S1.S2) = ∃σ̄(S1).σ̄(S2) and σ̄(∀S1.S2) = ∀σ̄(S1).σ̄(S2).

• σ̄(S \ [x1, . . . , xn]) = σ̄(S) \ [x1, . . . , xn].

• σ̄(S[x1/y1, . . . , xn/yn]) = σ̄(S)[x1/y1, . . . , xn/yn].

• σ̄(E1 ∈ E2) = σ̄(E1) ∈ σ̄(E2).

• σ̄(E1 = E2) = σ̄(E1) = σ̄(En).

• σ̄(true) = true and σ̄(false) = false.

• σ̄(¬P) = ¬σ̄(P).

• σ̄(P1 op P2) = σ̄(P1) op σ̄(P2) for op ∈ {∨,∧,⇒}.

• σ̄(∀S.P) = ∀σ̄(S).σ̄(P) and σ̄(∃S.P) = ∃σ̄(S).σ̄(P).

Definition 9.11 (SenSET) The functor SenSET from SignSET to Set maps each signature
Σ to its set of Σ-formulas and each signature morphism σ from Σ to Σ′ to the translation of
Σ-formulas to Σ′-formulas given by σ̄.

Validity of a well-formed formula P in β = (A,AX), β |=SET P , is defined by:

• β |=SET true.

• β |=SET E1 ∈ E2 iff [[E1]]
β ∈ [[E2]]

β.

• β |=SET E1 = E2 iff [[E1]]
β = [[E2]]

β.

• β |=SET ¬P iff not β |=SET P .

9.1 The Institution SET 175

• β |=SET P1 op P2 iff β |=SET P1 op β |=SET P2 for op ∈ {∨,∧,⇒}.

• β |=SET ∀S.P iff β[v] |=SET P for all v ∈ [[S]]β.

• β |=SET ∃S.P iff β[v] |=SET P for some v ∈ [[S]]β.

Definition 9.12 (Satisfaction) Given an signature Σ, a formula P which is well-formed
with respect to (Σ, ({}, τX)) and a Σ-structure A then A |=SET

Σ P if (A, {}) |=SET P .

Theorem 9.13 (The Institution SET) The category SignSET , the functor StrSET , the
functor SenSET and the family of satisfaction relations given by |=SET

Σ define the institution
SET = 〈SignSET , StrSET , SenSET , |=

SET 〉.

For SET to be an institution we have to show that the satisfaction condition holds. For the
proof of the satisfaction condition we need that the value of a translated expression σ̄(E) in
β = (A′, A′

X) is the same as the value of E in the σ-reduct of A′ and A′
X .

Lemma 9.14 Let A′ be a Σ′-structure, σ a signature morphism from Σ to Σ′ and E a well-
formed expression with respect to Σ. Then

[[σ̄(E)]]β
′

= [[E]]β
′|σ

where β ′|σ = (A′, A′
X)|σ is defined as (A′|σ, A

′
X).

Proof L. et Σ = (G,O, τ) and Σ′ = (G′, O′, τ ′), σ = (σG, σO) be a signature morphism
from Σ to Σ′ and A′ = (A′

G, A
′
O) a Σ′-structure. We give the proof only for the less obvious

cases.

Let E = id where id ∈ X then [[σ̄(id)]]β
′

= [[id]]β
′

= v where (id, v) ∈ A′
X and by the definition

of β ′|σ we have [[id]]β
′|σ = v.

Let E = id where id ∈ O then [[σ̄(id)]]β
′

= [[σO(id)]]
β′

= v where (σO(id), v) ∈ A′
O. Applying

the definition of σ-reduct we get (id, v) ∈ A′|σ and thus [[id]]β
′|σ′ = v.

If id is in G \O then by the definition of signature morphisms we have σ(id) ∈ G′ \O′ and

[[σ̄(id)]]β
′

= A′
G(σG(id)) = (A′|σ)(id) = [[σ̄(id)]]β

′|σ .

Let E = {S • E} then

[[σ̄({S • E})]]β
′

= [[{σ̄(S) • σ̄(E)}]]β
′

= {[[σ̄(E)]]β
′[v] | v ∈ [[σ̄(S)]]β

′

}

= {[[E]]β
′[v]|σ | v ∈ [[S]]β

′|σ}

= [[{S • E}]]β
′|σ .

176 Z Specifications

For the last equation to hold we have to show that β ′[v]|σ′ = (β ′|σ)[v].

(A′, A′
X)[v]|σ = (A′, A′

X [v])|σ

= (A′|σ, A
′
X [v])

= (A′|σ, A
′
X)[v]

= ((A′, A′
X)|σ)[v].

Let S = x1 : E1, . . . , xn : En then

[[σ̄(S)]]β
′

= [[x1 : σ̄(E1), . . . , xn : σ̄(En)]]
β′

= {{(x1, v1), . . . , (xn, vn)} | vi ∈ [[σ̄(Ei)]]
β′

, 1 ≤ i ≤ n}

= {{(x1, v1), . . . , (xn, vn)} | vi ∈ [[Ei]]
β′|σ , 1 ≤ i ≤ n}

= [[x1 : E1, . . . , xn : En]]
β′|σ .

✷

Theorem 9.15 (Satisfaction Condition) For all signature morphisms σ from Σ to Σ′

in SignSET , all structures A in StrSET (Σ
′) and formulas ϕ in SenSET (Σ) we have

A′|σ |=SET ϕ iff A′ |=SET σ̄(ϕ).

Proof A. ssume that we are given a signature morphism σ : Σ → Σ′ and a Σ′-structure
A′. Let ϕ be the formula E ∈ E ′ from SenSET (Σ). We have A |=SET σ̄(E ∈ E ′) iff A |=SET

σ̄(E) ∈ σ̄(E ′) iff [[σ̄(E)]]β ∈ [[σ̄(E ′)]]β, where β = (A, {}). Now we have [[σ̄(E)]]β = [[E]](A
′|σ,{})

and similar [[σ̄(E ′)]]β = [[E ′]](A
′|σ,{}). Thus we get [[σ̄(E)]]β ∈ [[σ̄(E ′)]]β iff [[σ̄(E)]](A

′|σ,{}) ∈

[[σ̄(E ′)]](A
′|σ,{}) iff A′|σ |=SET E ∈ E ′.

The argumentation is similar for the other formulas. ✷

9.2 Abstract Machines in Z

In Z, schemas are used for modeling the state space, the initial states and the operations of
abstract machines.

The state space of the counter is given by the following schema:

Counter

c : N

and the initial state:

Init

Counter

c = zero

9.2 Abstract Machines in Z 177

Then the increment and decrement operation are given as

Inc

∆Counter

c′ = succ(c)

and

Dec

∆Counter

¬(c = zero)
succ(c′) = c

where ∆Counter is the default notion for the schema that has as components the components
of the state before and after the operation: ∆Counter = Counter ∧ Counter′.

Abstracting from the Z-syntax we can reformulate the above example in SLSET as IΦΣC where
ΣC = ({N}, {zero, succ, Counter, Init, Inc, Dec}, τ) with

• τ(zero) = N

• τ(succ) = P(N ×N)

• τ(Counter) = τ(Init) = P(<c : N>)

• τ(Inc) = τ(Dec) = P(<c : N, c′ : N>)

The set of formulas Φ is the union of ΦC and ΦN , where ΦN restricts the interpretation of
N to be isomorphic to the set of natural numbers with 0 and the successor function, and ΦC

is the set:

{ Counter = c : N,
Init = (Counter | c = zero),
Inc = (Counter ∧ Counter′ | c′ = succ(c)),
Dec = (Counter ∧ Counter′ | succ(c′) = c ∧ ¬(c = zero)) }

A possible model of IΦΣC is the ΣC-structure A = (AG, AO), where AG(N) = N and

AO =

{ (zero, 0), (succ, {(n1, n2) | n2 = n1 + 1, n1 ∈ N, n2 ∈ N}),
(Counter, {(c, v) | v ∈ N}),
(Init, {(c, 0)}),
(Inc, {{(c, v), (c′, v′)} | v′ = v + 1}),
(Dec, {{(c, v), (c′, v′)} | v′ + 1 = v, v 6= 0}) }

Let Σ = (G,O, τ) be a signature in SET . A schema-type

T = <x1 : T1, . . . , xn : Tn>

178 Z Specifications

defines a signature Σ′ = (G,O ∪ {x1, . . . , xn}, τ),where τ ′(xi) = Ti and τ ′(id) = τ(id) for
id ∈ O.1

Given a Σ-structure A = (AG, AO) then an element {(x1, v1), . . . , (xn, vn)} of schema-type T
defines a Σ′-structure A′ = (AG, AO ∪ {(x1, v1), . . . , (xn, vn)}).

Definition 9.16
Given a signature Σ = (G,O, τ), a schema-expression S of type P(<x1 : T1, . . . , xn : Tn>)
and a Σ-structure A = (AG, AO). Define an abstract datatype (ΣS,M

A
S) by

• ΣS = (G,O ∪ {x1, . . . , xn}, τS), where τS(xi) = Ti for 1 ≤ i ≤ n and τS(id) = τ(id) for
id ∈ O and

• MA
S = {(AG, AO ∪ vS) | vS ∈ [[S]]((AG,AO),{})}.

This definition can be extended to abstract datatypes Sp = (Σ,M) in AdtSET by taking the
union of all MA

S for A ∈ M :

SpS = (ΣS,
⋃

A∈M

MA
S).

Since a specification of an abstract machine in Z consists of a schema for the state space,
the initial states, and the operations, a specification of an abstract machine in Z can be also
viewed as a collection of abstract datatypes for the state space, the initial states, and the
operations.

In the example of the counter, let Σ = (G,O, τ), where G = {N}, O = {zero, succ},
τ(zero) = N and τ(succ) = P(N ×N). Then the schema for the increment operation

(Counter ∧ Counter′ | c′ = succ(c)),

which is the same as

(c : N, c′ : N | c′ = succ(c)),

defines the abstract datatype SpInc = (ΣInc,MInc), where ΣInc is the signature

({N}, {zero, succ, c, c′}, τInc)

with τInc(c) = τInc(c
′) = N , τInc(zero) = N and τInc(succ) = P(N ×N), and

MInc = {(AG, AO ∪ {(c, v), (c′, v′)}) | v′ = [[succ(c)]]((AG,AO),{}) , (AG, AO) ∈ M}.

Note that we get similar abstract datatypes when using RSLSET to define the counter and
translating them to abstract datatypes in AdtSET (cf. Section 7.1).

Also the operations on schemas are similar to the operations found in SLSET . Let Sp be an
SLSET expression with semantics (Σ,M). If

1Note that Σ′ is not a signature as defined in Definition 9.1 because {x1, . . . , xn} is not a subset of F
since, for technical reasons, we had to require that the set of variable names and the set of identifier names
are disjoint. However, we can assume that O′ is the set O∪{x̄1, . . . , x̄n} where the x̄i are suitable renamings
of xi to symbols in F not occurring in O.

9.3 Z-style specifications using LSL 179

• S = x1 : E1, . . . , xn : En then [[Sp]]S =
[[

I{xi∈Ei|1≤i≤n}TσSp
]]

, where σ is the inclusion
of Σ into ΣS .

• S = S ′|P then [[Sp]]S =
[[

I{P}SpS′

]]

.

• S = S1 ∧ S2 then [[Sp]]S = [[Tσ1SpS1 + Tσ2SpS2]]. The signature morphisms σ1 and σ2

are the inclusions of the signatures ΣS1 and ΣS2 into ΣS1∧S2. This is needed because,
in contrast to the union of abstract datatypes, the types of S1 and S2 are only required
to be compatible in the union of S1 and S2.

• S = S1 ∨ S2 then [[Sp]]S = [[Tσ1SpS1 ∨ Tσ2SpS2]]. The signature morphisms σ1 and σ2

are the same as defined for the union of schemas.

• S = S ′ \ [x1, .., xn] then [[Sp]]S = [[DσSpS′]], where σ is the inclusion of ΣS into ΣS′ .

• S = S ′[x1/y1, .., xn/yn] then [[Sp]]S = [[TσSpS′]], where σG is the identity and σO(x) = yi,
if x = xi for some i and σO(x) = x if x 6= xi for all i.

However, we do not have corresponding SLSET operations for ¬S, S ⇒ S, ∀S.S and ∃S.S.
While their semantics could be easily defined, for example, [[¬(Σ,M)]] = (Σ, {m ∈ StrI(Σ) |
m 6∈ M}), one would need additional proof rules for the entailment of specification, as in the
case of disjunction (cf. Chapter 8).

There are some important differences between modeling the operations as schemas and as
abstract datatypes. Defining the operations as schemas depends on the base institution to
provide schemas. This fixes the institution to SET . In contrast, in the approach presented
in this thesis, we have separated the logic for defining the operations of an abstract machine
from the base institution. Thus our approach applies to any institution whose category of
signatures is (finitely) cocomplete and whose structure functor preserves (finite) colimits. On
the other side, since schemas are part of the institution SET , it is possible to reason within
SET itself about the operations of an abstract machine. In our approach only the operations
in RSLSET can be used to refer to other operations.

Another difference is that expressions in RSLSET carry information about the type of the
relation. The type of an operation in the Z style specification of abstract machines is kept
informal. Conventions, like the use of ∆Counter and descriptive text that surrounds a schema
definition, provides this information.

9.3 Z-style specifications using LSL

The theory of relations, presented in the previous chapters, is based on a newly constructed
institution RI with respect to an, arbitrary exact institution I with a (finitely) cocomplete
category of signatures. Then the language RSLI is used to define relations. However, the
problem with this approach is that RSLI is an abstract language, which is intended mainly as
a vehicle for more concrete languages to define their semantics in and for theoretical studies.
Another problem is that no tools exist for RSLI .

180 Z Specifications

To address this problem we shall adopt a method used by the Z community for the specifi-
cation of sequential systems [57]. The specification language Z itself almost has no language
support for defining sequential system. It is a matter of convention and the explanations used
in the text surrounding a Z schema, whether this schema is to be interpreted as a definition
of a relation or the specification of a state space.

In the following, we shall use a similar approach based on the Larch Shared Language. The
advantage is that we can use tools designed for the Larch Shared Language, like the Larch
Shared Language checker and the Larch Prover to check our specifications and to prove
properties. However, since some information, for example, whether a specification is meant
as specifying a state space or defining a relation, is left implicit, the use of these tools is
limited.

Note that we could have used any suitable specification language, that is, a specification
language with loose semantics, like Pluss [8] or CASL [45].

That this approach is possible, is the result of the strong relationship between AdtRI
and

AdtI established in Section 5.6.

Definition 9.17 An abstract datatype Sp = (Σ,M) from AdtI is a relation of type ΘR

if there exists a relation R = (ΘR,MR) of type ΘR = (DR,ΓR) in AdtRI
and an AdtI-

morphism σ from
∐

ΓR; Sig
A to Σ such that M |σ = MR.

As an example we shall give the birthday book specification of Spivey [56], which we have
discussed in Section 6.2.

The state of a birthday book is given by the predicate known, a boolean function, and the
(total) function birthday, mapping the name of a person to his birthday. The value of
birthday for a name n is arbitrary if known(n) is not true.

BirthdayBook : trait

introduces

known: Name → Bool

birthday : Name → Date

The initial birthday book contains no entries.

InitBirthday : trait

includes

BirthdayBook

asserts

∀ n:Name ¬ known(n)

The trait DeltaBirthdayBook introduces two copies of known and birthday, an unprimed
copy for the state components before the operation and a primed copy for the state compo-
nents after the execution of the operation. Any operation that wants to change the state of
the birthday book includes DeltaBirthday.

9.3 Z-style specifications using LSL 181

DeltaBirthdayBook : trait

includes

BirthdayBook,

BirthdayBook(known’ for known,

birthday’ for birthday)

DeltaBirthday is the colimit of the type <BirthdayBook × BirthdayBook>Env.

In contrast, the trait ThetaBirthdayBook is included in the trait of all operations that do
not want to change the state of the birthday book.

ThetaBirthdayBook : trait

includes

BirthdayBook,

BirthdayBook(known’ for known,

birthday’ for birthday)

asserts

forall n:Name

known’(n) ⇔ known(n);

birthday’(n) = birthday(n)

The operation adding a new birthday to a birthday book is specified by the trait AddBirthday.
The input parameters are the name of the person to add, namein, and the birthday of that
person, datein. The operation is defined only when that person does not already have an
entry in the birthday book.

AddBirthday : trait

includes

DeltaBirthdayBook

introduces

namein: Name

datein: Date

asserts

forall n:Name

¬ known(namein);

known’(n) ⇔ n = namein ∨ known(n);

birthday’(n) = (if n = namein
then datein
else birthday(n))

AddBirthday is a relation of type

<[namein : Name]× [datein]× BirthdayBook × BirthdayBook>.

The FindBirthday operation returns for a given person with name namein its birthday
dateout. The inclusion of ThetaBirthdayBook guarantees that the state of the birthday
book is not changed.

182 Z Specifications

FindBirthday : trait

includes

ThetaBirthdayBook

introduces

namein: Name

dateout: Date

asserts

equations

known(namein);

dateout = birthday(namein)

For a given date todayin, the Remind operation returns the set of persons whose birthday is
todayin.

Remind : trait

includes

ThetaBirthdayBook,

Set(Name,NameSet)

introduces

todayin: Date

cardsout: NameSet

asserts

forall n:Name

n ∈ cardsout ⇔
birthday(n) = todayin ∧ known(n)

10 Conclusion

In this thesis we have defined a framework for the specification of dynamic behavior of
software systems. This framework is motivated by the state as algebra approach and the
model-oriented language Z. From the state as algebra approach we have used the idea of
modeling the environment and the state components as structures of an institution. How-
ever, in contrast to the state as algebra approach, states in our framework are modeled by
structures from any suitable institution not only those having algebras as their structures.
From Z we have used the idea that environment, state spaces, and relations between state
spaces are specified using the same logic, and how more complex relations can be constructed
from simpler ones by means of the schema calculus. However, we differ from Z in that our
framework can be instantiated by different institutions while the approach of Z can only work
because of the particular logical system used by Z.

We have defined a new institution RI , which is based on an exact institution I with a
cocomplete category of signatures. Abstract datatypes in RI are relations between abstract
datatypes from I; this means that a relation is a pair (Θ,M) consisting of a diagram Θ =
(D,Γ : D → AdtI) and a set M of families of structures md ∈ ModA(Γ(d)) for d ∈ D such
that md′ |Γ(f) = md for each morphism f : d → d′ in D.

Most of the known institutions have a cocomplete category of signatures, and their structure
functor preserves colimits. In addition, we have defined two new institutions, the institution
LSL, which is a variant of equational logic with constraints, used to model the logical system
of the Larch Shared Language, and the institution SET , which models the logical system
of the specification language Z and which is based on set theory. Further, it is possible,
by defining a new institution, to instantiate our framework with models of the state more
appropriate to the problem domain. For example, one could define an institution whose
structures model states having components that denote arrays and pointer structures.

We have shown that the category of signatures of RI is cocomplete and that the structure
functor of RI preserves colimits. This implies, for example, that relations on complex states
can be uniquely constructed by relations on simpler states. As an example consider two state
spaces given by abstract datatypes Sp1 and Sp2 such that both are extensions of the abstract
datatype Env. Further, let R1 be a relation of type <Sp1 × Sp1>Env and R2 be a relation of
type <Sp2 × Sp2>. Now we can form a state space Sp which consists of the components of
Sp1 and Sp2 sharing the components of Env. Thus, Sp is the pushout of Sp1 and Sp2 with
respect to Env. Then we can define the relation R of type <Sp× Sp>Env acting as R1 on the
state components from Sp1 and as R2 on the state components from Sp2 as the pushout of
R1 and R2 with respect to the identity on Env. That this is always possible is a consequence
of the fact that SignRI

is cocomplete; then the fact that StrRI
preserves colimits implies

184 Conclusion

that the pairs (A,A′) in R can be uniquely constructed from pairs (A1, A
′
1) in R1 and pairs

(A2, A
′
2) in R2 as the amalgamated sums A = A1 +A0 A2 and A′ = A′

1 +A′
0
A′

2. Here, A0 is
the environment that A1 and A′

1 have in common and A′
0 is the environment that A2 and

A′
2 have in common. Note that A0 and A′

0 have to be the same environment to make the
construction work.

The advantage of modeling relations as abstract datatypes in RI is that we could reuse
the institution independent theory of abstract datatypes. For example we could use the
specification language SLI , which is based on the operations impose, translate, derive, and
union, as the foundation of the specification language RSLI for the specification of relations.
RSLI is not intended to be a specification language used in practice, but as more practical
specification languages, like CASL [45], can be defined in terms of the operations of SLI ,
more practical specification languages for the specification of relations could be defined using
the operations of RSLI .

In this thesis we have added disjunction to the operations on abstract datatypes. The dis-
junction of two abstract datatypes over the same signature forms the union of their model
classes. Disjunction was not treated before mainly because the disjunction of two abstract
datatypes given by sets of formulas Φ1 and Φ2 cannot be represented by one set of formulas in
every institution. This is only possible for restricted classes of sets of formulas and for certain
logics, like finite sets of formulas and first-order logic. This is in contrast to the union of two
abstract datatypes for which IΦ1Σ + IΦ2Σ is the same as IΦ1∪Φ2Σ in any institution. While
the usefulness of disjunction for the definition of classical abstract datatypes is questionable,
this is not the case for the construction of relations because disjunction allows to combine
relations defined on different domains to a relation defined on the union of these domains.

There are two ways of proving properties of relations and entailment of relations. The first
way takes advantage of modeling relations as abstract datatypes because this allows us to
apply the proof calculus for proving properties from abstract datatypes to prove properties
from relations and to prove entailment between relations.

A second way is given by the translation tr of RSLI-expressions to SLI-expressions, which is
defined in Section 7.1. One property of this translation is that it preserves entailment, that
is, R |=RI ϕ if and only if tr(R) |=I ϕ and, similarly, R |=RI R′ if and only tr(R) |=I tr(R′).
This makes it possible to reuse theorem provers for the institution I for the institution RI .

Both strategies can be combined by first applying the rules of the proof calculus to reduce a
goal R |=RI R′ into subgoals R1 |=

RI ϕ1 to Rn |=RI ϕn and then proving tr(Ri) |=
RI ϕi by

using a theorem prover for I.

We have already discussed that RSLI can be used as the basis for a more practical specification
language for the specification of the dynamic behavior of software systems. However, there
is a second way to use the results of this thesis to specify software systems. This way has the
advantage that it can be used with any specification language whose semantics are abstract
datatypes.

The idea is that each relation R = (Θ,MR) in AdtRI
corresponds to an abstract datatype

10.1 Future Work 185

(Σcl ,M
′
R) in AdtI such that MR and M ′

R are isomorphic. This correspondence can be used
to interpret an abstract datatype (Σ,M) with respect to I as a relation (Θ,MR) provided
that we know the type of the relation. We need to know the type of the relation because
from Σ it is impossible to get the type of the relation back as there may be several relations
having the same signature Σcl as the colimit of ΓR; Sig

A. If we keep the type of a relation as
an informal annotation with the specification of abstract datatypes in I, then we can use any
specification language having abstract datatypes in I as the semantics of its specifications
for the specification of the dynamic behavior of software systems. As an example of this style
we have given in Section 9.3 a specification of the birthday book example of the Z-reference
manual using the Larch Shared Language. Another example of this style can be found in
Baumeister [6].

Note that this approach is similar to the way the dynamic behavior of software systems
are specified in Z. In Z states and operations on states are both presented as schemata,
which correspond to abstract datatypes (cf. Section 9.2); only naming conventions and the
text surrounding a Z-schema determine whether a schema represents an operation or a state
space.

10.1 Future Work

Since the results of this thesis are parameterized by any suitable institutions, we can apply
our framework to all the other state as algebra approaches with the exception of Gurevich’s
Abstract State Machines. We cannot apply our results directly to Gurevich’s Abstract State
machines because the state of an Abstract State Machine is modeled as an unsorted algebra,
and for the institutions of unsorted equational and first-order logic the structure functor does
not preserve coproducts (cf. Diaconescu et al [17]), and thus it does not preserve arbitrary col-
imits, which is required by the construction of RI . However, the structure functor preserves
colimits of all diagrams D that have a unique bottom element, that is, D has an element ⊥
and for all objects d 6= ⊥ in D there exists a morphism f : ⊥ → d in D. This is the type
of diagrams we are mostly interested in because they are used in the type of relations of the
form <Sp1 × · · · × Spn>Env. Thus we could, in the construction of RI , restrict ourself to
types (D,Γ : D → AdtI) where D has this bottom element. This allows a lot of the results
in this thesis to be applied to Gurevich’s Abstract State Machines. However, modularity
results, that is, that the category of signatures constructed in that way is cocomplete and
that the structure functor preserves colimits, do not carry over. The problem here is that the
colimit of a diagram of types which have a unique bottom element need not yield a signature
(Dcl ,Γcl) where Dcl has a unique bottom element.

One application of our results could be, for a particular instantiation of our framework,
to extend RSLI by additional operations, like the local function update of Gurevich or the
elementary modifiers of the implicit state approach. Then the inference system has to be
extended by special rules coping with these new operations. For example, if R is given by
an update instruction f(t) := t′ in the style of Abstract State Machines, then one would get
additional inference rules R ⊢ f ′(t) = t′, R ⊢ x 6= t ⇒ f ′(x) = f(x), and R ⊢ g′(x) = g(x)

186 Conclusion

for all function symbols in the state signature which are not f . However, the translation of
RSLI-expressions to SLI-expression may not be possible anymore.

A closer look at the institution independent proof-calculus for entailment between abstract
datatypes is needed, in particular, for entailments where the right side contains a derive
operation. As we have seen in Section 7.4, this appears quite often when proving refinement,
and proving them can get quite tedious. One possibility would be to encode RSLI and its
proof-calculus into a higher-order logic framework, for instance Isabelle [47], and make it
parametric by a suitable encoding of the logical-system used to model the states.

What we could only touch in this thesis is a theory of abstract machines based on our
approach (cf. Chapter 6). One problem is how to combine abstract machines, for example,
use abstract machines as arguments to the operations of other abstract machines. In the
current approach it is possible to pass the state of an abstract machine as an argument,
but information hiding is lost because the operation has access to all the state components.
Similarly, one would want to use abstract machines as state components. The modularity
results allow us to use the state of another abstract machine as a sub-state of another, but
again loosing encapsulation.

A Larch Traits

In the following we present the traits FiniteMap and Set, which are based on the traits
SetBasics and DerivedOrders from the library of the Larch Shared Language. A description
of this library can be found in the book about Larch by Guttag and Horning [34].

A.1 FiniteMap

FiniteMap (M, D, R): trait

% An M is a map from D’s to R’s.

introduces

{ }: → M

update: M, D, R → M

apply: M, D → R

defined: M, D → Bool

asserts

M generated by { }, update

M partitioned by apply, defined

∀ m: M, d, d1, d2: D, r: R

apply(update(m, d2, r), d1) ==

if d1 = d2 then r else apply(m, d1);

¬ defined({}, d);

defined(update(m, d2, r), d1) ==

d1 = d2 ∨ defined(m, d1)

implies

Array1 (update for assign, apply for [],

M for A, D for I, R for E)

converts apply, defined

exempting ∀ d: D apply({}, d)

A.2 Set

Set (E, C): trait

% Common set operators

includes

SetBasics,

Integer,

DerivedOrders (C, ⊆ for ≤, ⊇ for ≥,

188 Larch Traits

⊂ for <, ⊃ for >)
introduces

/∈ : E, C → Bool

delete: E, C → C

{}: E → C

∪ , ∩ , -: C, C → C

size: C → Int

asserts

∀ e, e1, e2: E, s, s1, s2: C

e /∈ s == ¬ (e ∈ s);

{ e } == insert(e, { });

e1 ∈ delete(e2, s) == e1 6= e2 ∧ e1 ∈ s;

e ∈ (s1 ∪ s2) == e ∈ s1 ∨ e ∈ s2;

e ∈ (s1 ∩ s2) == e ∈ s1 ∧ e ∈ s2;

e ∈ (s1 - s2) == e ∈ s1 ∧ e /∈ s2;

size({}) == 0;

size(insert(e, s)) ==

if e /∈ s then size(s) + 1 else size(s);

s1 ⊆ s2 == s1 - s2 = { }

implies

AbelianMonoid (∪ for ◦, { } for unit, C for T),

AC (∩, C),

JoinOp (∪, { } for empty),

MemberOp ({ } for empty),

PartialOrder (C, ⊆ for ≤, ⊇ for ≥,
⊂ for <, ⊃ for >)

C generated by { }, {}, ∪
∀ e: E, s, s1, s2: C

s1 ⊆ s2 ⇒ (e ∈ s1 ⇒ e ∈ s2);

size(s) ≥ 0

converts

∈, /∈, {}, delete, size, ∪, ∩, -:C,C→C,

⊆, ⊇, ⊂, ⊃

A.3 SetBasics

SetBasics (E, C): trait

% Essential finite-set operators

introduces

{ }: → C

insert: E, C → C

∈ : E, C → Bool

asserts

C generated by { }, insert

C partitioned by ∈
∀ s: C, e, e1, e2: E

A.4 DerivedOrder 189

¬ (e ∈ { });

e1 ∈ insert(e2, s) == e1 = e2 ∨ e1 ∈ s

implies

InsertGenerated ({ } for empty)

∀ e, e1, e2: E, s: C

insert(e, s) 6= { };

insert(e, insert(e, s)) == insert(e, s);

insert(e1, insert(e2, s)) ==

insert(e2, insert(e1, s))

converts ∈

A.4 DerivedOrder

DerivedOrders (T): trait

% Define any three of the comparison operators,

% given the fourth

introduces

≤, ≥, <, >: T, T → Bool

asserts ∀ x, y: T

x < y == x ≤ y ∧ ¬ (x = y);

x ≥ y == y ≤ x;

x > y == y < x

implies

∀ x, y: T

x ≤ y == x < y ∨ x = y

converts ≥, <, >
converts ≤, <, >
converts ≤, ≥, >
converts ≤, ≥, <

Bibliography

[1] Jean-Raymond Abrial. The B-Book. Assigning Programs to Meanings. Cambridge Uni-
versity Press, first edition, 1996.

[2] Jiri Adamek, Horst Herrlich, and Georg Strecker. Abstract and concrete categories.
Wiley, 1990.

[3] Egidio Astesiano and Martin Wirsing. An introduction to ASL. Technical Report MIP–
8609, Universität Passau, May 1986.

[4] Egidio Astesiano and Elena Zucca. D-oids: a model for dynamic data–types. Mathe-
matical Structures in Computer Science, 5(2):257–282, 1995.

[5] Michael Barr and Charles Wells. Category Theory for Computing Science. Prentice Hall,
New York, 1990.

[6] Hubert Baumeister. Using algebraic specification languages for model-oriented spec-
ifications. Technical Report MPI-I-96-2-003, Max-Planck-Institut für Informatik,
Saarbrücken, Germany, February 1996.

[7] J. A. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of the ACM, 37(2):335–
372, April 1990.

[8] Michel Bidoit. Pluss, un langage pour le developement de specifications algebriques mod-
ulaires. PhD thesis, Université de Paris-sud, 1989.

[9] Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of behavioural
properties. Theoretical Computer Science, 165(1):3–55, September 30 1996.

[10] Tomasz Borzyszkowski. Correctness of the logical system for structured specifications. In
Francesco Parisi Presicce, editor, Recent Trends in Algebraic Development Techniques,
12 International Workshop, WADT ’97, June 1997, Selected Papers, pages 107–121,
Tarquinia, Italy, June 1998. Springer.

[11] Ruth Breu. A normal form for structured algebraic specifications. Technical report,
MIP, 1989.

[12] Stephen Brien and John Nicholls. Z base standard version 1.0. Oxford University
Computing Laboratory Programming Research Group, November 30 1992.

[13] R. M. Burstall and J. A. Goguen. The semantics of Clear, a specification language,
February 1980.

[14] Maŕıa Victoria Cengarle. Formal Specifications with Higher-Order Parameterization.
PhD thesis, Fakultät für Mathematik, Ludwig-Maximilians-Universität, München, 1994.

BIBLIOGRAPHY 191

[15] Ingo Claßen, Hartmut Ehrig, and Dietmar Wolz. Algebraic specification techniques and
tools for software development: the ACT approach. Number 1 in AMAST series in
computing. World Scientific, London, 1993.

[16] P. Dauchy and M.-C. Gaudel. Algebraic specifications with implicit state, February
1994.

[17] Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for modu-
larisation. In Gerard Huet and Gordon Plotikin, editors, Proceedings of a Workshop on
Logical Frameworks, 1991. Revision of 24 March 1993.

[18] H. Ehrig, E. G. Wagner, and J. W. Thatcher. Algebraic constraints for specifications and
canonical from results. In Proceeding of the 10th International Colloquium on Automata,
Languages and Programming, number 154 in LNCS, pages 188–202. Springer, 1983.

[19] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 1: Equations
and initial Semantics. Number 6 in EATCS Monographs on Theoretical Computer
Science. Springer, 1985.

[20] Hartmut Ehrig and Fernando Orejas. Dynamic abstract data types, an informal proposal.
Bulletin of the EATCS, 53:162–169, June 1994.

[21] Jorge Farrés-Casals. Verification in ASL and Related Specification Languages. PhD
thesis, Department of Computer Science, The University of Edinburgh, July 1992. Pub-
lished as technical reports ECS-LFCS-92-220 and CST-92-92.

[22] Loe M. Feijs and H. B. Jonkers. Formal Specification and Design, volume 35 of Cambridge
tracts in theoretical computer science. Cambridge Univ. Press, Cambridge, 1992.

[23] Harald Ganzinger. Programs as transformations of algebraic theories (extended ab-
stract). Informatik Fachberichte, 50:22–41, 1981.

[24] J. Goguen and J. Meseguer. Universal realization, persistent interconnection and im-
plementation of abstract modules. In Proceedings, ICALP, number 140 in LNCS, pages
265–281. Springer, 1982.

[25] J. A. Goguen and R. Burstall. Institutions: Abstract model theory for specification
and programming. Journal of the Association for Computing Machinery, 39(1):95–146,
January 1992.

[26] Joseph Goguen and Grant Malcolm. A hidden agenda. Report CS97–538, University of
California at San Diego, April 1997.

[27] Joseph A. Goguen and Răzvan Diaconescu. Towards an algebraic semantics for the
object paradigm. In Hartmut Ehrig and Fernando Orejas, editors, Recent Trends in
Data Type Specification, 9th Workshop on Specification of Abstract Data Types Joint
with the 4th COMPASS Workshop, Selected Papers, Caldes de Malavella, Spain 1992,
number 785 in LNCS, 1993.

192 BIBLIOGRAPHY

[28] Joseph A. Goguen, Timothy Winkler, José Meseguer, Kokichi Futatsugi, and Jean-Pierre
Jouannaud. Introducing OBJ. Technical report, SRI International, October 1993.

[29] Martin Große-Rhode. Specification of Transition Categories, An Approach to Dynamic
Abstract Data Types. PhD thesis, Fachbereich 13 — Informatik, Technische Universität,
Berlin, 1995.

[30] Martin Große-Rhode. Transition specifications for dynamic abstract data types. Applied
Categorical Structures, 5:265–308, 1997.

[31] Alexandre Grothendieck. Catégories fibrées et descente. In Revêtements étales et groupe
fondamental, Séminaire de Géométrie Algébraique du Bois-Marie 1960/61, Exposé VI.
Institut des Hautes Études Scientifiques, 1963. Reprinted in Lecture Notes in Mathe-
matics, Volume 224, Springer, 1971, pp. 145–194.

[32] Yuri Gurevich. Evolving algebras: An attempt to discover semantics. Bulletin of the
EATCS, 43:264–284, February 1991.

[33] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In Egon Börger, editor, Specifica-
tion and Valication Methods, pages 7–36. Clarendon Press, Oxford, 1995.

[34] John V. Guttag and J. Horning. LARCH: Languages and Tools for Formal Specification.
Texts and Monographs in Computer Science. Springer, New York, 1993.

[35] David Harel. Dynamic logic. In Dov M. Gabbay and Franz Guenthner, editors, Handbook
of philosophical logic : vol. 2: extensions of classical logic, volume 165 of Synthese library,
pages 497–604. Kluwer, Dordrecht, 1984.

[36] J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined, resume. In Bernard
Robinet and Reinhard Wilhelm, editors, ESOP ’86: European Symposium on Program-
ming, Saarbrücken, number 213 in LNCS, pages 187–196. Springer, March 17–19 1986.

[37] Eric C. R. Hehner. A Practical Theory of Programming. Texts and Monographs in
Computer Science. Springer, 1993.

[38] Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems for structured spec-
ifications with observability operators. Theoretical Computer Science, 173(2):393–443,
February 28 1996.

[39] C. A. R. Hoare. Proving correctness of data representations. Acta Informatica, 1:271–
281, 1972.

[40] Cliff B. Jones. Systematic Software Development Using VDM. Prentice Hall international
series in computer science. Prentice Hall, New York, second edition, 1990.

[41] Thomas Lehmann and Jacques Loeckx. The specification language of OBSCURE. In
Don Sannella and Andrzej Tarlecki, editors, Proceedings of the 5th Workshop on Re-
cent Trends in Data Type specification, number 332 in LNCS, pages 131–153, Gullane,
Scotland, September 1988. Springer.

BIBLIOGRAPHY 193

[42] Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf. Specification of Abstract Data
Types. Wiley-Teubner, 1996.

[43] Saunders Mac Lane. Categories for the working mathematician. Graduated Texts in
Mathematics. Springer, fourth edition, 1988.

[44] José Meseguer. General logics. technical report SRI-CSL-89-5, SRI International, March
1989.

[45] Peter D. Mosses. CoFI: The common framework initiative for algebraic specification and
development. In Michel Bidoit and Max Dauchet, editors, TAPSOFT ’97: Proceedings
of the Seventh Joint Conference on Theory and Practice of Software Development, 7th
International Joint Conference CAAP/FASE, number 1214 in LNCS, Lille, France, April
1997. Springer.

[46] Tobias Nipkow. Non-deterministic data types: Models and implementation. Acta Infor-
matica, 22:629–661, 1986.

[47] Lawrence C. Paulson. Isabelle: a generic theorem prover; with contributions by Tobias
Nipkow. Number 828 in LNCS. Springer, Berlin, 1994.

[48] H. Reichel. Partial algebras — a sound basis for structural induction. In P. Burmeister,
B. Ganter, C. Herrman, K. Keimel, W. Poguntke, and R. Wille, editors, Universal
Algebra and its links with logic, algebra, combinatorics and computer science. Proceedings
of the ‘25. Arbeitstagung über Allgemeine Algebra’, R&E: research and exposition in
mathematics, pages 230–240. Heldermann Verlag, Berlin, Darmstadt, 1983.

[49] H. Reichel. Software specification by behavioural canons. TU Magdeburg, 1986.

[50] Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution. Infor-
mation and Computation, 76(2/3):165–210, February/March 1988.

[51] Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from
algebraic specifications: Implementation revisited. Acta Informatica, 25:233–281, 1988.

[52] Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic specification and
program development. Formal Aspects of Computing, 9:229–269, 1997.

[53] Donald Sannella and Martin Wirsing. A kernel language for algebraic specification and
implementation. In M. Karpinski, editor, Colloquium on Foundations of Computation
Theory, number 158 in LNCS, pages 413–427, Berlin, 1983. Springer.

[54] Donald Sannella and Martin Wirsing. Specification languages. In E. Astesiano, H.-J.
Kreowski, and B Krieg-Brückner, editors, Algebraic Foundations of Systems Specifica-
tions, chapter 7. Chapman and Hall, September 15th 1995. draft.

[55] Oliver Schoett. Data Abstraction and the Correctness of Modular Programming. PhD
thesis, University of Edinburgh, 1986.

194 BIBLIOGRAPHY

[56] J. M. Spivey. Understanding Z: A Specification Language and its Formal Semantics,
volume 3 of Cambridge tracts in theoretical computer science. Cambridge Univ. Press,
Cambridge, GB, repr. 1992 edition, 1988.

[57] J. Michael Spivey. The Z Notation: A Reference Manual. International series in computer
science. Prentice Hall, New York, 2nd edition, 1992.

[58] A. Tarlecki, R. Burstall, and J. Goguen. Some fundamental algebraic tools for the
semantics of computation, Part 3: Indexed categories. Theoretical Computer Science,
91:239–264, 1991.

[59] Roel Wieringa. Equational specification of dynamic objects. Technical Report 91-1,
Faculty of Mathematics and Computer Science, Vrije Universiteit Amsterdam, 1991.

[60] Roel J. Wieringa. A formalization of objects using equational dynamic logic. Tech-
nical Report 91-2, Faculty of Mathematics and Computer Science, Vrije Universiteit
Amsterdam, 1991.

[61] Martin Wirsing. Structured specifications: Syntax, semantics and proof calculus. In
Friedrich L. Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editors, Logic and
algebra of specification: proceedings of the NATO Advanced Study Institute on Logic and
Algebra of Specification, Marktoberdorf, Germany, July 23-August 4, 1991, number 94
in NATO ASI series, pages 411–442. Springer, 1992.

