
The ePNK: A generic Petri net tool

Users’ and developers’ guide

for Version 1.2

Ekkart Kindler
Technical University of Denmark

DTU Compute
DK-2800 Kgs. Lyngby

Denmark
ekki@dtu.dk

DTU Compute Technical Report YYYY-XX

Revised, updated, and extended version of
IMM-Technical Report-2012-14

This is a half-way updated version of the ePNK manual for version 1.2
Draft version: June 16, 2019



Technical University of Denmark
Department of Applied Mathematics and Computer Science (DTU Compute)
Richard Petersens Plads, Building 324
DK-2800 Kgs. Lyngby, Denmark
Phone: +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

DTU Compute Technical Reports: ISSN 1601-2321



Abstract

The ePNK is an Eclipse based framework and platform for de-
veloping and integrating Petri net tools and applications. One
of its core features is that new Petri net types can be plugged in,
which does not require any programming. A new Petri net type
can be defined by providing a model of its concepts, the so-called
Petri net type definition (PNTD). In addition, the ePNK allows
adding new applications on Petri nets to the ePNK.

The ePNK builds on the concepts and models of the Petri Net
Markup Language (PNML), which is an XML based interchange
format for all kinds of Petri nets, which was published as In-
ternational Standard ISO/IEC 15909-2 in February 2011. Tech-
nically, ISO/IEC 15909-2 is defining an interchange format for
three different kinds of high-level Petri nets and a simple version
of Place/Transition systems only. But, one of the objectives of
PNML was to provide a means for exchanging any kind of Petri
net [10, 30, 1]. To this end, the concept of a Petri Net Type
Definition (PNTD) was introduced, which is subject of a newly
issued standardisation project: ISO/IEC 15909-3.

There are many tools supporting one form of PNML or the other,
and, in particular, there is the PNML Framework [7], which helps
tool developers to ease the implementation of PNML by provid-
ing a framework and an API for loading and saving Petri net
documents in PNML. This framework is based on the Eclipse
Modeling Framework (EMF ) [2] and has its focus on the under-
lying meta-models of Petri nets. The PNML Framework, how-
ever, is not generic in the following sense: Whenever a new Petri
net type is created, the code for the complete tool needs to be
regenerated. Moreover, the PNML Framework does not come
with a graphical editor for Petri nets.

The ePNK overcomes these limitations: It provides an extension-
point, so that new Petri net types can be plugged in to the ex-
isting tool without touching the code of the ePNK. For defining
a new Petri net type, the developer, basically, needs to create a
class diagram defining the concepts of the new Petri net type,
along with a mapping of these concepts to XML syntax. This
type can then be plugged into the ePNK, and the graphical edi-
tor of the ePNK will be able to edit nets of this new type with

iii



all its features. Likewise, the ePNK allows to plug in new appli-
cations for the analysis, verification or simulation of Petri nets.
Moreover, it is possible to customize the graphical representa-
tion of Petri nets and their specific features, and applications
can visualize their results and interact with the user on top of
the graphic representation of the net in the graphical editor of
the ePNK.

Actually, this was the idea when we started the development of
the Petri Net Kernel (PNK ) about 20 years ago [18, 12, 21]. At
that time, however, we had to implement the complete IDE func-
tionality of the PNK ourselves. The ePNK is based on Eclipse
[28], so in the ePNK, we could focus on the Petri net specific parts
of such a tool. We get all the functionality of a nice IDE, basi-
cally, for free. Therefore, we named the tool ePNK for Eclipse-
based Petri Net Kernel. But, it is only the spirit and their idea
that the PNK and the ePNK have in common; technically, there
is not a single line of code from the PNK in the ePNK, and the
ePNK is not compatible with the PNK.

What is more, we use the nice features of EMF, GMF, and
Xtext for developing the ePNK in a model-based way. In this
way, the complete development process of the ePNK is a case
study in model-based software engineering using EMF and re-
lated technologies. This, actually, was the driving force behind
this project.

This manual focuses on how to use the ePNK as an end user,
and on how a developer can use the extension mechanisms of the
ePNK for providing new Petri net types along with their XML
syntax, and how to add new applications to the ePNK.

A first version of this manual has been published in February
2011 as IMM-Technical Report-2011-03 already, which referred
to version 0.9.1 of the ePNK. The second version of this doc-
ument (IMM-Technical Reprot-2012-14) referred to version 1.0
of the ePNK, which was released in October 2012. The current
version of this report refers to version 1.2 of the ePNK, which
was released in August 2017. It was updated with respect to the
new features of the ePNK and extended by a detailed tutorial,
which discusses a complete example in all technical details.

iv



Contents

Contents v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Petri Net Markup Language . . . . . . . . . . . . . . . . 2

1.2.1 The PNML core model . . . . . . . . . . . . . . . . . 2

1.2.2 Petri net type definitions . . . . . . . . . . . . . . . . 4

1.2.3 Mapping to XML . . . . . . . . . . . . . . . . . . . . . 5

1.3 ePNK: Objective . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 How to read this manual . . . . . . . . . . . . . . . . . . . . . 6

2 Users’ guide 9

2.1 Eclipse as an IDE . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Creating Petri net files . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The tree editor . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 The tree editor: Overview . . . . . . . . . . . . . . . . 14

2.3.2 Creating elements . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Saving the document . . . . . . . . . . . . . . . . . . . 16

2.3.4 Validating and correcting the document . . . . . . . . 17

2.3.5 Other Petri net information . . . . . . . . . . . . . . . 18

2.4 The graphical editor . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Overview of the graphical editor . . . . . . . . . . . . 19

2.4.2 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.5 Graphical features . . . . . . . . . . . . . . . . . . . . 25

2.5 Petri net types . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 PTNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 HLPNG . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



2.5.3 Other types . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Functions and Applications . . . . . . . . . . . . . . . . . . . 37

2.6.1 A simple model checker for EN-systems . . . . . . . . 38

2.6.2 Applications view . . . . . . . . . . . . . . . . . . . . 41

2.6.3 A simulator for high-level nets . . . . . . . . . . . . . 44

2.7 Limitations and pitfalls . . . . . . . . . . . . . . . . . . . . . 51

2.7.1 Saving files: Tree editor . . . . . . . . . . . . . . . . . 52

2.7.2 Reset an attribute . . . . . . . . . . . . . . . . . . . . 52

2.7.3 Graphical features . . . . . . . . . . . . . . . . . . . . 52

2.7.4 Petri net type: Should not be changed in an existing
net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7.5 Line-breaks in labels . . . . . . . . . . . . . . . . . . . 54

2.7.6 Graceful PNML interpretation . . . . . . . . . . . . . 54

2.7.7 Deviation from PNML . . . . . . . . . . . . . . . . . . 55

3 Developers’ guide 57

3.1 Eclipse: A development platform for the ePNK . . . . . . . . 58

3.1.1 Importing ePNK projects to the workspace . . . . . . 58

3.1.2 Installing the EMF and Ecore Tools SDK . . . . . . . 60

3.2 The PNML core model in the ePNK . . . . . . . . . . . . . . 61

3.3 Adding functions . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Accessing a PNML file and its contents: A file overview 65

3.3.2 Writing PNML files: Generating multi-agent mutex . 71

3.3.3 Long-running functions: A model checker . . . . . . . 76

3.3.4 Overview of the ePNK API . . . . . . . . . . . . . . . 86

3.4 Implementing applications . . . . . . . . . . . . . . . . . . . . 93

3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.2 Annotations . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.3 Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . 101

3.5 Adding Petri net types . . . . . . . . . . . . . . . . . . . . . . 105

3.5.1 Simple Petri net type definitions: PTNet . . . . . . . 105

3.5.2 Petri net type definitions with attributes: SE-nets . . 115

3.5.3 Petri net type definitions in general: HLPNG . . . . . 119

3.5.4 Petri net type definitions: Summary and overview . . 137

3.6 Defining the graphical appearance . . . . . . . . . . . . . . . 138

3.7 Adding tool specific information . . . . . . . . . . . . . . . . 146

3.8 Overview of the ePNK and its projects . . . . . . . . . . . . . 149

3.9 Deploying extensions . . . . . . . . . . . . . . . . . . . . . . . 156

vi



4 Tutorial: Net type and application 157
4.1 The tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.1.1 The technical net type . . . . . . . . . . . . . . . . . . 158
4.1.2 The application . . . . . . . . . . . . . . . . . . . . . . 161

4.2 Conceptual steps . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.2.1 Petri net type . . . . . . . . . . . . . . . . . . . . . . . 165
4.2.2 Graphics of the Petri net type definition . . . . . . . . 169
4.2.3 The simulator application . . . . . . . . . . . . . . . . 171

4.3 Technical steps . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.3.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . 174
4.3.2 PNTD . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.3.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . 189
4.3.4 Graphical extensions . . . . . . . . . . . . . . . . . . . 197
4.3.5 Simulator application . . . . . . . . . . . . . . . . . . 205

5 Installation 231
5.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
5.2 Installing the ePNK in Eclipse . . . . . . . . . . . . . . . . . 232

6 Experience and outlook 235
6.1 Experiences with MBSE . . . . . . . . . . . . . . . . . . . . . 235
6.2 Future plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Bibliography 241

Index 245

vii



viii



Chapter 1

Introduction

The ePNK is an Eclipse based framework and platform for developing and
integrating Petri net tools and applications. One of its core features is
that new Petri net types can be plugged in, which does not require any
programming. A new Petri net type can be defined by providing a model
of its concepts, the so-called Petri net type definition (PNTD). In addition,
the ePNK allows adding new applications on Petri nets to the ePNK.

The ePNK builds on the concepts and models of the Petri Net Markup
Language (PNML) [8, 10, 10, 30, 1]. Therefore, we start with a brief overview
of the PNML, and then discuss the concepts and ideas of the ePNK and its
main features.

In the end of this chapter, there is some information for different kinds
of readers on what to read and on how to read this manual.

1.1 Motivation

The PNML is an XML-based interchange format for all kinds of Petri nets,
which allows different tools to exchange Petri net models among each other.
One of PNML’s main features is that it is generic, which means that it pro-
vides a mechanism for defining own types of Petri nets, which are called Petri
net type definitions (PNTD). These Petri net type definitions define the ad-
ditional concepts of the new Petri net type, as well as the representation of
these new concepts in XML syntax. It is also possible that different tools
include tool specific information to PNML documents, which is information
that can be safely ignored by other tools.

Before the ePNK, there was no tool that fully supported these ideas in
such a way that the tool would allow a developer to define and plug in new

1



2 CHAPTER 1. INTRODUCTION

Petri net types and additional tool specific extensions. And there was no
generic editor supporting all Petri net types, once they are plugged in.

The lack of such a generic tool support was the starting point for devel-
oping the ePNK.

1.2 The Petri Net Markup Language

In order to better understand the ideas of the ePNK, we briefly discuss the
main concepts and ideas of the PNML here. For more information on the
PNML and on ISO/IEC 15909-2, we refer to [13, 6] or to the International
Standard ISO/IEC 15909-2:2011 itself [8].

1.2.1 The PNML core model

As stated above, extensibility and genericity were two of the main objectives
behind the PNML [11]. This is achieved by identifying the concepts that are
common to all kinds of Petri nets in the so-called PNML core model. The
common concepts are mainly places, transitions and arcs, and that these
objects can have some kind of label. The PNML core model also provides
means for splitting up larger Petri nets into pages; connections between
nodes on different pages can be established by reference places or reference
transitions. And PNML defines all kinds of graphical information that can
be attached to the different elements, such as position, size, font-type, and
font-size.

Note that in graphical editors, a label would typically be shown as an
annotation attached to (or close to) the object it belongs to. Labels that
should be shown as annotations are, therefore, called Annotations. Some
labels, however, are not supposed to be shown as annotations; for example,
if there are different kinds of arcs, the kind or arc might be defined as an
attribute of the arc in the properties view of a tool. And in some graphical
tools, the graphical representation of the arc itself might change dependent
on the value of this attribute; an arc of kind “read”, might be graphically
represented as a line without any arrow heads or with arrow heads at both
ends. An arc of kind “inhibitor” might be shown as a lollipop (see Sect. 3.6
for an example). Therefore, these kind of labels are called attributes.

In addition, the PNML core model defines the possible relation between
these elements. In particular, it defines that places and transitions, which
are generalized as nodes, are contained in pages and that arcs may connect
these nodes. Figure 1.1 shows the PNML core model of ISO/IEC 15909-
2 as a UML diagram. Note that the PNML core model of the ePNK is



1.2. THE PETRI NET MARKUP LANGUAGE 3

slightly more general than the one defined in ISO/IEC 15909-2; this way,
it is possible to capture even more variants of Petri nets. For now, these
differences are not so important; the most relevant differences are explained
later in Sect. 3.2.

  self.target.page
  self.source.page =

context Arc inv:

PNMLCoreModel

XMLSchemaDataTypes::

String

ToolInfo
tool
version

Object
id* label *

label *

*
net

object

{redefines label}
name0..1

name

0..1

{redefines label}

Graphics

Node

RefPlace RefTrans

1

1
Page

TransitionNode
1

ref

1

ref

source

target

page

Transition

Arc

* *

*

*

page
1..*

1..*

toolspecific

PetriNetDoc

Label

PetriNet

type
id

AttributeAnnotationName

PlaceNode

Place

−− source and target must
−− be on the same page

*

1text graphics
0..1

0..1
graphics

toolspecific

toolspecific *

<<import>>

XMLSchemaDataTypes

Figure 1.1: The PNML core model of ISO/IEC 15909-2:2011 [8]

Note that there is only one concrete type of label defined in the PNML
core model itself, which is the name of an element. All the other possible
labels are defined in separate Petri net type definitions, which are discussed
in Sect. 1.2.2.



4 CHAPTER 1. INTRODUCTION

In addition to the concepts and relations between them, the PNML core
model states also some restrictions on the structure of PNML models. For
example, there is a constraint stating that arcs can connect only nodes that
are on the same page. This constraint if formulated as an OCL constraint
in Fig. 1.1. Note, however, that there is no constraint in the PNML core
model, which states that arcs must run between a place and a transition or
the other way round. The reason for not having such a constraint in the
PNML core model is that there are some kinds of Petri nets that would
allow arcs between places or between transitions. This is why these kind of
restrictions would be part of a Petri net type definition.

Note also that the PNML core model does not specify concrete tool
specific extensions. It is up to a tool to define what it needs. But, any tool
must be able to read – and later write – any tool specific extension; their
contents however, can be ignored.

1.2.2 Petri net type definitions

As stated above, it is the purpose of a Petri net type definition to define
which labels are possible in a specific kind of Petri net, and also to define
some additional restrictions on the legal connections. Here, we explain the
idea of a Petri net type definition by the help of a simple example: the
definition of Place/Transition-Systems (P/T-Systems in short).

The two additional kinds of labels for Place/Transition-Systems are the
initial marking for places, and the inscription for arcs. The initial marking
can be any natural number (including 0) and the inscription for arcs can be
any positive number. Figure 1.2 shows the UML model for these concepts
and how they are related to the concepts of the PNML core model.

In Fig. 1.2, there is also one additional OCL constraint. Without going
into the details of OCL, this constraint states that an arc must run from a
place to a transition or from a transition to a place. So, for P/T-Systems,
it is no longer possible to connect places with places or transitions with
transitions.

A Petri net type definition, would typically also define how the new con-
cepts from Fig. 1.2 would be mapped to XML. If not stated, the ePNK will
uses a default of how the new features are mapped to XML. For the example
above, this default mapping is good enough (and actually compatible with
ISO/IEC 15909-2).



1.2. THE PETRI NET MARKUP LANGUAGE 5

Place
{redefines label}

initialMarking

PTMarking0..1

Annotation

Arc

  (self.source.isKindOf(PlaceNode) and
    self.target.isKindOf(TransitionNode)  )
or

  (self.source.isKindOf(TransitionNode) and
    self.target.isKindOf(PlaceNode)    )

context Arc inv:
−− no arcs between nodes of the same kind

PT−Net

PTAnnotation

text 1text

inscription

1

XML_Schema::
NonNegativeInteger PositiveInteger

XML_Schema::

{redefines label}

0..1

<<merge>>

PNML Core Model

Figure 1.2: The PNTD for PT-Nets

1.2.3 Mapping to XML

As mentioned above, the PNML core model together with the model for a
Petri net type definition, define the concepts of a specific kind of Petri net
and how they can be connected. Therefore, these models are the centerpiece
of PNML. Still, PNML is an XML transfer format for Petri nets. So, PNML
defines how these concepts are saved or represented in XML. This is achieved
by mapping every concept or feature of the UML models to some XML
construct.

10 20 30 40 50 60

10

20

y

x

ready 2

Figure 1.3: A simple P/T-System

Here, we do not give these mappings, but rather show an example (for
a detailed discussion of the mappings, see [6]). Figure 1.3 shows a simple
example of a P/T-System in its graphical representation (concrete syntax);



6 CHAPTER 1. INTRODUCTION

Listing 1.1 shows its representation in PNML’s XML-syntax1.

Note that the listing also shows an example of a tool specific extension:
the positions of the individual tokens in the place.

1.3 ePNK: Objective

The main objective of the ePNK—DEF was to build a tool that fully sup-
ports the concepts of PNML, so that new Petri net types along with the
mapping to XML syntax can be easily plugged into this tool – and to provide
all the Petri net type definitions for the types defined in ISO/IEC 15909-
2:2011.

As soon as such a new Petri net type definition is plugged in, it should
be possible to load and save Petri net documents that contain nets of these
types. Moreover, there should be a graphical editor that allows us to edit
Petri nets of any plugged in Petri net type; and the editor should be fully
aware of all the features (annotations and attributes) and the additional
constraints of the plugged-in Petri net types.

For tool developers, the ePNK should provide an API to easily load and
access Petri nets from PNML files, to manipulate them, and to save them.
Moreover, it should be easy to plug in new functionality and applications
for analysing Petri nets and for visualizing the results, and for manipulating
Petri nets or transforming them to other models or to code.

1.4 How to read this manual

In this manual, we will explain the features of the ePNK in more detail.

On the one-hand side, this manual covers the parts relevant for the “end
user” who just wants to load, save and edit Petri nets of existing types and
use some existing or plugged in functionality of the ePNK. In the rest of this
manual, we call these “end users” just users. All the information relevant
for users of the ePNK can be found in Chapter 2.

On the other-hand side, this manual covers the information relevant for
developers who are interested in using the ePNK for their purposes: extend-
ing it by defining new Petri net types and their graphical appearance, by
defining new tool specific extensions, or by implementing new functionality
and applications. Chapter 3 provides the information relevant for developers
who want to extend the ePNK.

1We deleted some line-breaks to make this listing fit on a single page



1.4. HOW TO READ THIS MANUAL 7

Listing 1.1: PNML code of the example net in Fig. 1.3

1 <pnml xmlns="http://www.pnml.org/version-2009/grammar/pnml">

<net id="n1" type="http://www.pnml.org/version-2009/grammar/ptnet">

<page id="top-level">

<name><text>An example P/T-net</text></name>

<place id="p1">

6 <graphics><position x="20" y="20"/></graphics>

<name>

<text>ready</text>

<graphics>

<offset x="0" y="-10"/>

11 </graphics>

</name>

<initialMarking>

<text>3</text>

<toolspecific tool="org.pnml.tool" version="1.0">

16 <tokengraphics>

<tokenposition x="-2" y="-2" />

<tokenposition x="2" y="0" />

<tokenposition x="-2" y="2" />

</tokengraphics>

21 </toolspecific>

</initialMarking>

</place>

<transition id="t1">

<graphics><position x="60" y="20"/></graphics>

26 </transition>

<arc id="a1" source="p1" target="t1">

<graphics>

<position x="30" y="5"/>

<position x="60" y="5"/>

31 </graphics>

<inscription>

<text>2</text>

<graphics>

<offset x="0" y="5"/>

36 </graphics>

</inscription>

</arc>

</page>

</net>

41 </pnml>



8 CHAPTER 1. INTRODUCTION

Chapter 4 is a tutorial, which discusses the concepts and the major steps
of defining new Petri net types, their graphical appearance, and a simple
simulator application on top of it. The tutorial goes into all the technical
details, and is written in such a way that it can be read independently from
Chapter 3.

Chapter 5 discusses the installation of Eclipse and the ePNK as well as
the major changes of version 1.2 of the ePNK with respect to version 1.0.



Chapter 2

Users’ guide

This chapter explains how to use the ePNK for creating, loading, saving, and
editing Petri nets, and also how to use some of its functions and applications.
Since new Petri net types can be plugged in, we try to point out the general
principles of these editors and how to use them. For the particular syntax
of some labels of a specific Petri net type, it might be necessary to refer
to the documentation of the specific Petri net type. We will discuss these
principles by some of the Petri net types that come with the basic version
of the ePNK; and we use high-level nets (in terms of the ISO/IEC 15909-2
High-level Petri Net Graphs, or HLPNGs for short) to point out for which
parts you would need to refer to the specific documentation of the specific
Petri net type.

2.1 Eclipse as an IDE

For users who are new to Eclipse and its IDE (Integrated Development
Environment), we start with a brief overview of Eclipse’s workbench. Users
who are familiar with Eclipse already can directly read on in Sect. 2.2.

Once you installed and started Eclipse (see Chapter 5), you see the
Eclipse workbench. Depending on the chosen perspective, the different parts
can be arranged in different ways. But, the principle behind is always the
same. Figure 2.1 shows an example of the Eclipse workbench, with some
numbers marking some parts, which we discuss next.

At the top of Fig. 2.1 marked by (1), you can see the menu bar and the
toolbar. Here, you will find the menus and tools for all the standard function-
ality, such as loading and saving files, and for standard editing operations.
The menus that are shown in the menu bar depend on your installation and

9



10 CHAPTER 2. USERS’ GUIDE

also on the editor that is currently active. For many operations, there are
also the standard shortcuts, like CNTRL-S (on the Windows platform) for
saving the contents of an editor to a file. For getting more information on
that, you could chose the “Help Contents” in the menu “Help” in the menu
bar, and read the “Workbench User Guide”.

Note: In automatically generated editors, such as the graphical
editor of the ePNK, the copy/paste functionality with CNTRL-
C, CNTRL-V, and CNTRL-X does not work properly. In order
not to mess up models, by improperly using cut/paste opera-
tions, the graphical editor of the ePNK does not support copy-
/paste yet.

1

3

5

6

4

2

Figure 2.1: The Eclipse workbench

On the left-hands side, marked by (2), you can see the package explorer,
which gives you access to all the files in your workbench. The package
explorer can be used for browsing through the existing files and for manip-
ulating, renaming, copying, moving, and deleting them. This is very much
like the file explorer of your operating system. Eclipse actually has different
kinds of explorers, depending on the perspective and the user’s preferences.



2.1. ECLIPSE AS AN IDE 11

The package explorer is made for Java development projects. For our pur-
poses, any of these explorers would do, like for example the “navigator” or
the simple “project explorer”. To find and open one of these other explorers,
you can use the menu “Show View” in the menu bar menu “Window”. All
these explorers have some important concept in common, which concerns
the organisation of files in the workbench: the top-level “folders” are actu-
ally not folders, but they are projects. This is relevant only when creating
these projects. You can create a folder or file in the workbench only after
you have created some project; this can be done via the “File” menu or by a
right-click in the explorer and then selecting “New”→“Project”. Note that
in the dialog, you can create many different kinds of projects; for us the kind
“Project” in category “General” will do. Then, files can be created within
this project.

In the center (3), you can see the editor area of Eclipse. This is where
all the editors that are started in Eclipse will be opened. Note that there
can be many editors open at the same time (in our example, there are four
editors open). Typically, you can see only one at a time and the others are
hidden below it. But, you can move the editor tab to some border of the
editor area, so that you can see the contents of two or more editors at the
same time. In our example, there is a tree editor of a complete Petri net
document open on the left-hand side, and, on the right-hand side, you can
see one specific page open in a graphical editor (the graphical editors for
some other pages are hidden beneath). Note that, even though there can
be many editors open and even visible at the same time, there will always
be only one editor that is active. This editor and what is selected in it
determines what you see in some other views. For example, you can see the
outline view (4) of the page or you can see the property of the currently
selected element in the properties view (5) at the bottom. In order to open
an editor on some resource in the explorer, you would, typically, double click
on the resource you want to open. This will open the default editor on the
selected resource. You can also use the right mouse button on a resource to
open a pop-up menu and then select “Open with” to select a specific editor
for this purpose. The way of editing the contents of a resource depends
on the kind of editor; generally, it is straightforward. Saving the file can
typically done by a shortcut (like CNTRL-S) in all editors (or via the “File”
menu in the menu bar). An editor can be terminated (closed) either by
clicking the close symbol on the tab of the editor or via the “File” menu in
the menu bar.

Most editors support undo and redo of the latest changes, which you can
access via the “Edit” menu or via the CNTRL-Z and CNTRL-Y shortcuts.



12 CHAPTER 2. USERS’ GUIDE

Note that the graphical editor of the ePNK cannot be initiated directly
from the explorer since the resource could have many pages and a page is
not the top-level element. When you open a PNML file, a tree editor will be
opened that shows the structure of the Petri net. The graphical editors for
a page of a Petri net can be opened by a pop-up menu (right mouse button)
on pages in the tree editor for Petri nets or by a double click on the page
(see Sect. 2.4 for details).

All the other areas of the workbench are views1. In Eclipse, views are
used for many different purposes. The views that are most relevant for us,
are the outline (4), the properties (5), and the problems view (not visible
in Fig. 2.1). The outline gives an overview of the contents of the currently
active editor and, in case of a graphical editor, allows us to quickly move
around the visible area of this editor. The properties view shows some
details of the currently selected element in the editor; in many cases, the
properties view also allows us to edit some properties. Note that, initially,
the properties view might not be open. You can, typically, open it from
the active editor via a context menu on the right mouse button: In the
pop-up menu that opens, there will be a menu “Show Properties View”,
which opens the properties view. You can also open the properties view via
“Window”→“Show View”→“Others ...” and then selecting “Properties” in
the category “General”.

We mentioned already that the Eclipse workbench can appear in different
ways, which is defined by the chosen perspective (and some user-specific
settings). The perspective can be changed via the tools at the top-right of
the workbench, which are marked with (6) in our example. We do not need
to change it; but if, for whatever reason, you end up in a wrong perspective,
by clicking on the left symbol, you can open the “Open Perspective” dialog.
There, you can select the perspective “Resource” or, if you like, “Java”
(which is the default perspective).

If you are interested in more details in the Eclipse workbench, you can
have a look into the Eclipse help (“Help”→“Help Contents”) or at one of
the many books or online articles; http://www.vogella.de/articles/

Eclipse/article.html could be a start.

2.2 Creating Petri net files

This section explains how to create new ePNK files. Note that there are two
formats in which the ePNK can save a Petri net. The first and recommended

1Actually, also the resource browsers are views.



2.2. CREATING PETRI NET FILES 13

format is PNML. The second format is the XMI-serialisation of the PNML
models, which we call PNX. Note that PNX, is part of the ePNK since XMI
is the standard serialisation mechanism of the EMF technology used for
implementing the ePNK and, therefore, came for free. Whether PNX really
should be a part of the ePNK distribution is yet to be seen. Therefore, the
focus of this users’ guide is on PNML.

The easiest way of getting started with the ePNK is obtaining existing
PNML files from somewhere else and just copy them to the workbench.
For example, you could get some examples from the ePNK home page:
http://www2.compute.dtu.dk/~ekki/projects/ePNK/. You can also use
a text editor and create a simple text file with file extensions “.pnml” and
insert the single line

<pnml xmlns="http://www.pnml.org/version-2009/grammar/pnml"/>

to this file, which is an empty Petri net document without any nets in it.

The ePNK also provides you with a wizard for creating a PNML docu-
ment. Like all Eclipse creation wizards, this wizard is started via the “New”
menu, which can be either accessed by the “File” menu from the menu bar
or via the pop-up menu that opens on a click to the a right mouse button
in the explorer. Then, select “Other...” (the short-cut to that would be
pressing CNTRL-N in the explorer) and in the newly opened “Select a wiz-
ard” dialog choose “PNML Document” from the “ePNK” category and press
“Next”. In the next dialog, you must choose a name and, if you want, you
can choose a different folder in which this file should be created. Pressing
“Finish” will create the file; then, the newly created file will be opened in a
tree editor (see Sect. 2.3); note that you also can continue the creation pro-
cess by pressing “Next”, which will allow you to chose an XML-Encoding.
Note that, in the dialog with the encoding, there is also a field asking for
the “Model Object”; but you cannot choose anything here since PNML, in
contrast to other formats, has a fixed root object that cannot be changed:
“PetriNetDoc”.

Note that in the same wizard category “ePNK” there is another wizard
called “PNX Document”. When you use this wizard, a PNX file will be
created. In this wizard, you can select a root element different from the
PetriNetDoc – but this would be reasonable only in very special cases (and
when you know exactly what you are doing).



14 CHAPTER 2. USERS’ GUIDE

2.3 The tree editor

As mentioned earlier, the ePNK provides two kinds of editors for Petri nets:
the tree editor, which allows us to create, modify, and delete all parts of the
Petri net in a tree-like structure; and the graphical editor in which a page of
a Petri net with its places, transitions, and arcs can be edited in a graphical
way. Clearly, the graphical editor is more convenient for editing pages than
the tree editor. But, other parts like for example the page structure and the
complete Petri net document are more convenient to edit in the tree editor.
This is why there are two different editors in the ePNK. The graphical editor
for pages is always started from a selected page – either in the tree editor or
in the graphical editor. When opening a PNML document from the resource
explorer, it will always be the tree editor that opens. A graphical editor can
be opened by a double click on a page element in an already open editor.

2.3.1 The tree editor: Overview

Let us have a closer look at the tree editors first. Figure 2.2 shows the
Eclipse workbench with two PNML documents open in tree editors. The
right one shows the tree editor opened with the PNML file (“test.pnml”)
with the single line as discussed in Sect. 2.2. Therefore, it contains only
the Petri net document element without any contents. The other PNML
document, which is open on the left-hand side (“hlpng-gmf.pnml”), shows a
Petri net document with three nets that have different types.

These documents were opened from the explorer by a double click2 on the
respective file in the workbench’s explorer. Let us briefly go through what
you see in the Petri net document “hlpng-gmf.pnml”. The top-line shows
the actual resource or file in which this document is stored; the second line is
the symbol for the Petri net document itself – all documents will follow this
structure in the tree editor. Then you can see that there are three Petri nets
contained in this document (with ids n1, n2, and n3); the last net is actually
not folded out because its was not fitting to the screen. The first line below
the Petri net is the type of the Petri net. The first net is a high-level net,
which is named HLPNG according to ISO/IEC 15909-2; the second net is
a Place/Transition-System, called PTNet according to the standard. You
can also see that the nets contain places, transitions, and arcs, which are

2Remember, that you can use the pop-up menu to make an explicit choice by which
editor you want to open the file. This way, you can open the file with a text editor, so
that you can see the PNML it produces. On a double click, the file is opened with the
editor you had selected the last time.



2.3. THE TREE EDITOR 15

Figure 2.2: Two Petri net documents in tree editors

indicated by corresponding icons. You can also see some pages and sub-
pages. Note that the icons for the places, transitions, and arcs are different
for the two different Petri net types, so that it easier to distinguish them
on a first glance. In the properties view at the bottom, you can see the
properties of the currently selected element, which is Petri net n1; the only
property is its id. Note that this net has a name; this, however, is not shown
as a property, but as a child element of the net, which is true for all labels
of Petri nets. In this case, the name is “A high-level next example”.

2.3.2 Creating elements

You can unfold all the sub nodes (children) of the net and this way inspect
the complete document in all details. More importantly, however, you can
create the basic elements of the Petri net document. You can create new
nets (along with their type) and their pages. And from there, you would use
the graphical editor to draw the rest. This basically works by inserting child
elements. Inserting a child element is done by right-clicking on the element
to which you want to add a child, then selecting “New Child” in the dialog
that pops up, and then selecting the appropriate element. Figure 2.3 shows
the pop-up dialog when inserting a new Petri net to the Petri net document.



16 CHAPTER 2. USERS’ GUIDE

Figure 2.3: Pop-up menu when inserting a new Petri net

Note that this dialog will show all available Petri net types, from which
you will need to select. Then a new net of that type will be created. Note
that the created net will contain a child element, which represents the type
of this net. You should never delete or change this net type manually3. You
will find some more information on the Petri net types that are deployed
together with the ePNK in Sect. 2.5.

After you have created a new Petri net, the name of the net and new
pages can be inserted to it by via the “New Child” pop-up menu on the
selected Petri net similar to creating the net – just select the kind of element
you want to create.

2.3.3 Saving the document

As discussed in Sect. 2.1, you can save the net via the “File” menu or with
the CNTRL-S shortcut. Note that saving the net must be done – and can
be done only – in the tree editor. Therefore, only the tree editor shows the
dirty-flag, when the editor contains unsaved changes.

3Unless you know exactly what you are doing.



2.3. THE TREE EDITOR 17

2.3.4 Validating and correcting the document

Before saving a PNML document, it is a good idea to validate the net. This
will check whether all the constraints that PNML and the respective Petri
net types imposes on the Petri net document are met. It is possible to save
a document that does not properly validate, and you would be able to load
the file again. But, if you save a file that does not properly validate, you
cannot be sure that the saved document is ISO/IEC 15909-2 conformant
PNML, and other tools might not be able to load it.

There are many things that can be wrong and need validation on a Petri
net document. Most of them are type specific (such as the requirement that
an arc must run from places to transitions or the other way round only);
these Petri net type specific constraints will be discussed in Sect. 2.5. But,
there are also some general constraints:

• Every Petri net object must have an id and this id must be unique in
the scope of this document.

• Arcs may only connect nodes which are on the same page (as long as
you are using the graphical editor, this constraint cannot be violated;
but if you do changes in the tree editor, this could be violated).

• There must not be cycles on the references between reference nodes,
and all reference nodes must refer to a node.

• A reference node must refer to a node within the same net.

In order to identify which constraints are violated, you can use the vali-
dation feature. Click on the right mouse button on the Petri net document;
then, in the pop-up menu, select “Validate”. The result of the validation will
be shown in a dialog; the results of the validation is also visible in the prob-
lems view4 after the validation as shown in Fig. 2.4. Most of these errors are
actually coming from high-level nets. But, there is also a general constraint
violated in this example: some IDs collide (line 5 and 6 in the problems
view), which means that the same ID is used twice in this document.

Note that you can double-click on the individual problems in the prob-
lems view. Then, an editor is opened with the element to which this problem
refers to selected. If there is a graphical editor open for the page that con-
tains the element with the error, the ePNK will show the selected element in
the graphical editor; if there is not graphical editor open with that element,
the element will be shown in the tree editor.

4If the problems view is not open, you can open it by “Window”→“Show View”
→“Problems”.



18 CHAPTER 2. USERS’ GUIDE

Figure 2.4: The problems view with many constraint violations

In order to reduce the number of errors, you can also do a validation
on sub-elements of the Petri net document, which could be a net or even a
single page. Ultimately, however, you must validate the complete Petri net
document.

In our example, there are some problems that can be fixed automatically.
For example, ids can be set automatically. The ePNK provides an action
for this. To this end, select the Petri net document, click the right mouse-
button, and then select “ePNK”→“Add missing IDs” in the pop-up menu.
This will fix all problems with the ids within a Petri net document. Actually,
there is a shortcut: a double-click on the Petri net document element in the
tree editor will automatically add all the missing ids.

Some other errors might need some manual changes, which could typi-
cally be made in the graphical editor of pages.

2.3.5 Other Petri net information

In principle, you can inspect and edit all the information of a Petri net
document in the tree editor. In our example from Fig. 2.3, you can also
see some labels (declarations of high-level nets in this case, or a marking
of a P/T-System) or graphical information. If you have a closer look at
these examples, you will also find some other types of elements such as tool
specific information – and once graphical editors are started some auxiliary



2.4. THE GRAPHICAL EDITOR 19

data. But, it is strongly recommended not to change any of this information
in the tree editor5.

2.4 The graphical editor

For editing the contents of pages, the graphical editor should be used. The
graphical editor can be opened by right-clicking on the respective page in
the tre -editor and then, in the pop-up menu, selecting “ePNK”→“Start
GMF Editor on Page”. A shortcut for this is double-clicking on the page.

When you open a graphical editor on a page for the first time, you
will be warned that this change cannot be undone – and no undos will be
possible beyond that point. Therefore, you will be asked whether you want
to proceed with that operation or not.

Figure 2.4 shows the graphical editor with a page open in a graphical
editor; this is a page from a high-level Petri net (in this case one with several
errors in it). Normally, this new editor shows on top of the tree editor, but
it can be moved to the right side (click in the tab at the top of the editor
window and move it while keeping the mouse pressed), so that the tree editor
and the graphical editor are visible at the same time.

Figure 2.7 shows another example of a Petri net opened in the graphical
editor, which we will discuss in Sect. 2.4.3.

2.4.1 Overview of the graphical editor

On the left-hand side of the graphical editor for the page, you see the canvas
with all the Petri net objects on that page represented in a graphical way.
This includes also the labels, which are either attached to an object by a
dashed line or attached to the page itself, in which case it is called a page
label.

At the top, you see the tab of this page, which shows the page’s name (if
the page has a name label assigned to it) or its id, or the path to this page
(if the page has neither a name nor an id).

On the right-hand side, you see the palette or tool bar of the graphical
editor. These tools allow you to create all the Petri net objects. Note that
you can also create sub pages.

5Once the features of the ePNK that are really needed in the editor are fixed, the parts
that should not be edited in the tree editor will probably be removed or at least made
read only.



20 CHAPTER 2. USERS’ GUIDE

There are two different tools for labels. The tool “Label” is for creating
labels that are attached to objects, the tool “Page label” is for creating
labels that are directly attached to the page that is shown in this editor.

For creating objects and labels, you first select the tool by clicking on it,
and then clicking somewhere into the canvas. For creating an arc, you select
the arc tool and then click on the source object, and keeping the mouse
pressed and move the mouse to the target object. Note that the arc is not
added between two objects, if the Petri net type you are editing does not
allow this.

2.4.2 Labels

When creating a new page label on a page, the graphical editor will show
you all the possible options of legal labels for that type of net Petri net
via a pop-up menu. Figure 2.5 shows the pop-up menu during the creation
of a page label for a high-level net, where the only option “Declaration”
is shown here. You can select an option, after which a label of that kind
will be created. You can also abort by either pressing the “ESC” button or
clicking somewhere outside the menu.

Figure 2.5: Pop-up menu during page label creation

The process for creating a label and attaching it to an object is slightly
different. First you must create the label. This new label, however, will not
be attached to any object yet, which is indicated by the text “<not connected



2.4. THE GRAPHICAL EDITOR 21

label>”. A not yet connected label can – and must – be connected to some
Petri net object (which could also be a sub-page) by choosing the tool “Link
Label”, clicking on a label, and then without releasing the mouse button
moving it over the object the label should be attached to. Then, a pop-up
menu will be opened showing you the possible kinds of labels that could still
be attached to the chosen object. This is shown in Figure 2.6 for a label that
is attached to a place of a P/T-System. The possible options are “Name”
(which is a legal option for any object, but only if there is no name attached
yet) or “PTMarking 0”, which is the initial marking for P/T-Systems (where
“0” is the default value). After the selection, the label of the chosen type
will be attached to the object. Again, attaching the label can be aborted
by pressing “ESC” or by clicking somewhere outside the pop-up menu.

Figure 2.6: Pop-up menu during attaching a unconnected label to an object

After the label has been attached to an object, it can be edited “in
place”, by clicking into it and pressing the ENTER key in the end. The
legal syntax of the label depends on the Petri net type and which kind of
label it is. In general, when editing labels and page labels there are two
different cases: The first case are simple labels, which typically are simple
values like “true” or “false”, values like numbers, arbitrary strings, or IDs
(in general, it will be some form of data types). If such a label is typed in
syntactically incorrect, the new value will be rejected, and the value of that
label will be reverted to the value it had before editing. The other case are



22 CHAPTER 2. USERS’ GUIDE

structured labels. These are, typically, labels with a complex syntax, as for
example the declarations of a high-level net (actually all labels of high-level
nets except for the names are structured). All these labels will be parsed
and checked for syntactical correctness; but the entered text will be stored
in all cases. If the text is syntactically incorrect, however, the structure is
not set and this will very likely result in some validation error later (see
Sect. 2.3.4). So this error needs to be fixed, by editing the label again. In
case of such an error, the label will be marked with a warning symbol (and
when the mouse is moved over the warning symbol, the tool tip will indicate
that the label could not be parsed). If, for example, we delete the comma
that separates the two sort declarations in the label “sorts B = (A*INT),
C = (B*B);” the label will be decorated with a warning symbol. Upon
validation, a validation error message will be given and later shown in the
problems view.

The documentation of the legal syntax of these type specific labels, in
particular the one of the structural labels, is part of the documentation
of the Petri net type definition. For the types deployed together with the
ePNK, this information can be found in Sect. 2.5.

Note that labels, in principle6, can have line-breaks. Since pressing the
ENTER button will finish the editing of a label, however, a line-break is
inserted to a label by pressing CNTRL-ENTER while editing the label.

Some Petri net types have quite many labels, and it is quite tedious
to create and link all these labels to a Petri net object. Therefore, the
graphical editor of the ePNK has a context menu when one of its objects is
selected, which will create and attach all missing default labels of that object
(and arrange them equally distributed around the object). The menu pops
up, when the right mouse button is pressed on the element; then select
“ePNK”→“Add default labels”.

2.4.3 Attributes

As discussed earlier, some “labels” of a Petri net object are not supposed
to be represented as graphical annotations of a Petri net object. These are
called attributes. Figure 2.7 shows an example of a Petri net which uses
attributes for some objects. It is a signal-event net (SE-net) [27], which will
be used later in the Developers’ Guide of this manual as an example of how
to define new Petri net types for the ePNK7.

6That is, if the legal syntax of a specific Petri net type does allow it.
7The reason we need to resort to SE-nets here is that all the Petri net types that are

defined in ISO/IEC 15909-2 use annotations only



2.4. THE GRAPHICAL EDITOR 23

Figure 2.7: A Signal/Event net open in the graphical editor

In this example, arcs have an arc type. If the arc type is not set, it is
considered to be a normal arc. The arc that is selected in Fig. 2.7, is of
type “inhibit”, i. e. it represents an inhibitor arc. The value of the attribute
is visible in the properties view, and can also be changed there. In this
example, the arc is graphically shown as a lollipop – which comes from
the implementation of that Petri net type, which implements a dedicated
graphical representation for these kind of arcs. Another example is the signal
arc (the one with the “flash” decoration), which is an arc of type “signal”.
For this net type, we have chosen the marking to be an attribute; therefore,
the marking is not shown as a label. It can only be changed by selecting the
respective place, and then changing the respective attribute in the properties
view. In this net type, the marking is indicated with a special graphics for
the place (as black tokens).

As mentioned before, the value of an attribute can be changed by select-
ing the respective object and then changing the value in the properties view.
Depending on the type of the attribute, this can be done by either typing
some text into the value column for that attribute or by a drop down menu



24 CHAPTER 2. USERS’ GUIDE

(if there are only finitely many possible values). If you want to reset a value
to the default value (the default is that the value is not set at all), you can
right-click into the property column of that property in the properties view
and then select “Restore default value”.

2.4.4 Pages

The graphical editor also allows you to create other pages on the page it
is showing. In order to avoid confusion, we call such a page a sub-page.
Creating a sub-page can be done with the “Page” tool, in the very same
way in which places or transitions are created on a page. In the graphical
editor, a sub-page is graphically represented as a rounded rectangle.

It is possible to open a graphical editor on a sub-page from the graphical
editor via a pop-up menu on the right mouse button: “ePNK” → “Start
GMF Editor on Page” (as we have seen it for the tree editor). And also
here, a double-click on the page in the graphical editor is a shortcut for
opening a graphical editor on this page. Therefore, the tree editor is needed
only for creating the top-level pages of the net; all the sub-pages could be
created by the graphical editor. But navigation to sub pages might be a bit
easier and much faster in the tree editor; this is why you would probably
want to use the tree- editor for navigating and opening sub-pages further
down in the tree-hierarchy. It is recommended not to create sub-pages in
the tree editor, since they would not have a position in the graphical editor.
Still, it is possible and the graphical editor would show these pages (as well
as other objects created in the tree editor) in the top-left corner, when it is
opened with the graphical editor for the first time. Then, you could move
it to a better position.

The graphical editor indicates by a special decoration when a sub-page
is open in some graphical editor: a symbol of an open folder.

What is more important about pages is how to deal with their labels.
Typically, all the type-specific labels are represented as page labels on the
respective sub-page. For HLPNGs, for example, the declarations of a page
are shown as page labels on that sub-page. The name, however, will be
shown as a label attached to that page on the super-page. Which labels
are shown as labels attached to the sub-page on the super page, and which
labels are shown as page label on the opened sub-page is up to the Petri net
type definition.

Note that some Petri net types, allow labels to be directly defined for
the net, in which case they are net labelsand not page labels. This applies
for example for all kinds of declarations in High-level Petri nets (HLPNGs).



2.4. THE GRAPHICAL EDITOR 25

Though, we do not recommend to use them, ISO/IEC 15909-2 mandates
tools to support them. The ePNL allows to add net labels in the tree editor,
if needed.

Note that even though, a Petri net can consist of many pages, the net is
considered as a single flat net only. Reference places and reference transi-
tions, are conceptually merged with the places and transitions they refer to.
This is what we call flattening of the net. In Sect. 3.3.4.4 of the Developers’
Guide, we will see that the ePNK provides mechanisms for accessing the
flattened net structure in a uniform way.

2.4.5 Graphical features

The graphical editor of the ePNK allows you to make all kinds of changes to
the graphical appearance of the Petri net. The features supported are the
standard features of GMF editors. Figure 2.8 shows the same net as above
again; in order to high-light some GMF features now, the grid and rulers
switched on.

Figure 2.8: The Signal/Event net again: now with grid and rulers



26 CHAPTER 2. USERS’ GUIDE

Since the graphical features are pretty straightforward, and are similar to
typical graphical editors, we do not explain the details here. The graphical
features can be changed in the properties view, when selecting the “Appear-
ance” section (up to now, the properties view had always shown the “Core”
section). Figure 2.8 shows the graphical features that can be changed, when
a node is selected. The available features vary for the different kinds of
objects.

Note that Petri net types can define a special graphical appearance for
some nodes or arcs, which depends on attributes or some other information
of the resp. element. In that case, some graphical information selected by
the user might be overruled by the specific graphical information for that
element of the Petri net type. You can see an example of such a specific
graphics in Fig. 2.8, where signal arcs and inhibitor arcs are shown in their
usual graphical notation. In this example, however, the specific graphical
information does not interfere with the user graphics. But, if a net type
defines that some specific arcs should be displayed in red colour, for example,
this would override the colour chosen by the user.

The ePNK saves the nets in exactly the graphical representation you see
them before you save the file. But, the exact graphical representation is
saved as a tool specific extension of the ePNK! This means that the exact
graphical representation can be reproduced in the ePNK only.

The ePNK also transfers most of the graphical information to the re-
spective features of PNML, so that other tools could reproduce almost the
same graphical appearance as you see it in the ePNK. Some features, how-
ever, are not supported by PNML (as for example the size of labels) and
some others are not yet transferred by the ePNK to PNML. In turn, some
graphical features of PNML are not supported by the ePNK editor (e. g. the
alignment of text in labels).

In Sect. 2.7.3, you will find a complete list of graphical information that
is transferred to PNML elements. Here is a brief list of graphical information
from the graphical ePNK editor that is not transferred to PNML: font styles
(bold or italic for labels); routing and jump link information for arcs. Note
that also the comments that you can place on a page will be lost in other
tools, since this is tool specific information only in the ePNK (comments are
not a concept of PNML).

Note that PNML nodes that do not have a size attached to them, will
have the width and height 40pt in the ePNK (which the GMF default).

Arcs can have intermediate points or bend points in the ePNK as well as
in the PNML. These intermediate points will be transferred to the PNML
model. But there is some caveat: when a node is moved in the ePNK



2.5. PETRI NET TYPES 27

editor, the bend points of the attached arcs might also be moved. Due to
some quirk in GMF, these changes are not transferred to the PNML model
at all. If you want to be sure that the intermediate points of the PNML
model corresponds to what you see in the graphical editor of the ePNK, you
should move at least one bend point of each arc attached to the node after
you have moved the node.

Arcs are either drawn as a polyline or as a bezier curves, which is defined
by the “Smoothness” chosen for the respective arc in the ePNK editor. The
ePNK draws an arc as a polyline, if the “Smoothness” is set to “None”; for
all other choices of “Smoothness” (i. e. “Normal”, “Less”, or “More”) the arc
will be drawn as a quadratic bezier curve, where every second intermediate
point is used as a control point as mandated by ISO/IEC 15909-2. The
information on whether an arc should be drawn as a straight line or as a
bezier curve is transferred to the PNML model.

The graphical editor of the ePNK also supports the image feature of
PNML: Every node can be assigned an image in the PNML model; instead
of the normal shape of the respective node, the image will be shown. The
ePNK supports JPEG and PNG – as required by PNML. Actually, the
ePNK supports even more image formats8. But, since the other formats are
not supported by PNML, we recommend to use the JPEG and PNG format
only.

The properties view has an image property, in which the path to the
image can be set directly when the resp. element is selected in the graphical
editor. The paths should be a relative path to the image, staring from the
folder that contains the PNML document.

Note that, for efficiency reasons, each image is loaded only once – the
first time it needs to be shown in the graphical editor. If you change an
image file and you want a graphical editor in an already open document to
show the new image, the image cache of the open editor must be cleared
explicitly. To this end, right-click on the top-level “Petri Net Doc” element
in the ePNK tree editor of that document and select “ePNK→“Clear Image
Cache”.

2.5 Petri net types

In this section, we give an overview of the Petri net types that are deployed
together with the ePNK. In the basic version of the ePNK, these are P/T-

8All image formats supported by the Eclipse SWT ImageLoader should work: BMP,
ICO, JPEG, GIF, PNG and TIFF.



28 CHAPTER 2. USERS’ GUIDE

Systems (PTNet) and high-level Petri nets (HLPNG). Moreover, there is
the empty type (Empty), which, however, does not contain any concepts in
addition to the PNML core model; therefore, we do not discuss the empty
type here. The empty type was introduced to explicitly indicate, that there
are no Petri net type specific extensions.

Actually, HLPNGs come in different levels or kinds: “dot nets”, which
are a way of representing P/T-Nets as high-level nets; basically, “dot nets”
are high-level nets restricted to the sort “DOT” and a minimal version of
operators on them; “symmetric nets” are a restricted version of high-level
nets that uses some special finite sorts and a limited set of operations only;
and the full version of high-level nets. The kind of a HLPNG can be changed
by selecting the HLPNG type in the tree editor and by selecting the kind
attribute in the properties view (identified by the respective URI as defined
by ISO/IEC 15909-2). For a detailed discussion of the legal constructs of
the different kinds of HLPNG, we refer to the discussion of ISO/IEC 15909-
2 [6]. Note that, in contrast to the Petri net type, the kind of a HLPNG
can be manually changed anytime, since the kind of HLPNG concerns the
validation only. The PNML syntax is the same.

2.5.1 PTNet

We start with explaining the details of PTNets. In Sect. 1.2.2 we have
already seen the additional features of PTNets, which are the initial marking
for places and the inscription for arcs. Both labels are simple labels, which
means that it will be checked right after editing a label whether the label is
syntactically correct (see Sect. 2.4.2); if it is not correct, the value will be
reverted to the value it had before.

The marking of a place must be a non-negative integer in any reasonable
representation9. The arc-inscription is similar, just that it must represent a
positive integer (i. e. must be a number greater than 0).

Moreover, PTNets have the restriction that arcs may only run from a
place to a transition or from a transition to a place, which will be enforced in
the graphical editor10. Actually, the constraint is slightly more complicated
due to reference nodes: We can connect place-like nodes (PlaceNodes) with
transition-like nodes (TransitionNodes) and vice versa; but semantically, i. e.

9For those who want to bother with the technical details, it can be any String that would
be accepted by the Java Integer.parseInt() method as a number and that evaluates to
a number greater or equal than 0.

10In the tree editor, illegal arcs can be created, but the respective net would not pass
validation.



2.5. PETRI NET TYPES 29

when flattening a net (see Sect. 2.4.4), this amounts to the above condition.

2.5.2 HLPNG

HLPNGs are much more involved than P/T-Nets and we cannot explain
them in all details here. For a detailed motivation and full account on what
HLPNGs are, we refer to ISO/IEC 15909-2 [8, 6]. Actually, HLPNG are
conceptually quite close to coloured Petri nets [9] or algebraic system nets
[19].

For HLPNGs, there are the following labels (in addition to names):

Declaration A declarationis a page label, which is used to define variables,
sorts,and operators, which can then be used in the other labels. Every
page can have any number of declarations and, within a single dec-
laration, different kinds of declarations can be mixed. Note that all
declarations are global (known in the complete Petri net), even though
they are attached to a specific page.

Declarations do not need to be contained in a page at all – they can
be contained directly in the net. We do not recommend to make use
of that; but ISO/IEC 15909-2 mandates this to be possible. So, the
ePNK can read nets with declarations which are directly contained in
the net and such net labels can be created in the tree editor of the
ePNK, if needed.

Type A type is a label that is associated with a place. Every place must
have exactly one type label which denotes the sort of the tokens on
that place. This sort can be built from the predefined sorts of HLPNGs
or some user-defined sorts.

HLMarking A marking is a label that is attached to a place and defines
the place’s initial marking. The marking is represented by a ground-
term11, which must denote a multiset over the place’s type. Note
that this label may be omitted, in which case the initial marking is
considered to be empty. There can be at most one label of this kind.

Condition A condition is a label that can be attached to a transition. The
condition is a term of type boolean and can contain variables. There
can be at most one condition; if the condition is missing, it is assumed
to be true.

11A ground-term is a term that does not contain variables.



30 CHAPTER 2. USERS’ GUIDE

HLAnnotation An arc annotation is also a term that may contain vari-
ables. The term must be a multiset term over the type of the place
to which the arc is attached. Every arc should have exactly one arc
annotation12.

All labels of HLPNGs are structural labels (see Sect. 2.4.2), which means
that the user can edit them and leave them syntactically incorrect. Of
course, this will not pass validation; but, it is possible to save nets with
incorrect labels and load them again, so that the labels can be corrected
another time.

PNML does not define or mandate a concrete syntax for declarations
and terms. The concrete syntax for the labels is up to each tool; so it might
be different in different tools. What matters is the abstract syntax. In
order to, get the abstract syntax of a HLPNG net of some net from another
tool into the concrete representation of the ePNK, the ePNK provides a
pop-up action, which converts the abstract syntax into ePNK’s concrete
syntax. It is available in the tree editor13, when a HLPN object is selected
“ePNK”rightarrow“Serialise HLPNG Labels”.

ePNK’s concrete syntax for HLPNG labels resembles the one of CPN
Tools [9], but it is not identical to the one of CPN Tools! Below, we explain
this ePNK’s concrete syntax for labels. Before going into the details of the
syntax, we briefly discuss some examples.

The following shows several declarations of variables, sorts and operators.
Each of them could be in a separate declaration label, but they could also
be contained in a single declaration:

vars

x:NAT;

sorts

A = MS(BOOL);

ops

f(x:INT, y:INT) = x * y,

g() = 1;

12Actually, ISO/IEC 15909-2 would allow that this label is missing. This does not make
much sense though since, in most cases, there is no reasonable standard interpretation if
the label is missing.

13Note that you must have installed the “HLPNG Label Serialisation” feature for this
to work.



2.5. PETRI NET TYPES 31

sorts B = (A*INT), C = (B*B);

First, a variable x of built-in sort NAT is defined. Then a user-defined
sort A is defined, which is a multiset over the built-in sort BOOL. Then, two
named operations are defined, f and g. The operation f takes two parameters
of type INT; the operation g does not have parameters. Note that named
operations, basically, are abbreviations and, therefore, do not allow any
recursion (see [6] for details). In the end, two other user-defined sorts are
defined: B is a product of A and the built-in sort INT, and C is a pair over
sort B. Note that also for sort declarations, recursion is not allowed.

The right-hand sides of the sort declarations above give you an idea of
the syntax for sorts already. There are some built-in sort like BOOL, INT,
NAT, POS and DOT. From these, we can built products or multiset sorts.

Here are some examples of terms (using the above declarations):

x‘f(x,x) ++ 1‘x ++ x‘g() ++ 1‘5

1‘(dot,1) ++ 1‘(dot,1*1)

x > 1 and x < 5

The first is a multiset term over the sort INT, which could be used in arc
inscriptions (if the attached place is of type INT). The second is a ground
term over the product of built-in sort DOT with INT, where DOT is a sort
that represents a type with a single element dot. The last term is a term of
sort BOOL, which could be used as a condition.

The precise syntax is defined by the following grammar (that actually
is a simplified version of the grammar that was used for generating the
parser). The terminals ID, INT, NAT, STRING in this grammar represent
legal identifiers and legal representations of integer numbers, non-negative
integer numbers and string constants.

Listing 2.1 shows the part of the grammar for declarations. Listing 2.2
shows the part of the grammar for terms. Note that we have simplified
the grammar for making it more readable. The simplification, however,
makes the grammar ambiguous (i. e. some texts could be parsed in two or
more different ways). The ambiguities can be resolved again by assigning a
binding priority to the different operators – moreover all operators are left-
associative. Each line in the declaration of BinOp represents operators on
the same level of priority, where the first line has the least binding-power and
the last the highest. The unary operators (actually there is only one) have
the highest binding power of all. Note that there are also some operators



32 CHAPTER 2. USERS’ GUIDE

Listing 2.1: Grammar for declarations

Declarations :

( ’sorts’ SortDecl ( ’,’ SortDecl )* ’;’ |

’vars’ VariableDecl ( ’,’ VariableDecl )* ’;’ |

4 ’ops’ OperatorDecl ( ’,’ OperatorDecl )* ’;’ |

’sortsymbols’ ArbitrarySort ( ’,’ declaration )* ’;’ |

’opsymbols’ ArbitraryOperator ( ’,’ ArbitraryOperator )*

)*;

9 SortDecl :

NamedSort | Partition;

NamedSort :

ID ’=’ Sort;

14

VariableDecl :

ID ’:’ Sort;

OperatorDecl :

19 NamedOperator;

NamedOperator :

ID ’(’ ( VariableDecl ( ’,’ VariableDecl )* )? ’)’ ’=’ Term;

24 Sort :

BuiltInSort | MultiSetSort | ProductSort | UserSort;

MultiSetSort :

’MS’ ’(’ Sort ’)’;
29

ProductSort :

’(’ ( Sort ( ’*’ Sort )*)? ’)’;

UserSort :

34 ID;

ArbitrarySort :

ID;

39 ArbitraryOperator :

ID ":" ( Sort ("," Sort )* )? "->" Sort;



2.5. PETRI NET TYPES 33

Listing 2.2: Grammar for terms

Term :

Term BinOp Term |

UnOp Term |

BasicTerm;

5

BinOp :

// all binary operators are left-associative

’or’ | ’implies’ | // lowest priority

’and’ |

10 ’>’ | ’>=’ | ’<’ | ’<=’ | ’contains’ | // all comparison ops

’<r’ | ’<=r’ | ’>r’ | ’>=r’ | // on same level

’<p’ | ’>p’ | //

’<s’ | ’<=s’ | ’>s’ | ’>=s’ | //

’==’ | ’!=’ |

15 ’++’ | ’--’ |

’‘’ |

’+’ | ’-’ |

’*’ | ’**’ | ’/’ | ’%’ ; // highest priority

20 UnOp :

’not’ ; // higher priority than all binary operators

BasicTerm :

Variable |

25 UserOperator |

OtherBuiltInOperator |

BuiltInConst |

’(’ Term ’)’ | // a sub-term in parentheses

’(’ Term ( ’,’ Term )+ ’)’; // a tuple

30

Variable :

ID;

UserOperator :

35 ID ’(’ ( Term (’,’ Term )* )? ’)’ ;

OtherBuiltInOperator :

’|’ BasicTerm ’|’ | ’#(’ Term ’,’ Term ’)’ |

CyclicEnumsBuiltInOperator | PartitionsBuiltInOperator |

40 StringsBuiltInOperator | ListsBuiltInOperator;



34 CHAPTER 2. USERS’ GUIDE

like the cardinality, which use circumfix notation: if m is some multiset |m|
denotes the cardinality of that multiset. This operator has the same binding
power as parentheses.

Listings 2.3 and 2.4 show the part of the grammar for built-in sorts and
constants. Note that every number constant will implicitly be assigned the

Listing 2.3: Grammar for sorts and constants (1)

BuiltInSort :

Dot | Boolean | Number | FiniteEnumeration | CyclicEnumeration |

FiniteIntRange | StringSort | ListSort ;

5 BuiltInConst :

DotConstant | BooleanConstant | MultisetConstant |

NumberConstant | FiniteIntRangeConstant |

StringConstant | ListConstant ;

10 MultisetConstant :

’all’ ’:’ Sort |

’empty’ ’:’ Sort;

Dot :

15 ’DOT’;

DotConstant :

’dot’;

20 Boolean :

’BOOL’;

BooleanConstant :

’true’ | ’false’;
25

Number :

’INT’ | ’NAT’ | ’POS’ ;

NumberConstant :

30 INT (’:’ Number)?;

tightest fitting sort: INT, NAT, or POS. If a positive integer, say 5 should
have the type INT instead, this can be expressed by 5:INT, which works like
a type cast in object-oriented programming languages.

In addition to these syntactical constraints, the terms must also be cor-



2.5. PETRI NET TYPES 35

Listing 2.4: Grammar for sorts and constants (2)

FiniteEnumeration : ’enum’ ’{’ ID ( ’,’ ID)* ’}’ ;

CyclicEnumeration : ’cyclic’ ’{’ ID (’,’ ID)* ’}’ ;

5 CyclicEnumsBuiltInOperator :

’succ’ ’(’ Term ’)’ | ’pred’ ’(’ Term ’)’ ;

FiniteIntRange : ’[’ INT ’..’ INT ’]’ ;

10 FiniteIntRangeConstant : INT FiniteIntRange ;

Partition :

’partition’ Sort ’in’ ID

’{’ PartitionElement ( ’;’ PartitionElement )* ’}’;
15

PartitionElement : ID ’:’ Term ( ’,’ Term )* ;

PartitionsBuiltInOperator : ’partition’ ’:’ ID ’(’ Term ’)’;

20 StringSort : "STRING" ;

StringsBuiltInOperator :

"concatstring" "(" Term "," Term ")" |

// note that we do not have append (does not make sense)

25 "stringlength" "(" Term ")" |

"substring" ":" NAT "," NAT "(" Term ")" ;

StringConstant : STRING ;

30 ListSort : "LIST" ":" Sort;

ListsBuiltInOperator :

"concatlists" "(" Term "," Term ")" |

"appendtolist" "(" Term "," Term ")" |

35 "listlength" "(" Term ")" |

"sublist" ":" NAT "," NAT "(" Term ")" |

"memberat" ":" NAT "(" Term ")" |

"makelist" ":" Sort "(" (Term ( "," Term)* )? ")" ;

40 ListConstant : "emptylist" ":" Sort ;



36 CHAPTER 2. USERS’ GUIDE

rectly typed, which we do not discuss here in detail.

For HLPNGs, there are many constraints. Like for PTNets, arcs may
only run from places to transitions or from transitions to places. All of the
other additional constraints concern the correctness of the labels of HLP-
NGs. The following list gives an overview:

1. Every place must have a correct type (a correct sort in the context of
the defined sorts of the net).

2. Every declaration must be syntactically correct and correctly typed.

3. Every declaration must properly resolve (must not be recursive and
all symbols it refers to must be defined).

4. Every term (in markings, arc annotations, and conditions) must be
syntactically correct and correctly typed.

5. The marking of a place must be a ground term and must be a multiset
over the sort of the place.

6. The arc annotation must be a term that is a multiset over the attached
place’s sort.

7. Every condition must be a term of sort BOOL.

8. Every declaration should have a distinct name (actually, this causes a
warning only since this is a condition on concrete syntax, which is not
part of PNML).

9. The parameters of every operation declaration should have distinct
names (actually, this causes a warning only since this is a condition
on concrete syntax, which is not part of PNML).

As mentioned earlier, PNML and ISO/IEC 15909-2 do not define a con-
crete (textual) syntax for declarations and terms. The syntax defined here
is a syntax specific to the ePNK. In principle, a PNML document with
a high-level Petri net in it could leave all the textual parts of the labels
empty. In that case, the most important structure and content of these la-
bels would not be visible in the graphical editor at all. The user would not
see and would not be able to edit the labels textually. In order to convert
this structural information into some text that can be edited by the user in
the ePNK, a simple extension to the ePNK is deployed as a separate fea-
ture called “HLPNG Label Serialisation”. If you have the “HLPNG Label



2.6. FUNCTIONS AND APPLICATIONS 37

Serialisation” feature installed, you can serialize all structured labels to the
textual syntax of the ePNK. To this end, right-click on the respective HLPN
element (the Petri net) in the tree editor; then select “ePNK”→”Serialise
HLPNG Labels”.Then, you will be able to see and edit the labels in the
syntax that we have discussed above (independently from which editor the
PNML file came from).

2.5.3 Other types

Note that there are some other Petri net types coming with the ePNK, if if
you have the ePNK tutorial installed. Most notably, there are Signal/Event-
systems (SE-Nets) , which we will use as an example later in the Developers’
Guide (see Chapt. 3). Moreover, there is a technical Petri net type where
pages and arcs are equipped with comments, and arcs can have different
types. This type is called ArcTypes, but mainly serves as a tutorial for using
attributes, and for equipping a net with graphical extensions.

If you have the ECNO extensions installed, you have so-called ECNO
nets, which allow to model the life-cycle of elements in the so-called Event
Coordination Notation. These are a story of their own [17] and are not
discussed here.

2.6 Functions and Applications

The ePNK in its basic version does not come with much functionality for
analysing, simulating and verifying Petri nets. Its main purpose, is to pro-
vide a graphical editor for Petri nets and PNML Documents, and to provide
an infrastructure so that new Petri net types and new functions and appli-
cations for Petri nets can be plugged in. By and by, some functions have
been developed that are now deployed together with the ePNK. And there
are some applications of the ePNK, which are projects in their own right –
for example the ECNO project, which generates code for so-called ECNO
nets [16]. We hope, that over time, more functions and applications of other
ePNK developers will be deployed together with the ePNK.

In this section, we explain some of the basic functions and applications
that are deployed together with the ePNK. In these examples, we will also
explain the ePNK applications view, which is used as a general user interface
for the end user to control ePNK applications. Later, in the Developers’
Guide in Chapt. 3, we explain how you can contribute your own functions
and applications to the ePNK.



38 CHAPTER 2. USERS’ GUIDE

Generally, the ePNK distinguishes functions and applications. A func-
tion is something, which is initiated on some Petri net, possibly asking the
user for some extra input, then does some computation, and when the com-
putation is finished, provides some output to the user in form of some dialog.
After that, the function and its result are gone. One example of such a func-
tion is the verification of some CTL formula for some Petri net by a model
checker, which is discussed in Sect. 2.6.1. In particular, the model checker
does not show or visualize any result in the Petri net itself. Also an applica-
tion is initiated on some net. In contrast to a function, the application has
a longer live-time, it shows some feedback to the user on top of the Petri
net in the graphical editor, and also provides means for the user to inter-
act with the application. An example of such an application is a simulator
for high-level Petri nets, which is discussed in Sect. 2.6.3. This simulator
shows graphically which transitions are currently enabled, and, by clicking
on them, the user can determine which transition should fire next.

2.6.1 A simple model checker for EN-systems

In this section, we briefly discuss how to use the model checker, which can be
initiated on P/T-nets. Note that even though this model checker is initiated
on P/T-nets, the model checker interprets the net as an Elementary Net
System (EN-systems) [29, 26], which means that at any time on any place,
there can be at most one token. A transition that would add another token
to a place, would not be able to fire – and all arc-inscriptions are ignored.

Figure 2.9 shows a P/T-net which consists of several pages. Page pg0
(not visible) contains a single place semaphor with one initial token, and
pages pg1, pg2, and pg3 model three agents with the same life-cycle, which is
shown in the graphical editor in Fig. 2.9. The three agents are competing for
the semaphor in order to access their critical section criticalx. Actually, this
net was automatically generated by a wizard for creating a net with any num-
ber of agents. This wizard can be initiated by “File”→“New”→”Other...”
and then selecting “Multi-agent Mutex Net Wizard” from the category
“ePNK”.

The model checker on this net can be initiated by right-clicking on the
Petri net element in the tree editor and then selecting “ePNK”→“Model
checker”. Then, a dialog like the one in Fig. 2.10 pops up, where two CTL
formula, which make sense in any system, are provided as a default input
to the model checker:

AG EX true, EG EX true # deadlock free, infinite path



2.6. FUNCTIONS AND APPLICATIONS 39

Figure 2.9: Mutex example with multiple agents

As indicated by the comments behind the hash symbols, these two formula
will check whether the system is deadlock free and whether there is at least
one infinite path. You can of course enter some other formulas, which can

Figure 2.10: Model checking dialog: Input of formulas

use place names in order to formulate some more specific properties like:

AG !(critical1 and critical2) # mutual exclusion for 2 agents

AG (pending1 -> AF critical1) # ag.1: pending leadsto critical

For the exact syntax of the temporal formulas (CTL formulas), we re-
fer to the documentation of the MCiE library http://www2.cs.uni-

paderborn.de/cs/kindler/Lehre/MCiE/ and its example formulas, and we
recommend to have a look into the documentation of MCiE’s parser pack-
age. Place names will be used as variables in the formula. You need to make



40 CHAPTER 2. USERS’ GUIDE

sure that place names of the Petri net are legal MCiE variable names (in
particular, there should not be white spaces or special characters in them).
One speciality of the syntax of CTL formulas of MCiE is that the binary
temporal operators, such as EU and AR, are represented in infix notation
like p1EUp2 instead of the more common notation E[p1Up2]. Moreover,
you can use the hash symbol # as a line comment – everything following the
hash symbol in the same line is ignored by the MCiE parser.

If the formulas entered to the dialog in Fig. 2.10 are syntactically in-
correct, the dialog will pop up again, indicating the position of the syntax
error. You can either correct the error or abort the dialog.

If the sequence of formulas is syntactically correct and the dialog was
not aborted, the model checker will be started on the net and check all the
formulas. Since model checking can take quite some time for larger nets,
the actual model checking is done in the background, so that the Eclipse
GUI is not blocked while the model checking is done. This is actually an
Eclipse concept, which is called jobs. If a job should take too long, it can be
aborted in the Eclipse progress view, which can be easily opened while jobs
are running in the background by clicking on the progress indicator in the
bottom line to the right of the Eclipse workbench14.

When the model checking job is finished, this will be indicated by a
symbol in the bottom right corner of the Eclipse workbench. When you
click on it, a dialog with the model checking result will pop up. For the
net and the CTL formulas from the input dialog above, the result dialog is
shown in Fig. 2.11, indicating that the first three formulas evaluate to true,
the third evaluates to false15.

Figure 2.11: Model checking dialog: Result

14If the Eclipse progress area and icon are too small for you, you can open the
Eclipse progress view explicitly: “Window”→ “Show View”→ “Other...” and then se-
lect “Progress” in category “General”.

15The reasons for this property not being true is that there are not fairness assumptions
in this net.



2.6. FUNCTIONS AND APPLICATIONS 41

2.6.2 Applications view

As mentioned above, ePNK applications are a bit more involved, since the
user can interact with them, and applications can show some visual feedback
to the user and interact with the user with visual feedback on top of the
Petri net shown in the graphical ePNK editor. One example of such an
application is an interactive simulator for high-level nets, which is discussed
in Sect. 2.6.3.

In order to explain the applications viewof the ePNK that is used for con-
trolling the running applications and for choosing which application the user
wants to interact with, we discuss a simple application: a simple simulator
for Place/Transition-nets.

Figure 2.12 shows the ePNK with a P/T-net, two of the net’s pages are
open in the graphical editor. At the bottom, the applications view of the
ePNK is shown. Note that, initially, the application view is not open in
Eclipse. You can open it in the following way: Choose “Window”→“Show
View”→“Other...”; then, in the opened “Show View” dialog select “ePNK:
Applications” from the “ePNK” category.

Figure 2.12: Application view a P/T-net in graphical editor

In Fig. 2.12, no applications are running yet. When an editor of a net is
selected, you can start an application by selecting an application from the



42 CHAPTER 2. USERS’ GUIDE

drop down menu, which is marked by a red circle in Fig. 2.12. This menu
will show all registered applications for the selected Petri net type as well as
the option to load an application that was saved earlier, which we discuss
later.

Once you have started the P/T-net simulator, the started application
shows up in the application view, and the net in the graphical editor is
decorated with some additional information. In the case of the simulator,
it shows the current marking as a blue textual label at the top-right of the
respective place; and the enabled transitions are highlighted with a blue
overlay. When the user clicks on these overlays, the respective transition
fires. Fig. 2.13 shows the simulator after the user fired transitions t1.2 and
t2.2. Note that you might not see all graphical feedback, since some pages
are not open in the graphical editor or the graphical editor is not on the
top. You need to open the pages on which you want to see the feedback
yourself. In addition, the application view shows some more tools in its tool

Figure 2.13: Simulator application on P/T-net running

bar (marked in Fig. 2.13) by a red ellipse. The back and forward buttons
allow the user to navigate to the previous or next markings, and the save
buttons allow to save the state of the simulator. The user can also start
further applications by the respective drop down menu. And the user can
shut down an application by selecting one or more applications by checking



2.6. FUNCTIONS AND APPLICATIONS 43

the boxes to the left of an application, and then clicking on the delete tool.
Which tools are shown in the toolbar of the application view depends on
the specific application; but the ones shown in Fig. 2.13 are there by default
and therefore, most applications will have them.

Note that an application is always started from and associated with a
net that is open in an editor. If the editor is closed, all applications on
the respective net are shut down. But, as mentioned above, you can save
the state of an application, so that it can be restarted in that state later.
Fig. 2.14 shows the Eclipse workspace after saving the state of a simulator
by pressing the “Save as” button for the simulator application. In that case
the user will be prompted for a folder and file name. The default is the same
name as the net with file extension “.apnml” for annotated PNML. After
the first save, the state of the application can be saved again, by simply
pressing the “Save” button. Later the application can be started by the

Figure 2.14: Simulator application with a saved state

drop down menu selecting “Load application” and then selecting the file to
which the state was saved before.

Note that there is always at most one application active in the ePNK,
and only the decorations of this active application are shown in the graphical
editor. But, there can be many applications running at the same time. All
running applications are shown in the applications view, and by selecting



44 CHAPTER 2. USERS’ GUIDE

an application there, it becomes active. You can also deselect an active
application by clicking on it with the CTRL-button pressed at the same
time.

2.6.3 A simulator for high-level nets

In this section, we discuss the simulator for high-level Petri nets, which is de-
ployed together with the ePNK. It was developed by Mindaugas Laganeckas
as part of his master’s project [22]. The simulator is able to simulate high-
level Petri nets as well as so-called high-level net schemas [19, 20, 24, 6, 8],
which can be instantiated with some communication network in order to
simulate a network algorithm on a specific network [25].

Note that all examples that are discussed in this section can be obtained
from the ePNK home page together with release 1.2.0 of the ePNK: http:
//www2.compute.dtu.dk/~ekki/projects/ePNK/.

2.6.3.1 The basic simulator for high-level nets

We start with explaining the simulator for normal high-level nets in this
subsection and explain the simulator for net schemas later in Sect. 2.6.3.3.

Figure 2.15 shows the simulator application running on a simple high-
level net. The high-level net models a simple algorithm that computes the
prime numbers according to the principle of the “Sieve of Eratosthenes”: It
starts with a multiset of all the numbers from 2 up to some upper limit (11
in our example) on the place called numbers. Then, transition t removes a
number (the value of x*y) from this place, if this number is a multiple of
some other number (the value assigned to x) on that place. When no number
on the place is a multiple of another number on that place, the transition
cannot fire anymore – and the algorithm terminates. The numbers that are
left on place numbers are prime numbers. In Fig. 2.15, there is only one
last non-prime number left: 6. The current marking of the place is shown
as a blue label at the top-right corner of the place (a long stack of tokens
represented as a multiset term in the concrete syntax for HLPNGs of the
ePNK).

We assuming that you have obtained and installed the examples from
the ePNK home page already. Next, we explain how to start the simulator
on these examples and how to open the additional simulator view, which
shows the firing sequence up to the latest point in the simulation. Then, we
will explain how to interact with the simulator.

If you did not do that already, you need to open the ePNK applications



2.6. FUNCTIONS AND APPLICATIONS 45

Figure 2.15: ePNK with a simulation application running on a HLPNG

view as described16 in Sect. 2.6.2. The Simulation view can be opened in
a similar way: Choose “Window”→“Show View”→“Other...”; then, in the
“Show View” dialog, select “Simulation View” from the “HLPNG Simulator
Category”. By clicking on the tab at the top of the views, you can arrange
them in a way similar to Fig. 2.15, since it will be convenient, if you can see
the applications view and the simulation view at the same time.

The easiest way to start the simulator on a high-level net is to open the
graphical editor on one of the nets pages. Then, right-clicking on the drop-
down menu in the ePNK applications view will show all the applications that
are available on this type of net. Selecting the The simulator can be started
on a high-level net by right-clicking on the HLPNG element in the ePNK
tree editor and then selecting “HLPNG Simulator” will start the simulator
on this net.

Once the simulator application is started and selected in the ePNK appli-
cation view, the simulation view shows the firing sequence of all transitions

16In short: Choose “Window”→“Show View”→“Other...”; then, select “ePNK: Appli-
cations” from the “ePNK” category.



46 CHAPTER 2. USERS’ GUIDE

(along with the firing mode) from the initial marking up to the last step of
the current simulation. If no simulation application is selected, the simula-
tion view shows the firing sequence of the last active simulation. You can
click on the different entries and navigate up and down with the resp. but-
tons of the keyboard; then the net will show the marking before the selected
transition is fired. The current marking for each place is shown as a blue
label at the top right of every place – if there is no label, the place’s marking
is currently empty.

When a simulator application is selected in the applications view, you
will find several action buttons on the top right of the applications view,
which can be used to control the simulator (as shown in Fig. 2.15). The back
(left arrow) and forward (right arrow) buttons allow you to navigate back
and forth in the firing sequence (which had been simulated already). The
play button (white triangle in green circle), starts the automatic and random
firing of some transitions – as long as there are enabled transitions. The
simulation speed can be selected by a drop down menu on the small triangle
right of the play button. It can actually be changed while the automatic
simulation is running. The automatic simulation can be stopped – actually
“paused” – by the pressing the pause button. The automatic simulation can
be started any time by pressing the play button again. By pressing the stop
button, (red box), the simulator is reset to the initial marking as defined by
the net. Pressing the cross icon (delete button) to the right will stop and
shut down the simulator; note that this is actually a general functionality
provided by the ePNK application view, which is available for all running
applications.

The automatic simulation will randomly choose any of the currently
activated transitions, and randomly choose a firing mode. If the simulation
is paused, however, the activated transitions are high-lighted by a green
overlay. You can click on these green transitions17; then, a menu will pop up,
which shows all the possible firing modes for that transition from which you
can select. Then, the transition will be fired in the selected mode. Clicking
somewhere else or pressing the ESC button, will cancel the selection.

Note that if you go back to some earlier state of the simulation by select-
ing a transition in the simulator view or by the back button in the simulator
application, the marking at that point in the firing sequence will be shown.
You will see that one transition is high-lighted by a blue (and darker) over-
lay. This is the transition to fire next in the firing sequence as shown in the

17You will also be able to click on a transition which is high-lighted in grey or blue, as
will be discussed later.



2.6. FUNCTIONS AND APPLICATIONS 47

simulation view. There might also be some other transitions high-lighted
by a green overlay, which would have been alternative choices at that point.
Note that also a blue transition might “hide” alternative choices that are
not graphically high-lighted, since it might be able to fire it in different firing
modes.

If you are in such an intermediate state of a firing sequence, you can still
interact with the transitions by clicking on them as discussed above and
by selecting a firing mode, which will fire this alternative transition in that
marking. Note that, in this case, all the later firing steps of the earlier firing
sequence are deleted. From the current point on, a new branch of simulation
will be followed. This way, you will be able to explore different branches of
the reachability graph of the Petri net.

Note that, in some cases, the simulator is not able to compute the firing
modes fully automatically, and is not able to decide whether a transition is
enabled. In that case, the respective transition is high-lighted with a grey
overlay. This does not happen in the prime factors example, but it will
happen all-over in the example “factorize”. Once you click on one of the
transitions with a grey overlay, you will be prompted for possible values for
the different variables. You can enter a semicolon separated list of values
for each of the variables; then the simulator will try to compute possible
firing modes based on these values. Note that you do not need to provide
values for all variables; in many cases, it is enough to provide the value for
one variable from which the values for the other variables can be derived.
If the simulator can compute some enabled firing modes, the transition will
be high-lighted in green, so that you can actually select the mode in which
this transition should fire. You can still select “Manual input” for providing
more or other possible values. If no modes could be found, the transition
will remain high-lighted in grey; only if you provide values for which the
transition can fire (or enough information for the simulator to figure that
out), the transition will actually become enabled.

2.6.3.2 HLPNG operations supported by the ePNK simulator

High-level nets as defined in ISO/IEC 15909-2 have quite many built-in op-
erations. The simulator of high-level nets for the ePNK does, unfortunately,
not yet support all these operations. This, in particular, applies to the sorts
and operators for symmetric nets.

The following sorts of ISO/IEC 15909-2 are supported in the current
version (1.1.1) of the simulator: DOT, BOOL, NAT, POS, INT, and STRING
as well as the generic sorts product, multiset and lists over existing sorts.



48 CHAPTER 2. USERS’ GUIDE

The following operators are supported: == and != on all sorts; or and
and on BOOL; +, -, *, /, %, <, and > on NAT, POS and INT; concatstring
for Strings; ’, ++, - -, all, and empty on multisets; the tuple operator for
products; emptylist, makelist, memberat, sublist, length, appendtolist, and
concatlists for lists.

The sorts and operators introduced for symmetric nets are not supported
by the simulator at all.

2.6.3.3 The simulator for network algorithms

In this section, we discuss the simulator for network algorithms. Before dis-
cussing the simulator itself, we discuss the concept of network algorithms and
the way they are modelled as algebraic nets schemas or – in the terminology
of ISO/IEC 15909 – high-level Petri net schemas (HLPNGS). To this end,
we use an example which – except for syntactic sugar – is almost identical
to the first publications that used algebraic net schemas for modelling and
verifying network algorithms [19, 31, 24]: it is a simple algorithm that, for
a given network of computing agents with some distinguished root agents,
computes the minimal distance of each agent from a root agent. The Petri
net modelling the algorithm is shown in Fig. 2.16. In the example projects

sortsymbols

   AGENT;

sorts

   MESSAGE=(AGENT*NAT),

   DISTANCE=(AGENT*NAT);

opsymbols

   ROOT:->MS(AGENT),

   I:->MS(AGENT),

   N:AGENT,NAT->MS(MESSAGE);

vars

   x:AGENT,

   n:NAT,

   m:NAT;

root nodes

AGENT

ROOT() init root

inner nodes

AGENT

I()

init inner

messages

MESSAGE

distances

DISTANCE

update

n<m

1`x

1`x

N(x,1)

1`(x,n)
N(x,n+1)

1`(x,0)

1`(x,n)

1`(x,n)

N(x,n+1)

1`(x,m)

1`(x,n)

Figure 2.16: Network algorithm computing the minimal distance to a root

deployed for the ePNK 1.2.0, you will find it in subfolder min-distance of
folder network-algorithms.

One of the main features of a Petri net schema is that, the Petri net
model itself is completely independent from the actual network of agents
on which the algorithm is working. In the model from Fig. 2.16, the set
of agents of the network is represented by the sort AGENT, but it is just
a symbol – which still needs some interpretation. The multiset constant



2.6. FUNCTIONS AND APPLICATIONS 49

ROOT represents the set of root nodes, and the constant I represents the set
of non-root nodes (or inner nodes).

Moreover, there is an operation N, which takes an AGENT and a natural
number as a parameter. This function represents sending a message from
one agent to all its neighbours in the network – where the message itself is
a natural number. A MESSAGE to an agent is represented by a pair, where
the first component is the receiver AGENT and the second component is the
actual content of a message. If there is a distance computed for some agent
already, this is also represented as a pair of an AGENT and a number NAT
– for making the difference clear, we call this pair DISTANCE.

Initially, the place root nodes contains all the root nodes of the network;
the place inner nodes contains all the inner nodes. The transition init root
models the initial step of a root node x: it sets its own distance to 0, which
is represented as a pair (x, 0), and adds a message to all its neighbours
that they might have distance 1 from a root node – all these messages are
represented by N(x, 1). Transition init inner models the initial step of an
inner node: when an inner node x initially receives some message with some
distance n, it stores this distance as a potential shortest distance, and sends
a message to all its neighbours with distance n + 1, which is represented by
N(x, n+ 1). An inner node x can later receive other messages with another
distance n; if the other distance n is less than its current distance m, the
agent takes distance n as its new distance, and sends a message with distance
n + 1 to all its neighbours. This is modelled by transition update.

As said before, the Petri net model from Fig. 2.16 models a minimal
distance algorithm for any network. If we want to simulate the algorithm,
we need to know on which network it should run. To this end, a very
simple network editor is deployed together with the high-level simulator of
the ePNK. Figure 2.17 shows the network editor with a simple example
network. In this case, it is a network with directed arcs. The network
simulator can be started in the same way as the simulator for general high-
level nets. Once, a page of the net is open in the graphical editor, right-click
the drop-down menu in the ePNK application view, and select “Network
algorithm simulator”. If there is a network file with the same name as
the Petri net model in the same folder, the network simulator chooses this
network for the simulation. If there is no such file, the user will be prompted
for a file with a network model. Once the network model is selected, the
interpretations of the sort AGENT, the constant symbols ROOT and I, as
well as the function N (sending a message to all the neighbours of the agent)
are defined by this network. For example, for the network of Fig. 2.17, the
set associated with the sort AGENT is {A,B,C,D,E}; the constant ROOT



50 CHAPTER 2. USERS’ GUIDE

Figure 2.17: A network on which the algorithm could work

denotes the multiset [A,B], the constant I denotes the multiset [C,D,E]; for
x = A and n = 5, the term N(x,n) will evaluate to the multiset [(C, 5), (D, 5)]
– representing the message 5 to each neighbor of agent A. And these will
be the interpretations the simulator will be using for simulating the net.

Figure 2.18 shows the network simulator running on the minimal distance
algorithm from Fig. 2.16 on the network from Fig. 2.17. The interaction with
the simulator and the way to control the simulation is exactly the same as
described for the basic simulator in Sect. 2.6.3.1, once the network simulator
is properly initialized with a network.

The editor for the network is a simple editor generated by GMF and
follows the GMF philosophy. A new network can be created by “File”→
“New” → “Other...” and then selecting “Network Diagram” from category
“Examples”. In this diagram, you can add nodes, directed and undirected
edges between the nodes, as well as categories for nodes. When a node is
selected, each node can be associated with any number of categories by a
menu that pops up when clicking in the category property in the properties
view. In Fig. 2.17, the association with categories is also shown by using
the same colour for the category and the resp. nodes; but the colour itself
does not have any meaning in the diagrams, its only purpose is to make the
network diagrams easier to grasp on a single glance.



2.7. LIMITATIONS AND PITFALLS 51

Figure 2.18: Network simulator running on the minimal distance algorithm

For a given network, the sort AGENT is associated with the set of nodes;
for every category, the respective constant symbol is associated with the
multiset of nodes that are in that category (in our example, these are the
root nodes and the inner nodes). For the operation symbol N, N(x,m)
denotes a multiset of pairs, where for each outgoing arc from x to y there is
a pair (y,m) in the multiset. S(x) is a multiset of pairs over agents, where
there is a pair (y, x) in the multiset if there is an undirected arc from x to y;
these represent all messages that are sent from agent x to all its neighbours.
Likewise R(x) contains all the messages received from all its neighbours.

A Petri net modelling the echo algorithm, which is another example de-
ployed together with the ePNK, makes use of the send and receive operations
S and R. But, we do not explain the echo algorithm here – see [31, 20] for
details18.

2.7 Limitations and pitfalls

The current version of the ePNK (1.2.0) still has some minor limitations.
Moreover, some functionality of the ePNK’s functionality might not be ex-

18The operation S is denoted with M and the operation R is denoted with M in [20] –
and the other way round in [31].



52 CHAPTER 2. USERS’ GUIDE

actly where you would expect it. In order to avoid some unpleasant surprises
these issues are briefly discussed in this section.

2.7.1 Saving files: Tree editor

Technically, the tree editor and the graphical editor of the ePNK are different
editors, they just work on the same underlying model. The graphical editors
can be initiated via the tree editor only (via the pop-up menu “Start GMF
Editor on Page” or a double click on a page in the tree editor or the graphical
editor). The tree editor always serves as the master editor; in particular,
saving a PNML document is possible only from the tree editor – and only
the tree editor shows a valid “dirty-flag” when the file contains unsaved
changes (see Sect. 2.3.3).

2.7.2 Reset an attribute

In the user interface of the ePNK there is no explicit way to create attributes
for net object, as you can do for labels. The reason is that attributes are not
supposed to be shown as labels in the graphical editor at all. They are shown
only in the properties view when the respective object is selected. When a
value is entered for an attribute for the first time in the properties view, the
attribute is created; and the value of the attribute changes whenever the
value is changed in the properties view.

The question, however, is how the attribute can be deleted? Entering
an empty string is not removing the attribute. To actually remove an ex-
isting attribute from an object, you would select the respective object, and
then, in the properties view, right-click on the respective property and select
“Restore default value” (see Sect. 2.4.3).

2.7.3 Graphical features

The graphical editor of the ePNK supports many graphical features, such
as positions and size of nodes, intermediate positions for arcs, fonts, size
and colours for labels, colours and line-width for nodes and arcs. Not
all of these graphical features, however, are transferred back to the actual
PNML document—some of this information cannot not even be represented
in PNML.

All graphical information of the ePNK is stored as tool specific informa-
tion in PNML, so that the net in the graphical editor of ePNK always shows
the way as you have edited it even when the PNML does not support the
used graphical features.



2.7. LIMITATIONS AND PITFALLS 53

The graphical information that is used and made available in PNML so
that it can be used by other tools that support PNML is the following:

• Position and size of nodes.

• Line colour and background colour for nodes.

• Image information for nodes.

• Position resp. relative position of labels19.

• Text colour20 and background colour for labels.

• The font and the font-size of labels.

• Intermediate points of arcs.

• Line colour of arcs.

• The shape attribute of arcs (straight or bezier).

Note that all the graphical information – even the one that is not trans-
ferred to PNML features – is saved by the ePNK as tool specific information.
You can even put notes on the graphical canvas, which will be saved. The
graphical information not covered in the above list, however, will not be
available to other tools, and will be gone, when the tool specific information
(org.pnml.tools.epnk.diagraminfo) for the respective page is deleted.

The ePNK reads all graphical attributes that are supported by PNML;
but, only the ones discussed above are used and shown in the graphical
editor. Moreover, the unused graphically attributes are not checked for
validity; they will be written in exactly the same way as they were loaded
from the PNML file (see also Sect. 2.7.6)—even if they were not valid PNML.

Due to some limitations in the automatically generated GMF editor on
which the graphical editor of the ePNK for pages is based, there is another
quirk of the graphical ePNK editor: When a node is moved, the intermediate
points of the attached arcs are also changing in the diagram; these changes
are, however, not propagated to the PNML model. If you want to make
sure that the intermediate points of an arc of the diagram and the PNML
are exactly the same, you need to explicitly touch and slightly move one
intermediate point of each attached arc; only then, the exact positions of
the intermediate points are properly propagated to the PNML model.

19The size of labels is not supported by PNML
20For the text colour, the ePNK is actually abusing the line colour attribute of PNML,

since PNML does not support a text colour attribute.



54 CHAPTER 2. USERS’ GUIDE

Note that some Petri net type definitions might define some graphical
appearance for some of its elements. In that case, this graphical appearance
overrides the graphical attributes of PNML.

2.7.4 Petri net type: Should not be changed in an existing
net

As mentioned in Sect. 2.3.2, the type of a Petri net should never be changed
after a net of that type was created – unless you know exactly what you are
doing. Otherwise, it could happen that the produced PNML is invalid.

For HLPNGs, it is no problem to change its kind any time, since the
kind has an effect on the validation only, but no effect on the serialisation
of the net to a PNML file. Changing the “kind”, actually, does not change
the Petri net type – just the subsets of features that are supported.

2.7.5 Line-breaks in labels

All labels in ePNK Petri net types can have line-breaks (if the Petri net types
syntax allows it. In order to create line-breaks in labels with the graphical
editor, you need to press CNTRL and ENTER at the same time; ENTER
alone would actually finish editing the label.

2.7.6 Graceful PNML interpretation

PNML files that are produced by the ePNK and which have been successfully
validated are conformant to PNML as defined in ISO/IEC 15909-2. The only
exception is, when some illegal graphical attributes are read from an existing
PNML file; these attributes will not be touched by the ePNK, and therefore
written again – even if they are not conformant to ISO/IEC 15909-2. But, if
a PNML file is created by using the ePNK only and if it validates correctly,
the saved file is PNML conformant.

The ePNK, however, is not a PNML validator. It reads PNML and
“PNML-like” documents and writes them again in a graceful manner. This
way, it is possible to save PNML documents that do not properly validate;
and the ePNK is able to load these files again even though other PNML
tools might not be able to load them. For example, when some elements do
not have ids (as required by PNML), references to these elements cannot be
made via their id. In that case, the ePNK uses XPath references to these
elements, which is not conformant to PNML. If such an invalid PNML file
is loaded later by the ePNK again, and the ids are added, and validation



2.7. LIMITATIONS AND PITFALLS 55

is successful, saving this file will produce a conformant PNML documents
again.

2.7.7 Deviation from PNML

There is one minor deviation of the ePNK from PNML as of ISO/IEC 15909-
2:2011: In the ePNK, all declarations of HLPNGs can have a name attribute,
which comes from the fact that Declaration implements the interface for
symbol definitions (SymbolDef). As a consequence, also the Unparsed dec-
laration can have a name attribute. In ISO/IEC 15909-2, Unparsed does
not have a name attribute – as the only exception among all declarations
of PNML. Therefore, if an Unparsed operation declaration with a name
attribute would be manually added to a PNML document in the ePNK
tree editor, the resulting PNML document would not be conformant to
ISO/IEC 15909-2:2011 anymore.

In practice, however, this should not be any problems, since the only way
to add an unparsed declaration to a HLPNG net would be to add it manually
via the ePNK tree editor. If all declarations are edited in the graphical editor
by editing the respective labels, this problem will never arise. If the PNML
document would contain an Unparsed operation declaration without a name
attribute (as it would be according to the standard), the ePNK would show
this as an error under validation. But, it would still be able to read and
write the PNML document.

In future versions of ISO/IEC 15909-2, this might be resolved by requir-
ing that all declarations – including Unparsed – should or, at least, could
have a name attribute.



56 CHAPTER 2. USERS’ GUIDE



Chapter 3

Developers’ guide

In this chapter, we discuss how to extend the ePNK, with new functionality
and applications, with new Petri net types, with new graphical appearances,
or with new tool specific extensions. For all these extensions, the ePNK pro-
vides extension points so that the extensions can be made without changing
the actual code of the ePNK1. Actually, the ePNK does not even provide
own extension points for adding functionality: The existing Eclipse exten-
sion points are good enough for that for now.

This chapter addresses developers, who want to develop extensions for
the ePNK, and it gives a systematic overview over the concepts of the ePNK
by discussing different examples for the different concepts. This chapter is
organized along the different concepts for extending the ePNK and for using
its API. In contrast, Chapter 4 is organized along a single running example,
which covers the most relevant concepts and goes through the conceptual
steps as well as through the technical details. Both chapters are written in
such a way that they can be read independently of each other.

Section 3.3 shows how to add some functionality to the ePNK, which
could be a model checker, or some other analysis or verification function
for Petri nets, or which could be a function that reads a net in PNML and
produces some net in some other format, or a function that generates a
net that is stored in PNML format. Section 3.4 shows how to implement
applications that visualize the results on top of the graphical editor of the
ePNK and can also interact with the end user while they are running.

Section 3.5 shows how to add new Petri net types to the ePNK. Simple
net types can almost completely be generated from a model; for more com-

1Technically, you would not even need to see the code of the ePNK, but looking at it
might help understanding the ideas and principles behind the ePNK.

57



58 CHAPTER 3. DEVELOPERS’ GUIDE

plex Petri net types, such as high-level Petri nets, a mapping to XML must
be defined and parsers need to be implemented.

Section 3.6 shows how to customize the graphical appearance of some
features of some types of Petri nets.

Section 3.7 shows how to add tool specific information to the ePNK.
At last, Sect. 3.8 gives an overview of the projects of the ePNK and

Sect. 3.9 briefly discusses how to deploy own extensions.
All of these extensions are discussed by the help of some examples, which

are deployed together with the ePNK. In these examples, we assume that
the reader is familiar with the main principles and ideas of Eclipse, its
plug-in architecture, and Eclipse plug-in development. We cannot give a
detailed introduction to Eclipse and to Eclipse plug-in development here
(when you have the feeling that you need more background on these issues,
the “Platform Plug-in Developer Guide” which is part of Eclipse might be a
good starting point: “Help” → “Help contents”; and there are many other
Eclipse resources [28, 4]). Still, Sect. 3.1 gives a brief overview of Eclipse
plug-in development. We go a bit more into the details for EMF and explain
some of the steps that need to be done in EMF more explicitly, but it is also
recommended to read up on some details on EMF [2] before starting with
own development projects.

In order to use the ePNK for implementing own extensions, developers
would need some understanding of the PNML core model and the API gen-
erated from it. Therefore, Sect. 3.2 gives a brief introduction to the PNML
core model as it is used in the ePNK and discusses some differences to the
PNML core model from ISO/IEC 15909-2.

3.1 Eclipse: A development platform for the ePNK

As briefly discussed in Sect. 2.1 already, Eclipse is an Integrated Develop-
ment Environment (IDE). Here, we briefly explain how to set up the Eclipse
environment so that you can work on your own extensions and have a look
into the code of the examples, which are discussed in chapter. For a hands-
on experience, you should install Eclipse and the ePNK as explained in
Chapter 5.

3.1.1 Importing ePNK projects to the workspace

As a developer, you would probably want to have a look into some parts of
the source code of the ePNK. Therefore, the ePNK is deployed in such a
way that you can easily import the relevant ePNK plug-in projects to your



3.1. ECLIPSE: A DEVELOPMENT PLATFORM FOR THE EPNK 59

workspace with all their source code and all their models, so that you can
inspect the code and the models from which major parts of the code were
generated. Furthermore, the source code of all ePNK projects is available
on GitHub: https://github.com/ekkart/ePNK

Here, we explain how to import the ePNK projects into your Eclipse
development workspace as source projects – assuming that you have installed
the ePNK in your Eclipse already. Initially, it is recommended to import only
the basic project org.pnml.tools.epnk into the workspace; later during
this developers’ guide, we will mention several other projects that might be
interesting for you to have a look at. In the end, Sect. 3.8 gives an overview
of important ePNK projects and their main function and purpose.

In order to import an ePNK project (or any other plug-in project which is
running behind the scenes in your Eclipse), you first need to open the Eclipse
Plug-ins view. To this end, in the Eclipse workbench, select “Window” →
“Show view” → “Other...”; then select “Plug-ins” from the category “Plug-
in Development”. Typically, this view would also open when you switch to
the Plug-in Development perspective of Eclipse. Once the Plug-ins view is
open, browse this view and find the ePNK plug-in org.pnml.tools.epnk.
Right-click on this plug-in and select “Import As” → “Source Project”.
After that, you will find the project org.pnml.tools.epnk in the Eclipse
package explorer or some other open resource browser.

In this project, you can see the source code in the folder “src” and also
the model files in the folder “model”. But, if you did not install some extra
tools yet, you will not be able to open these models with some reasonable
editor. Section 3.1.2 briefly discusses which additional tools you need to
install to your version of Eclipse so that you are able to inspect – and later
create – these kind of models and diagram files.

You can import all ePNK projects to the workbench as discussed above,
but only some few projects will be relevant for you. This chapter introduces
you to the most relevant ones – one after an other (in the end, Sect. 3.8
gives an overview of the ePNK projects). If you, eventually, are confident
in developing functions and applications for the ePNK, you might also want
to contribute to the ePNK and make your extensions and changes to the
ePNK plug-ins. In that case, you can ask to be given access to the ePNK
development repository.

In your workbench, you have now the project org.pnml.tools.epnk,
which is the basis for developing new plug-ins and, in particular, extensions
to the ePNK. We start calling this workbench development workbench now.
The reason for introducing an additional adjective to the term workbench
here is that you need to start another workbench from this one, in order



60 CHAPTER 3. DEVELOPERS’ GUIDE

to start Eclipse with the new extensions that you are developing in the
development workbench. This additional instance of Eclipse is called the
runtime workbench since this is where the ePNK with your new extensions
is running. It will very much look like the original ePNK as discussed in
Chapter 2 – just with the extensions from your development workbench
also running. The runtime workbench can be started from the development
workbench by “Run”→ “Run Configurations...” and then selecting “Eclipse
Application” and pressing the “New” icon and then “Run”. After you have
started the development workbench in this way once, it will be enough to
press the “Run” button in the tool bar for starting the runtime workbench
again. For now, however, we do not start the runtime workbench since we
need to implement some new functionality first.

3.1.2 Installing the EMF and Ecore Tools SDK

As mentioned already, a major part of defining a new Petri net type is
creating an Ecore model which captures the concepts of the new Petri net
type; most of the code can then be generated from such a model. In order
to be able to do that, you need to install the Eclipse Modeling Tools (EMT )
in your Eclipse or install the Eclipse Modeling Tools package as your version
of your Eclipse.

The details are discussed in Chapter 5. Note that most of the diagrams
associated with the Ecore models were created with version 1 of Ecore Tools
and have not been updated to version 2 of Ecore Tools yet. These diagrams
are not supported by Eclipse newer than Luna. But, if you install the feature
for legacy Ecore diagrams as discussed in Chapter 5, you will be able to open
them. It is, however, strongly recommended that new models and diagrams
are created with the current version of Ecore Tools, since the legacy Ecore
Diagram Editor eventually might not work any more for future versions of
Eclipse.

You can check if you have installed Eclipse and its EMT extensions
correctly: Open the project org.pnml.tools.epnk and, in that project,
open the folder model. The files with extensions “.ecore”, “.ecorediag”,
and “.genmodel” should have special icons. And when you double-click on
“.ecore” and “.genmodel” files, a tree-editor should open on them. When
you double-click on “PNMLCoreModel.ecorediag”, you should see an Ecore
model in a class diagram like graphical notation as shown in Fig. 3.1.



3.2. THE PNML CORE MODEL IN THE EPNK 61

Figure 3.1: Developer’s view with the ePNK PNML core model

3.2 The PNML core model in the ePNK

For using the ePNK as a developer it is important to have a more detailed
understanding of the PNML core model since the API for accessing, navigat-
ing and modifying Petri nets is generated from this model. In Sect. 3.1.2,
you have seen already were to find and how to open the diagrams of the
PNML core model and some related diagrams. And when you start de-
veloping with the ePNK, you will probably need to have a look into these
diagrams once in a while, in order to understand the details of the relation
between the different classes and concepts of PNML.

In this section, we give an overview of the PNML core model of the
ePNK and discuss some of the differences to the PNML core model of
ISO/IEC 15909-2. As discussed in Sect. 1.2.1 already, the PNML core model
of the ePNK is slightly more general than the one of ISO/IEC 15909-2:2011
[8] (see Fig 1.1). One of the main differences is the following: According to
ISO/IEC 15909-2, a page is not considered to be a node; in the ePNK, a
page is considered to be a node. This way, it is possible to define Petri net
types in the ePNK that allow arcs to be connected to pages (e. g. in order



62 CHAPTER 3. DEVELOPERS’ GUIDE

to define a Petri net type that mimics substitution transitions of CPNs [9]).
Keeping this in mind, might be particularly important, when defining the
constraints for arcs of net types (such as the ones for P/T-nets as defined
in Sect. 3.5.1.4), when you do not want to allow to connect pages to other
nodes with arcs.

The other differences of the PNML core model are a bit more technical
and will be discussed below. You might want to have a look at Fig. 1.1
of the PNML core model of ISO/IEC 15909-2:2011 and at Fig. 3.1, while
we discuss the difference. For more details, you can also open the Ecore
diagrams in the project org.pnml.tools.epnk in your Eclipse workspace,
provided you have installed the legacy Ecore Diagram editor.

Most importantly, the type of a Petri net is an attribute of the class
PetriNet according to ISO/IEC 15909-2, whereas, in the ePNK, it is a com-
position to a class that must inherit from the abstract class PetriNetType.
Instances of this class represent the Petri net type and will provide some
services to the ePNK to generically maintain the features of the respective
Petri net type. This is discussed in more detail in Sect. 3.5. The PNML
core model of the ePNK also provides one concrete class for a Petri net
type, which does not exists in ISO/IEC 15909-2:2011: EmptyType, which
represents a Petri net without any labels other than Names.

In the ePNK, the source and target reference of the class Arc have
a corresponding opposite reference from the Node to its out-going and in-
coming Arcs. These opposite references are not serialized to the XML doc-
ument, however, since this would not be compliant with the PNML format.
The opposite references will, however, be restored when loading the Petri
net. These opposite references are very convenient when navigating between
different elements of the net.

In turn, the ePNK does not have the class Annotation of ISO/IEC 15909-
2, which represents those labels that should be shown as graphical annota-
tions of the respective node or arc in the graphical editor. There exists a
class Attribute, however, which represents those labels that should be rep-
resented as properties of the respective element only, but not as annotation
in the graphical editor2. In the ePNK, all labels that are not attributes are
considered to be annotations. This has historical reasons, since the first ver-
sion of the ePNK did not support attributes at all; but, it also avoids making
mistakes in Petri net type definitions: it is impossible to define labels that
are neither attributes nor annotations.

2By plugging in some graphical extensions, attributes can still have an effect on the
graphical appearance of a Petri net.



3.3. ADDING FUNCTIONS 63

At last, the PNML core model of the ePNK defines a separate interface
ID, which is used to unify all those elements that need a unique identifier in a
PNML document. All classes that must have such an identifier, implement
the interface ID in the PNML core model of the ePNK. The reason for
adding the class ID to the ePNK PNML core model is that, this way, the
ePNK can handle elements with an identifier in a uniform way; with the
separate id attribute for all elements as defined in the PNML core model of
ISO/IEC 15909-2, this would require much more effort.

The attentive reader might also have noticed that the PNML core model
of the ePNK does not contain any OCL constraints, whereas the PNML
core model of ISO/IEC 15909-2 does. This, however, does not mean that
the ePNK ignores these constraints; in the ePNK, constraints are just added
in a different way: they are plugged in on top of the model. We will see
examples of how ePNK constraints are plugged in to the ePNK resp. to
Eclipse later (e. g. in Sect. 3.5.1.4).

3.3 Adding functions

Next, we discuss how new functionality can be added to the ePNK. As dis-
cussed earlier, there are two different ways of new adding new functionality
to the ePNK: Functions take some net, possibly some user input, do some
computing and then report a result – typically via some dialog window.
After that, the function is over and done with. The model checker from
Sect. 2.6.1 is a typical example of a function. By contrast, applications are
started on a net; then, they show some feedback on top of the graphical ed-
itor, the user can interact with the application, and the visual feedback will
be updated accordingly. Typically, an application finishes only when the
user explicitly terminates it. The simulator for high-level nets of Sect. 2.6.3
is a typical example of an application.

In this section we, discuss the implementation of functions for the ePNK.
Basically, we use the standard mechanism of Eclipse to plug in and start
functions – as views, wizards, actions, command handlers, jobs or dialogs.
In this manual, we explain the use of these concepts on the side, as far as
they are necessary. Since setting up jobs in a proper way can sometimes be a
bit tedious, the ePNK provides some utility classes that make programming
jobs a bit easier.

The focus of this section is on the use of the API of the ePNK that is
generated from the PNML core model and the Petri net type definitions by
the Eclipse Modeling Framework (EMF ). On the side, we point out some



64 CHAPTER 3. DEVELOPERS’ GUIDE

of the general principles of EMF and some practical issues on working with
EMF. For a more detailed introduction to EMF, we refer to [2]. In this
section, we do not only show how to access, navigate and manipulate nets;
we discuss also how to open, create and write PNML files programmatically.

To this end, this section discusses how to plug in functionality into the
ePNK (or to Eclipse in general) in three different ways.

• Section 3.3.1 shows how to implement a new Eclipse view, which gives
an overview of a PNML file that is selected in one of the Eclipse
resource explorer views. This section will also discuss how top open
and access the contents of a PNML file.

• Section 3.3.2 shows how to implement a wizard for creating a PNML
file (actually, the coded is based on a wizard that was automatically
created by the Eclipse “new plug-in project wizard”). This wizard cre-
ates a PNML file with a P/T-System that represents a simple mutual
exclusion algorithm for a number of agents – where the number can
be selected by the user in one of the dialogs of the wizard. The Petri
net is split up to different pages, so that the Petri net for each agent
is contained in a separate page. In particular, we will discuss how to
create a PNML file, how to fill it with some contents and how to save
it.

• Section 3.3.3 shows how to implement a simple pop-up menu on a
selected Petri net (in the tree editor), which starts a model checker,
asking the user for some formulas to be checked, and then checking the
formulas on the net. Since model checking can take quite some time,
the model checker will run in the background and can be aborted by
the user. This uses Eclipse’s concept of jobs. On the side, this shows
how to use some of Eclipse’s user dialog functions.

In the end, Sect. 3.3.4 gives an overview of the different functions of
the ePNK (and the API generated from its EMF model), some hints on
how to work with this API in Eclipse and in EMF general, as well as some
additional ePNK utilities and helper classes that make it more convenient
to handle and access some of the information stored in a PNML document.
Experienced Eclipse and EMF developers, might want to start reading the
overview in Sect. 3.3.4 first, and come back to Sect. 3.3.1–3.3.3 for some
details later.



3.3. ADDING FUNCTIONS 65

3.3.1 Accessing a PNML file and its contents: A file overview

In this section, we discuss how to implement a new (and very simple) Eclipse
view, that will give an overview of the contents of a PNML file that is selected
in the explorer. Figure 3.2 shows a screenshot of the result. For the selected
file “hlpng-gmf.pnml” in the “Project Explorer”, the “ePNK File Overview”
at the bottom left shows that the selected file is a Petri net document, which
contains 3 Petri nets, a high-level net, a P/T-net, and an empty net; the
type of a net is represented by its unique URI. The name of the first net is
“A high-level next example”; the other two nets do not have a name.

Figure 3.2: The ePNK with the “File Overview” view

This view and its functionality is implemented in the plug-in project
org.pnml.tools.epnk.functions.tutorial. We go through this project
now3. In addition to the overview view discussed above, this project also
contains the implementation of the wizard for creating a PNML document
which will be discussed later in Sect. 3.3.2.

The implementation of the view is contained in a single Java class:
PNMLFileOverviewView in the package org.pnml.tools.epnk.functions.

3Remember that you can import the source code of that project to your development
workspace from the “Plug-ins” view by selecting the project, right-clicking on it and then
choosing “Import As” → “Source Project” (see Sect. 3.1.1.



66 CHAPTER 3. DEVELOPERS’ GUIDE

tutorial.overviewview. We briefly explain the general structure of this
view class, an extract of which is shown in Listing 3.1; we deleted all im-
ports, an attribute definition, and all comments; if needed this informa-
tion can be looked up in the source code. The class extends the Eclipse
ViewPart, which actually makes it an Eclipse view, and it implements the
ISelectionListener, which allows our view to obtain the information on
the object that the user has currently selected in the workbench. Note that
this class does not have an explicit constructor. The reason is that the view
will be set up via the createPartControl() method: In the first three lines
of that method, a viewer (which represents the content of that view) is ini-
tialized, and so-called providers will enable the view to properly show the
contents. Since these are standard Eclipse providers, we do not discuss the
details here. In the last two lines of the createPartControl() method, our
viewer registers itself with the Eclipse selection mechanism as a selection lis-
tener and then creates the information that should be shown for the current
user selection by calling the selectionChanged() method for the current
selection. We will discuss the respective method selectionChanged() be-
low. Note that there are two other methods. The setFocus() methods
forwards the focus properly to the content of the view, once the view is
focused. More important is the dispose() method: the implementation of
this method makes sure that our view removes itself as a selection listener
once it is disposed (which typically would happen when the user decides to
close the view).

Once the view has registered itself as a selection listener with the Eclipse
workbench, its selectionChanged() method is called whenever there is a
change in the user’s selection. In the implementation of this method, the
kind of the current selection is analysed and it is checked whether the first
selected element is a file (i. e. whether it implements the interface IFile). If
so, the method getOverviewInfo() for accessing the actual contents of the
file and for computing the contents of the overview is called; this produces
an array of Strings, which then will be set as the new contents of that view
– and, this way, shown to the user.

The getOverviewInfo() method is probably the most interesting part
here, since it shows how to open and access a PNML or a PNX file (we
do not even need to make a difference here). The implementation of this
method is shown in Listing 3.2. Up to line 7, it is checked whether the file
extension is either “pnml” or “pnx” (the two file extensions, the ePNK uses
for storing Petri net files – “pnml” represents files in PNML format, and
“pnx” represents Petri net files in XMI, which we call PNX); then, the path
to that file is extracted and a URI of that path is created. Actually, Eclipse



3.3. ADDING FUNCTIONS 67

Listing 3.1: Class PNMLFileOverviewView: Infrastructure

package org.pnml.tools.epnk.functions.tutorials.overviewview;

import ...

5 public class PNMLFileOverviewView extends ViewPart

implements ISelectionListener {

...

10 private TableViewer viewer;

public void createPartControl(Composite parent) {

viewer = new TableViewer(parent);

viewer.setContentProvider(new ArrayContentProvider());

15 viewer.setLabelProvider(new LabelProvider());

getSite().getPage().addSelectionListener(this);

selectionChanged(null, getSite().getPage().getSelection());

}

20 public void setFocus() {

viewer.getControl().setFocus();

}

public void dispose() {

25 super.dispose();

getSite().getPage().removeSelectionListener(this);

}

public void selectionChanged(IWorkbenchPart part,

30 ISelection selection) {

if (selection instanceof IStructuredSelection) {

IStructuredSelection structured =

(IStructuredSelection) selection;

Object first = structured.getFirstElement();

35 if (first instanceof IFile) {

viewer.setInput(getOverviewInfo((IFile) first));

} } }

public String[] getOverviewInfo(IFile file) { ... }

40

}



68 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.2: Class PNMLFileOverviewView: Accessing the file

public String[] getOverviewInfo(IFile file) {

String[] result = {"No ePNK file selected"};

String extension = file.getFileExtension();

4 if (extension != null &&

(extension.equals("pnml" ) || extension.equals("pnx"))) {

String path = file.getLocationURI().toString();

URI uri = URI.createURI(path);

9 ResourceSet resourceSet = new ResourceSetImpl();

Resource resource = null;

try {

resource = resourceSet.getResource(uri, true);

} catch (Exception e) {

14 result[0] = "File could not be read.";

return result;

}

List<EObject> contents = resource.getContents();

19 if (contents != null && contents.size() > 0) {

EObject object = contents.get(0);

if (object instanceof PetriNetDoc) {

PetriNetDoc document = (PetriNetDoc) object;

List<PetriNet> nets = document.getNet();

24 int no = nets.size();

result = new String[no + 1];

result[0] = "The Petri Net Document contains "

+ no + (no == 1 ? " net" : " nets:");

no = 1;

29 for (PetriNet net : nets) {

String name = net.getName() != null ?

net.getName().getText() : "unknown";

String type = net.getType() != null ?

net.getType().toString() : "unknown";

34 result[no++] = " " + name + ": " + type;

}

} else result[0] = "The file does not contain a PetriNetDoc.";

} else result[0] = "The file does not contain any element.";

}

39 return result;

}



3.3. ADDING FUNCTIONS 69

provides also user dialogs and file dialogs that would allow us to ask the user
for a file name that would be returned as a URI; here we used the selection
mechanism and the file to get hold of some legal URI of a PNML or PNX
file. Therefore, the code that comes now, could be used at any other point
when a program wants to read and access some file, once we have a String
with the path to the file: This starts with creating a resource set and, within
that resource set creating a resource with the given URI, which is the first
parameter of the getResource() method; the second parameter indicates
whether cross-references to other resources should be resolved lazily or not
(which is not relevant here). Note that, in EMF, a resource or file should
always be accessed (and created, see Sect. 3.3.2 for more information) via
a resource set. After we successfully got the resource, we can obtain its
contents by the getContents() method which returns a list of its top-level
objects – in case of PNML, this list should contain exactly one PetriNetDoc
object. Being defensive, we check whether the contents exists and whether
its first element is an instance of PetriNetDoc. If so, we go systematically
through all the contained nets, get their names and their PNML types and
add a String with that information to the String array with the result. In
the other cases, we return some error messages. Note that we do not need
to close the file, or do anything else after we have obtained the information
we need.

Let us have a closer look at how the contents of the Petri net document
is accessed, once we have obtained a PetriNetDoc object. For any reference
and attribute of the PNML core model, the ePNK API has corresponding
getter and setter methods. For example, if a class has an attribute name of
type String, the getName() method will return the String with that name,
and with setName() we could set it – but we do not change the net in this
example. For attributes and features with a multiplicity greater than one,
this is slightly different. For example, a PetriNetDoc object can contain
many nets; therefore, getNet() will return a list of nets, which we then
can iterate over to obtain the individual nets. And by adding a net to this
list, this Petri net would be added to the Petri net document (see 3.3.2 for
examples).

As stated above, class PNMLFileOverviewView implements the “ePNK
File Overview” as we have seen it in Fig. 3.2. But, it is not enough to just
implement this class; it would not show up in Eclipse, because Eclipse would
not know that it exists. In order to make the view known to Eclipse, we need
to define it as an extension: This is done in the project’s “plugin.xml” file.
Double clicking on the “plugin.xml” file, will give you a convenient editor
for defining and editing the extensions you want to define. Explaining the



70 CHAPTER 3. DEVELOPERS’ GUIDE

actual extensions is a bit easier with the XML fragment that is produced
by this editor. The fragment relevant for our overview view is shown in
Listing 3.3. It says that we contribute our extension to the Eclipse extension

Listing 3.3: Defining the overview view extension in “plugin.xml”

<extension

point="org.eclipse.ui.views">

<category

4 name="ePNK"

id="org.pnml.tools.epnk.views.category">

</category>

<view

allowMultiple="false"

9 category="org.pnml.tools.epnk.views.category"

class="org.pnml. ... .overviewview.PNMLFileOverviewView"

icon="icons/PetriNetDoc.gif"

id="org.pnml.tools.epnk.extensions.tutorials.pnmloverview"

name="ePNK File Overview">

14 </view>

</extension>

point org.eclipse.ui.views, which is a new Eclipse view. The category
defines where and under which category the new view can be found, when
the user wants to open it via the Eclipse “Show View” menu. We define a
category specifically for the ePNK and then define the actual view referring
to this category. The attributes of the view say that a view of this kind can
at most be open once, that it uses the above category, and refer to the class
which actually implements it: PNMLFileOverviewView; and the attributes
define an icon (used in the tab of that view) and a name for that view.

Note that in order to access some of the classes such as Resource,
ResourceSet, and some of the ePNK classes like PetriNetDoc, PetriNet,
etc. in the implementation of the view, we would also need to define depen-
dencies to the plug-in projects by which they are provided: If you open the
file “plugin.xml”, you will find these projects in the tab “Dependencies”.
But this is a more technical issue, which we do not go into the details.

Now, you could start the runtime workbench of Eclipse; from there,
you could open the “ePNK File Overview” by “Window”→ “Show View”→
“Other...” and then selecting “ePNK File Overview” in the category “ePNK”.
This will show the view in the workspace as shown in Fig. 3.2. Whenever
the user selects some PNML or PNX file in the package explorer, this view



3.3. ADDING FUNCTIONS 71

will show an overview of the contents of the selected file. Since this plug-in
project is deployed with the ePNK 1.0.0 already, it is of course not even
necessary to start the runtime workbench – the view is already there in the
development workbench, once the ePNK is installed.

3.3.2 Writing PNML files: Generating multi-agent mutex

Next, we discuss how to create new PNML files and how to fill them with
some contents. In typical applications, the contents might come from a
file in a format of another Petri net tool, which should be converted to
PNML. In our example, however, we programmatically generate a Petri
net: my favourite semaphore mutex example, which was used in Sect. 2.6.1
as an example for model checking already. To make things slightly more
interesting, the number of agents competing for the semaphore is a pa-
rameter. This function is implemented as an Eclipse wizard and it was
implemented by creating a new file wizard for PNML files automatically
by the Eclipse “New Plug Project” wizard choosing the “custom plug-in
wizard” with the choice of the “New File Wizard” in the “Template Se-
lection” dialog. But, this does not need to bother you too much. If you
are interested in the manual changes made to the automatically generated
code, you will find all the manual changes in the two classes in the package
org.pnml.tools.epnk.functions.tutorials.wizards enclosed by com-
ments like // eki: ... . These packages are contained in the same plug-
in project, org.pnml.tools.epnk.functions.tutorials, as discussed in
Sect. 3.3.1 already.

In the rest of this section, we focus on the explanation of the parts of the
implementation that are concerned with the creation of the file and its con-
tets. This functionality is implemented in the method createPNMLFile()

of the class MultiAgentMutexNetWizard, which is shown in List. 3.4. The
parameter path is a String representation of a path to the file that should
be created. The parameter number is the number of agents that should be
created in the mutex net that will be generated.

Creating the Petri net programmatically is quite straightforward, but
code intensive. Therefore, we have split up the creation process into several
parts for the different elements, which will be discussed top-down from cre-
ating the document, the net, its pages, and the places, transitions, reference
places, and arcs on them. We discuss these methods one after the other –
and omit some boring ones in the end (you can find all details in the source
code). Listing 3.4 shows the method that creates the file: First, it calls the
method createPetriNetDoc() that creates the Petri net document, which



72 CHAPTER 3. DEVELOPERS’ GUIDE

is discussed later. This is the contents of the file that we want to write.
Then, we convert the path into a URI. Then, we create a resource set –
from which the resource (the file) is create. Surprisingly enough, this is
already all we need to do. At this point, we can add the contents to the
resource. Note that it does not even matter whether the resource is a PNML
file or a PNX file – Eclipse will, dependent on the file extension, chose the
right implementation of the resource so that either a PNML file or a PNX
file is written once we save the resource in the end. But, we configured the
wizard in such a way that the user can chose only the “pnml” extension.

Adding the contents follows the same principle that we have discussed
already. With getContents() we get a list of EMF objects (which would
be empty, since the resource was newly created right now); then we add the
Petri net document to this list. The only thing left is to save the resource,
which is done by calling the save() method. Note that the save method has
a parameter, that could be used to configure the way a file is saved. But,
null is fine here – and you should only change this, if you know exactly
what you are doing.

Let us dive a bit deeper into the method createPetriNetDoc(), which
takes one parameter only – the number of agents. This method is shown in
Listing 3.5. In the second line, a new Petri net document is created. Note
that this is not done using Java’s new construct. Rather, the factory for
the PNML core model is obtained by PnmlcoremodelFactory.eINSTANCE,
which is then used for creating a new PetriNeyDoc object. It is part of

Listing 3.4: Method createPNMLFile(String path, int number)

public void createPNMLFile(String path, int number) {

PetriNetDoc doc = createPetriNetDoc(number);

final URI uri = URI.createURI(path);

5 ResourceSet resourceSet = new ResourceSetImpl();

final Resource resource = resourceSet.createResource(uri);

EList<EObject> contents = resource.getContents();

contents.add(doc);

try {

10 resource.save(null);

} catch (IOException e) {

// Do nothing for now if file could not be saved.

}

}



3.3. ADDING FUNCTIONS 73

Listing 3.5: Method createPetriNetDoc(int number)

1 public PetriNetDoc createPetriNetDoc(int number) {

PetriNetDoc doc =

PnmlcoremodelFactory.eINSTANCE.createPetriNetDoc();

PetriNet net =

PetriNetTypeExtensions.getInstance().createPetriNet(

6 "http://www.pnml.org/version-2009/grammar/ptnet");

if (net == null) {

return null;

}

PetriNetType type = net.getType();

11

net.setId("n1");

doc.getNet().add(net);

Name nameLabel = PnmlcoremodelFactory.eINSTANCE.createName();

16 nameLabel.setText("Mutual exclusion");

net.setName(nameLabel);

Page page = createPage(type, "pg0", "semaphor page");

EList<Page> pages = net.getPage();

21 pages.add(page);

Place semaphor = this.createPlace(

type, "semaphor", "semaphor", 1, 380, 140);

page.getObject().add(semaphor);

26

for (int i=1; i<= number; i++) {

page = createAgentPage(type, semaphor, i);

pages.add(page);

}

31

return doc;

}



74 CHAPTER 3. DEVELOPERS’ GUIDE

the EMF philosophy that clients using the generated code should not know
anything about the actual implementation of classes. And EMF strongly
recommends to create new objects only via these factories. Note that also
the new net is not directly created; it is created by using the ePNK’s type
registry PetriNetTypeExtensions, which creates the Petri net with the
correct type from its URI. Note that the net will be null, if no net type is
registered for the respective URI.

After creating the net, its id is set by the setId() method. Note that
this could be any string, but it is our responsibility to make sure that all
ids are different (if we chose to create the ids programmatically). Then, the
net is added to the list of nets of that document: to this end, we get the list
of all nets of the document via the getNet() method on which we call the
add() method. There is no way to directly add a net to a document.

After that, a name label is created, its text value is set, and the name
label is added to the net.

Next, a new page is created by calling a separate method, which is added
to the list of pages of the net, and the place semaphore is created as the
single object on this page. To this end, we use the createPlace() method.

In the for-loop at the end of the method, for each agent, there will be
created one page with the net for each agent.

All the other methods follow the same principles, and there is not too
much interesting to see in them. Therefore, we finish with discussing the
method createAgentPage(), which is shown in Listing 3.6. This method
creates 3 places, one reference place (referring to the semaphore that was
created on the first page above), 3 transitions, and 8 arcs. What makes this
method a bit more interesting is the graphical information that is added to
the arcs: some intermediate point, which makes the net look a bit nicer.
If you have a closer look at the createTransition(), createPlace(),
and createRefPlace() you will find similar constructs for defining the
position and size of the nodes, and the position of the labels associated
with them. But this is straightforward and follows the exact principles of
ISO/IEC 15909-2 (see [6]). Note that, if a reference pace is created, the
place it refers to needs to be set by setRef(); therefore, we need to pass
the the place semaphor to the createRefPlace() method as a parameter.

Once the implementation of the wizard class is finished, it must be made
know to Eclipse: it must be plugged in via the “plugin.xml”. But, we do
not discuss this here since this is similar to plugging in a view (have a look
into the “plugin.xml”, if you are interested).

In the runtime workbench (or a version of the ePNK in which this plug-
in is installed already), you could invoke this function as follows: Go to the



3.3. ADDING FUNCTIONS 75

Listing 3.6: Method createAgentPage()

public Page createAgentPage(PetriNetType type, Place sem, int i) {

2 Page page = createPage(type, "pg"+i, "agent"+i);

Place idle = createPlace(type, "idl"+i, "idl"+i, 1, 100, 220);

Place pending = createPlace(type, "pen"+i, "pen"+i, 0, 100, 60);

Place critical = createPlace(type, "cri"+i, "cri"+i, 0, 300, 140);

7 RefPlace semRef = createRefPlace("sem"+i, "sem", sem, 380, 140);

Transition t1 = createTransition(type, "t1."+i, "t1."+i, 40, 140);

Transition t2 = createTransition(type, "t2."+i, "t2."+i, 220, 60);

Transition t3 = createTransition(type, "t3."+i, "t3."+i, 220,220);

12 Arc a1 = createArc(type, "a1."+i, idle, t1);

Arc a2 = createArc(type, "a2."+i, t1, pending);

...

Arc a6 = createArc(type, "a6."+i, t3, idle);

17 Arc a7 = createArc(type, "a7."+i, semRef, t2);

Coordinate coordinate =

PnmlcoremodelFactory.eINSTANCE.createCoordinate();

coordinate.setX(300);

coordinate.setY(60);

22 ArcGraphics arcGraphics =

PnmlcoremodelFactory.eINSTANCE.createArcGraphics();

arcGraphics.getPosition().add(coordinate);

a7.setGraphics(arcGraphics);

27 Arc a8 = createArc(type, "a8."+i, t3, semRef);

...

a8.setGraphics(arcGraphics);

EList<Object> contents = page.getObject();

32 contents.add(idle);

contents.add(pending);

...

contents.add(t3);

contents.add(a1);

37 ...

contents.add(a8);

return page;

}



76 CHAPTER 3. DEVELOPERS’ GUIDE

resource explorer – or any other explorer – of the workbench, press the right
mouse button and select “New”→“Other...”, select “Multi-agent Mutex Net
Wizard” in the category “ePNK”. Then, a dialog opens in which you can
choose a folder4 (“container”) in which this file should be created, a “file
name” (which must have extension “pnml”), and the number of agents. Note
that, normally, the file creation wizard would overwrite existing files. This
“multi-agent” wizard, however, was modified in such a way that existing
files won’t be overwritten accidentally.

3.3.3 Long-running functions: A model checker

In this section, we discuss the implementation of a model checker for P/T-
Nets, which, actually, are interpreted as EN-Systems here. The model-
checker is based on a simple library for symbolic model checking that was
developed for teaching purposes: Model Checking in Education (MCiE )5.
This MCiE library is deployed as part of the ePNK tutorials.

In this developers’ guide, we will not go into the details of model checking
and its theoretical foundation, since this is not the point of this tutorial at
all. For more information on model checking, we refer to a standard text
book on model checking [3]. The point of this tutorial is to show how
some function can be installed as a pop-up menu with an action on a Petri
net that is open in the tree editor6. Model checking can actually be quite
computation intensive and could take quite some time; therefore, we need to
make sure that the actual model checking action does not block the graphical
user interface of Eclipse while the model checker is running. Eclipse provides
jobs for this purpose, which allow to run tasks (or jobs) in the background.
The ePNK provides some convenience classes that make it a bit easier to
set up and start jobs, which are running in the background – and provide a
possibility to show a result in a dialog, once the job is finished.

The model checking functionality is implemented in the plug-in project
org.pnml.epnk.functions.modelchecking. Like the other projects, you
can import the source code of this project to your workspace via the Eclipse
“Plug-ins” view and the “Import As”→ “Source Project” menu. The actual
model checker is implemented in the class ModelcheckingJob in package

4If you have selected exactly one folder when you invoke the wizard, the fields of this
dialog will be pre-set.

5see http://www2.cs.uni-paderborn.de/cs/kindler/Lehre/MCiE/
6Note the extension points for pop-up menus and actions are deprecated since

Eclipse 4.2. But, they still work – eventually, this will be adjusted by using Eclipse
commands and handlers.



3.3. ADDING FUNCTIONS 77

org.pnml.epnk.functions.modelchecking.action. The action initiating
the model checking job is ModelcheckingAction in the same package.

Since the class ModelcheckingAction and the way it is integrated to the
ePNK is quite simple, we start with explaining this one first. It is shown
in Listing 3.7. This class extends the AbstractEPNKAction, which is an

Listing 3.7: The action class ModelcheckingAction

package org.pnml.tools.epnk.functions.modelchecking.action;

import

4 org.pnml.tools.epnk.actions.framework.jobs.AbstractEPNKAction;

import org.pnml.tools.epnk.actions.framework.jobs.AbstractEPNKJob;

import org.pnml.tools.epnk.pnmlcoremodel.PetriNet;

import org.pnml.tools.epnk.pnmlcoremodel.PetriNetType;

9 import org.pnml.tools.epnk.pntypes.ptnet.PTNet;

public class ModelcheckingAction extends AbstractEPNKAction {

@Override

14 public boolean isEnabled(PetriNet petrinet) {

if (petrinet != null) {

PetriNetType type = petrinet.getType();

return type != null && type instanceof PTNet;

}

19 return false;

}

@Override

protected AbstractEPNKJob createJob(PetriNet petrinet,

24 String defaultInput) {

return new ModelcheckingJob(petrinet,defaultInput);

}

}

ePNK convenience class that makes it easy to add a new action, which
initiates a job. The class AbstractEPNKAction overrides two methods:
isEnabled() and createJob(). The method isEnabled() checks whether
the action is applicable for the selected Petri net. In our example, it checks
whether the Petri net has a type and whether this type is PTNet. The other
method createJob() creates the actual job, which is an instance of class



78 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.8: Defining the popup action for the model checking action

<extension

2 point="org.eclipse.ui.popupMenus">

<objectContribution

id="org.pnml.tools.epnk.functions.modelchecking.contribution1"

objectClass="org.pnml.tools.epnk.pnmlcoremodel.PetriNet">

<menu

7 id="org.pnml.tools.epnk.actions.standardmenu"

label="ePNK"

path="additions">

<separator

name="group1">

12 </separator>

</menu>

<action

class="org.pnml.tools.epnk. ... .action.ModelcheckingAction"

enablesFor="1"

17 id="org.pnml.tools.epnk.functions.modelchecking"

label="Model checker"

menubarPath="org.pnml.tools. ... .standardmenu/group1">

</action>

</objectContribution>

22 </extension>

ModelcheckingJob with a Petri net and a defaultInput (a default formula
for the user dialog in our case). This class extends the ePNK’s convenience
class AbstractEPNKJob and will be discussed later.

In order to make the action ModelcheckingAction know to Eclipse and
appear in the popup menu in the “ePNK” category, we need to define an
extension. Listing 3.8 shows the part of the “plugin.xml” file that defines
this extension (with some ellipses).

At last, we have a look at the class ModelcheckingJob, which is imple-
menting the user dialogs (asking the user for temporal formulas), converting
the Petri net into ROBDDs, doing the actual model checking, and showing
the result to the user again. In addition to the constructor, we need to im-
plement (override) the following methods of AbstractEPNKJob: prepare(),
getInput(), run(), showResult(), and canceling(). Below we explain
the implementation of the constructor and the methods:

Constructor: Sets up all the data structures needed during the job; typi-
cally, this will be storing the default input. In our model checker ex-



3.3. ADDING FUNCTIONS 79

Listing 3.9: The constructor of ModelcheckingJob

public ModelcheckingJob(PetriNet petrinet, String defaultInput) {

super(petrinet, "ePNK: Model checking job");

3 if (defaultInput != null) {

defaultformula = defaultInput;

}

place2variable = new HashMap<Place,Variable>();

8 place2primedvariable = new HashMap<Place,Variable>();

transitions = new Vector<Formula>();

placeNames = new HashSet<String>();

duplicateNames = false;

}

ample, we also set up some mappings, for mapping places of the Petri
net to variables of the MCiE library, and mappings from transitions to
formulas defining their behaviour, and some other information. The
code of the constructor is shown in Listing 3.9.

prepare(): This method is handling the user dialogs before the actual job
starts. In our case, it asks the user for some CTL-formulas; it also
allows the user to correct the input, if the formulas are syntactically
incorrect – or to abort the action. The code for this user dialog is
shown in Listing 3.10. Since this is standard Eclipse programming, we
do not go into the details of this part here. The only relevant part
for the ePNK is that the job will not be continued, if the prepare()

method returns false – in the implementation of the model checking
job, this is done, when the user presses cancel in one of the dialogs
(line 11/12 and line 33/34).

In our model checking job, the prepare() method will try to convert
the Petri net into formulas defining the behaviour of the transitions
and the initial marking. And on the way, it will be checked whether
there are duplicate names of places, so that a warning can be issued.
Listing 3.11 shows the part of the prepare() method converting the
initial marking into a state formula. The basic idea is that, in this
formula, a variable corresponding to the place occurs exactly once. It
occurs negated, if the place is not marked and it occurs without nega-



80 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.10: The user dialog of the prepare() method

...

3 InputDialog dlg = new InputDialog(

null,

"ePNK: Model checker",

"Enter a comma separated list of temporal formulas please:",

defaultformula,

8 null);

dlg.open();

if(dlg.getReturnCode()!=Window.OK)

return false;

13

defaultformula = dlg.getValue();

do {

try {

18 Parser parser = new Parser(new StringReader(defaultformula));

formulas = parser.parseFormulaList();

parser.parseEnd();

} catch (Exception e) {

formulas = null;

23 dlg = new InputDialog(

null,

"ePNK: Model checker",

"Syntax error in formula:" + LF +

e.toString() + LF +

28 "Fix the error please or press cancel:",

defaultformula,

null);

dlg.open();

33 if(dlg.getReturnCode()!=Window.OK) // Didn’t click on OK!

return false;

defaultformula = dlg.getValue();

}

} while (formulas == null);



3.3. ADDING FUNCTIONS 81

Listing 3.11: Building the formula for the initial marking (in prepare())

FlatAccess flat = FlatAccess.getFlatAccess(getPetriNet());

3 init = new Constant(1);

for (org.pnml.tools.epnk.pnmlcoremodel.Place p : flat.getPlaces()) {

if (p instanceof Place) {

Place place = (Place) p;

registerPlace(place);

8

PTMarking marking = place.getInitialMarking();

if (marking != null && marking.getText().getValue() > 0) {

init = new BinaryOp(BinaryOp.AND,

init,

13 place2variable.get(place));

} else {

init = new BinaryOp(BinaryOp.AND,

init,

new UnaryOp(UnaryOp.NOT,place2variable.get(place)));

18 }

}

}



82 CHAPTER 3. DEVELOPERS’ GUIDE

tion, if the place is marked (with at least one token7). All these negated
and un-negated variables are connected by boolean and-operations as
formulas represented in MCiE’s data structure. What is more interest-
ing here is that the ePNK provides a way to access a net that consist of
pages with reference nodes in a flattened way. This convenience class
of the ePNK is called FlatAccess; its static method getFlatAccess()

called with a parameter of a Petri net of any type creates a flat access
object for that net (called flat in our case). This flat access object
can be used to obtain all places of the net, independently of the pages
they occur on. Likewise, the flat access object provides methods to
access all the transitions and to get all the input and output arcs of
a place or transition (including the ones of the reference nodes refer-
ring to them). This way, it is easy to obtain the pre- and post-sets,
without being bothered with the page structure. For some more ex-
amples of the use of these methods, you can have a look into the code
that converts transitions into formulas, which however is not discussed
here.

Note that creating a flat access object is quite computation intensive;
therefore, the static method getFlatAccess() for creating a flat ac-
cess object8 will create only one flat access object for each net. But,
the flat access object becomes invalid, when the underlying Petri net
changes. The flat access object can, therefore, also be used to notify
an application that the underlying net has changed. But, we do not
discuss the details here.

The last part of the prepare method, is converting the formulas into
ROBDD-representation and creating a transition system out of these
formulas. This is shown in Listing 3.12. Again, this is specific to MCiE.
But, there are two parts that are important for the prepare() method
in general: With this.setName(), we can give the job a specific name,
which is used in Eclipse’s jobs view. In our example, we say that it is a
model checking job, add the name of the net and the formula which the
user entered. The last important part is that the prepare() method
returns true in order to indicate that the preparation successfully
terminated, and the actual job can be run (in the background) now.

7Remember that we abuse P/T-Nets for representing EN-Systems.
8Note that in earlier versions of the ePNK, the flat access object was created by a

constructor. This constructor is deprecated now, and should no longer be used; but, it
is still there, so that older code should still be working. It is strongly recommended, to
replace the use of the constructor, though.



3.3. ADDING FUNCTIONS 83

Listing 3.12: Finishing the prepare() method

Name name = getPetriNet().getName();

String netref = "";

if ( name != null && name.getText()!= null) {

netref = " on net " + name.getText();

5 }

this.setName("Model checking job" + netref +": " + defaultformula);

Context context = new Context();

10 ROBDD is = init.toROBDD(context);

ROBDD ts[] = new ROBDD[transitions.size()];

ChangeSet css[] = new ChangeSet[transitions.size()];

for (int i = 0; i< ts.length; i++) {

15 ts[i] = transitions.get(i).toROBDD(context);

css[i] = new ChangeSet(context);

transitions.get(i).addChangedVariables(css[i]);

}

transitionsystem = new Transitionsystem(context,is,ts,css);

20

return true;



84 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.13: The run() method

protected void run() {

result = "Model checking results:" + LF;

for (int i = 0; i < formulas.length; i++) {

4 ROBDD obdd = formulas[i].toROBDD(transitionsystem);

result = result + " " + formulas[i] + ": " +

transitionsystem.isValid(obdd) + LF;

}

}

Note that all computations in the prepare() method should run fast.
Computations that are time-consuming should be implemented in the
run() method, which will be run in a separate thread in the back-
ground.

getInput() This method is called by the action, to get and store as default
for the next call, the user input. In our case, the formula that was en-
tered by the user during the prepare phase (in its String representation
as entered by the user) is returned.

run() This method implements the part of the job that will be run in the
background – and typically contains the computation intensive parts.
In our case, this is the actual model checking task. The implementation
of the method is actually quite simple (most of the programming work
lies in the preparation and the MCiE framework). It is shown in
Listing 3.13. Still, it is the most computation intensive part, which
is why we are using the job to run it in the background. Note that,
at the end of this method, we also prepare the result already in a
String that will be shown to the user. But, there must not be any
user dialog in the run() method itself, since this method is run in a
separate thread in the background – and user dialogs would require to
be called from a dedicated GUI thread.

showResult() This is the method that will be called for showing the re-
sult to the user. And, the infrastructure from AbstractEPNKJob will
make sure that it will be called from the dedicated GUI thread again.
Therefore, we can use all Eclipse dialogs for showing the result. List-
ing 3.14 shows the implementation of this method. The result String,
which was prepared during the run method is shown to the user by
initiating an information dialog.



3.3. ADDING FUNCTIONS 85

Listing 3.14: Code for showing the final result

protected void showResult() {

2 MessageDialog.openInformation(

null,

"ePNK: Model checker",

result

);

7 }

Listing 3.15: Code for aborting the model checking job

protected void canceling() {

if (transitionsystem != null) {

3 transitionsystem.abort();

}

}

canceling() This method is a call-back mechanism that allows Eclipse
– typically triggered by the end user – to abort a job that is run-
ning in the background. In the case of computation intensive jobs,
to abort the computation and not to let that thread continue in the
background is very important; otherwise this thread would consume all
the computation power until it finishes on its own – which could take
extremely long. Therefore, MCiE provides a mechanism for aborting
model checking operations on some model, by invoking abort() on
the underlying transition system on which the model checking is done.
Our implementation of the canceling() method invokes this abort()
method to actually terminate the model checking – possibly with some
delay. This is shown in Listing 3.15, where transitionsystem is the
one that was constructed before in the prepare method and on which
the model checking is done. This will actually cause the model checker
– the thread in which the computation is running – to throw some ex-
ception at some point of its computation in the isValid() method;
this will stop the complete thread, since the exception is not caught.

Together, the classes ModelcheckingAction and ModelcheckingJob,
plugged in via the “plugin.xml” implement a simple, but complete model
checker. If the model checking project was not already part of the ePNK,
you would start the runtime workbench, and would have the model checker



86 CHAPTER 3. DEVELOPERS’ GUIDE

available there. Section 2.6.1 of the Users’ Guide had explained already how
to use this model checker.

3.3.4 Overview of the ePNK API

The previous sections have given an idea of how the ePNK and its API can
be used to access and modify Petri nets for implementing functions and, as
discussed later, applications on Petri nets. They also showed how to plug in
these functions to the ePNK – or actually to Eclipse. But, these examples
just scratch the surface. In this section, we give an overview of where to
find and look up things in the API of the ePNK and how to use this API
in the context of Eclipse and EMF. Some of these things are actually not
specific to the ePNK, but specific to Eclipse and EMF, and could be read
up on in the many Eclipse publications (e. g. [2, 4, 5]). Anyway, we briefly
mention or point to some of the relevant concepts here, in order to avoid
some unpleasant surprises.

3.3.4.1 Eclipse and EMF

We start with giving an overview of the code that is generated9 from Ecore
models, which was also briefly discussed in Sect. 3.3.1 already. All models
used in the ePNK are Ecore models, which are an implementation of the Meta
Object Facility (MOF ) [23]. For the purpose of this manual10, an Ecore
model can considered to be a simplified version of a UML class diagram.
Note that, in Ecore models, the concept that represents a UML association
is called reference – and in the case of a bi-directional association, a pair of
two opposite references.

The Eclipse Modeling Framework (EMF ) [2] allows us to generate Java
code from these models, which provides getter and setter methods for all
the attributes and references. And there will be a lot of code behind the
scenes for loading and saving models, and for notifying some observers when
changes are made. Actually, in the generated code, each class of an Ecore
model is represented by a Java interface and a Java class implementing this
interface; the interfaces and implementations reside in two different Java
packages – where typically the package name with the implementing classes
ends with a segment called “impl” and also the name of the implementing

9EMF provides many features to configure and change the way the code is generated
from a model. Here, we discuss only the standard settings, which – with some few excep-
tions – are used for all models of the ePNK.

10We do not bother to go into the details of the MOF-levels and into the motivation
behind MOF. See [15] for an brief introduction and overview.



3.3. ADDING FUNCTIONS 87

Java class will end with “Impl”. Normally, developers that want to access
model elements, would use the interfaces only. For attributes and references
with multiplicities 1 or 1..0, the generated API and the use of the generated
setter and getter methods is straightforward11. In case of multiplicity *,
you will find that there are no setter methods for the respective attribute
or reference at all; there will be a getter method, which returns a collection.
In order to add or remove an element to or from the attribute or reference,
you would obtain this list by the getter method, and then add or remove
something from the collection by the respective methods of collections. Note
that this collection is attached to the object, and it is crucial that you do
not use it for other purposes.

As explained above, the package with the Java classes that implement
the Java interface of the model should typically not be used directly by
other developers. This also applies to the constructor (which normally is
protected). If a developer wants to create an instance of some class, this
should be done via a factory for the model, which can be found in the same
Java package as the generated Java interfaces of the model. This factory
class is typically called XXXFactory, where XXX is the name of the package;
the singleton instance of this class can be accessed by a static attribute
eINSTANCE. For each class of the model, this Factory provides a method for
creating a new instance of the respective class.

Note that all12 Java classes that are generated as implementations for
classes from the Ecore model inherit from the class EObject of the EMF
Framework. The class EObject provides a lot of functionality behind the
scenes and also some convenience methods. For example, it allows another
object to register with it as a listener, so that the other object is notified
about any changes of its attributes and references, and even some other
events. But, we do not go into these details here. One of the convenience
methods is to obtain an iterator of all its directly and indirectly contained
elements (indicated by compositions in the Ecore model): eAllContents().
All the methods of the EObject start with the letter “e”. We cannot discuss
all of them here; but, for example, there are methods for reflectively finding
out which model class this object represents eClass(); there is a method
eContainer() to obtain the object in which this object is directly contained;
there are methods to find out which features this object has, and to change
them.

11There is a minor, but sometimes confusing twist when an attribute is of type boolean:
in that case, the getter method actually starts with “is” instead of “get”.

12Remember that we discuss the standard configuration of EMF only.



88 CHAPTER 3. DEVELOPERS’ GUIDE

Note that EObject has a method eResource(), which returns the re-
source (file) in which the object is contained – if it is associated with a file
already. Resources are important, when loading and saving models to a file,
and when they are loaded and edited in an editor. Actually, a resource is
typically contained in a resource set, which is responsible for maintaining
different resources that refer to each other – and for loading and saving
them together so that the links between them remain consistent. For a
resource, the resource set it is contained in can be obtained by method
getResourceSet(). In turn, resources can and should be created from a
resource set, which will make sure that the correct type of resource is used
for the respective file type. We have seen two examples of that already:
in the file overview (Sect. 3.3.1), the resource set and resource was used to
open a selected PNML file; in the “multi-agent mutex wizard” (Sect. 3.3.2),
the resource set was used to create a new PNML file. Note that, once you
have a resource, its contents can be obtained by the method getContents(),
which returns a list of EObjects, which contains the top-level element of that
resource; adding and removing elements to or from this list will add and re-
move these elements to the top-level of the resource. The save() method
of the resource can be used to save the current contents of the resource to
the file.

Note that the only example where we actually create or change a Petri
net model programmatically via the API is the “multi-agent mutex wizard”
of Sect. 3.3.2. In the other examples, we access and inspect the contents of a
Petri net document only. For making the changes and additions we made, we
used the getter and setter methods of the API that was generated from the
PNML core model. This, however, was possible only because the resource
that we were changing was not under the control of an editor. If a resource
is under the control of an editor, the resource and actually the complete
resource set would also be under the control of a so-called editing domain.
In that case, we cannot make changes on the resource with the getter and
setter methods of the API directly anymore. Depending on which kind of
editing domain it is, changes made via the API might result in exceptions.
The reason for this is that changes “on the side” by some other program
would ruin the editor’s undo and redo mechanism. If a function should make
changes to a model that is under the control of an editing domain, these
changes need to be encapsulated into commands of the Eclipse command
framework, which however is beyond the scope of this manual (see Sect. 3.3
of [2] for an overview of these concepts).

Eclipse provides many different ways to plug in extensions to Eclipse
itself and to the ePNK. In the examples from Sect. 3.3.1–3.3.3, we used



3.3. ADDING FUNCTIONS 89

views, wizards, and pop-up menus for that purpose, and we used jobs for
running long-running computations in the background. Eclipse, provides
many more possibilities, which are beyond the scope of this manual. You
will find more information on that in [4]: Chapter 6 discusses commands13,
actions and handlers; Chapter 7 discusses views and Sect. 21.8 gives a brief
overview of Eclipse jobs.

For pop-up actions and handlers, the respective extension points of
Eclipse allow us to provide information to which elements the respective ac-
tions and commands should apply, and when the respective actions should
be visible in pop-up menus, tool-bars etc. Only when the respective ele-
ment is selected these entries will be shown. This is straightforward when
elements are selected in the tree editor – then the respective Java class can
be used. In the graphical ePNK editor, this is slightly more tricky, since
Eclipse does not always “see” the underlying model elements; Eclipse “sees”
only the controllers, which are called edit parts. If you want to attach com-
mands and actions to the graphical editor, the actions and handlers need to
be registered for these edit parts – depending on which mechanisms you are
using. Since the action is then called with an edit part, the action needs a
way to obtain the underlying model element. And this might be a bit tricky,
for people new to the EMF and GMF framework. Therefore, Listing 3.16
shows how to obtain a Page object from its corresponding edit part14. The
code for other types of net elements is similar, where Page would need to
replaced with the respective other class. Note that the method getModel()

is actually not returning the model element behind the edit part. It returns
a view of the diagram; only the getElement() method of this view returns
the underlying model element.

3.3.4.2 ePNK models

In order to implement functions for the ePNK, you would make use of the
different packages, classes, and their methods of the ePNK (in short the
API of the ePNK). Since there is a standard mapping between the Ecore
models and the generated API (see Sect. 3.3.4.1), we do not discuss the
API explicitly; we give an overview of the models underlying the ePNK,

13Note that this notion of command should not be confused with the notion of command
of the EMF command framework!

14This code is a snippet from the action that opens a graphical editor on a page,
which can be found in the project org.pnml.tools.epnk.gmf.integration in the
class InitiateGMFEditorOnPage of package org.pnml.tools.epnk.gmf.integration.

actions.popup.



90 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.16: Accessing the model element underlying an edit part

page = null;

if (selection instanceof IStructuredSelection) {

IStructuredSelection structuredSelection =

(IStructuredSelection) selection;

5 if (structuredSelection.size() == 1) {

Object selected = structuredSelection.getFirstElement();

if (selected instanceof Page) {

page = (Page) selected;

} else if ( selected instanceof EditPart ) {

10 EditPart part = (EditPart) selected;

Object model = part.getModel();

if (model != null && model instanceof View) {

EObject object = ((View) model).getElement();

if (object != null && object instanceof Page) {

15 page = (Page) object;

} } } } }

which serve as a kind of map. The standard mapping together with the
auto-completion mechanism of the Eclipse IDE, should make it possible to
use the API based on these models.

The ePNK is based on (and generated from) many different models,
most of which reside in the plug-in project org.pnml.tools.epnk15 in the
“model” folder. Undoubtedly, the most important model is the PNML Core
model ; it contains all the constructs common to all Petri nets (cf. Fig. 1.1 and
Fig. 3.1). The PNML core model is actually split up into three diagrams16:
the diagram PNMLCoreModel.ecorediag covers the main concepts of PNML,
the diagram PNMLCoreModelGraphics.ecorediag covers the graphical fea-
tures of PNML, and PNMLCoreModelProxies.ecorediag covers some fea-
tures that are volatile (which means that they are not saved to a file) and
are responsible for maintaining the relation between the GMF diagram and
the PNML information. The corresponding Java package with the interface
and the factory for this package is org.pnml.tools.epnk.pnmlcoremodel.

Since we had discussed the main idea of the PNML core model al-

15Remember that you can make the source code and the models available via the “Import
As” → “Source Project” from the Eclipse “Plug-ins view” (see Sect. 3.1.1).

16As mentioned already, these diagrams are legacy from an outdated version of Ecore
Tools. But, if you install Eclipse as discussed in Chap.5, there will be a legacy editor for
these diagrams, so that you still can inspect them.



3.3. ADDING FUNCTIONS 91

ready in Sect. 1.2.1, we do not discuss it here any further. Concerning
the volatile features of PNMLCoreModelProxies.ecorediag and the classes
PageLabelProxy and LabelProxy, we actually recommend not to use them
anywhere in your functions and applications.

The model PNMLDataTypes defines some of the data types used in the
PNML core model (note that this replaces the respective XMLDataTypes
that are used in ISO/IEC 15909-2).

The model PNMLStructuredPNTypeModel provides some general infras-
tructure for defining more complex Petri net type definitions with labels
that require some parsing and linking, which will be discussed in Sect. 3.5.3.

The other two models PNMLPageDiagramInfo models the GMF diagram
information for the graphical editor of the ePNK, which is stored as tool
specific information of the PNML model. And the model Serialisation
represents some auxiliary information when loading some models. Both of
these models, and the API generated from them are not supposed to be used
for ePNK extensions. In particular, messing around with the diagram infor-
mation might render graphical information inconsistent – and the graphical
editor of the ePNK might not be able to start up again, when this is changed
manually.

3.3.4.3 ePNK Petri net types and their use

Some of the models that come with the ePNK provide the definition of
the two Petri net types of ISO/IEC 15909-2. The model for the Petri
net type definition of P/T-Systems resides in the model folder of project
org.pnml.tools.epnk.pntypes: PTnet.ecore. The models for the Petri
net type definition of HLPNGs resides in the model folders of projects org.
pnml.tools.epnk.pntypes.hlpngs.datatypes and org.pnml.tools.

epnk.pntypes.hlpng.pntd.

Both Petri net type definitions are discussed in more detail in Sect. 3.5.

Here we point out one important aspect of using these Petri net types
when adding new Petri net elements like places, transitions, and arcs to the
net. Since every Petri net type can define its own kind of extensions of places,
transitions and arcs, and actually also of pages, and reference nodes, it is
important, that only places of that kind are used in a net of the respective
kind. The tree editor as well as the graphical editor of the ePNK guaran-
tee that always the correct type of element is created, which fits the Petri
net type. The API, however, would allow to add other kinds of elements,
which ultimately might result in problems when serializing and loading the
net again. In order to make it easier to create the correct type of element,



92 CHAPTER 3. DEVELOPERS’ GUIDE

the class that defines a Petri net type serves as a factory for creating the
respective elements: The interface PetriNetType which all Petri net types
implement has the methods createArc(), createPage(), createPlace(),
createTransition(), createRefPlace(), and createRefTransition().
And it is strongly recommended to use these methods for creating the re-
spective elements (we have seen that in the example of Sect. 3.3.2 already).

Actually the interface PetriNetType even serves as a factory for cre-
ating the Petri net type itself and for creating a Petri net of the respec-
tive type: createPetriNet(String), createPetriNetType(String), and
createPetriNetType(), where the parameter of type String would be the
unique URI identifying the type, which is discussed in Sect. 3.5 in more
detail.

3.3.4.4 ePNK convenience classes

The main purpose of the PNML core model was to define an interchange for-
mat for Petri nets. The concepts and their relation captured in the PNML
core model were driven by this purpose. For actually accessing, modifying,
and updating the net, the model and the API generated from it are some-
times a bit clumsy and require some extra steps in programming. In order to
make up for that, the ePNK provides some convenience classes that should
make some programming a bit easier. Some of the convenience classes can
be found in the Java package org.pnml.tools.epnk.helpers in the plug-in
project org.pnml.tools.epnk.

The first important class is FlatAccess. Instances of FlatAccess can be
created by calling the static method getFlatAccess() with the respective
Petri net as a parameter17. Once an instance is created, it provides methods
to directly get a list of all the places and transitions of that net. And for each
node, it gives the set of all in-coming and out-going arcs. And there are two
methods that, for a place or a transition, return the list of all reference places
resp. reference transitions that refer to that place. And there are methods
for the other direction: for a given node (which might be a reference node),
the method resolve() computes which node it actually refers to (which will
be a place or a transition). This actually indicates the main purpose of the
convenience class FlatAccess. Even though the Petri net model contains

17In earlier versions of the ePNK, an instance of FlatAccess could be created via a
constructor; this constructor is deprecated now and should no longer be used – mostly for
efficiency reasons. The ePNK maintains a single valid FlatAccess object for each net and
takes care of maintaining and invalidating them, when they are created under the control
of the ePNK via the getFlatAccess() method.



3.4. IMPLEMENTING APPLICATIONS 93

pages and places and transitions distributed among them, with FlatAccess

it appears to be a flat net. This way, functions and applications that are
interested in the Petri net only, can ignore the page structure.

Note that you can also register listeners (in EMF terminology an Adapter)
with FlatAccess, which then will be notified when the FlatAccess object
becomes invalid. This happens, when the underlying net is changed semanti-
cally while an application is running; note that purely graphical changes will
not invalidate the FlatAccess, since the net does not change semantically.
We will see in Sect. 3.4 how this can be used to shut down an application,
when the underlying net is changed semantically by the end user.

An other convenience class is NetFunctions. It provides several static
methods: e. g. there is a method that, for a given object, returns the Petri
net to which this object belongs (or null, if it does not belong to any Petri
net); there is a method that returns the Petri net type of the net an object
belongs to. And there are methods that return all pages of a net or all the
net’s objects.

The convenience classes AbstractEPNKAction and AbstractEPNKJob,
make it easier to start long-running computations on some Petri net. These
two classes can be found in the Java package org.pnml.tools.epnk.

actions.framework.jobs in the plug-in project org.pnml.tools.epnk.

actions. The use of these two classes is discussed in Sect. 3.3.3.

3.4 Implementing applications

In this section, we discuss the implementation of ePNK applications. The
simulators for P/T-nets and high-level nets, which we had discussed in
Sect. 2.6.2 and 2.6.3, are typical examples of such applications. In con-
trast to functions, applications – once started – stay in the background,
ready to interact with the end user and to show results to the end user. In
addition, applications can visualize results by overlays on top of the Petri
net in the graphical editor, and they can interact with the end user via these
overlays, as we have seen in the simulators.

We discuss how to implement an ePNK application by the help of the
simulator application for P/T-nets, which we had discussed in Sect. 2.6.2.
You will find the source code for this simulator in project org.pnml.tools.
epnk.tutorials.applications.pt-net-simulator, which you can import
to your Eclipse workspace as discussed before.

Here, we discuss the idea, the major concepts and steps for developing an
ePNK application by using this example. In Chapter 4, you will find another



94 CHAPTER 3. DEVELOPERS’ GUIDE

example, which goes through all the technical details of implementing an
ePNK application.

3.4.1 Overview

Implementing a new ePNK application consists of three steps: First, the
runtime information of the application needs to be defined. This is done
by defining annotations, which is discussed in Sect. 3.4.2. Second, some
handlers need to be implemented; these handlers define how the annotations
of the runtime information are presented to the end user, and which actions
should be taken, when the end user interacts with an annotation in the
graphical editor. The handlers are discussed in Sect. 3.4.3. Third, the actual
application, needs to be implemented, which combines the annotations and
handlers; and the application needs to be plugged in to the ePNK. This is
discussed in Sect. 3.4.4.

When implementing an application, these three steps are not necessarily
done sequentially. In most of our applications, we have chosen to implement
the core functionality of the application in the so-called application class,
and the handlers will mostly delegate the work to some methods of the
application. But, for conceptual clarity, we explain the steps in the order as
introduced above.

3.4.2 Annotations

The first step of realizing an ePNK application is to define the runtime infor-
mation of the application. Of course, it depends on the specific application
what constitutes its runtime information. For our simulator, this runtime
information is the current marking of the net along with the sequence of all
markings up to the current one. Technically, the runtime information of an
ePNK application is defined by annotations, which are associated with the
net itself and with the net’s objects.

Following the idea of model-based software engineering, the annotations
of an application are defined by a model, which then is used to automatically
generate some code from it. Figure 3.3 shows the class diagram defining
the annotations for the P/T-net simulator. This diagram consists of three
parts: The class Object on the top-left comes from the PNML core model
as discussed in Sect. 3.2, which represents the different kinds of Petri net
objects. These are the objects that are supposed to be annotated. The
other classes at the top (graphically represented in orange), represent the
general annotations that are built into the ePNK. These are extended by



3.4. IMPLEMENTING APPLICATIONS 95

Figure 3.3: Annotations for P/T-nets simulator

the annotations of a specific application, which, in our case, are the three
classes at the bottom.

Let us have a closer look at these concepts: The concept Object repre-
sents objects of a Petri net: places, transitions, and arcs; but also pages,
reference places and reference transitions. As said already, these represent
the objects the annotations refer to. The orange classes at the top are
ePNK’s built-in concepts of annotations. An ObjectAnnotation annotates
exactly one object, which is represented by the reference object. Note that
a Petri net and its objects do not know anything about their annotations at
all, since applications should be detached from the net they are running on.

The three classes at the bottom of Fig. 3.3 define the annotations for
the simulator: TransitionActivationAnnotation, PlaceSelectionAnnotation and
PlaceMarkingAnnotation, which we have seen representations of in Fig. 2.13
already. The ePNK annotation model has an abstract class TextualAnno-
tation. An ePNK application, by default, presents annotations inheriting
from TextualAnnotation as textual labels at the top-right of the object in
the graphical editor, showing the value of its text or value attribute. In our
YAWL simulator, PlaceMarkingAnnotation is an example of such a textual
annotation. All other annotations are, by default, shown as red overlays of
the respective object. But, we will see later that an application can change
this. The annotation TransitionActivationAnnotation is used for indicating
which transitions are enabled in the current marking. This has actually an
attribute mode of the enumeration type Mode, which is also defined in the
model. The Mode can have two different values: enabled and fired. This is
used to distinguish transitions that are enabled (to be selected by the end
user) from transitions that are going to fire in the firing sequence. When
navigating back and forth in the firing sequence, the transition firing in the
next step will be represented in a different colour: The transition that will



96 CHAPTER 3. DEVELOPERS’ GUIDE

fire according to the current firing history is shown with a red overlay, as
will be discussed later. And the places affected by this transition will also
have a special annotation, which we call PlaceSelectionAnnotation18. These
places will be highlighted by a red overlay.

Altogether, the classes from Fig. 3.3 allow a running simulator to store
its state. We call this the runtime information of the simulator. Note, that
this information can be much more than what is currently shown to the end
user: in our simulator, only the current marking is shown visually; but the
user can navigate back and forth in the complete firing sequence.

Before you can use the annotations of the model, the code for this model
needs to be generated as usual for EMF. But, we do not discuss the details
here.

3.4.3 Handlers

Once the annotations of an application are defined and the code for them
is generated, two major things need to be defined for an application: how
should an annotation of an application be visualized on top of the respective
object in the graphical editor; and what should happen when the end user
interacts with the representation of this overlay (ie. what happens when the
end user clicks or double clicks on the respective overlay). This is defined
by the handlers of an application.

The presentation handlers will take care of how the annotations of the
current annotation are shown to the end user. Actually, the P/T-net simu-
lator has only one explicitly presentation handler; in addition, each applica-
tion has a default presentation handler, which is registered with all ePNK
applications by default. This way, all annotations for which there are no
dedicated presentation handlers in the application, the default presentation
handler will kick in.

Listing 3.17 shows the explicitly defined presentation handler of P/T-
net simulator. We will use it to discuss the main concepts of presentation
handlers. First of, each presentation handler must implement the interface
IPresentationHandler (lines 1–2), which comes with the ePNK. This means it
needs to implement method handle() (line 8–9), which takes two parameters:
an annotation and and editPart. The annotation is the annotation for which
the handler is asked to return a figure (technically an IFigure from Eclipse’s
Draw2D framework). The editPart is the graphical edit part from Eclipse’s
GEF framework, which is representing the annotated object of the Petri net

18The attribute selected of this class is used only to demonstrate some additional features
of the presentation handler; but we do not discuss this in this report.



3.4. IMPLEMENTING APPLICATIONS 97

in the graphical editor. This will be typically be used for making sure that
the representation of the annotation is aligned and moved around with the
representation of the object in the graphical editor, as discussed below.

let us discuss some details of the implementation of this handle() method
shown in Listing 3.17. Basically, this method returns a figure for an annota-
tion in two cases: if the annotation is a TransitionActivationAnnotation (lines
10–25) and if the annotation is a PlaceSelectionAnnotation (lines 26–39); oth-
erwise it returns null, which means this presentation handler does not know
how the annotation should be handled, and another presentation handler
might kick in.

Let us discuss the case of a TransitionActivationAnnotation (lines 10–25)
first. From the edit part of the annotated object, it will checked of the
underlying object actually is a TransitionNode (lines 13–17); if this is the
case a new RectangleOverlay figure is created, which actually comes from
the ePNK; and the constructor of this RectangleOverlay takes the graphical
edit part as a parameter, so that the overlay adjusts its size and position to
the underlying transition. The RectangleOverlay, actually does all this for
us, so that we do not need to bother with the details. By default, a Rectan-
gleOverlay will be red and translucent (so that the underlying transition is
still visible through the overlay). If the annotation is in mode ENABLED, we
switch the colour to BLUE (by default it is still translucent). This overlay
is then returned (line 25) as the figure representing this annotation.

The case of a PlaceSelectionAnnotation (lines 26–39) is similar. Here we
check whether the object underlying the graphical edit part is a PlaceNode
and, if this is the case, create a new EllipseOverlay, which also comes with
the ePNK. By default this will be shown translucent and red. But, if the
annotation says that the place is selected, its colour will be set to light grey.
Then the overlay is returned.

In all the other cases, this presentation handler returns null, meaning it
has no representation for this annotation in the given context of the provided
edit part.

This is all, a presentation handler needs to do. Of course, you could
program your own more sophisticated overlays; but the implementations
provided by the ePNK EllipseOverlay, RectangleOverlay, PolylineOverlay (for
arcs), and LabelOverlay for textual labels showing values, should cover the
most relevant representations for annotations. In Sect. 3.4.4, we will see
how an application can be associated this and more presentation handlers.

- action handlers

Listing 3.18 and 3.19...



98 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.17: Presentation handler of Simulator

public class PTSimulationPresentationHandler implements

IPresentationHandler {

4 private static final BLUE = ColorConstants.blue;

private static final LIGHTGREY = ColorConstants.lightGray;

@Override

public IFigure handle(ObjectAnnotation annotation,

9 AbstractGraphicalEditPart editPart) {

if (annotation instanceof TransitionActivationAnnotation) {

TransitionActivationAnnotation activationAnnotation =

(TransitionActivationAnnotation) annotation;

if (editPart instanceof GraphicalEditPart) {

14 GraphicalEditPart gep = (GraphicalEditPart) editPart;

java.lang.Object modelObject =

gep.resolveSemanticElement();

if (modelObject instanceof TransitionNode) {

RectangleOverlay overlay =

19 new RectangleOverlay(gep);

if (activationAnnotation.getMode().

equals(Mode.ENABLED)) {

overlay.setForegroundColor(BLUE);

overlay.setBackgroundColor(BLUE);

24 }

return overlay; } }

} else if (annotation instanceof PlaceSelectionAnnotation) {

PlaceSelectionAnnotation placeAnnotation =

(PlaceSelectionAnnotation) annotation;

29 if (editPart instanceof GraphicalEditPart) {

GraphicalEditPart gep = (GraphicalEditPart) editPart;

java.lang.Object modelObject =

gep.resolveSemanticElement();

if (modelObject instanceof PlaceNode) {

34 EllipseOverlay overlay = new EllipseOverlay(gep);

if (!placeAnnotation.isSelected()) {

overlay.setForegroundColor(LIGHTGREY);

overlay.setBackgroundColor(LIGHTGREY);

}

39 return overlay; } } }

return null;

} }



3.4. IMPLEMENTING APPLICATIONS 99

Listing 3.18: Action handler of Simulator (part1)

@Override

public boolean mouseDoubleClicked(

MouseEvent arg0, ObjectAnnotation annotation) {

4 NetAnnotations netAnnotations = app.getNetAnnotations();

NetAnnotation current = netAnnotations.getCurrent();

PetriNet net = app.getPetrinet();

if (current.getObjectAnnotations().contains(annotation)) {

9 Object object = annotation.getObject();

if (annotation instanceof TransitionActivationAnnotation &&

object instanceof TransitionNode) {

FlatAccess fn = FlatAccess.getFlatAccess(net);

Transition t = fn.resolve((TransitionNode) object);

14

Map<Place,Integer> marking1 = app.computeMarking();

if (app.enabled(marking1, t)) {

Map<Place,Integer> marking2 =

app.fireTransition(marking1, t);

19 NetAnnotation netAnnotation =

app.computeAnnotation(marking2);

netAnnotation.setNet(net);

TransitionActivationAnnotation ta =

24 ((TransitionActivationAnnotation) annotation);

List<ObjectAnnotation> clearPlaceAnnotations =

new ArrayList<ObjectAnnotation>();

for (ObjectAnnotation oa:

current.getObjectAnnotations()) {

29 if (oa instanceof TransitionActivationAnnotation &&

oa != ta ) {

((TransitionActivationAnnotation) oa).

setMode(Mode.ENABLED);

} else if (oa instanceof PlaceSelectionAnnotation) {

34 clearPlaceAnnotations.add(oa);

} }

current.getObjectAnnotations().

removeAll(clearPlaceAnnotations);

transitionAnnotation.setMode(Mode.FIRED);



100 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.19: Action handler of Simulator (part2)

for (Arc arc: fn.getOut(transition)) {

40 Object o2 = arc.getTarget();

if (o2 instanceof PlaceNode) {

Place target = fn.resolve((PlaceNode) o2);

if (target != null) {

PlaceSelectionAnnotation placeAnnotation =

45 PtnetsimulatorFactory.eINSTANCE.

createPlaceSelectionAnnotation();

placeAnnotation.setObject(target);

placeAnnotation.setSelected(true);

current.getObjectAnnotations().add(placeAnnotation);

50 for (PlaceNode ref: fn.getRefPlaces(target)) {

placeAnnotation = PtnetsimulatorFactory.eINSTANCE.

createPlaceSelectionAnnotation();

placeAnnotation.setObject(ref);

placeAnnotation.setSelected(true);

55 current.getObjectAnnotations().

add(placeAnnotation);

} } } }

app.deleteNetAnnotationAfterCurrent();

app.addNetAnnotationAsCurrent(netAnnotation);

60 return true;

} } }

return false;

}



3.4. IMPLEMENTING APPLICATIONS 101

3.4.4 Application

- registering handlers

- plugging in an application

- nextAnnotation()

- shutDown()

- is savable()

The implementation of the transition context application can be found in
the project org.pnml.tools.epnk.tutorials.applications. Listing 3.20
shows the outline of the class implementing the application, where a part
of the computation of the context is still missing – as indicated by ellipses.
The missing part can be found in List. 3.21.

We start with the discussion of the overall structure, which is shown in
Fig. 3.20. Line 1 shows that the CalculateTransitionContext applica-
tion extends the Application, which is an ePNK convenience class making
it easy to implement applications. It would be enough if the application
implemented IApplication; this would, however, require much more pro-
gramming. Lines 3–5 show the constructor, which does not have any exiting
behaviour in its own right; since the constructor of the class Application

expects a Petri net, this parameter is just passed on.

The actual computation of the transition context is done in the method
initializeContents(), where for each transition, all the in-coming and
out-going arcs as well as the attached places are computed, and an object
annotation is created for each of them. The actual computation is not
yet shown – the code in lines 14–16 shows only the creating of a new net
annotation to which the object annotations will be added later. Note that,
for each net annotation, a corresponding net must be set.

After all the object annotations have been computed and added to the
net annotation, the net annotation is added to the list of all the applica-
tion’s net annotations (which is obtained from the application by method
getAnnotation() as shown in line 9). In the end (lines 23–25), the net
annotations current annotation is set to the first one of the computed list.
This will be the elements that are initially high-lighted: the context of the
first transition.

Listing 3.21 shows the details of how the context is computed for each
transition, and how the corresponding object annotations are created and
added to the net annotation (note that the listing shows the complete for-
loop again – also the part that was shown in List. 3.20 already). As said
before, for each transition, a new net annotation is created (by using the
respective factory of the annotation package) and the associated Petri net



102 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.20: Transition context application: Outline

public class CalculateTransitionContext extends Application {

public CalculateTransitionContext(PetriNet petrinet) {

super(petrinet);

5 }

public void initializeContents() {

NetAnnotations netAnnotations = this.getNetAnnotations();

10 PetriNet petrinet = this.getPetrinet();

for (Transition transition: (new FlatAccess(petrinet)).

getTransitions()) {

NetAnnotation netAnnotation = NetannotationsFactory.

15 eINSTANCE.createNetAnnotation();

netAnnotation.setNet(petrinet);

...

20 netAnnotations.getNetAnnotations().add(netAnnotation);

}

if (netAnnotations.getNetAnnotations().size() > 0) {

netAnnotations.setCurrent(

25 netAnnotations.getNetAnnotations().get(0));

}

}

}



3.4. IMPLEMENTING APPLICATIONS 103

Listing 3.21: Transition context application: Computing the context

for (Transition transition: (new FlatAccess(petrinet)).

2 getTransitions()) {

NetAnnotation netAnnotation = NetannotationsFactory.

eINSTANCE.createNetAnnotation();

netAnnotation.setNet(petrinet);

ObjectAnnotation objectAnnotation = NetannotationsFactory.

7 eINSTANCE.createObjectAnnotation();

objectAnnotation.setObject(transition);

netAnnotation.getObjectAnnotations().add(objectAnnotation);

for (Arc arc:transition.getIn()) {

12 objectAnnotation = NetannotationsFactory.

eINSTANCE.createObjectAnnotation();

objectAnnotation.setObject(arc);

netAnnotation.getObjectAnnotations().add(objectAnnotation);

17 objectAnnotation = NetannotationsFactory.

eINSTANCE.createObjectAnnotation();

objectAnnotation.setObject(arc.getSource());

netAnnotation.getObjectAnnotations().add(objectAnnotation);

}

22

for (Arc arc:transition.getOut()) {

objectAnnotation = NetannotationsFactory.

eINSTANCE.createObjectAnnotation();

objectAnnotation.setObject(arc);

27 netAnnotation.getObjectAnnotations().add(objectAnnotation);

objectAnnotation = NetannotationsFactory.

eINSTANCE.createObjectAnnotation();

objectAnnotation.setObject(arc.getTarget());

32 netAnnotation.getObjectAnnotations().add(objectAnnotation);

}

netAnnotations.getNetAnnotations().add(netAnnotation);

}



104 CHAPTER 3. DEVELOPERS’ GUIDE

is set. Then an object annotation is created (by using the factory again)
and added to the net annotation; for the object annotation, we need to
set the object that should be annotated; in this case (line 8), it is the
transition. Then, by iterating over the in-coming arcs (line 11–21), object
annotations for the arcs and their source places are created and added to
the net annotation. For each of these object annotations, we need to set
the reference to the net object that should be annotated by it. Likewise the
object annotations for the out-going arcs and the attached places are created
(line 23–33). In the end, all object annotations that have been collected for
the context of the transition in a single net annotation are added to the list
of net annotations of this application (line 35).

This is all that needs to be done so that the transition contexts are shown
as discussed in Sect. 2.6.2, once the application is started. The standard
actions for the application then allow the end user to go back and forth in
the list of all net annotations.

Of course, there must be a possibility for the user to start the application.
In our case, this is done by a pop-up menu, which is installed on a Petri net
object in the tree editor of the ePNK. This is done by standard Eclipse mech-
anisms and not discussed here (have a look at the class StartApplication
and the “plugin.xml” file in project org.pnml.tools.epnk.tutorials.

applications, if you are interested in details). It is planned for the future,
to realise a mechanism to plug in ePNK applications so that they automat-
ically show up in the ePNK menus (or a separate view).

Of course, there are other kinds of applications, where not all the an-
notations can be calculated in the initialisation. In that case, some of the
methods of the convenience class Application can be overridden in order
to accommodate for that. Then, it is also possible to install more or other
actions than standard forward and backward buttons. In particular, over-
riding the nextAnnotation() method could be used to calculate the next
annotations on demand. Note that, if an application allocates resources
that need to be freed, when the application is closed, this should be done
by overriding the method shutDown().

Right now, all net annotations consist of a set of object annotations.
Graphically, such a net annotation is always shown by a red overlay of the
respective elements in the graphical editor (provided the respective page
is open in a graphical editor). By some programming this behaviour can
actually be changed (the simulator for high-level Petri nets of Sect. 2.6.3
is an example). But, we intend to equip applications with a presentation
description, by which an application can define how specific annotations
should be shown to the end user; e. g. by using different colours or different



3.5. ADDING PETRI NET TYPES 105

shapes or textual annotations on top of the graphical representation of the
Petri net. Moreover, there will be an interaction description for applications,
that will allow us to define how the end user can interact with some of the
annotations by clicking on them; and which action are triggered by these
user interactions.

3.5 Adding Petri net types

As mentioned several times already, it is one of the main features of the
ePNK that new Petri net types can be plugged in. In this section, we
discuss how to plug in a new Petri net type. In Sect. 3.5.1, we start with a
simple version, for which we, basically, need to provide an Ecore model with
the extensions only; as an example, we use P/T-Systems (PTNet), which
come as an integral part of the ePNK; but it is defined with ePNK’s type
definition mechanism.

In order to explain the use of attributes in Petri nets (which do not occur
in P/T-Systems and HLPNGs), Sect. 3.5.2 briefly discusses the definition of
another Petri net type: signal-event nets (SE-Nets). This type is then used
later again to explain how to extend the graphical representation of some
features of a Petri net.

For more complex Petri net types, we can also define the mapping from
the concepts of the Petri net type to their representation in XML. Some Petri
net types have a quite sophisticated syntax for their textual labels, which
need to be parsed in some way – and sometimes also linked to other symbols
of the net. Such labels are called structured labels, and Petri net types using
such labels are called structured Petri net types. For these Petri net types, a
parser and a linker for the structural labels must be provided. The parser is
needed to convert the text of the label from its concrete syntax to its abstract
syntax or “structure”; the linker is needed for linking the use of symbols in
some labels to their definition in others. We use the example of high-level
Petri nets (HLPNG) for discussing the relevant details in Sect. 3.5.3.

In the end, in Sect. 3.5.4, we will provide a short overview and summary
of the main concepts and steps for creating a Petri net type definition

3.5.1 Simple Petri net type definitions: PTNet

The definition of P/T-Systems follows almost exactly the idea outlined al-
ready in Sect. 1.2.2, and the Ecore model that we use in the Petri net type
definition is almost a copy of the one that we have seen in Fig. 1.2 on page 5
already. It remains to discuss some of the differences in these models, and



106 CHAPTER 3. DEVELOPERS’ GUIDE

to discuss the steps to make the type known to the ePNK (in short to plug
it into the ePNK).

The plug-in projects that are relevant for the Petri net type definition
of P/T-Systems are org.pnml.tools.epnk.pntypes and the mostly auto-
matically generated project org.pnml.tools.epnk.pntypes.edit.

3.5.1.1 The model

The type PTNet is defined in project org.pnml.tools.epnk.pntypes. The
main part is the Ecore model in “PTnet.ecore” in the folder “model”, where
the diagram information is contained in “PTNet.ecorediag”. The diagram
is shown in Fig. 3.4.

Figure 3.4: The Ecore model for the Petri net type PTNet

There are only some minor, but important differences, to the model from
Fig. 1.2 on page 5. We discuss these differences below:

1. There is a class PTNet in the Ecore model, which does not occur in the
conceptual model. The reason is that packages are not very tangible
in programming and in the Eclipse plug-in mechanisms. Therefore, we
define a Petri net type as an explicit class within that package; this
class inherits from PetriNetType from the PNML core model (package
pnmlcoremodel), which is not shown graphically in the diagram. It
is this class (PTNet in our example) that is plugged in as a Petri net
type definition to the ePNK later. Moreover, this class implements
some methods that help the ePNK to access the information about its
labels; the details, however, do not need to concern us right now.

2. There are two new classes Place and Arc, which inherit from the



3.5. ADDING PETRI NET TYPES 107

classes Place and Arc from the package pnmlcoremodel. And it is
these new classes to which the additional labels are attached (initial
marking and inscription). The reason for using inheritance here in-
stead of merging packages is, that Ecore does not have the concept of
merging packages19. Instead, the extended information for the specific
Petri net type is attached to the derived classes in this new pack-
age. There could be also a class for Page and Transition, but we do
not need them here, since in P/T-Systems only places and arcs have
additional labels.

Note that the name of the two classes, Place and Arc are the same as
in the PNML core package, which is not ambiguous since these new
classes are defined in another new package. For now, we assume that
the names of these classes are the same as in the PNML core model20.

3. The additional classes for labels, PTMarking and PTAnnotation, are
attached to the new class Place and Arc as in the conceptual model
via a composition – only the directive “refines” is missing, due to the
missing concept of merging packages in Ecore. The features text are
directly represented as an attribute of type NonNegativeInteger and
PositiveInteger, which are predefined data types of the ePNK that
represent the respective data types from XML Schema which are used
in ISO/IEC 15909-2. The cardinality for the text attributes is 1 in
both cases – the same as in the conceptual model of ISO/IEC 15909-2.

4. The new labels PTMarking and PTAnnotation are derived from the
PNML core model class Label and not, as in the conceptual model,
from Annotation. The reason is that the ePNK considers every label
that is not an attribute to be an annotation – therefore, there is no
need for an explicit class Annotation in the PNML core model of the
ePNK21.

19It might be a good idea not to use the merge concept for extending the place and
transition of the PNML core model in ISO/IEC 15909-2 when defining a new Petri net
type. The merge does not work properly when nets of different types are used within the
same document, but which is legal according to ISO/IEC 15909-2

20In principle, the names could be different; but this would require some extra pro-
gramming, which we do not discuss in detail in this manual. Basically, the reflective
code of the methods for creating the instance of the respective Petri net element in class
PetriNetTypeImpl (see Sect. 3.3.4.3) need to be overridden, so that they return an object
of the correct type.

21Actually, there are classes NetAnnotation and ObjectAnnotation in the ePNK. But,
these classes represent annotations on top of an existing Petri net, and are not annotations
in the the sense of the PNML core model of ISO/IEC 15909-2 at all.



108 CHAPTER 3. DEVELOPERS’ GUIDE

5. A last difference is that there is no OCL constraint in this model.
In the ePNK, constraints are plugged in in a different way: as EMF
constraints, which is discussed in Sect. 3.5.1.4.

Such a model and diagram can be created and edited by the graphical
editor of “Ecore Tools”, which will not be discussed here (see the “EMF
Ecore Tools Developer Guide” in the “Eclipse Help” and the web pages for
some information).

Note that the Ecore package that contains the definition of a simple Petri
net type must meet some conditions:

1. It must contain exactly one class that is derived from PetriNetType.
The name of this class, however, can be chosen freely.

2. There can be classes which are derived from any of the following classes
of the PNML core model: Place, Transition, Arc, Page, RefPlace
or RefTransition. The names of these derived classes in the new
package should the same22.

3. These derived classes can have any number of references to some other
classes. The classes that these references refer to must be derived from
the class Label of the PNML core model, and the feature must be a
composition (a containment feature); the name and the cardinality of
the features can be chosen freely. If the feature has cardinality “many”,
this means that the respective object can have multiple labels of that
kind.

4. The classes that are derived from class Label must have exactly one
attribute, which has the name text and cardinality “1”. The type of
the attribute text can freely be chosen; it can be an Ecore built-in data
type, a user-defined data type, an enumeration type, or a data type
imported from other packages. The classes that are directly derived
from Label must not have any reference23.

5. Note that the package may also contain one class that is derived from
the class PetriNet from the PNML core model. The name of that
class can be freely chosen. The derived class may have the same kind
of references as discussed for Petri net objects above. In that case, the

22By some programming, however, the names can be changed
23We will see later that this is slightly relaxed for structured labels, which are discussed

in Sect. 3.5.3.2. Structured labels, however, are not directly derived from class Label;
they are derived from class StructuredLabel.



3.5. ADDING PETRI NET TYPES 109

Petri net itself can have labels attached to it24, which are called net
labels.

3.5.1.2 Generating the code

The code generation from that Ecore model follows the EMF standard pro-
cedure. In short, we need to generate the model code and the edit code. But,
we briefly go through the process of generating all the relevant code below.

Before we can generate the code from the model, we need to create
the so-called generator model (“genmodel”). This generator model contains
some configuration information on how the code should be generated. For
example, the generator model contains the information to which project
and which packages, the Java code for the model should be generated. The
generator model also allows us to configure the generation of the EMF tree
editor; for example, we can state whether a features can be changed, whether
it should be shown as a child element or as a property, etc. (see [2] for
more details). The generator model can be created from an Ecore model
by selecting the Ecore model (“PTnet.ecore” in our case), clicking the right
mouse button, and selecting “New”→“Other...” in the pop-up menu and
then, in the “New” dialog, choosing “EMF Generator Model” in the category
“Eclipse Modeling Framework”. In the case of a new Petri net type, the
Ecore model has references to other models, like the PNML core model, and
their “genmodels”; in the wizard for creating the “genmodel”, make sure
that you do not choose these other models as so-called root models, but
that you add (and select) the respective generator models in the lower part
as “Referenced Generator models” instead. You do not need to make any
changes in the “genmodel”, but we recommend that you change the “Base
package” property to some reasonable path.

From the “genmodel”, we can generate25 the code for the model (model
code), and the code with the infrastructure for all editors, which is called
edit code. We cold also generate a simple tree editor for this model; but
we do not need it; so we recommend not to generated it in order to avoid
confusion and an inflation of file extensions attached to editors that are
not used. Generating the code can be done by opening the “genmodel”,

24We would discourage to define Petri net types were labels can be attached directly to
a Petri net. But since ISO/IEC 15909-2 mandates that this is possible for HLPNGs, the
ePNK provides the possibility to define such net labels.

25If you have imported the plug-in projects for P/T-Nets, the code is already generated.
So, you do not need to generated anything. You would need to do that only for a new
own Petri net type definition. The following discussion pretends that the P/T-Net is your
new Petri net type definition were you just created the Ecore model.



110 CHAPTER 3. DEVELOPERS’ GUIDE

and then selecting (after clicking the right mouse button) “Generate Model
Code” and “Generate Edit Code”. After that, you will find26 the code for
the model in the “src” folder of the project with the model and “genmodel”.
Moreover, the “plugin.xml” will make the model and its code known to
Eclipse by an extension: org.eclipse.emf.ecore.generated_package.

The edit code is generated in a project with the same name extended
by a suffix “.edit”. We do not need to change anything in the edit code27.
Note that we must generate the edit code, in order for our Petri net type
definition to work properly. If we do not do that that, we will get some
exceptions when using the ePNK with the new type.

3.5.1.3 Adding the Petri net type to the ePNK

After the above steps, the code for the new model is known to Eclipse.
But, the ePNK will not know that there is a new Petri net type. To this
end, we need to define another extension, which makes the new Petri net
type known to the ePNK. Before, we can do that, we need to make two
minor changes in the automatically generated code. We need to make the
constructor of the class that represents the new Petri net type public (by
default it is protected); in our example, this concerns the constructor of the
class PTNetImpl, which can be found in the automatically generated package
org.pnml.tols.epnk.pntypes.ptnet.impl.

Listing 3.22 shows this class with the manually changed and extended
parts marked in red. You can see the constructor, which is public now. The
manual change is indicated also by the @generated NOT tag28. The second
manual change is the addition of the toString() method. This method
defines the value of the PNML type attribute for nets of that particular Petri
net type: the types unique URI. Here, we use the one from ISO/IEC 15909-2
for P/T-Systems. If you define a new Petri net type, you need to make sure
that you use one that is not used by other Petri net types already.

With the constructor public, we can plug in the PTNetImpl as a new
Petri net type to the ePNK now. To this end, we use the extension point
org.pnml.tools.epnk.pntd in the “plugin.xml”. Listing 3.23 shows the
relevant part from the “plugin.xml” file, which can be found in the project

26If you do not say otherwise in the “genmodel”.
27In the org.pnml.tools.epnk.pntypes.edit project with the “edit code” for PTNets,

some of the automatically generated icons in the folder icons/obj16 have been replaced
by some more appropriate images, but this is just a matter of usability.

28Actually, we could just delete the tag @generated, but it is easier to search for and
keep track of manual changes, if they are tagged with @generated NOT.



3.5. ADDING PETRI NET TYPES 111

Listing 3.22: The class PTNetImpl with manual changes

package org.pnml.tools.epnk.pntypes.ptnet.impl;

import org.eclipse.emf.ecore.EClass;

4 import org.pnml.tools.epnk.pnmlcoremodel.impl.PetriNetTypeImpl;

import org.pnml.tools.epnk.pntypes.ptnet.PTNet;

import org.pnml.tools.epnk.pntypes.ptnet.PtnetPackage;

9 // @generated

public class PTNetImpl extends PetriNetTypeImpl implements PTNet {

/**

* @generated NOT

14 * @author eki

*/

public PTNetImpl() {

super();

}

19

/**

* @generated

*/

@Override

24 protected EClass eStaticClass() {

return PtnetPackage.Literals.PT_NET;

}

// @generated NOT

29 // @author eki

@Override

public String toString() {

return "http://www.pnml.org/version-2009/grammar/ptnet";

}

34

}



112 CHAPTER 3. DEVELOPERS’ GUIDE

org.pnml.tools.epnk.pntypes. The attribute point refers to the ePNK

Listing 3.23: The extension PTNetImpl

<extension

id="org.pnml.tools.epnk.pntypes.ptnet"

name="PTNets"

point="org.pnml.tools.epnk.pntd">

5 <type

class="org.pnml.tools.epnk.pntypes.ptnet.impl.PTNetImpl"

description="Place/Transition Nets">

</type>

</extension>

type definition extension point, the id is a unique identifier for the new
type within the ePNK, and the attribute name gives the type extension
some conclusive name (we use the one from ISO/IEC 15909-2). The type

element refers to the class that implements the new type; in our example,
this is our PTNetImpl class – with its fully qualified name. In general, the
class that is chosen here must extend the class PetriNetTypeImpl from the
PNML core model code and which must have a public constructor (that is
why we needed the manual change). The description can contain a longer
description of the new net type – for P/T-Systems, we guessed that no
further explanation would be needed.

If we started the runtime workbench now and used the ePNK editor, it
would offer us a Petri net of the new type, when we create a child element
of a Petri net document. But, it would be better to wait with that until, we
have also added the constraints for connecting arcs, below.

3.5.1.4 Adding constraints

As mentioned earlier, it is not allowed in P/T-Systems to have arcs that run
from places to places or from transitions to transitions or from and to pages.
In the conceptual model of PTNets, this is excluded by an OCL constraint
in the UML model already. In the ePNK, this constraint must be added
separately, which is done by the standard mechanisms of EMF Validation
in the “plugin.xml”.

Listing 3.24 shows the part of the “plugin.xml” that defines this con-
straint. The actual OCL constraint is defined in the bottom in the XML
CDATA part (lines 31–34). This OCL expression resembles the one from
the conceptual UML model, but is syntactically slightly different – which is



3.5. ADDING PETRI NET TYPES 113

Listing 3.24: Adding a constraint for PTNets

1 <extension point="org.eclipse.emf.validation.constraintProviders">

<constraintProvider cache="true">

<package

namespaceUri="http://org.pnml.tools/epnk/pnmlcoremodel">

</package>

6

<constraints categories="org.pnml.tools.epnk.validation">

<constraint

id=

"org.pnml.tools.epnk.pntypes.ptnet.validation.PT_TP_ArcsOnly"

11 lang="OCL"

mode="Live"

name="PT or TP Arcs only"

severity="ERROR"

statusCode="301">

16 <message>

The arc {0} must run from a place to a transition or vice versa.

</message>

<description>

Arcs between two places or transitions are forbidden in

21 P/T-nets (see Clause 5.3.1 of ISO/IEC 15909-2).

</description>

<target

class="Arc:http://org.pnml.tools/epnk/types/ptnet">

<event name="Set">

26 <feature name="source"/>

<feature name="target"/>

</event>

</target>

<![CDATA[

31 ( self.source.oclIsKindOf(pnmlcoremodel::PlaceNode) and

self.target.oclIsKindOf(pnmlcoremodel::TransitionNode) ) or

( self.source.oclIsKindOf(pnmlcoremodel::TransitionNode) and

self.target.oclIsKindOf(pnmlcoremodel::PlaceNode) )

]]>

36 </constraint>

</constraints>

</constraintProvider>

</extension>



114 CHAPTER 3. DEVELOPERS’ GUIDE

due to the specific technology. Moreover the “headline” that states the con-
text Arc is missing, since in the EMF Validation technology, the context is
explicitly set by the target element, which you can find immediately above
(lines 23–29); in this example, it is the Arc of the ptnet package (which
we refer to by the URI that is defined in the Ecore model of the Petri net
type). The declaration of the events is necessary here, since we made this
constraint a live constraint, which means that the editors will make sure
not to violate it during editing. To this end, the editor needs to know the
changes of which features might violate the constraint; in our example, this
is setting the source or the target of an arc.

The rest of this constraint definition is a bit more technical, and we go
through it only briefly. The extension that we actually define is a constraint
provider, which consists of the package it refers to and the constraints. In
our case, the package is the PNML core model – even though it is for a
specific Petri net types. The reason is that the validation always starts from
the PNML core model. Constraints are defined for a category; we use the
one defined by the ePNK here: org.pnml.tools.epnk.validation. Each
constraint must have a unique id, must state the language it is defined in
(OCL, in our example), have a name, a severity, and a statusCode. The
status code can be freely chosen; the ePNK uses 3-digit codes starting with
a 3 for constraints concerning Petri net types. The mode can be live or
batch; in live mode, the graphical editor will watch them and not allow edit
operations that would violate them – this is what we choose in our example.
Other constraints, like correctness of structured labels, might be defined
to be in batch mode; then, the graphical editor will allow for syntactically
incorrect labels, but the violation will be reported when explicitly validating
the net. The last information in the constraint is a message, which is shown
to the end user when the constraint is violated. The parameter {0} refers
to the object that violates the constraint (in its String representation) – for
constraints other than OCL, there could be more parameters. Moreover,
there is a longer description of the constraint.

As mentioned above, the constraint can be formulated in different lan-
guages. It could, for example, be in Java, which would require to implement
a Java class. There are some examples of Java constraints in the HLPNG
definition (see Sect. 3.5.3.3). Often, Java is more convenient for implement-
ing more complex constraints.

Note that we did not define any mapping from the concepts defined in
the Ecore model of P/T-Systems to their representation in XML. The reason
is that, the standard mapping is good enough: the name of the composition
in which the label is contained is the XML element, and the text feature



3.5. ADDING PETRI NET TYPES 115

of the label is mapped to the XML element <text> (see Fig. 1.1 on page 7
for an example). A mapping to XML needs to be defined only when the
standard mapping is not enough, or when we have structured labels, which
will be discussed in Sect. 3.5.3.

3.5.2 Petri net type definitions with attributes: SE-nets

In this section, we discuss the Petri net type definition for signal-event nets
(SE-nets), which we had discussed in Sect. 2.4.3 from the end user’s point
of view. We present this example for several reasons: First and foremost,
in the definition of SE-nets, we can show how to use attributes in Petri net
type definitions. Second, the most prominent feature of SE-net are signal
arcs, which run between two transitions; and these arcs are associated with
a specific graphical representation – an arc with a flash symbol. Therefore,
we come back to this example later in this manual when we define the
graphical appearance of Petri nets (Sect. 3.6). Third, the Ecore model for
SE-nets contains one feature, which would not be legal in PNML; therefore,
we can use this example to show some subtle changes in order to make this
illegal feature “invisible” to PNML.

As you could see in Fig. 2.7 on page 23, signal-event nets have different
kinds of arcs. Read arcs, inhibitor arcs, and signal arcs. Therefore, arcs need
a label that indicates that type. The type definition for SE-nets is defined
in the ePNK plug-in projects org.pnml.tools.epnk.pntypes.signalnets
and org.pnml.tools.epnk.pntypes.signalnets.edit29.

Figure 3.5 shows the Ecore model with the Petri net type definition for
signal-event nets, which can be found in the folder “model” of plug-in project
org.pnml.tools.epnk.pntypes.signalnets. In this model, the class Arc

is equipped with an ArcType, which has a text attribute, the type of which
is the enumeration ArcTypes – also defined in this model. Note that the
enumeration has only two possible values read for read arcs and inhibit

for inhibitor arcs. If there is no ArcType the arc is considered to be a normal
arc, when it is running between a place and transition or vice versa, or as a
signal arc, when it is running between two transitions. Moreover, the Ecore
model defines that there can be a Marking for places. Both label classes
inherit from Attribute, which means that these labels are not shown as

29Unfortunetely, these two rojects were configured in such a way that you cannot import
the source code of these projects as discussed earlier. Therefore, the source code is made
available separately – you can download the source code of the respective projects from
http://www2.imm.dtu.dk/~ekki/projects/ePNK/install-details.html; and then
import them to the workspace.



116 CHAPTER 3. DEVELOPERS’ GUIDE

Place

ArcType

text : ArcTypes

Marking

text : NonNegativeInteger

Arc

SignalNet
PetriNetType

(from pnmlcoremodel)

Place

(from pnmlcoremodel)

Attribute

(from pnmlcoremodel)

Arc

(from pnmlcoremodel)

<<enumeration>>

ArcTypes

read

inhibit

marking

0..1

arc

0..1

type

0..1

Figure 3.5: The Ecore model for SE-Nets

annotations, but in the properties view, when the respective arc or place are
selected in the editor (see Fig. 2.7). We will see Sect. 3.6, how the value of
these attributes can be shown in the graphical representation of the place or
the arc. All we need to do for a label in the Petri net type definition to be
considered an attribute by the ePNK is deriving it from the class Attribute
of the PNML core model.

If we have a closer look at the Ecore model from Fig. 3.5, we see that
the class ArcType has a reference arc which points back to the arc that
“owns” that type – the reference arc is, actually, an opposite of reference
type. This additional reference allows us to navigate back from the arc type
to the respective arc, which makes it easier to formulate some constraints
for arcs and their arc types30. As we had discussed earlier in Sect. 3.5.1.1,
classes derived from Label and also from Attribute are not allowed to have
any feature other than the text attribute. The reason for this restriction is
that PNML does not allow us to serialize this feature. So, we need to make
sure that such references to arcs are not serialized – conceptually this is not
necessary anyway, since the reference arc is the opposite of the reference
type. Therefore, we switch the serialisation of the feature arc off. This
can done by selecting the resp. reference in the editor for the Ecore model,
and then, in the properties view, selecting the “Advanced”31 section, and

30In the current version, this feature is not used, though.
31This “Advanced” section shows all kinds of advanced setting of the respective Ecore

element. In case you are new to Ecore and you do not understand the concept of “tran-



3.5. ADDING PETRI NET TYPES 117

then set the property “transient” to “true”, meaning that this feature is
not serialised to a file (the ePNK serialisation mechanism takes that into
account).

From the Ecore model above, we can create the “genmodel” and gener-
ated the model code and the edit code as discussed in Sect. 3.5.1.2. And
we would need to do the same manual change: implement the toString()

method, so that it returns the unique URI for that type; and we would need
to make the constructor of the class SignalNetImpl public. In this example,
however, we chose a different way – we create a class SignalNetFactory that
inherits from SignalNetImpl without any additional attributes, methods or
constructors. Since the implicit default constructor of SignalNetFactory
is public, this will do the job. This is actually the preferred method, since
regeneration of the model code after a model change does not need any
manual changes anymore.

Plugging in the Petri net type to the ePNK extension point works as
described in Sect. 3.5.1.3. Listing 3.25 shows the resulting fragment of the
“plugin.xml” (with some minor omissions).

Listing 3.25: Plugging in SE-Nets

1 <extension

id="org.pnml.tools.epnk.pntypes.signalnets"

name="Signal Nets"

point="org.pnml.tools.epnk.pntd">

<type

6 class="org.pnml. ... .signalnets.factories.SignalNetFactory"

description="Signal nets">

</type>

</extension>

Listing 3.26 shows the constraint for SE-nets, which makes sure that an
arc type can only be present for arcs that run from a place to a transition; it
also guarantees that arcs run from a place to a transition, from a transition
to a place, or between two transitions. It is a live constraint, which needs to
be checked, whenever the source or target of an arc are set, and whenever
the arc type is set.

With these definitions, the ePNK would know what SE-nets are – still
the inhibitor arcs and the signal arcs would not yet appear as shown in

sient”, do not worry. Just ignore this for now.



118 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.26: Adding the constraint for SE-nets

1 <extension point="org.eclipse.emf.validation.constraintProviders">

<constraintProvider cache="true" mode="Live">

<package

namespaceUri="http://org.pnml.tools/epnk/types/signalnets">

</package>

6 <constraints categories="org.pnml.tools.epnk.validation">

<constraint

id="org.pnml. ... .validation.correct-arc-connection"

lang="OCL" mode="Live"

name="Arc connection constraint for signal nets"

11 severity="ERROR" statusCode="401">

<message>

The arc {0} with this arc type is not allowed ...

</message>

<description>

16 Arcs must be between a place and a transition, ...

</description>

<target

class="Arc:http://org.pnml.tools/epnk/types/signalnets">

<event name="Set">

21 <feature name="source"></feature>

<feature name="target"></feature>

<feature name="type"></feature>

</event>

</target>

26 <![CDATA[

( self.source.oclIsKindOf(pnmlcoremodel::PlaceNode) and

self.target.oclIsKindOf(pnmlcoremodel::TransitionNode) )

or

( self.source.oclIsKindOf(pnmlcoremodel::TransitionNode) and

31 self.target.oclIsKindOf(pnmlcoremodel::PlaceNode) and

self.type->size() = 0 )

or

( self.source.oclIsKindOf(pnmlcoremodel::TransitionNode) and

self.target.oclIsKindOf(pnmlcoremodel::TransitionNode) and

36 self.type->size() = 0 )

]]>

</constraint>

</constraints>

</constraintProvider>

41 </extension>



3.5. ADDING PETRI NET TYPES 119

Fig. 2.7. To this end, we still need to extend the graphical appearance of
SE-nets, which will be discussed in Sect. 3.6.

3.5.3 Petri net type definitions in general: HLPNG

In this section, we discuss some more advanced mechanisms that can be used
for defining new Petri net types. These mechanism will be discussed by the
help of the Petri net type definition of high-level Petri nets (HLPNGs).
Therefore, we start with an overview of the concepts of HLPNGs, from the
implementation point of view (for the conceptual part we refer to Sect. 2.5.2
and for a detailed discussion of all models and concepts, we refer to [6]).

3.5.3.1 Overview of HLPNGs

As discussed in Sect. 2.5.2, HLPNGs have different kinds of complex labels:
declarations of variables, sorts, and operators; types defining the sort of the
tokens of a place, markings which are multiset terms defining the initial
marking of a place, conditions as transition guards, and arc annotations
that define which tokens are consumed, resp. produced when a transition
fires. What is more, the labels cannot be considered isolated from each other
anymore – some labels, like markings, arc annotations, or conditions may use
symbols that are defined in other labels – in particular, in the declarations.

Figure 3.6 shows the Ecore model defining the concepts of HLPNGs,
which can be found in the folder “model” in project32 org.pnml.tools.

epnk.pntypes.hlpngs.pntd. This model follows the same principles as the
model for PTNets, which was discussed in Sect. 3.5.1.1. The main differ-
ences are that the defined Petri net type HLPNG extends a more advanced
class StructuredPetriNetType, and all labels extend StructuredLabel,
which are part of the PNML core model. These two classes provide the
infrastructure needed for parsing the textual labels and for establishing the
links between these labels. This structure is discussed in Sect. 3.5.3.2.

The actual contents of all these labels is defined in their containment
structure; note that we use Term as the contents for the labels HLMarking,
Condition, and HLAnnotation, since all of them are terms – just with differ-
ent additional constraints imposed on them (see Sect. 3.5.3.3). Note that by

32This is the plug-in in which HLPNGs are plugged into the ePNK; since HLPNGs are
quite complex, and require many models, and also the implementation of a parser, the
underlying concepts are defined in different other projects; all of these projects have a
name with prefix org.pnml.tools.epnk.pntypes.hlpngs – some of them are generated
automatically from models or from a grammar. You can import all of these projects to
your workspace by the Eclipse “Import As” feature in the “Plug-ins” view.



120 CHAPTER 3. DEVELOPERS’ GUIDE

Place

Transition

Arc

Page

Place

(from pnmlcoremodel)

Transition

(from pnmlcoremodel)

Arc

(from pnmlcoremodel)

Page

(from pnmlcoremodel)

Type

HLMarking

Condition

HLAnnotation

Declaration

StructuredLabel

(from structuredpntypemodel)

Sort

(from terms)

Term

(from terms)

Declarations

(from terms)

HLPNG

kind : HLPNGKind

StructuredPetriNetType

(from structuredpntypemodel)

<<enumeration>>

HLPNGKind

FULL

SN

PTN

HLPN
PetriNet

(from pnmlcoremodel)

type

0..1

hlinitialMarking

0..1

condition

0..1

hlinscription

0..1

declaration

0..*

structure

0..1

structure

0..1

structure 0..1

structure

0..1

structure

0..1

declaration

0..*

Figure 3.6: The Ecore model for HLPNGs



3.5. ADDING PETRI NET TYPES 121

Figure 3.7: The Ecore model for the main concepts of HLPNGs

contrast to normal labels and attributes, structured labels can have – actu-
ally must have – a composition, which normally33 has the name structure.
But there should not be any other features than that.

The detailed structure and concepts of terms, sorts, and declarations, are
defined in several other models. Since these details are not too relevant for
understanding the definition of structured Petri net types, we discuss only
the main part of that model. This part of the model is shown in Fig. 3.7 –
this as well as the diagrams of all the other models can be found in the plug-
in org.pnml.tools.epnk.pntypes.hlpngs.datatypes. For a detailed dis-
cussion of these models and their concepts, we refer to [6]. There is only
one important difference, which are the classes SymbolDef and SymbolUse,
which do not occur in the models of ISO/IEC 15909-2. These two classes
are the ePNKs infrastructure for dealing with the definition of symbols and

33The name could be changed, but this would require some programming, which will
be discussed later.



122 CHAPTER 3. DEVELOPERS’ GUIDE

their use in a uniform and generic way – on the side, making the concepts of
symbol definition and symbol use explicit, so that the model is more concise.
These concepts are part of the PNML core model concerning structured
Petri net types, which will be discussed in the next section.

One other issue worth noting in the Ecore model of Fig. 3.6 is the class
HLPN, which extends class PetriNet from the PNML core model. This
represents the Petri net itself. Normally, Ecore models defining a new Petri
net type would not need to extend the class PetriNet itself; it would be
enough to extend the class PetriNetType. HLPNGs, however, have so-
called net labels, which are labels that are directly attached to the net – and
not to a page. For net types with net labels, the class PetriNet must be
extended and equipped with compositions to the respective labels – in our
example, these are declarations. But, we would discourage defining such net
labels for Petri nets types.

3.5.3.2 Structured Petri net types and structured labels

As mentioned above, the ePNK provides some general interfaces and in-
frastructure for defining structured Petri net types, which distill the general
concepts of more complex Petri net types. This is, again, captured in models
(and the code generated from them).

The model for structured Petri net types can be found in the “model”
folder of the ePNK core project org.pnml.tools.epnk: PNMLStructured

PNTypeModel. The diagram is shown in Fig. 3.8. We know the classes
PetriNetType and Label as well as the interface ID, which is used for all
ePNK elements that have an id, already from the PNML core model. The
abstract class StructuredLabel extends the class Label, it has an attribute
text, which stores the contents of this label as a text String. The actual
structural contents is defined by classes that extend it (we have seen some
examples in Fig. 3.6 already). Since, the ePNK cannot not know these
concrete implementations, classes extending the structural label must make
the reference to this structural contents known to the ePNK. This is achieved
by the method getStructuralFeature(); as long as the feature for the
structure is called ‘structure’ in the model, we do not need to do anything in
the implementation (the ePNK will access this feature in a reflective way);
only if for some reason, the model chooses a different name, this method
must be implemented manually. Moreover, every class for a structural label
must provide a method parse() for parsing a String – a representation of
this label in concrete syntax; an implementation of this method may return
null, if the text cannot be parsed. If the label could be parsed, it must



3.5. ADDING PETRI NET TYPES 123

Figure 3.8: The model for structured Petri net types

return some object (to be precise an EObject which is the EMF version of
objects) with all the substructure of that label – the abstract syntax of the
label. In particular, that object must have a type that is compatible with
the label’s structural feature. This method must be implemented manually
for every new extension since the ePNK cannot guess the concrete syntax.

The abstract class StructuredPetriNetType has one additional method,
which must provide a Linker for linking the uses of some symbols to their
definitions, which are captured by classes SymbolDef and SymbolUse. A
SymbolDef has an ID and has a name, which will be used to refer to it
(the id is internal to PNML and the ePNK). This name will be used in
SymbolUse, again as attribute name, to refer to the definition. The fea-
ture that actually refers to the definition, can be accessed via the method
getRefFeature(). Since the ePNK does not know anything about how
to make these connections, the Petri net type needs to provide access to
the linker; to this end, the class StructuredPetriNetType has a method
getLinker(), which must be implemented by classes that extend it. Linker
is an interface: a single method getglobalLinks(), which takes a Petri net
and returns a SymbolUseMapping, which is also an interface. Conceptu-



124 CHAPTER 3. DEVELOPERS’ GUIDE

ally, the class SymbolUseMapping maps every SymbolUse to its definition
SymbolDef. All the symbol uses for which there exists a mapping, can be
obtained (as a list) via the method getSymbolUses(); and for each symbol
use, the method getSymbolDef() will return the definition of that symbol.

With this infrastructure, the ePNK can deal with all kinds of struc-
tured labels. We will have a look at the implementation of some examples
next: We consider the label Condition in the Petri net type definition
for HLPNGs again (see Fig. 3.6) – the other labels are similar. Its struc-
tural feature is the containment structure to class Term. Since this is
the standard name for structured labels, we do not need to override the
method getStructuralFeature. But, we need to implement the parse()

method. The parsers for all labels of HLPNGs were automatically generated
by Xtext, and are made available in a singleton class HLPNGParser in package
org.pnml.tools.epnk.pntypes.hlpngs.datatypes.concretesyntax in a
project with the same name. For parsing a term, class HLPNGParser provides
a method parseTerm(String). This singleton and its method parseTerm()

is used in the implementation of ConditionImpl (you will find it in the pack-
age org.pnml.tools.epnk.pntypes.hlpng.pntd.hlpngdefinition.impl

in project org.pnml.tools.epnk.pntypes.hlpng.pntd).

Since linking is across all the different labels of a net, there is only a
single linker for every net. For HLPNGs, this is implemented in the package
org.pnml.tools.epnk.pntypes.hlpngs.datatypes.concretesyntax.

linking in project org.pnml.tools.epnk.pntypes.hlpngs.datatypes.

concretesyntax. This class is HLPNGLinker; basically it goes through the
complete Petri net twice; in the first round, it creates a symbol table of all
symbol definitions; in the second round, this symbol table is used to look up
the definition for every symbol use, which is stored in the SymbolMapping,
which implements the SymbolUseMapping that we discussed above.

To make this linker known to the ePNK, the class HLPNGImpl in package
org.pnml.tools.epnk.pntypes.hlpng.pntd.hlpngdefinition.impl im-
plements the method getLinker(): it returns an instance of HLPNGLinker.

Note that, in order to plug in the Petri net type definition to the ePNK,
we need to make the constructor public in the class HLPNGImpl, and we need
to implement the toString() method so that it returns the unique URI of
HLPNGs method (as discussed in Sect. 3.5.1.3).

3.5.3.3 Constraints

For HLPNGs, we needed to implement quite many constraints. As an exam-
ple for a Java constraint, we discuss one of these constraints here. The rest



3.5. ADDING PETRI NET TYPES 125

of them would not provide much insight into the mechanisms of the ePNK –
though they might provide some insights to the inner workings of HLPNGs
themselves. There is also an OCL constraint that forbids connecting places
with places and transitions with transitions. But, this is exactly the same
as for PTNets, which is why we do not discuss it here again.

All constraints for HLPNGs are defined in the project org.pnml.tools.
epnk.pntypes.hlpng.pntd, the implementations of the Java constraints
can be found in the package org.pnml.tools.epnk.pntypes.hlpng.pntd.

validation We discuss the constraint that transition conditions must have
type boolean, which is implemented in class ConditionIsBoolType. List-
ing 3.27 shows this class. This constraint extends the class AbstractModel

Constraint from EMF Validation and implements the method validate().
From the validation context, it obtains the target object, which should be a
transition (see later). But, we are defensive and check that explicitly. Then,
we obtain the condition label of that transition, and if it is not null, get
the term (its structure). Then, we check whether the sort of the term is
boolean34. If it is not, we return a failure status via the validation context,
and add the transition and the textual label to an array of objects (which
is used in the error message to be defined later). Otherwise, we return a
success status. Note that the EMF Validation Framework makes sure that
this validate method is called for all transitions of a selected Petri net, Petri
net document or page, once it is properly plugged in, which is discuss below.

Plugging in a Java constraint is similar to plugging in OCL constraints.
The relevant fragment of the “plugin.xml” is shown in Listing 3.28. The
main differences are that the attribute lang is “Java” now and the attribute
class refers to the class ConditionIsBoolType, which was discussed above.
As target class, the transition class of HLPNGs is defined (that is why we
could assume that the target object is a transition). Another difference is
that this is no live constraint, but a batch constrain. This means, that the
constraint might be violated during editing; a violation will be detected and
reported only when the user explicitly invokes the validation. Since this is
a batch constraint, we do not need to declare any events in the target.

Another difference to the OCL constraint is, that we can refer to several
parameters in the message now. What the different parameters are, depends
on the return value of the validation method. In our case, this was the
transition (or its String representation) and the text of the label.

34The implementation of getSort() for terms is actually quite complex; it amounts to
implementing a type system for the annotation language of HLPNGs. But we do not
discuss the details here.



126 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.27: The constraint that conditions have type boolean

package org.pnml.tools.epnk.pntypes.hlpng.pntd.validation;

import org.eclipse.core.runtime.IStatus;

4 import org.eclipse.emf.ecore.EObject;

import org.eclipse.emf.validation.AbstractModelConstraint;

import org.eclipse.emf.validation.IValidationContext;

import

org.pnml.tools.epnk.pntypes.hlpng.pntd.hlpngdefinition.Condition;

9 import

org.pnml.tools.epnk.pntypes.hlpng.pntd.hlpngdefinition.Transition;

import

org.pnml.tools.epnk.pntypes.hlpngs.datatypes.booleans.Bool;

import org.pnml.tools.epnk.pntypes.hlpngs.datatypes.terms.Sort;

14 import org.pnml.tools.epnk.pntypes.hlpngs.datatypes.terms.Term;

public class ConditionIsBoolType extends AbstractModelConstraint {

public IStatus validate(IValidationContext ctx) {

19 EObject object = ctx.getTarget();

if (object instanceof Transition) {

Transition transition = (Transition) object;

Condition condition = transition.getCondition();

24 if (condition != null) {

Term term = condition.getStructure();

if (term != null) {

Sort sort = term.getSort();

if (sort != null) {

29 if (!(sort instanceof Bool)) {

return ctx.createFailureStatus(

new Object[] {transition,

condition.getText()});

}

34 }

}

}

}

return ctx.createSuccessStatus();

39 }

}



3.5. ADDING PETRI NET TYPES 127

Listing 3.28: Adding the constraint for conditions

<extension point="org.eclipse.emf.validation.constraintProviders">

<constraintProvider cache="true">

<package

namespaceUri="http://org.pnml.tools/epnk/pnmlcoremodel">

5 </package>

<constraints categories="org.pnml.tools.epnk.validation">

...

<constraint

10 lang="Java"

class="org.pnml. ... .validation.ConditionIsBoolType"

severity="ERROR"

mode="Batch"

name="Condition is of type boolean"

15 id="org.pnml. ... .validation.ConditionIsBoolType"

statusCode="314">

<target class=

"Transition:http://org.pnml.tools/epnk/pntypes/hlpng/pntd/hlpng"/>

<description>

20 The condition must be of type BOOL.

</description>

<message>

The condition {1} of transition {0} is not of type BOOL.

</message>

25 </constraint>

...

</constraints>

</constraintProvider>

</extension>



128 CHAPTER 3. DEVELOPERS’ GUIDE

The ellipses (“...”) indicate that the constraint that we have discussed
here, is just one of many other constraint, which are not discussed here.

3.5.3.4 XML Mappings

In the sections above, we have discussed how to define a Petri net type and
all its concepts and constraints. For saving it in PNML, it is also necessary to
define how these concepts are represented in XML – at least if the “standard
mappings” do not work.

In this section, we discuss how these mappings are defined. Conceptually,
these mappings are tables (in ISO/IEC 15909-2, these tables are given in
Clause 7.3.1). In the ePNK, these tables are “programmed” as part of the
new Petri net type35.

We explain the concepts of these “programmed tables” by discussing
some of the mappings for HLPNGs. The tables for a new Petri net type are
programmed, by overwriting the method registerExtendedPNMLMetaData(

ExtendedPNMLMetaData metadata) of PetriNetType; the parameter meta

data represents the table, to which the entries should be added when the
method is called.

Let us have a look at some examples. Listing 3.29 shows an excerpt of the
registerExtendedPNMLMetaData() method of the class HLPNGImpl, which
implements the Petri net type for HLPNGs. Each of the metadata.add

statements defines one table entry, which defines the mapping of one spe-
cific feature of the Ecore model to an XML element (we will see later
how to map an Ecore attribute to an XML attribute). The three state-
ments shown in Listing 3.29 define how the structure feature of the labels
Type, the HLMarking, and the Condition are mapped to the XML element
<structure>. We discuss the first one, the Type, in more detail:

• The first parameter, denotes the feature that is mapped to XML by
this entry; in this case, it is the composition from the class Type to the
class Sort (see Fig. 3.6 on page 120). The source and target classes are
mentioned explicitly as second and third parameter again. We refer to
the feature and the two classes via the singleton classes that describes
the elements of the packages (HLPNGdefinition and Terms), which
are automatically generated by EMF. These package classes, provide
access to all the classes and features within a package (see [2] for more

35It might be, that a future version of the ePNK will provide a means to plug in these
tables directly in some form; but since “programming the tables” is not too difficult, this
does not have a high priority.



3.5. ADDING PETRI NET TYPES 129

Listing 3.29: Mappings for type, marking, and condition extensions

1 public void registerExtendedPNMLMetaData(

ExtendedPNMLMetaData metadata) {

...

metadata.add(

6 HlpngdefinitionPackage.eINSTANCE.getType_Structure(),

HlpngdefinitionPackage.eINSTANCE.getType(),

TermsPackage.eINSTANCE.getSort(),

"structure",

null,

11 HLPNGFactory.getHLPNGFactory());

metadata.add(

HlpngdefinitionPackage.eINSTANCE.getHLMarking_Structure(),

HlpngdefinitionPackage.eINSTANCE.getHLMarking(),

16 TermsPackage.eINSTANCE.getTerm(),

"structure",

null,

HLPNGFactory.getHLPNGFactory());

21 metadata.add(

HlpngdefinitionPackage.eINSTANCE.getCondition_Structure(),

HlpngdefinitionPackage.eINSTANCE.getCondition(),

TermsPackage.eINSTANCE.getTerm(),

"structure",

26 null,

HLPNGFactory.getHLPNGFactory());

...

}



130 CHAPTER 3. DEVELOPERS’ GUIDE

details). Note that HlpngdefinitionPackage.eINSTANCE refers to
the package hlpngdefinition and TermsPackage.eINSTANCE to the
package terms.

• As mentioned above, the second parameter denotes the class to which
the feature belongs (it could be a sub-class of Type in principle); this
is often called the container class.

• The third parameter denotes the class that the feature refers to (this
could also be a sub class of Sort); this is often called the object class.

• The forth parameter defines the XML representation, the string that
will be used as XML element in the serialisation of this feature (in our
example “structure”).

• The fifth parameter could refer to an XML attribute, that might be
necessary for creating an Ecore object from the XML element (we will
discuss an example later). In most cases, this XML attribute is not
needed, since the XML element (and the context in which it occurs)
provide enough information for creating the Ecore element from it.

• The last parameter refers to a factory that is capable of creating an
Ecore instance of the respective class from the XML element and – if
provided – the XML attribute. This parameter can be left empty, when
the Ecore instance can be constructed reflectively from the information
on the object class only.

The ePNK uses this table and its entries in two directions: In the one
direction, the table is used to serialise a Petri net to its XML syntax; in the
other direction, the table is used to create the model elements from the XML
syntax. In the latter case, the factories play an important role. Listing 3.30
shows the interface that all these factories must implement. The methods
canCreateObject() and createObject() have the same parameters, which
basically reflect the entries of the table that we discussed above. Only the
third (representing the object class) and the six one (the factory itself)
are missing. And, there is an additional parameter (provider), which will
provide access to the values of all attributes of the currently read XML
element (in case the factory needs the values of some of the XML element’s
attributes for creating an object of the appropriate type). The method
canCreateObject() is used to find out whether the factory is able to create
an object from the provided information, the createObject() method is
used to actually create it. The createAttributeObject is used to create



3.5. ADDING PETRI NET TYPES 131

Listing 3.30: Interface Factory

package org.pnml.tools.epnk.pnmlcoremodel.serialisation;

import org.eclipse.emf.ecore.EObject;

import org.eclipse.emf.ecore.EStructuralFeature;

5

public interface IPNMLFactory {

public boolean canCreateObject(

EStructuralFeature feature,

10 Object container,

String element,

String attribute,

IAttributeProvider provider);

15 public EObject createObject(

EStructuralFeature feature,

Object container,

String element,

String attribute,

20 IAttributeProvider provider);

public Object createAttributeObject(

Object object,

String attribute,

25 IAttributeProvider provider);

}



132 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.31: Mappings of an attribute

metadata.addAttributeMapping(

BooleansPackage.eINSTANCE.getBooleanConstant_Value(),

3 BooleansPackage.eINSTANCE.getBooleanConstant(),

"value",

HLPNGFactory.getHLPNGFactory());

an object for some XML attribute. The implementation of these factories is
straightforward and a bit boring – we do not discuss the details here. You can
have a look into the class HLPNGFactory in package org.pnml.tools.epnk.
pntypes.hlpng.pntd.hlpngserialisation.factory in the project org.

pnml.tools.epnk.pntypes.hlpng.pntd to get some inspiration. What
is more, with an extension that came into version 0.9.0 of the ePNK, the
factory can be set to null. In which case the standard mechanism for
creating an object of the target class will be used; therefore, we need factories
only in very special cases. In most of the cases, the factory can be set to
null36.

Listing 3.31 shows an example37 of how a feature of the model can be
mapped to an XML attribute. In this example, the value of the boolean
constant is mapped to the XML attribute value. This is where the method
createAttributeObject() of the factory comes into play.

The discussion above, gives a general idea of how these tables and map-
pings work. All this, however, could have been achieved with the existing
mechanisms of EMF: Extended Metadata. Some of the PNML constructs
cannot be mapped to XML by the mechanisms provided by EMF Extended
Metadata. Therefore, the ePNK needed to provide its own mechanism for
mapping Ecore concepts to XML. In the rest of this section, we discuss some
of these special situations.

To this end, we consider the serialisation of the simple term x‘f(x,x),
where x is a variable and f is a user defined operator. The PNML repre-
sentation is shown in Listing 3.32, where “5” is the unique id of variable x

and “1” is the id of the user defined operator f, In addition to being a bit
verbose, there is one thing that is special about this mapping: There is an

36Note that except for two features, which were used to test this new mechanism, the
mappings for HLPNGs have not been updated yet; therefore, you will find factories all
over these mappings. But, this has historic reasons only and will eventually be changed
(making the mappings more maintainable and easier to understand).

37Actually, this is the only example of this kind in HLPNGs.



3.5. ADDING PETRI NET TYPES 133

Listing 3.32: PNML representation of x‘f(x,x)

<numberof>

<subterm>

3 <variable refvariable="5"/>

</subterm>

<subterm>

<useroperator declaration="1">

<subterm>

8 <variable refvariable="5"/>

</subterm>

<subterm>

<variable refvariable="5"/>

</subterm>

13 </useroperator>

</subterm>

</numberof>

XML element <subterm> for the association form the top-level term (num-
ber of) to its subterm, which are represented as two other XML elements,
<variable> and <useroperator>. The XML element <subterm> defines to
which feature of the term the XML element that is contained in it should
go. The XML element inside (e. g. <variable>) defines the type that this
object should have.

The problem here, is that there is an intermediate XML element that
has no object as counter part in the model – it represents an association. We
call such an XML element an association element. The mapping for these
association elements is shown in Listing 3.33. The first entry is actually
as we have seen it before. The only difference is that the factory produces
an instance of a new class TermAssoc, which has the nature of a term but,
actually, represents an association to a term. We will discuss that class in
more detail later. The two other mappings, define the mapping of variables
and user operators to XML, and these are different, since they do not refer
to any feature at all. They just refer to a container class and a contained
class. The container class is the class TermAssoc, which will make sure that
the variable resp. user operator will be added to the subterm feature of the
operator on the level above38.

The class TermAssoc does not need to be programmed. This class, as

38There would actually be another way of doing this, in a slightly more elegant way
when using “standard features”, which will be discussed later in this section.



134 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.33: Mappings of associations to XML elements

metadata.add(TermsPackage.eINSTANCE.getOperator_Subterm(),

TermsPackage.eINSTANCE.getOperator(),

TermsPackage.eINSTANCE.getTerm(),

"subterm",

5 null,

HLPNGFactory.getHLPNGFactory());

metadata.add(null,

HlpngserialisationPackage.eINSTANCE.getTermAssoc(),

10 TermsPackage.eINSTANCE.getVariable(),

"variable",

null,

HLPNGFactory.getHLPNGFactory());

15 metadata.add(null,

HlpngserialisationPackage.eINSTANCE.getTermAssoc(),

TermsPackage.eINSTANCE.getUserOperator(),

"useroperator",

null,

20 HLPNGFactory.getHLPNGFactory());



3.5. ADDING PETRI NET TYPES 135

Figure 3.9: The package hlpngserialisation

well as the other classes for representing association elements, could com-
pletely be generated from a model. This model is shown in Fig. 3.9. These
classes extend a specific class of our model (the one to which the respec-
tive association should go), and the general class for AssocClass, which is
defined by the ePNK, and implements all the necessary functionality. Note
that these classes will not occur in the model anymore, once it is completely
loaded – they are only used while a PNML file is loaded.

In the case of subterms, every subterm occurs in a separate <subterm>

element – even if a term has several subterms, there is one subterm element
for each of them (see Listing 3.32). In the case of parameters of an operation
declaration, this is different: Listing 3.34 shows the PNML representation
of the declaration of a named operator f(x:INT, y:INT) = x * y. Here,
all variable declarations occur in the same <parameter> element. We called
these bundled association elements. The table entries for this mapping are
shown in Listing 3.35. The first one, is almost the same as for associa-
tion elements, and the Factory HLPNGFactory would create an instance of
VariableDeclAssoc for an XML element <parameter>. The new last pa-
rameter true says, that this is a bundled association. The second table
entry defines the mappings for variable entries, which is independent of the
context, which is why the first to parameters are null. We call this a context
independent element mapping.



136 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.34: PNML structure for declaration f(x:INT, y:INT) = x * y

<namedoperator id="1" name="f">

<parameter>

<variabledecl id="2" name="x">

<integer/>

5 </variabledecl>

<variabledecl id="3" name="y">

<integer/>

</variabledecl>

</parameter>

10 <def>

<mult>

<subterm>

<variable refvariable="2"/>

</subterm>

15 <subterm>

<variable refvariable="3"/>

</subterm>

</mult>

</def>

20 </namedoperator>

Listing 3.35: Mapping bundled association elements

metadata.add(

TermsPackage.eINSTANCE.getNamedOperator_Parameters(),

TermsPackage.eINSTANCE.getNamedOperator(),

TermsPackage.eINSTANCE.getVariableDecl(),

5 "parameter",

null,

HLPNGFactory.getHLPNGFactory(),

true);

10 metadata.add(

null,

null,

TermsPackage.eINSTANCE.getVariableDecl(),

"variabledecl",

15 null,

HLPNGFactory.getHLPNGFactory());



3.5. ADDING PETRI NET TYPES 137

This context independent element mapping can be applied in any other
context. In combination with another special case of mappings which we
call standard feature, this is a very powerful mechanism. For example,
for Declarations and sub-elements for which context independent element
mappings exist (in the example, there would be variable declarations, sort
declarations, and operator declarations), all these elements should be added
to this standard feature. The table entry shown in Listing 3.36 defines the
composition declaration as the standard feature of Declarations. Note

Listing 3.36: Defining a standard feature

metadata.add(TermsPackage.eINSTANCE.getDeclarations_Declaration(),

TermsPackage.eINSTANCE.getDeclarations(),

TermsPackage.eINSTANCE.getDeclaration(),

4 null,

null,

null);

that there is no mapping to XML here. A standard feature of an element
just says that, whenever there comes some context independent element that
is not mapped explicitly to a feature, this element should be added to the
standard feature of the model. Of course, there should only be one standard
feature – otherwise there would be some ambiguities.

3.5.4 Petri net type definitions: Summary and overview

In Sect. 3.5.1–3.5.3, we have seen most of the mechanisms for defining new
Petri net types. Basically, a Petri net type definition consists of a new Ecore
package where the Petri net type of the PNML core model is extended and
the classes for the extended Petri net elements are modelled. Form this
model the major parts of the code (model and edit code) can be gener-
ated. In the generated code, some manual changes need to be made. The
Ecore package needs to follow some modelling principles that are discussed
in Sect. 3.5.1.1 and the manual changes are discussed in Sect. 3.5.1.2. All
the extensions must be added as labels of the respective kind of node of the
Petri net.

If a label should not be shown as annotation of the respective element in
the graphical editor of the ePNK, this can be achieved by deriving it from
the ePNK class Attribute. Attributes can be edited in the properties view
of the ePNK only. Sect. 3.5.2 discussed an example.



138 CHAPTER 3. DEVELOPERS’ GUIDE

More complex Petri net types might require to also implement a parser
and to store the actual information of the label not only as text but also as
an abstract syntax tree in the PNML file. Such labels are called structured
labels and have been discussed in Sect. 3.5.3.2. In case of complex Petri net
types, it might also be necessary to customize the XML representation, of the
labels and the concepts of its abstract syntax. To this end, the ePNK allows
Petri net types to define a XML mapping, which is discussed in Sect. 3.5.3.4.

For all kinds of nets, it is possible to add additional constraints on top of
the Ecore model of the respective type. These constraints are plugged in via
the standard mechanisms for EMF Validation. Two examples are discussed
in Sect. 3.5.1.4 and Sect. 3.5.3.3. The constrains can either be programmed
in Java or can be OCL.

Note that it is possible to extend the class PetriNet of the PNML core
model (when net labels are needed in the Petri net type). It is also possible
to add labels to pages and reference nodes by extending the respective classes
in the Ecore model for the new Petri net type.

When an annotation is defined for a page, the question is whether the
respective annotation should be shown as a label annotated to the node
page on the super page or whether the label should be shown as a page
label on the page itself. The name of a page is shown as an annotation of
the page on the super page; by default, an annotation of a page is shown as
page labels on the page itself, if there can be multiple annotations of that
kind for the page; and it is shown as a label of the page node on the super
page, if there can be only one annotation of that kind. But, this can be
changed by overriding the method showLabelOnPage() of the class Page of
the respective Petri net type – which requires manual coding again.

3.6 Defining the graphical appearance

For some kinds or Petri nets, some places, transitions or arcs should be
shown in a dedicated graphical representation. And the graphical appear-
ance might depend on the context of the respective element – and the graph-
ical appearance might change dependent on the changes of the context of
this element. An example are signal arcs, inhibitor arcs, and read arcs in
SE-nets, an example of which is shown in Fig. 3.10 again.

In this section, we discuss how such dedicated graphics can be plugged
into the ePNK. To this end, we continue the discussion of the projects that
implement SE-nets, which was started in Sect. 3.5.2. As you can see from
Fig. 3.10, SE-nets have a dedicated graphics for arcs (as signal arc, read



3.6. DEFINING THE GRAPHICAL APPEARANCE 139

Figure 3.10: A SE-net with its dedicated graphics

arc, or inhibitor arc). But there is also a dedicated graphics for places: the
marking is shown by black dots – up to some upper bound – in the respective
places.

We start discussing the implementation of the dedicated graphical rep-
resentation for arcs. To this end, we need to implement a figure class, which
is the GEF/GMF terminology for the graphically visible elements (view) of
a model element in an editor. Listing 3.37 shows the main part of the class
SignalnetArcFigure, which implements the graphical appearance of the
arcs of SE-nets (the class SignalnetArcFigure can be found in the package
org.pnml.tools.epnk.pntypes.signalnets.graphics.figures of plug-
in project org.pnml.tools.epnk.pntypes.signalnets). This class ex-
tends the class ArcFigure of the ePNK. In line 3, an enumeration of possible
arc types is define, which is private to this class. Note that we do not re-use
the enumeration from the model here, but define another enumeration, in
order to make the implementation a bit simpler. The current type of the
arc is stored as an attribute of this class (line 5). The constructor (lines
7–11) takes the arc (the model element behind this figure) as a parameter;



140 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.37: The class SignalnetArcFigure: main part

public class SignalnetArcFigure extends ArcFigure {

private enum Type { NORMAL, READ, INHIBIT, SIGNAL }

4

private Type type;

public SignalnetArcFigure(Arc arc) {

super(arc);

9 type = getType();

setGraphics();

}

@Override

14 public void update() {

Type oldType = type;

type = getType();

if (oldType != type) {

setGraphics();

19 } }

private void setGraphics() {

RotatableDecoration targetDecorator = null;

RotatableDecoration sourceDecorator = null;

24

if (type == Type.READ) {

targetDecorator = new ReisigsArrowHeadDecoration();

sourceDecorator = new ReisigsArrowHeadDecoration();

} else if (type == Type.INHIBIT) {

29 targetDecorator = new CircleDecoration();

} else if (type == Type.SIGNAL) {

sourceDecorator = new FlashDecoration();

targetDecorator = new ReisigsArrowHeadDecoration();

} else {

34 targetDecorator = new ReisigsArrowHeadDecoration();

}

this.setTargetDecoration(targetDecorator);

this.setSourceDecoration(sourceDecorator);

39 }

...



3.6. DEFINING THE GRAPHICAL APPEARANCE 141

it calls the constructor of the super class ArcFigure of the ePNK, which
also takes the arc as a parameter, then calculates the current type (by the
private method getType(), which is shown in List. 3.38) and then properly
sets the graphical features by calling the method setGraphics(), which is
specific to this class.

The method setGraphic() changes the graphical features of the arc
according to the current type of the arc (lines 21–39). In this example, we
change the decorations of the arc only; we use the decorations at both ends
(source and target). As decorations, we use the usual arrow shaped ones
(ReisigArrowHeadDecoration39), circles (CircleDecoration), and flashes
(FlashDecoration), which are provided by the ePNK. In the method, the
variables for the decorations on both ends are initialized to null (lines 22-
23). Then, dependent on the type of the arc the respective decorations are
set. Note that the FlashDecoration is attached to the source, but it will
actually show up in the middle of the arc (or actually in the middle of the
first segment of the arc) by the specific way it is is implemented. The reason
for this choice is that there can be at most one decoration at each end of a
connection. Since signal arcs have two decorations, the flash and the arrow
head, one needs to be at the source end of the connection. In the end,
the only thing that is necessary to do is actually setting the decorations –
note that calling the respective methods with null, means that there is no
decoration for that connection.

Note that changes in the underlying model might make changes in the
graphical appearance necessary. Such a change could be an explicit change
of the type of the arc by the end user or just reconnecting an arc to a different
kind of element. Whenever such a change happens, the ePNK notifies the
figure of the affected model element by calling the method update(), which
is specific to all extensible figure classes of the ePNK. It should be overridden
by the extending classes. Lines 14–19 of List. 3.38 show the implementation
of this method in our example. The type of the arc is computed again; if it
changed, the setGraphics() method is called again.

This is all there is to do for implementing another appearance of an
arc. Of course, this figure still needs to be plugged in, which is discussed
later. In the update method, you could do all kinds of other changes such
as changing the colour of the arc (setForeGroundColor() or the line style
(setLineStyle()) – and many things more.

39This name was chosen in honour of Wolfgang Reisig, who insisted on arrow
heads in Petri nets being drawn in a very specific way. The implementation of
ReisigArrowHeadDecoration tries to meat Wolfgang Reisig’s standards.



142 CHAPTER 3. DEVELOPERS’ GUIDE

If you need other decorations than the ones that come with the ePNK,
you can implement them yourself. But, we do not discuss this here since
this is a GMF or, actually, an Eclipse draw2d concept. A look at the imple-
mentation of the ePNK decorations might give you a clue.

Listing 3.37 shows the last part of the class SignalnetArcFigure: the
implementation of method getType(). This is mostly straightforward: com-
puting the type based on the information of the arc underlying this figure.
The only surprise might be the initial type check of this.arc for Arc. The
reason is that this.arc refers to a final attribute of ArcFigure of the ePNK,
which refers to the Arc of the PNML core model, whereas in the class
SignalnetArcFigure, we need to refer to the Arc of the SE-net package
– which has the same name, but in a different package.

Listing 3.38: The class SignalnetArcFigure: compute type

...

private Type getType() {

4 if (this.arc instanceof Arc) {

ArcType arctype = ((Arc) arc).getType();

if (arctype != null) {

switch (arctype.getText().getValue()) {

case ArcTypes.READ_VALUE:

9 return Type.READ;

case ArcTypes.INHIBIT_VALUE:

return Type.INHIBIT;

}

} else {

14 Node source = arc.getSource();

Node target = arc.getTarget();

if (source instanceof TransitionNode &&

target instanceof TransitionNode) {

return Type.SIGNAL;

19 }

}

}

return Type.NORMAL;

}

24

}

In the above example, we have changed the appearance of the arc on



3.6. DEFINING THE GRAPHICAL APPEARANCE 143

a very high level of programming, by changing the attributes of the figure.
And if the desired graphical appearance can be achieved this way, this is
the recommended way of doing this. In some cases, however, changing the
attributes of the figure it not enough – we rather would need to “draw”
some additional things. This can be done by using a different strategy
for extending the figure: overriding the fillShape() or outlineShape()

methods. We explain this strategy by another example: showing the initial
marking by a respective number of black tokens in the place. Listing 3.39
shows the class SignalnetPlaceFigure, which implements this graphical
appearance. The update() method just informs the figure that it should
repaint itself40 when something has changed. The actual appearance is now
defined by overriding the method fillShape(). In this method, first, all the
normal drawing of the place is done by calling the same method of the super
class. After that, the marking of the place is computed41. If the marking
is between 1 and 4, the respective number of tokens are drawn in the client
area of the place. To this end, the drawing methods on the graphics object
are used. Depending on the number of tokens, the appropriate positions
are chosen (note that for space reasons, we omit the code for drawing four
tokens). If there are more than four tokens, they are not represented as black
circles anymore. They are “drawn” as a string representing the number of
tokens.

Note that you could do more things and could also use some other low-
level methods of figures to do that. But, we do not discuss that here. You
might get some more inspiration my looking at another tutorial which im-
plements some more exotic appearances of arcs, places and transitions in
project org.pnml.tools.epnk.extensions.tutorial.types; the resp. fig-
ures can be found in the in package org.pnml.tools.epnk.extensions.

tutorial.types.arctypes.graphicalextensions.figures.

At last we need to make the new figures defined for SE-nets known to
the ePNK – we need to plug them in. This is done by implementing and
plugging in a factory for these figures. The factory for the graphical exten-
sion for SE-nets is shown in List. 3.40. It extends the abstract ePNK class
GraphicalExtension. The first method (line 4–8) defines, for which types
of Petri nets this extension provides some graphics – as a list of classes of
the respective Petri net types. In our example, this is the class representing
SE-nets – obtained from the automatically generated package class. The

40We could have done that in a slightly smarter way so that repaint is called only if the
marking has changed – as for the arcs.

41Since this requires some navigation in the model, this is delegated to a separate method
getMarking(), which is not discussed here.



144 CHAPTER 3. DEVELOPERS’ GUIDE

Listing 3.39: The class SignalnetPlaceFigure

public class SignalnetPlaceFigure extends PlaceFigure {

public SignalnetPlaceFigure(Place place) {

super(place);

5 }

public void update() {

this.repaint();

}

10

protected void fillShape(Graphics graphics) {

super.fillShape(graphics);

Rectangle rectangle = this.getClientArea();

15 int m = 0;

if (place instanceof Place)

m = getMarking((Place) place);

int cx = rectangle.x + rectangle.width/2;

int cy = rectangle.y + rectangle.height/2;

20 if (m == 0) {

return;

} else if (m == 1) {

graphics.setBackgroundColor(getForegroundColor());

graphics.fillOval(cx-6, cy-6, 12, 12);

25 } else if (m == 2) {

graphics.setBackgroundColor(getForegroundColor());

graphics.fillOval(cx-11, cy-11, 12, 12);

graphics.fillOval(cx, cy, 12, 12);

} else if (m == 3) {

30 graphics.setBackgroundColor(getForegroundColor());

graphics.fillOval(cx-6, cy-13, 12, 12);

graphics.fillOval(cx-13, cy, 12, 12);

graphics.fillOval(cx+1, cy, 12, 12);

} else if (m == 4) {

35 ...

} else {

graphics.drawString(""+m, cx-5, cy-7);

} }

40 private int getMarking(Place place) { ... }

}



3.6. DEFINING THE GRAPHICAL APPEARANCE 145

Listing 3.40: The factory class SignalnetGraphics

public class SignalnetGraphics extends GraphicalExtension {

@Override

4 public List<EClass> getExtendedNetTypes() {

ArrayList<EClass> list = new ArrayList<EClass>();

list.add(SignalnetsPackage.eINSTANCE.getSignalNet());

return list;

}

9

@Override

public List<EClass> getExtendedNetObjects(EClass netType) {

ArrayList<EClass> list = new ArrayList<EClass>();

if (netType.equals(SignalnetsPackage.eINSTANCE.getSignalNet())) {

14 list.add(SignalnetsPackage.eINSTANCE.getArc());

list.add(SignalnetsPackage.eINSTANCE.getPlace());

}

return list;

}

19

@Override

public ArcFigure createArcFigure(Arc arc) {

if (arc instanceof org.pnml.tools.epnk.pntypes.signalnets.Arc) {

return new SignalnetArcFigure(

24 (org.pnml.tools.epnk.pntypes.signalnets.Arc) arc);

}

return null;

}

29 @Override

public IUpdateableFigure createPlaceFigure(Place place) {

if (place instanceof

org.pnml.tools.epnk.pntypes.signalnets.Place) {

return new SignalnetPlaceFigure(

34 (org.pnml.tools.epnk.pntypes.signalnets.Place) place);

}

return null;

}

39 }



146 CHAPTER 3. DEVELOPERS’ GUIDE

second method (line 11–18) defines for which kinds of elements there is a
specific graphics – again represented as a list of class objects. In our exam-
ple, these are the classes representing the arc and the place of SE-nets. At
last, there are two methods, that create the respective figure object for an
element by using the respective constructors of the figure classes. Note that
GraphicalExtension has also methods for creating a figure for transitions
and other kinds of nodes – but we do not need to override them here since
our extension does not provide special graphics for them.

Actually the class GraphicalExtension has some more methods, which
define priorities for the graphical extensions – in case more than one graph-
ical extension is plugged in and applies to the same element. And it can
also be defined, whether a graphical extension should apply to all subtypes
of a Petri net type or not. The meaning of the methods is documented
as Java doc comments for the methods in the interface for the factory
IGraphicalExtension.

At last, the graphical extension needs to be plugged in to the ePNK.
The relevant part of the “plugin.xml” of the project is shown in List. 3.41.
This is straightforward. The attribute “point” of the extension refers to the
ePNK extension point org.pnml.tools.epnk.diagram.graphics, and the
class attribute of the graphicsextension refers to the factory of List. 3.40.

Listing 3.41: Plugging in the graphical extension

1 <extension

id="org.pnml.tools.epnk.pntypes.signalnets.graphics"

name="Signal event net graphical extensions"

point="org.pnml.tools.epnk.diagram.graphics">

<graphicsextension

6 class="org.pnml. ... .signalnets.graphics.SignalnetGraphics"

description="Special graphics for ... signal event nets">

</graphicsextension>

</extension>

With this extension installed, the SE-nets should now look like the one
in Fig. 3.10.

3.7 Adding tool specific information

As discussed in Sect. 1.2.1, the PNML allows tool specific information to be
added to all elements of Petri nets – indicated by the special XML element



3.7. ADDING TOOL SPECIFIC INFORMATION 147

<toolspecific>. The ePNK reads and writes any tool specific informa-
tion, and, in principle, the contents of these tool specific extensions could
be accessed and modified via the class AnyType, which is defined in the
plug-in org.eclipse.emf.ecore. But this is tedious and, basically, means
navigating in the element’s XML structure.

Therefore, the ePNK provides an extension point for plugging in tool
specific extensions, so that they can be accessed and modified via an API
specific to the extension which can be defined in terms of a model. We will
discuss how to use this extension point by the help of an example: the token
positions, which is a tool specific extension mandated by ISO/IEC 15909-
2:2011. We have seen an example already in Fig. 1.3 and Listing 1.1 on
page 7.

This tool specific extension is defined in the project org.pnml.tools.

epnk.toolspecific.tokenpositions. Most of this code in this project
as well as the “plugin.xml” was automatically generated by EMF from the
Ecore model “Tokenpositions.ecore” in the folder “model”. This model is
shown in Fig. 3.11. The new classes are PNMLToolInfo and Tokengraphics.

Figure 3.11: The model for tool specific extension tokenpositions

The class PNMLToolInfo represents the actual tool specific information: it
must implement the PNML core model interface ToolInfo. The actual
contents of this tool specific information is Tokengraphics, which consists
of one or many coordinates; the class Coordinate is re-used from the PNML
core model.

From this model, the code can be generated in the same way as de-
scribed in Sect. 3.5.1.2. First, the “genmodel” must be created, and from
the “genmodel”, the model code and the edit code must be generated.



148 CHAPTER 3. DEVELOPERS’ GUIDE

After the code generation, the only thing left to do is to manually create
a factory for this tool specific extension, and use this factory for plugging it
into the ePNK. The factory for our extension is shown in Listing 3.42. The

Listing 3.42: Factory for the tool specific extension

package org.pnml.tools.epnk.toolspecific.tokenpositions.factory;

import org.pnml.tools.epnk.pnmlcoremodel.ToolInfo;

4 import org.pnml.tools.epnk.toolspecific.extension.

ToolspecificExtensionFactory;

import org.pnml.tools.epnk.toolspecific.tokenpositions.

TokenpositionsFactory;

9

public class TokenpositionsExtensionFactory

implements ToolspecificExtensionFactory {

private final static String toolname = "org.pnml.tool";

14 private final static String toolversion = "1.0";

public ToolInfo createToolInfo(String tool, String version) {

// ToolInfo object does not depend on these values:

return createToolInfo();

19 }

public ToolInfo createToolInfo() {

return TokenpositionsFactory.eINSTANCE.createPNMLToolInfo();

}

24

public String getToolName() {

return toolname;

}

29 public String getToolVersion() {

return toolversion;

}

}

factory implements the ePNK interface ToolspecificExtensionFactory,
which consists of four methods. The two methods createToolInfo() cre-
ate an instance of this tool specific extension; the method with the two String



3.8. OVERVIEW OF THE EPNK AND ITS PROJECTS 149

parameters, tool and version is used, when the tool name and version are
given, which might return instances of different classes – in our example,
however, the version number is irrelevant. The two other methods, must re-
turn the tool name for that extension and its version, which, in our example,
are encoded as constants.

Listing 3.43 shows the fragment of the “plugin.xml” that is needed to
plug in the token position extensions to the ePNK. In addition to the name
and the id, there is an attribute class that defines the factory for the tool
specific extension; this class must implement the interface Toolspecific

ExtensionFactory. Moreover, there is a brief description of this extension.

Listing 3.43: Plugging in the token position extension

<extension

2 id="org.pnml.tools.epnk.toolspecific.tokenpositions"

name="Token Positions"

point="org.pnml.tools.epnk.toolspecific">

<type

class="org.pnml. ... .factory.TokenpositionsExtensionFactory"

7 description="The tool specific extension for token positions">

</type>

</extension>

Note that the ePNK does not provide any way yet of explicitly defining
the XML syntax of these extensions. The standard XMI serialisation will
be used – which is compliant with ISO/IEC 15909-2:2011 for tool specific
extensions. Eventually, the ePNK might provide a mapping mechanism
similar to the one for Petri net types.

3.8 Overview of the ePNK and its projects

In this section, we give a brief overview of the different parts of the ePNK,
the project structure and where to look for different kinds of functionality
in the ePNK API an its projects. As mentioned earlier, developers should
not change anything in these projects. Anyway, this overview should help
to better understand the ideas behind the ePNK, the necessary dependen-
cies (that need to be included in new projects via the “plugin.xml”) and
the functions that are available in the ePNK API, which could be used by
developers in their extensions. Note that we do not discuss the details of
the API here. In particular, we do not discuss the API concerning the code



150 CHAPTER 3. DEVELOPERS’ GUIDE

that is generated from the Ecore models (model and edit code) since it is
mostly straightforward. Section 3.3.4.1 gives a brief overview of the main
principles behind the model code that is generated from Ecore models; for
more information, we refer to the EMF book [2].

Like all extensions of Eclipse, the ePNK is organized in many Eclipse
projects, which together make the ePNK. Most of these projects are so-called
plug-in projects; and these are the ones most relevant for developers, since
these are the projects to look up the API and to which extensions need to
refer (in form of dependencies). In addition, there are some projects, which
contain documentation only (like this manual), there are some projects that
do not contain any code, but from which other projects are generated; and
there are so-called features, which define collections of plug-in projects in
order to deploy them. And there is a project for generating the ePNK update
site from the features.

In this manual, we focus on the plug-in projects of the ePNK, the most
important of which are listed below. We start with an overview of the ePNK
core projects, which make up the framework of the ePNK42:

org.pnml.tools.epnk:
This is the core project of the ePNK. In this project, you will find the
PNML core model, some additional models, and the model code, that
was generated from them. All the models, can be found in the folder
“model”. The PNML core model is contained in PNMLCoreModel.

ecore; in order to avoid clutter in the graphical diagram, the core
model is actually split up into three separate diagrams: PNMLCore

Model.ecorediag contains the most important concepts; PNMLCore

ModelGraphics.ecorediag contains the graphical features of PNML;
and PNMLCoreModelProxies.ecorediag contains some extensions to
the PNML core model that are necessary to maintain labels in the
graphical editor of the ePNK by so-called label proxies and page label
proxies. These proxy elements, however, are not of any concern for
normal developers.

There are four other models in this project: PNMLDataTypes.ecore

defines the data types for non-negative and positive numbers, which are
used instead of the respective XML Schema Data Types of ISO/IEC
15909-2. PNMLStructuredPNTypeModel.ecore defines the concepts of
structured Petri net types (see Sect. 3.5.3.2). Serialisation.ecore

provides some general structure that is used for the XML serialisation

42Technically, all these plug-in projects are part of the ePNK features org.pnml.tools.
epnk.core and org.pnml.tools.epnk.extensions.basic.



3.8. OVERVIEW OF THE EPNK AND ITS PROJECTS 151

of so-called association elements (see Sect. 3.5.3.4). PNMLPageDiagram
Info.ecore is the model for storing the GMF diagram information
for pages as ePNK tool specific information in PNML models, which
are not of concern for normal developers.

This project provides also some convenience classes in package org.

pmm.tools.epnk.helpers, which might be helpful in practice. The
class FlatAccess allows handling a Petri net that is distributed over
several pages as if it was flat (see Sect. 3.3.3 for an example). Another
convenience class is NetFunctions, which provides many static meth-
ods for finding out to which net an element belongs, what the type of
this net is, and for obtaining lists of elements of some kind of a given
Petri net.

In this plug-in, also the two extension points of the ePNK are defined:
one for defining new Petri net types (PNTD), another for defining new
tool specific extensions.

In addition to the model code, also the so-called edit code and editor
code are generated from these models, which together define the tree
editor for PNML (see below).

Note that, in this project, also the constraint context and the con-
straint category org.pnml.tools.epnk.validation, to which all
other constraints for new Petri net types should be added, are defined
here (see Sect. 3.5.1.4 and 3.5.3.3).

org.pnml.tools.epnk.edit:
This project contains the edit code that was generated from the mod-
els in project org.pnml.tools.epnk. Though most of this code was
automatically generated from the models, there are several manual
changes, that enable generically dealing with plugged in Petri net type
definitions.

Moreover, the generated standard EMF images in the folder icons

were replaced by nicer ones.

org.pnml.tools.epnk.editor:
This project contains the editor code for the EMF tree editor for
PNML that was generated from the models in project org.pnml.

tools.epnk. In this project, there are only a few, but crucial exten-
sions, that made it possible to integrate the EMF tree editor with the
graphical editor for pages (see the plug-in project org.pnml.tools.

epnk.diagram below).



152 CHAPTER 3. DEVELOPERS’ GUIDE

org.pnml.tools.epnk.pntypes:
This project contains the model and the generated model code for
P/T-nets (PTNet), as well as the extension that plugs in this type to
the ePNK. The model code is completely generated from the model
PTNet.ecore in the folder “model”, except for two changes in class
PTNetImpl as discussed in Sect. 3.5.1.

org.pnml.tools.epnk.pntypes.edit:
This is the project with the edit code that was generated from the
Ecore model PTnet.ecore of project org.pnml.tools.epnk.pntypes.
There are no manual changes in the generated code – only the icons
in the folder icons were replaced by nicer ones.

org.pnml.tools.epnk.toolspecific.tokenpositions:
In this project, the tool specific extension for token positions (as de-
fined in ISO/IEC 15909-2) is defined (see Sect. 3.7). The model code
and the edit project org.pnml.tools.epnk.toolspecific.tokenpo-
sitions.edit was generated (which does not contain any manual
changes – not even nicer icons) from the model Tokenposition.ecore.

Note that the ePNK does not take the information of these token
positions into account in the graphical representation of places. The
only reason they are defined in the ePNK is that ISO/IEC 15909-
2:2011 mandates them – and we use this extension as an example to
show how to define tool specific extensions in Sect. 3.7.

org.pnml.tools.epnk.actions:
This project defines the standard actions of the ePNK, which are the
pop-up menus for adding missing ids and for linking the labels of
structured Petri net types (see Sect. 3.5.3.2).

Moreover, the classes AbstractEPNKAction and AbstractEPNKJob are
defined in this project, which are convenience classes to make it easier
to define functions for the ePNK that run in the background (see
Sect. 3.3.3).

org.pnml.tools.epnk.diagram:
This project contains the code for the GMF-generated graphical editor
for pages of Petri nets. This code was generated from the GMF models
in project org.pnml.tools.epnk.gmf. But, there are major manual
changes for making this graphical editor generic and for integrating it
with the tree editor for PNML (see project org.pnml.tools.epnk.

editor).



3.8. OVERVIEW OF THE EPNK AND ITS PROJECTS 153

The package org.pnml.tools.epnk.gmf.extensions.graphics and
its sub-packages decorations and figures are relevant for developers,
who want to contribute specific graphical appearances for some Petri
nets. Here you find the factory and the figures of the ePNK, which
need to be extended for customizing the graphical appearance; and
you can use the predefined ePNK decorations for that purpose (see
Sect. 3.6 for more details).

org.pnml.tools.epnk.gmf.integration:
This project defines the pop-up menus for starting the graphical editor
on a page that is selected in a tree editor or in a graphical editor.

org.pnml.tools.epnk.annotations:
This project defines the infrastructure for annotating Petri nets by ap-
plications. Up to now, the annotations provide the most basic concepts
only – they will be extended in the future.

A simple example of annotating the context of transitions was dis-
cussed in Sect. 3.4.

org.pnml.tools.epnk.applications:
This project provides the interfaces and classes for implementing and
starting applications on Petri nets, which was briefly discussed in
Sect. 3.4.

org.pnml.tools.epnk.applications.view:
This project implements the applications view, that shows all currently
running implementations. Developers would typically not directly use
this project.

Next, we discuss some of the net types, and functions and applications,
which we had discussed in this manual as a tutorial43:

org.pnml.tools.epnk.functions.tutorials:
This project contains the functions that were discussed in Sect. 3.3.1
and Sect. 3.3.2, which can serve as a guideline for defining own exten-
sion projects.

org.pnml.tools.epnk.functions.modelchecking:
This project contains the model checker extension for the ePNK that
is discussed in Sect. 3.3.3. Note that the project MCiE is used in this

43Technically, these plug-in projects come from the ePNK feature org.pnml.tools.

epnk.extensions.tutorial.



154 CHAPTER 3. DEVELOPERS’ GUIDE

model checker extension only (MCiE is not relevant for anything else in
the ePNK – except if you want to implement your own model checker
based on MCiE).

org.pnml.tools.epnk.tutorials.applications:
This project implements an example of an application using annota-
tions. It contains the code for the transition context application which
was discussed in Sect. 3.4.

org.pnml.tools.epnk.pntypes.signalnets:
This project is the plug-in project implementing the Petri net type
definition for SE-nets (see Sect. 3.5.2 and the graphical extensions for
SE-nets (see Sect. 3.6).

org.pnml.tools.epnk.pntypes.signalnets.edit:
This plug-in project contains the edit code, which is generated from
the model of SE-nets – without any manual changes

The plug-in projects with the prefix org.pnml.tools.epnk.pntypes.

hlpng resp. org.pnml.tools.epnk.pntypes.hlpngs together are used
for defining high-level Petri nets (HLPNGs). The following list gives an
overview in a bottom up way – ending with the actual Petri net type defi-
nition for HLPNGs:

org.pnml.tools.epnk.pntypes.hlpngs.datatypes:
In this project, all the models that define the concepts of sorts, op-
erators, variables and terms for HLPNGs are contained. In particu-
lar, there is a model HLPNGDataTypes.ecore for the general structure
of terms, declarations and the built-in sorts and operators that oc-
cur in all versions of HLPNGs. And there are many more models
and diagrams for specific versions of HLPNGs (Clauses 5.3.2–5.3.12 of
ISO/IEC 15909-2:2011).

org.pnml.tools.epnk.pntypes.hlpngs.datatypes.concretesyntax:
This project is an Xtext project that defines the grammar for the con-
crete syntax of the different labels of HLPNGs, from which a parser is
generated. Here, we do not discuss the details of generating the parser.
The manually written class HLPNGParser accesses the automatically
generated parsing operations and provides methods for parsing ev-
ery kind of label of HLPNGs. The other important manually written
class is HLPNGLinker, which provides the global Linker for labels (as
discussed in Sect. 3.5.3.2).



3.8. OVERVIEW OF THE EPNK AND ITS PROJECTS 155

Note that the plug-in project ending with concretesyntax.ui was
automatically created when the Xtext project was created by a wizard;
it provides a stand-alone textual editor for the labels of HLPNGs.
Since this stand-alone editor is not needed for the ePNK, this project
is not part of the standard deployment of the ePNK.

org.pnml.tools.epnk.pntypes.hlpng.pntd:
This project actually combines all the parts discussed above into a
Petri net type definition for HLPNGs. The main model is HLPNG

Definition.ecore, which was shown in Fig. 3.7. The other model
HLPNGSerialisation.ecore defines the auxiliary classes that tem-
porarily store XML elements that represent associations and are used
and referred to in the XML mappings (see Sect. 3.5.3.4) .

The global linker HLPNGLinker from the project org.pnml.tools.

epnk.pntypes.hlpngs.datatypes.concretesyntax above is made
available in the Petri net type by manually implementing the method
getLinker() in class HLPNGImpl. The parse() method for the dif-
ferent structured labels are also manually implemented – they re-
fer to the different parserXXX() methods of class HLPNGParser from
the project org.pnml.tools.epnk.pntypes.hlpngs.datatypes.

concretesyntax above.

org.pnml.tools.epnk.helpers.unparse:
This project implements a serialisation function that transforms the
abstract syntax of HLPNG labels into the concrete syntax used for
HLPNGs in the ePNK. This is mostly relevant for the end users – who
want to generate the concrete syntax for the labels of HLPNGs (see
Sect. 2.5.2 on page 37).

But, in some cases this label serialiser might also be relevant for de-
velopers that want to show terms of HLPNGs to the end user (the
simulator for high-level nets is an example).

org.pnml.tools.epnk.applications.hlpng.simulator:
This is the plug-in project implementing the basic simulator for HLP-
NGs. We do not discuss the implementation in this manual, we
discussed the simulator only from the end users’ point of view in
Sect. 2.6.3. You will find many more details in the master’s thesis
that implemented it [22].



156 CHAPTER 3. DEVELOPERS’ GUIDE

3.9 Deploying extensions

In this section, we will briefly discuss how own extensions of the ePNK could
be deployed, so that others can use it. Typically, an extension comprises
several plug-in projects. In order to combine them, Eclipse provides a special
kind of project, which is called a feature – and this is the unit in which
Eclipse extensions should be deployed.

A feature in turn, can be used in an Eclipse update site project which can
be used to create your own update site, so that your plug-ins (resp. features)
could be installed from this site, similar to the way you installed the ePNK.

Since features and update sites are standard Eclipse concepts, we do not
explain the details here. For now, looking up the keywords “feature” and
“update site” in the Eclipse help (or googling for them) should be enough.

If you have a feature for the ePNK that might be interesting for a wider
audience, you can also contact us, so that we can make it available via the
ePNK update site.



Chapter 4

Complete Tutorial:
Net type and Application

In this chapter, we discuss an example, which goes through the complete
development process of a new Petri net type and an application for the
ePNK. This serves as a tutorial which comes across all major aspects of the
ePNK. In order to cover some more interesting aspects of the ePNK, we have
chosen a slightly artificial Petri net type, which we call technical Petri net
type. This technical Petri net type are classical Place/Transition Systems
(P/T-systems)1 with with three additional features: read arcs, inhibitor arcs
and reset arcs. The ePNK application is a simple simulator for this net type.

As usual a read arc just check whether their is a token on the attached
place, but does not change the marking of this place; an inhibitor arc, by
contrast, checks that there is no token on the attached place, but also does
not change the marking when the transition fires. A reset arc does not have
any influence on the enabledness of the transition, but when it fires, all
tokens from places attached to the transition with a reset arc, are removed.

Actually, in our technical Petri net type, a reset arc does not directly
run from a place to a transition, but from a page to a transition. Then, all
places contained in that page will be reset (i. e. all tokens will be removed)
when the transition fires. In combination with using reference places, this
reset of a page allows us to reset larger parts of a Petri net with a single
reset arc which avoids cluttering the net with too many reset arcs.

We discuss this net type and the application from the end-user’s point of
view in Sect. 4.1. In Sect. 4.2, we discuss the conceptual idea of how to realize
this application with the ePNK; at last, in Sect. 4.3, we discuss the major

1In a P/T-system a marking of a place may have multiple tokens.

157



158 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

technical steps to actually implement the application. This also covers the
respective modelling and code generation steps, necessary configurations,
and possible pitfalls and problems with the Eclipse tools and Eclipse IDE–
and even the installation of the ePNK and EMF. All the code of that example
is available online and we recommend that you install the example in your
development workspace while working through the technical steps of this
tutorial; which is discussed in Sect. 4.3.

4.1 The tool

Figure 4.1 shows a screenshot of our example tool that we are going to
develop in this tutorial as an extension of the ePNK. Figure 4.1 shows the
graphical editor of the ePNK with a Petri net of the new technical Petri net
type that we use for this tutorial. The net is shown in the graphical editor
of the ePNK (actually, you can see the net’s two pages). We use Fig. 4.1 for
briefly explaining the features of this technical net type. After that, we also
briefly discuss the features of the simulator.

4.1.1 The technical net type

Figure 4.1 shows all the features of the technical net type. First of all, there
are the standard concepts of Petri nets, such as places, transitions and arcs
and the initial marking of places (indicated by a label attached to the place,
which defines the number of tokens on that places initially). Moreover,
there are the additional concepts of pages and reference nodes, which are
coming from the PNML [6] or its ePNK implementation. See Sect. 1.2 for
details. The example net shown in Fig. 4.1 consists of two pages, pg1 on the
left and pg2 on the right. Page pg2 is actually a sub-page of pg1 indicated
by the large rounded rectangle shown on pg1; the contents of page pg2 is
shown in the graphical editor open on he right-hand side. Note that all
the elements, which graphically appear to be inside the rounded rectangle
representing page pg2 on page pg1 are actually objects of page pg1; they
are just arranged in such a way that they appear to be inside page pg2.
The only elements contained in pg2 are the reference places shown on the
right-hand side. These reference places, however, refer to the places p2, p3,
p4, p5 and p7 of the page pg1. This is not directly visible in the graphical
representation reference places; but you can see in the properties view that
the reference place with id rp5 (and name p7) actually refers to the place
p7 on page pg1. So we use the graphical alignment of the places p2, p3, p4,
p5 and p7 “inside” the rounded rectangle to put emphasize on this relation,



4.1. THE TOOL 159

since it has meaning for the effect of the attached reset arc, which we discuss
later.

In the technical net type, we can connect places and transitions with
normal arcs. As usual normal arcs can run from a place to a transition or
the other way round. In addition, there are two other kinds of arcs, which
run from a place to a transition: read arcs and inhibitor arcs. As the name
suggest, a read arc will not change the number of tokens on the attached
place; but the attached transition can fire only, when there is at least on
token on the place attached to the other end of the read arc. The inhibitor
also does not change the number of tokens on the attached place when the
transition fires. But, by contrast to the read arc, the transition will only
be allowed to fire, if there is no token on the attached place (a token on
the attached place “inhibits” the firing of the transition). A read arc is
graphically represented as a line without arrow heads on either end, but it
technically runs from a place to a transition. In our example, there is only
one read arc, running from place p7 to transition t6. An inhibitor arc is
graphically represented with a “lollipop” decoration at the transition end
– and the direction of the arc is from the place to the transition. In our
example, there is only one inhibitor arc, running from place p7 to transition
t5.

The concepts discussed so far are all well-know concepts in Petri nets.
We will see later, that in our simulator for technical net type, the end-user is
able to deactivate read arcs and inhibitor for some simulation step – ignoring
the deactivated arcs. There is one additional concept in our technical net
type: these are reset arcs, which – just for the fun of it – run from a page to
a transition. In our example, there is one reset arc running from page pg2
to transition t7. A reset arc does not have any effect on the enabledness of
the attached transition; but, when the transition fires, the tokens from all
places contained in the attached page will be removed. To be more precise,
the tokens will be removed from the places contained on the page and from
the places to which the reference places on that page refer to (we say that
the reference place resolve to that place). In our example, these are the
places p2, p3, p4, p5 and p7 again. Graphically, a reset arc is represented
by a dashed line with a double arrowhead. The dashed line indicating that
this arc does not prevent the transition from firing; the double arrow head
indicating that all tokens will be removed from the places on that page.

At last, there is a minor twist2, which is only of graphical nature. The

2To be honest, we have chosen this feature only in order to demonstrate how to cus-
tomize the graphical appearance of net objects in this tutorial.



160 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

F
ig

u
re

4.1:
T

h
e

ex
am

p
le

to
ol

w
ith

an
ex

am
p

le
of

a
tech

n
ical

n
et



4.1. THE TOOL 161

graphical representation of transition t7 shows a cross in the left third of
the rectangle representing the transition. This indicates that this transition
does not have any normal arc running to it. Since this situation is sometimes
not desired, it is indicated with a special graphics; likewise, if there is no
normal arc starting at the transition, this is graphically represented by a
cross in the right third of the transition.

4.1.2 The application

In addition to realizing a new net type, which then can be created and
edited in the graphical editor of the ePNK, the ePNK allows adding appli-
cation on Petri nets. The applications could be some analysis, simulation
or verification; and the applications can visualize which their results with a
graphical feedback to the end-user, on top of the graphical representation
in the graphical ePNK editor.

In this tutorial, we discuss how to develop a simulator for our technical
net type, which we had introduced in Sect. 4.1.1. In the following, we discuss
this simulator and its features from the end-user’s point of view.

When a net or actually a page of a net of some type is open in the graph-
ical editor of the ePNK (and when this editor has the focus), all applications
that are defined for this net can be started by selecting the application in
a small drop down menu in the ePNK applications view, which is indicated
by a small red circle in Fig. 4.2. In this figure, the simulator called Tech-
nical Simulator (Tutorial) was started already; once started, some overlays
in the graphical overlay indicate the initial marking of the net, and also the
enabled transition are highlighted. The current marking of the net in the
simulator is shown by a blue number to the top-right of the respective place;
but only places which have at least one token hav such an annotation. This
annotation for a place is also called a marking of the place – to be precise,
it is the current marking of the place – as opposed to the initial one which
is represented in the net itself. In Fig. 4.2, place p1 has two tokens; all the
other places do not have a marking. The enabled transitions in the current
marking are highlighted with a red overlay – in the example, only transition,
t1, is enabled.

Note that, in the situation of Fig. 4.2, also transition t6 at the bottom
is highlighted with some light grey overlay and also the read arc to place
p7 has a light grey overlay. This indicates that, when ignoring read and
inhibitor arcs, transition t6 would be enabled. We say that this transition
is weakly enabled. By clicking on the read arc, the end-user could choose to
ignore that arc and then fire the transition. We discuss that later.



162 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

Figure 4.2: The example net with the example simulator started

When double-clicking on an enabled transition, the respective transition
will fire, the marking of the places will change and the enabled transitions
in the new marking will be highlighted. Figure 4.3 shows the situation after
the end-user has fired (double-clicked on) the sequence of transitions t1, t1,
t2, t3, and t4. In that situation, places p2, p3, p7 and p6 have one token each
(have marking 1), and transitions t2, t3, and t6 are enabled. Transition t5
is only weakly enabled since the inhibitor arc from place p7 to transition t5
prevents it from firing (place p7 has a token).

In Fig. 4.3, you can also see another detail of the simulator: the current
marking is not only shown as an annotation of the respective place. It is
also shown as annotation of each reference place that resolves to the place
– as you can see for the reference places shown on the right-hand side.

Figure 4.4 shows the situation after firing transition t6. Since this transi-
tion has a reset arc from page pg1 all tokens are removed from the respective
places on that page. The only place that has tokens now is place p5: it has
two tokens now since transition t6 added another token. Transition t5 is en-
abled now, since there is no token on place p7 anymore. Moreover, transition
t6 is weakly enabled.

Let us come back to the notion of a weakly enabled transition, which is a



4.1. THE TOOL 163

Figure 4.3: The simulator after firing transition t1, t1, t2, t3 and t4

Figure 4.4: The simulator after additionally firing t6



164 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

transition that would be enabled when ignoring conditions imposed by read
arcs and inhibitor arcs. In our example in Fig. 4.4, the bottom transition
t6 is weakly enabled only since the place at the other end of the read arc,
place p7 does not have a token. This is indicated by the light-grey overlay
of the transition and of the read arc.

The speciality of our technical net simulator is that the end-user can
deactivate read arcs and inhibitor arcs, by clicking on them. Deactivated
arcs will be shown with a red overlay. Once all read arcs and inhibitor
preventing the enabledness of a transition are deactivated, the transition
will be enabled, indicated by a red overlay again. Figure 4.5 shows the
effect of the end-user clicking on the read arc in the situation of Fig. 4.4.
Then, the end-user can double-click on it and fire it.

2
1

Figure 4.5: The simulator after deactivating the read arc

At last, let us have a look at some standard features of the ePNK and
the application view. The application view shows a list of all the ePNK
applications currently running in the ePNK on some net. In the situation
shown in Fig. 4.5, only one application is running. The end-user can select
one of the running applications or un-select all applications. Then, the visual
feedback from the selected application is shown in the graphical editor of
the respective net. The end-user can also delete (shut down) applications



4.2. CONCEPTUAL STEPS 165

by selecting the check boxes of the respective applications (see line marked
by 1 in Fig. 4.5) and clicking on the delete button (which will turn red once
at least one application is selected) in the ePNK applications view (see the
part marked with 2 in Fig. 4.5).

Note that there are also some other buttons (see the part that is marked
with 2 in Fig. 4.5). The back and forward buttons allow the end-user to
go back and forth in the simulation, the disk buttons allows the end-user
to save the current state the and firing sequence of the simulator to a file.
Such a saved state of an application can be loaded again, when starting a
new application with “Load application” in the start application drop down
menu.

4.2 Conceptual steps

In this section, we discuss the conceptual steps for realizing the tool which
we had discussed in Sect. 4.1. The first step is the definition of our technical
Petri net type, which basically consists of a class diagram capturing the
concepts of our technical Petri net type and some constraints. The second
step is the definition of the graphical appearance of the features our technical
Petri net type – in our case the arcs and the transitions. The last step is
the definition of the simulator application for our technical Petri nets.

Note that, in this section, we do not discuss any technical details, how to
create the models, how to generate the code, or how to plug in the extensions
to the ePNK in order not to loose track of the overall picture. The technical
details are discussed in Sect. 4.3.

4.2.1 Petri net type

In this section, we present a class diagram (actually an Ecore diagram),
which reflects the extensions of our technical Petri net type as discussed in
Sect. 4.1.1. Basically, the extension on top of the basic net elements, places,
transitions, and arcs, are that arcs can be of kind normal, read, inhibitor
and reset. In addition, places can have an initial marking, indicating how
many tokens are on each place initially.

4.2.1.1 Petri net type definition

Figure 4.6 shows the class diagram with all the features of our technical
Petri net type, which is called a Petri net type definition or PNTD for short.
This diagram refers to some classes which are defined by the ePNK in the



166 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

PNML core model : these are the classes shown in magenta on the left and
on the top of the diagram. The other classes shown in light cream are the
definition of our technical Petri net type, which extend the concepts of the
PNML core model.

There are two major extensions in our Petri net type definition in Fig. 4.6,
the arc and place. Both extend the respective concept of the PNML core
model. Arcs have a concept of ArcTypeAttribute with an attribute text of
the enumeration type ArcType, which is also defined in this PNTD. Places
have a MarkingLabel with an attribute text of the type NonNegativeInteger,
which is a data type defined in the PNML core model.

The class ArcTypeAttribute extends the class Attribute from the PNML
core model, and the MarkingLabel extends the class Label from the PNML
core model. This defines how the ePNK should handle these additional
features. A label will be graphically represented as an annotation to the
respective element. In our example, the initial marking is shown as such
a textual annotation (see Fig. 4.1) “2” inside the place, this label however
could be freely moved by the end-user. The type attribute for places is
not shown as an annotation of the arc; it is represented by the graphical
representation of the respective arc. It can be edited by the end-user in the
properties view, once the respective arc is selected.

Note that the classes ArcTypeAttribute and MarkingLabel are associated
with the class Arc or Place with a composition. The name of this composi-
tion, will be the name of the respective feature and its cardinality says how
many of these features each element can have. In our case, both cardinalities
are [0..1], which means that the feature is optional and there can be at most
one.

You might have realized the the enumeration ArcType does have two
literals only: READ and INHBITOR. At a first glance, this might look
awkward since in the discussion of our technical Petri net type we mentioned
four different types: normal, read, inhibitor and reset. The reason is that
the arc type feature is optional, and that we interpret a missing or not set
arc type feature as normal. Likewise reset is the default (or actually only)
interpretation for arcs running from a page to a transition. Therefore, it is
enough that the enumeration ArcType represents READ and INHBITOR,
which are the only ones the end-user needs to set explicitly.

Note that also the marking feature is optional. If the marking feature is
not set, the default interpretation is 0.

In the diagram from Fig. 4.6, there are two additional classes defined:
Transition and TechnicalNetType, both of which do not define any exten-
sions on top of the PNML core model classes they inherit from. The class



4.2. CONCEPTUAL STEPS 167

PN
M
L 
co
re
 m
od
el

PN
TD
: T
ec
hn
ic
al
 P
et
ri 
ne
t t
yp
e

F
ig

u
re

4
.6

:
T

h
e

P
et

ri
n
et

ty
p

e
d

efi
n

it
io

n
fo

r
th

e
te

ch
n

ic
al

P
et

ri
n

et
ty

p
e



168 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

Transition would actually not be necessary, since in our technical net type
transitions do not have any extensions. But introducing an explicit class for
transitions in our PNTD allows us to explicitly to refer to the transitions of
this type. The class TechnicalNetType, however, is necessary: it represents
the net type we define here, and we will need it later to plug in the extension
to the ePNK.

4.2.1.2 Constraints

The diagram of Fig. 4.6 defines the additional concepts of our technical Petri
net type. But, is is not precise enough since it would allow arcs running from
a transition to a place to be an inhibitor arc, which we do not want. Actually,
without additional restrictions, arcs could run between all kinds of nodes,
for example between two places or between two transitions; arcs would be
even be allowed to run between two pages.

Therefore, we need to define an additional constraint that forbid arcs
that our technical net type should not have. We define an OCL constraint
for that purpose.

Listing 4.1: OCL constraint for arcs

1 context technical::Arc inv:

( self.source.oclIsKindOf(pnmlcoremodel::PlaceNode) and

self.target.oclIsKindOf(pnmlcoremodel::TransitionNode) )

or

( self.source.oclIsKindOf(pnmlcoremodel::TransitionNode) and

6 self.target.oclIsKindOf(pnmlcoremodel::PlaceNode) and

self.type->size() = 0 )

or

( self.source.oclIsKindOf(pnmlcoremodel::Page) and

self.target.oclIsKindOf(pnmlcoremodel::TransitionNode) and

11 self.type->size() = 0 )

Listing 4.1 shows this OCL constraint for arcs: it states that an Arc of
or our technical net type can have three different forms:

1. It can run from a place to a transition. Since there also can be arcs
between reference nodes of that kind, the requirement is slightly gen-
eralized to PlaceNode and TransitionNode. In that case there is no
restriction of the arc’s type.



4.2. CONCEPTUAL STEPS 169

2. It can run from a transition to a place. For the same reasons as
above, the requirement is slightly more general: the arc can run from
a TransitionNode to a PlaceNode. For arcs from a transition to a place,
however, the arc’s type should not be set (i. e. it must be a normal arc).

3. It can run from a page to a transition, slightly more generalized to run
from a Page to a TransitionNode. Also in that case, the arc’s type
should not be set. In this case, the arc is interpreted as a reset arc.

In order to demonstrate that constraints can also be defined in Java, we
actually introduce our example has one additional constraint: there should
not be duplicate read or inhibitor arcs between the same two nodes. The
implementation of Java constraints, however, will first be discussed in the
technical details section (see Sect. 4.3.3.2).

4.2.2 Graphics of the Petri net type definition

In Sect. 4.1.1, we have discussed already that some features of our technical
Petri net type should be graphically visualized in a particular way. The type
of an arc should be indicated by a dedicated graphics for read, inhibitor and
reset arcs (see Fig. 4.1). It is actually quite typical that Petri net objects
which have an attribute extension, also have a dedicated graphics for that
type of Petri net object; the reason is that the value of an attribute is visible
only in the properties view of the tool when the object is selected, but not
in the graphical representation of the net itself, unless there is a dedicated
graphical representation for it.

In our technical Petri net type, we have chosen to have a dedicated
graphics for transitions, too: transitions with no ingoing normal arc or no
outgoing should be indicated with a cross in the left or right third of the
transition, respectively, as shown for transition t6 in Fig. 4.1.

For each type of net object with a dedicated graphics, we need to im-
plement a Figure class, which takes responsibility for the graphics of that
element. Basically, there are two ways of implementing the such figures. The
first one is to change the figure by changing its configuration and graphical
attributes. In our example, we use that way for the graphical representation
of arcs. The second one is to override how the figure is actually drawn. In
our example, we use that way for the graphical representation of transitions.

Listing 4.2 shows the code snippet which configures how an arc is drawn,
dependent on its type. Basically, there are four cases: if the arc is a read arc,
both the source and the target decorator are set to null, so that the arc does
not have any arrow head; if the arc is an inhibitor arc the source decorator is



170 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

set to null and the target decorator is set to a new CircleDecoration which is
a class provided with the ePNK; for a reset arc, the line style is set to dashed,
and the target decorator is set to a new DoubleArrowHeadDecoration; at last,
for normal arcs the line style is solid, there is no source decorator, and the
target decorator is a normal ArrowHeadDecoration, which is provided by the
ePNK. If need should be, new decoration classes could be implemented for
the graphical extension. But, this is not necessary in our tutorial example.

Note that Listing 4.2 gives just a glimpse of the respective class. We
discuss more details on how to plug in this class and how and when to
properly update the graphical representation of a net object in the technical
details.

Listing 4.2: Arc graphics: defining appearance of acs

private void setGraphics() {

if (arcType == ArcType.READ){

this.setTargetDecoration(null);

4 this.setSourceDecoration(null);

this.setLineStyle(SWT.LINE_SOLID);

} else if (arcType == ArcType.INHIBITOR){

this.setTargetDecoration(new CircleDecoration());

this.setSourceDecoration(null);

9 this.setLineStyle(SWT.LINE_SOLID);

} else if (arcType == ArcType.RESET) {

this.setTargetDecoration(new DoubleArrowHeadDecoration());

this.setSourceDecoration(null);

this.setLineStyle(SWT.LINE_DASH);

14 } else {

// everything else is interpreted as NORMAL arc

this.setTargetDecoration(new ArrowHeadDecoration());

this.setSourceDecoration(null);

this.setLineStyle(SWT.LINE_SOLID);

19 }

}

Listing 4.3 shows the code snippet which takes care of drawing the graph-
ical representation of a transition – overriding the fillShape method. On top
of drawing the figure as usual by calling super.fillShape(graphics), the
two conditional statements are code for “drawing” the separator and a cross
in the left respectively right third of the transition using the programming
mechanisms of Eclipse Draw2D, if necessary. Also here, there are some more
technical details on how to plugin the respective class to the ePNK and how



4.2. CONCEPTUAL STEPS 171

to update the graphics when needed. We discuss this in the technical details.

Listing 4.3: Transition graphics: drawing the figure

protected void fillShape(Graphics graphics) {

super.fillShape(graphics);

graphics.pushState();

5 graphics.setLineWidth(1);

Rectangle rectangle = this.getClientArea();

int w = rectangle.width / 3;

if (!this.hasNormalInArcs) {

graphics.drawLine(rectangle.x + w, rectangle.y,

10 rectangle.x + w, rectangle.y + rectangle.height-1);

graphics.drawLine(rectangle.x + w, rectangle.y,

rectangle.x, rectangle.y + rectangle.height-1);

graphics.drawLine(rectangle.x, rectangle.y,

rectangle.x + w, rectangle.y + rectangle.height-1);

15 }

if (!this.hasNormalOutArcs) {

graphics.drawLine(rectangle.x + 2*w, rectangle.y,

rectangle.x + 2*w, rectangle.y + rectangle.height-1);

20 graphics.drawLine(rectangle.x + rectangle.width-1, rectangle.y,

rectangle.x + 2*w, rectangle.y + rectangle.height-1);

graphics.drawLine(rectangle.x + 2*w, rectangle.y,

rectangle.x + rectangle.width-1,

rectangle.y + rectangle.height-1);

25 }

graphics.popState();

}

4.2.3 The simulator application

At last, we need to define the simulator application, which allows the end-
user to simulate the technical nets, and which visualizes the current state
of the Petri net and the currently enabled transitions graphically on top of
the net shown in the graphical editor.



172 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

4.2.3.1 Runtime annotations

In order to separate concepts from the actual graphical representation, the
ePNK allows us to define annotations for nets, which reflect runtime in-
formation for our application. In our case, this would be the current state
of the simulator, information on the enabled transitions and activated and
deactivated arcs.

Like for the definition of a Petri net type, the conceptual annotations of
an application can be defined by a class diagram, which extends some basic
annotation concepts provided by the ePNK. Figure 4.7 shows this model,
where the two classes shown on the top and in magenta represent the based
concepts from the ePNK: object annotations is any form of annotation of
any Petri net object; textual annotations is information that typically is
represented by a text instead of a graphical overlay.

The classes represented in light cream are the annotations needed for our
simulator. EnabledTransition is an annotation for weakly enabled transition
– the value of attribute enabled indicates whether the transition is truly
enabled. Marking represents the current marking of a place (i.e. the number
of tokens on that place). The actual value is represented by its attribute
value. Since the value should be shown as textual annotation, this class
extends not only the ObjectAnnotation but also TextualAnnotation of the
ePNK.

At last InvolvedArc is an annotation for arcs, which indicate arcs of a
weakly enabled transition that prevent the enabledness of this transition.
This way, the end-user can toggle whether the arc is active or not. The
status of this user’s selection is represented by attribute active.

In order to keep track of the arcs involved in an enabled transition, there
are two compositions from EnabledTransition to InvolvedArc: one for the
transition’s incoming arcs and one for the outgoing arcs (the outgoing arcs
are actually not used in our example). This way, it is possible to navigate
between enabled transition annotations and the involved arc annotations.

Note also that there is a bidirectional relationship between the Enabled-
Transition itself. The reason is that a single transition can have many ref-
erence transitions referring to it. In our simulator, also the reference transi-
tions that resolve to an enable transition should be marked as enabled. The
reference resolve represents the transition, the reference ref represents all
the reference transitions. We will see later in more detail how our simulator
uses this information.

An PNK application, basically, consists of a list of net annotations, each
of which which in turn consists of some object annotations. Moreover, there



4.2. CONCEPTUAL STEPS 173

Figure 4.7: Simulator: annotations model

always is a current net annotation, which for example represents the current
state of the simulator. In our example, a net annotation represents the
current markings of the places plus the enabled transitions and the involved
arcs and their state.

In order to visualize the current state of an ePNK application in the
graphical editor, an ePNK application uses one or more presentation han-
dlers. A presentation handler tells, for each annotation, how it should be
visualized in the net. In order for end-user to be able to interact with the
simulator via the annotations, an ePNK application uses one ore more ac-
tion handlers. An action handler defines how the simulator should react to a
user interaction (mouse press, mouse release, and mouse double click). This
could for example, be firing a transition by updating the net annotations,
or toggling the active status of an involved arc. We discuss more details in
the technical parts of this tutorial.

Here we briefly discuss the main ingredients and functionality that needs
to be implemented for our simulator (and actually most kinds of simulators):

1. We need some data structure or dedicated class, which represents a
marking of the net, which basically is a mapping from places to inte-
gers.

2. We need a method, which computes the initial marking of the net from
a net model.

3. We need methods, which, for a given marking and some transition,



174 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

computes whether the transition is enabled, and which are the involved
arcs.

4. We need a method which for a given marking and a given enabled
transition computes the marking which is the result after firing the
transition in the given marking.

5. We need a method, which from a marking computes a net annota-
tion. representing the marking of the places as well as the enabled
transitions, and the involved arcs.

We discuss in the technical steps how the above methods can be com-
bined into a complete simulator using also the presentation handlers and
action handlers.

4.3 Technical steps

In Section 4.2, we have discussed the major conceptual steps for realizing a
Petri net type definition (PNTD) for our technical net type and simulator
for them based on the ePNK.

In the following sections, we discuss all the technical details, some subtle
issues concerning tooling, and possible problems that might occur on the
way, and how to deal with them. We start with some installation information
in Sect. 4.3.1 and how to install the project implementing the extensions
discussed in this tutorial in your Eclipse workspace. Then, we go through
the steps which we discussed in Sect. 4.2 in some more detail, discussing the
models and the source code of the Eclipse projects.

Note that the tricky issues and problems are sometimes not in the result-
ing projects, models or code, but in how to actually create, configure, and
manipulate them. Therefore, we also discuss how to actually create and edit
some of the artifacts in the Eclipse IDE (using the Eclipse package which is
pre-configured for working with models: Eclipse Modeling Tools).

4.3.1 Installation

We begin with discussing how to install Eclipse, the ePNK and the source
code for the technical example, and how to start and use it.

4.3.1.1 Eclipse

Before you can work with the ePNK, you need to install Java and Eclipse
on your computer. When using the ePNK as a developer and not only as



4.3. TECHNICAL STEPS 175

an end-user, it is recommended that you install the Eclipse Modeling Tools
package of Eclipse. The ePNK was testes with Eclipse Mars and you can
find and download the Mars Eclipse Modeling Tools package from the Eclipse
Modeling Tools web site for Mars: http://www.eclipse.org/downloads/

packages/eclipse-modeling-tools/mars2. You might also use the latest
version of Eclipse Modeling Tools package of the latest version of Eclipse
(currently Neon), but the ePNK has not yet been tested under Eclipse Neon
yet.

In this tutorial, we also use OCL constraints. Therefore, it is recom-
mended that you install the “OCL Examples and Editors SDK” feature.
You can do that by starting your new version of Eclipse after you have in-
stalled it and by selecting “Install New Software...” in the “Help” menu. In
the opened “Install” dialog, you should choose the default update site in the
“Work with” field3 and type “OCL” in the field below. After a while, the
feature “OCL Examples and Editors SDK” should show up as an available
feature in category “Modeling”. Select this feature and follow through the
installation process and restart Eclipse.

4.3.1.2 ePNK

After you have installed and started Eclipse, you need to install the ePNK
version 1.1 from the ePNK update site at http://www2.compute.dtu.dk/

~ekki/projects/ePNK/1.1/update/. You can do that as discussed before
by selecting “Install New Software...” in the “Help” menu; then, select
http://www2.compute.dtu.dk/~ekki/projects/ePNK/1.1/update/ as
update site and install all features of the ePNK. Make sure that you select
the newest features of the ePNK – org.pnml.tools.epnk.core should have
version number 1.1.2 or higher.

Make sure that, in the “Install” dialog, the checkbox “Contact all update
sites during install to find required software” is checked. This makes sure
that all the extensions that the ePNK needs to run will be installed too.
Then, follow through the installation process. Note that you might be asked
to confirm the installation of unsigned features.

4.3.1.3 Import of example projects

The Eclipse projects discussed in this tutorial are also available online.
You can download them as exported Eclipse projects from the ePNK up-

3For Eclipse Mars, that update site would be http://www.eclipse.org/downloads/

releases/mars.



176 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

date site: http://www2.compute.dtu.dk/~ekki/projects/ePNK/1.1/

tutorials/ePNK-app-tutorial.zip. In order to install these projects
into your workspace, download the above file, and save it somewhere on
your computer. Then, right-click in the project explorer of your Eclipse
workspace, and select “Import...”; in the opened ”Import” dialog select “Ex-
isting Projects into Workspace” from category “General”; in the subsequent
dialog, select “Select archive file” and, by using the “Browse...” button,
navigate to the file you had downloaded before. Once you have chosen this
file, you should see four Eclipse projects; select all of them and “Finish” the
import.

After that, you should see the four Eclipse projects in your Eclipse
workspace, and after building the workspace, there should not be any errors
shown in your workspace. In order to test whether these projects where cor-
rectly installed and built, you should start another instance of your Eclipse
(the so-called runtime workbench as opposed to the Eclipse which you have
started already, which is called development workbench).

The first time you start up a new runtime workbench, you need to cre-
ate a new run configuration in your development workbench. To this end,
choose the “Run” symbol in the toolbar and select “Run configuration”,
which starts a “Create, manage and run configurations” dialog; in this dia-
log, choose “Eclipse Application” and click on “New launch configuration”,
enter a name for this configuration (e. g. ePNK Tutorial), and then click on
“Apply” or “Run”. After some time, a new instance of Eclipse should start
up (the runtime workbench) – in this instance, the Eclipse tutorial projects
that you just have imported to your workspace are installed and running.

In order to test whether the installed projects are working fine, you
should import a project with a Petri net example – actually it is the one
shown in Fig. 4.1. You can obtain this project from http://www2.compute.

dtu.dk/~ekki/projects/ePNK/1.1/tutorials/ePNK-app-tutorial-

example.zip. Import it to the workspace of your Eclipse runtime work-
bench as discussed before. Once you have imported it, open the PNML
document technical-02.pnml by double-clicking on it4. Then open the
elements until you reach a page and double click on the page. On this page,
a graphical editor should start up – after a while. Once this editor opened,
open the “ePNK: Applications” view (using the “Show view” menu in the
“Windows” menu.) In the “ePNK: Applications” view, use the start ap-
plication drop down menu (see red circle in Fig. 4.2) and select “Technical

4If double-clicking does not work, right-click on it and select “Open with...” and then
selecting “PNML Editor” from “Others...”



4.3. TECHNICAL STEPS 177

Simulator (Tutorial)”, which should start up as shown in Fig. 4.2 with tran-
sition t1 marked as enabled. You can now play around with firing transitions
by double-clicking on them as discussed in Sect. 4.1.2. Note that you can
also interact with the arcs which are marked grey or red in order ot toggle
their activation status.

Once this works, you can shut down the simulator application, by select-
ing the checkbox in front of it and then pressing the “delete” button.

If this works, the example projects are properly installed and you can
continue with the next technical step of the tutorial in Sect. 4.3.2. For
now, you can shut down (close) your runtime workbench (the one with the
example of the technical Petri net, which you had simulated).

Note that when you want to start up a runtime workbench the next time,
you do not need to create another run configuration. Just click on the “Run
as..” (launch) button next time you want to start a runtime workbench.

In the following sections, we discuss the four projects which implement
our technical Petri net type, its graphical representation, and the simulator
in more detail. Moreover, we discuss how you would create these projects
and some of the artifacts from scratch in the Eclipse IDE.

Note that all the example code discussed in this tutorial is taken from
these projects. Sometimes, we deletes import statements, comments or com-
pacted the code a bit for the discussion. You will find the source code for
all listings discussed in this tutorial in these projects for more details.

4.3.2 PNTD

We start with discussing the project org.pnml.tools.epnk.tutorials.

app.pntd, which defines the Petri net type definition for our technical net
type, which we had conceptually discussed in Sect. 4.2.1.1.

4.3.2.1 Ecore model

The class diagram defining the concepts of our technical net type, which we
had discussed in Sect. 4.2.1.1 already, can be found in the file technical.

ecore in folder model of EMF project org.pnml.tools.epnk.tutorials.

app.pntd. It is actually an Ecore model, which is EMF’s “lightweight ver-
sion” of class diagrams. You can inspect it with the Ecore Model Editor,
which is a simple tree editor. Typically, you can do this by double-click on
this file in the Package explorer of the Eclipse development workspace.

Figure 4.8 shows the Eclipse development workspace with the Ecore
model for the technical net type opened in the tree editor. You can also see



178 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

that this model is actually referring to elements of the PNML Core Model
which it extends; parts of this model can be seen at the bottom of the editor.
You can also see the attributes of the defined package in the properties view:
its name “technical”, its unique URI, which we have chosen for this package
“http://epnk.tools.org/tutorials/app/technical”, and its name space prefix
“tech”.

Figure 4.8: Ecore model of PNTD for technical net type in tree editor

If you want, you can also open this model in a graphical editor. To do
this, you would need to switch to the “Modeling” perspective of your Eclipse
workspace, and open the file technical.aird by double clicking on it; then
navigate to “Representation per category” → “Design” → “Entities” →
“technical class diagram” and double click on → “technical class diagram”.
Figure 4.9 shows the model when opened in the graphical editor.

We do not discuss the concepts of this model here again, since we have
discussed them already in Sect. 4.2.1.1 in Fig. 4.6.



4.3. TECHNICAL STEPS 179

Figure 4.9: Ecore model for technical net type as diagram



180 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

4.3.2.2 Creating the EMF project and model

Instead, we briefly discuss how to create such an EMF project and a model
as well as some technical details on how to edit some model features in this
subsection. Before you do this, it might be a good idea to switch back to
the “Plug-in Development” perspective in your Eclipse workspace.

A project which is based on a model from which code can be generated
automatically is called an EMF project. You can create a new empty EMF
project via the “New” action in the “File” menu of Eclipse. Select “Other...”,
and then, in the opened “New” dialog, select “Empty EMF project” from
category “Eclipse Modeling Framework”.

In the newly created EMF project, you will find a folder model, which
is where you should create a new Ecore model. A new Ecore model can be
created with the “New” action in the “File” menu. You will find the option
“Ecore model” in the “Eclipse Modeling Framework” category (try to use a
better name than “My.ecore”); in the “New” dialog, you will be asked for
the top-level model object and the XML Encoding. The default should be
fine; make sure that the model object is set to EPackage.

After you have created a new model, it will be shown in the Ecore tree
editor with a package with an empty name. Give a reasonable name to the
package, which uses non-capital letters, and choose a name space prefix and
a unique URI representing your new package. The example from Fig. 4.8
might give you an idea on what to choose. Note however, that the domain
http:\\epnk.tools.pnml.org is reserved for the ePNK itself and for using
sub-domains of tools.pnml.org you would need to ask permission from
http:\\www.pnml.org.

In the newly created package, you should add one class which repre-
sents the newly defined Petri net type. You can do that by right-clicking
on the package and then selecting “New Child” → “EClass” and give it a
reasonable name – it is called TechnicalNetType in our example. This class
must extend the class PetriNetType from the pnmlcoremodel. To this end,
you would need to set the class’s “ESuper Types” in the properties view.
Before you can chose a class from the PNMLCoreModel, you need to make
this package know to the editor. To do this, you need to load the resource
containing the pnmlcoremodel in the tree editor. You can do this by right-
clicking somewhere in the tree editor and selecting “Load Resource...”; then,
in the “Load Resource” dialog, select “Browse Target Platform Packages...”
and select http://org.pnml.tools/epnk/pnmlcoremodel. Once you have
done that, you can select PetriNetType as the “ESuper Types” in the prop-
erties view for your new class for your Petri net type. Make sure to save



4.3. TECHNICAL STEPS 181

this file right away.
Now you can continue adding the concepts of your new Petri net type.

You should add a class for each Petri net concepts that you want to ex-
tend and make sure that it inherits from the corresponding class of the
pnmlcoremodel. The name of these classes can, in principle, be any legal
class name. But, you save a lot of programming, if the class names are
the same as in the pnmlcoremodel – don’t worry, since you have created
them in a new package, there will be no confusion with names, since your
new classes live in a different name space. All new features of your net
type are represented by compositions to other classes, which need to inherit
from either Label or Attribute of the pnmlcoremodel. And these classes
must have an attribute with name text and some data type. The data type
can either be an existing data type, which is built in to Ecore or defined
in the ePNK, or a datatype defined in the new package. In our example,
the datatype ArcType is an enumeration defined in the package itself, the
datatype NonNegativeInteger is defined by the ePNK.

Note that in our example, the cardinality from the Petri net objects
to its features is [0..1], which means that there can be zero or one of each
feature for every object of the respective type. But, the cardinality could
also be [0..∗] allowing arbitrarily many instances of this feature for a single
element. In the tree editor for Ecore models, the value −1 as upper bound
represents “arbitrarily many”.

Note also that the reference from the Petri net object to its feature
must be compositions. In the Ecore model, this means that the property
Containment of the respective reference must be set to true.

At some point, it might be easier to edit and extend the Ecore model
by using a graphical editor. To this end, you can create a diagram for
an existing Ecore model: right-click on the file of the Ecore model and
select “Initialize Ecore Diagram ...”; then, in the “Create Representation
File” dialog, select a file name and a folder for the diagram file (it should
typically be in the same folder as the model). In the “Create Representation
Wizard”, which opens after a while, select “Entities” in category “Design”
and continue; in the next dialog select your package and give the diagram
some name. In the diagram editor that opens, double-click on “here” to
create an initial representation of you model. If you want to see related
elements from other packages in this diagram you can right-click on the
diagram and select “Add Related Elements”. You will probably need to
arrange the elements in a nicer way. In the end, don’t forget to save the
diagram. Note that for opening the diagram again, you will need to switch



182 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

to the “Modeling” perspective of your Eclipse workspace as discussed at the
end of Sect. 4.3.2.1 for Fig. 4.9 already.

4.3.2.3 Code generation

In order to plug in the PNTD defined by the Ecore model to the ePNK,
we need to first generate code from this model and make some adjustments
to the code. The code will be generated from a so-called gen model that
is associated with the Ecore mode and defines some additional information
for the code generator on how the code should be generated and where the
generated code should go.

In our example, the gen model is the file technical.genmodel. Once
opened in the EMF Generator model editor, you can generate the code by
right-clicking on the top-level element and selecting “Generate Model Code”
and “Generated Edit Code”. You can also generate the other code, but you
do not need the “Test Code” and the “Editor Code” when using the model
as a PNTD for the ePNK.

When you have created a new EMF project and a new Ecore model,
however, there is no gen model yet. You first need to create the gen model
for your new model file. You can do this by right-clicking on the file with
the Ecore model and, then, selecting “New” → “Other...” and chosing
“EMF Generator Model” from category “Eclipse Modeling Framework” and
following through the dialog. When asked for the folder, make sure the gen
model is in the same folder as the model; when asked for the model URI,
you will need to click on “Load”5 and continue. At some point, a dialog
for selecting the packages for which the gen model should be generated will
show up, which looks like the one shown in Fig. 4.10. Note that it crucial,
that in this dialog you only select your package as “Root package”; all the
other ones, you should select in “Referenced generator models”. Before you
continue, your selection in this dialog should look like shown in Fig. 4.11.
Once you made these selections, you can “Finish” the generation of the gen
model.

Then the gen model for your model file should be created, and it should
be open in the “Gen Model” editor. Before you generate code from this
new gen model, you need to make two manual changes in this gen model.
First, select the top-most element and change one property in the properties
view: change the property Operation Reflection in the category Model

5If clicking on load results in an error, there is probably some error in you Ecore model.
Try to validate the Ecore model first and fix the error.



4.3. TECHNICAL STEPS 183

Figure 4.10: Select Package Dialog

Figure 4.11: Select Package Dialog



184 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

to false. Second, open the top-level element and select the package ele-
ment. For this package, set the property Base Package to some reasonable
Java package name; in our example, it is set to org.pnml.tools.epnk.

tutorials.app; this setting directs the generator to generate the code in a
subpackage of this Java package.

Now, you can generate the model and the edit code from this gen model
as discussed above. The generated code should show no errors; if it does, you
probably forgot to change the property Operation Reflection to false in
the gen model after generating it.

Note that, if you should make changes in the model later on, you would
need to “Reload” your gen model again, so that it can become aware of the
model changes and update accordingly (reusing as much as possible from
the existing settings). In order to do that, first make sure that you have
saved and closed your model file. Then, right-click on the gen model and
select “Reload” and follow through the dialog which very much works like
the dialog for initially creating the gen model.

4.3.2.4 Manual changes in the code

Before plugging in the generated net class to the ePNK, we need to make two
manual changes in the Java class generated for the class TechnicalNetType,
which represents the new Petri net type defined in this tutorial. In our exam-
ple, this class can be found in the src folder in package org.pnml.tools.

epnk.tutorials.app.technical.impl and is called TechnicalNetType

Impl.

The two changes that need to be made in this class are the following:
first, the constructor of this class must be made public, which is necessary
so that the ePNK will be able to create new instances of this class. Second,
the toString() method of this class must be implemented; it should return
a URI, which uniquely identifies Petri nets of this type in PNML. It must
be a string representing a URI. In principle, it can be any URI, you just
need to make sure that it is unique.

Listing 4.4 shows the class TechnicalNetTypeImpl with the changes
made in lines 15–19 and 26–37, highlighted in red. Note that for readabil-
ity reasons, we have omitted some comments, but otherwise the class is
completely shown. In addition to making the constructor public and im-
plementing the toString() method, the changes are marked with the tag
generated NOT, which indicates that there are manual changes to the gen-
erated code, and this way prevents the manual changes being overwritten
the next time the code is generated again from the gen model.



4.3. TECHNICAL STEPS 185

Listing 4.4: Manual changes in class TechnicalNetTypeImpl

package org.pnml.tools.epnk.tutorials.app.technical.impl;

2

import org.eclipse.emf.ecore.EClass;

import org.pnml.tools.epnk.pnmlcoremodel.impl.PetriNetTypeImpl;

import org.pnml.tools.epnk.tutorials.app.technical.TechnicalNetType;

import org.pnml.tools.epnk.tutorials.app.technical.TechnicalPackage;

7

/**

*

* @generated

*/

12 public class TechnicalNetTypeImpl

extends PetriNetTypeImpl implements TechnicalNetType {

/**

* @generated NOT (made constructor public)

17 * @author ekki@dtu.dk

*/

public TechnicalNetTypeImpl() {

super();

}

22

@Override

protected EClass eStaticClass() {

return TechnicalPackage.Literals.TECHNICAL_NET_TYPE;

}

27

/**

* The URI of the net type.

*

* @generated NOT (needs to return unique URI of this net type)

32 * @author ekki@dtu.dk

*/

@Override

public String toString() {

return "http://epnk.tools.pnml.org/tutorials/app/technical";

37 }

}



186 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

The above changes are the only code that needs to be written manually
for making the new Petri net type work with the ePNK. In our example,
we have three additional Java classes, which are written completely manu-
ally. One implements a Java constraint, which is discussed in Sect. 4.3.3.
The other two are convenience classes, which make it easier to implement
our simulator and constraints later. Since it is good practice and increases
maintainability to have such convenience classes with static methods, we
briefly discuss them here, even though we do not need them right away.

Listing 4.5: Enumeration with all ArcTypes

1 package org.pnml.tools.epnk.tutorials.app.technical.helpers;

/**

* [...]

*

6 * @author ekki@dtu.dk

* @generated NOT

*

*/

public enum ArcType {

11

NORMAL, READ, RESET, INHIBITOR

}

In Listing 4.5, you can see a Java enumeration for arc types. Remember,
that our model of the PNTD has a similar type; but in the model, there have
been two possible values only: READ and INHIBITOR. The end-user will only
be able to set the type attribute of arcs to these two values – and the value
can be left undefined. In Listing 4.5, the enumeration defines the values of
all possible interpretations of arc types. The static method getArcType()

shown in Listing 4.6 shows, how to compute the “interpretation” from the
actual value set for the arc and its source and target nodes it is connected to.
It is crucial to implement such an “interpretation” only once in the manually
written code; otherwise this code would be repeated and scattered all over
the project – possibly even using different interpretations in different parts
of the software – making maintenance a nightmare.

Note that the code from Listing 4.5 and 4.6 is written completely man-
ually, and does not run the risk of being overwritten by the code generator.



4.3. TECHNICAL STEPS 187

Listing 4.6: Class TechnicalNetTypeFunctions with static helper methods

1 package org.pnml.tools.epnk.tutorials.app.technical.helpers;

// [...]

/**

* @author ekki@dtu.dk

6 * @generated NOT

*/

public class TechnicalNetTypeFunctions {

public static ArcType getArcType(Arc arc) {

11 if (arc instanceof

org.pnml.tools.epnk.tutorials.app.technical.Arc) {

org.pnml.tools.epnk.tutorials.app.technical.Arc tArc =

(org.pnml.tools.epnk.tutorials.app.technical.Arc) arc;

Node source = arc.getSource();

16 Node target = arc.getTarget();

ArcTypeAttribute type = tArc.getType();

if (source instanceof Page &&

target instanceof TransitionNode) {

21 return ArcType.RESET;

}

if (type != null) {

if (source instanceof PlaceNode ||

source instanceof TransitionNode) {

26 switch (type.getText()) {

case READ: return ArcType.READ;

case INHBITOR: return ArcType.INHIBITOR;

default: return ArcType.NORMAL;

}

31 }

} else {

if (source instanceof PlaceNode ||

source instanceof TransitionNode) {

return ArcType.NORMAL;

36 } } }

return null;

}

// [...] other helper methods omitted

41 }



188 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

Since the code is part of an EMF project, where most code is automatically
generated, the code is tagged with generated NOT anyway. This makes it
easy to search for all code which is not generated. In the project for the
PNTD, there are actually five manual changes: two of them in the class for
the net type and three manually written classes (the third class is discussed
later in Sect. 4.3.3).

Since we might want to use the class TechnicalNetTypeFunctions in
our other projects later, we need to export the Java package containing it
from this project. You can do that by using the “Plug-in manifest” editor by
double-clicking on the plugin.xml and selecting the “Runtime” tab. In that
tab, you should add the respective Java package to “Exported Packages” by
pressing the “Add...” button.

4.3.2.5 Plugging in the PNTD

The last step of defining a PNTD for the ePNK is actually plugging the gen-
erated and manually changed class for the net type, TechnicalNetTypeImpl
in our example, in to the ePNK. This could be done by using the Eclipse
“Plug-in manifest” editor. But, it is actually easier to do that directly
by changing the XML code of the plugin.xml. To this end, open the
plugin.xml file with the ‘Plug-in manifest” editor by double-clicking on
it and go to the tab called “plugin.xml”.

Listing 4.7 shows the snipped from the plugin.xml, which plugs the
PNTD in to the ePNK. It is a usual Eclipse extension referring to the ex-
tension point org.pnml.tools.epnk.pntd (line 4), which is defined by the
ePNK. The attributes id and name is just a unique id and name for this new
Petri net type. The actual new type is defined in the type element in lines
5–7; its attribute class refers to our class TechnicalNetTypeImpl, which
we had modified manually earlier and which defines the new Petri net type.
We need to refer to this class by its fully qualified Java class name (including
the packages); the description is just some text describing the new Petri net
type.

Note that at this point, with only the project org.pnml.tools.epnk.

tutorials.app.pntd and the automatically generated project org.pnml.

tools.epnk.tutorials.app.pntd.edit, we can use our Technical Petri
net type with the ePNK already. The only problem would be that read,
inhibitor and reset arcs would not be shown with a dedicated graphics. All
arcs would be graphically shown as normal arcs. Moreover, the end-user
would still be able to draw arcs between arbitrary nodes, even between
pages. We discuss how to fix the latter problem in the next section, and



4.3. TECHNICAL STEPS 189

Listing 4.7: plugin.xml snipped plugging the PNTD in to the ePNK

<extension

id="org.pnml.tools.epnk.tutorials.app.pntd"

name="Technical Net Type (for app tutorial)"

4 point="org.pnml.tools.epnk.pntd">

<type

class="org.pnml.tools.epnk.tutorials.app.technical.impl.

TechnicalNetTypeImpl"

description="Technical Net Type for ePNK app tutorial" />

9 </extension>

how to fix the first problem in Sect. 4.3.4.

Whenever you create a new Petri net type, it would be a good idea to
check whether your PNTD works with the ePNK at this point. Only after
that, you should proceed.

4.3.3 Constraints

In this section, we discuss how to define and plugin constraints for a net type,
so that the ePNK (and Eclipse in general) will take them into account.

As discussed in Sect. 4.2.1.1, we have two constraints for our technical
Petri net type. The first is that an arc should run from a place to a transi-
tion or the other way round, or it should run from a page to a transition;
moreover, only an arc running from a place to a transition can have a type
(for the other arcs, the type attribute should not be set). In Listing 4.1, we
have already seen an OCL formulation of that constraint. The other con-
straint was that there should be no duplicate read or inhibitor arcs between
a place and a transition. This constraint is realized as a Java constraint.

All constraints are defined in the our PNTD project org.pnml.tools.

epnk.tutorials.app.pntd, which defined the PNTD. The reason is that
constraints conceptually are a part of a model. Actually, it would be possible
to include the constraints to the Ecore model. But, we follow a slightly here.

4.3.3.1 OCL constraint

We start with discussing how to add the OCL constraint for properly con-
necting arcs to the project. This can be done by pluging in an OCL con-
straint by defining it in the plugin.xml of the project org.pnml.tools.

epnk.tutorials.app.pntd. Listing 4.8 shows the part of plugin.xml that



190 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

defines a constraint provider, with the OCL constrain for arcs. All of that
snippet is necessary, but we highlight some more important settings and
features in the definition (marked in red).

The most important part is the actual OCL constraint, which we had
shown in Listing 4.1 on page 168 already. The OCL constraint Listing 4.8
is shown as XML CDATA in order to escape all the special symbols of OCL
in lines 30-39. Note, however that the first line from Listing 4.1, which gave
the context is missing here. This context is actually defined by the target
element in lines 21–28: the class attribute defines the Ecore class it refers
to by the name Arc of the class followed by the package URI of the model
package in which it is defined. The target also defines events which cause the
validator to check the constraint again. In our example, these are set events
of the features source, target and type of the arcs; this means that the
validator kicks is whenever one of these features is of an arc changes. This
goes together with the fact that we define the constraint as a live constraint
(see line 10), which means that after any change an end-user makes (with
respect to the defined events), the constraint is checked. If the constraint
should fail, the complete action of the end-user will be undone. Therefore,
the end-user cannot create a model that is invalid with respect to a live
constraint, provided that the event definition covers all features and events
that might invalidate a constraint of an arc. In our case, these features are
source, target and type.

In addition, there is a severity of the constraint (line 12), which is an
error in our example, and language of the constraint (line 9) is defined
as OCL. Moreover, there is a message, which will be output to the end-
user, whenever the validation fails – and the message of the problem marker
attached to the model element. The tag {0} in this message, will be replaced
with the object on which the constraint failed (the target).

Actually within the same constraint provider, more than one constraint
can be defined, which is indicated by the . . . in line 42. We will actually see
an additional constraint there when discussing the Java constraint in the
following section.

Note that the OCL constraint must be syntactically correct, and getting
the syntax of OCL right might be a bit tricky if you do not have much experi-
ence. Experimenting with the OCL syntax by changing the OCL constraint
in the plugin.xml, starting the runtime workbench and testing whether the
OCL constraint works, and staring all over again, if it does not work, is way
too time consuming. We need a more efficient way to get the OCL syntax
right – and even a way to check how an OCL expression evaluates in a given



4.3. TECHNICAL STEPS 191

Listing 4.8: plugin.xml defining the OCL constraint for arcs

1 <extension point="org.eclipse.emf.validation.constraintProviders">

<constraintProvider cache="true">

<package namespaceUri=

"http://epnk.tools.pnml.org/tutorials/app/technical"/>

<constraints categories="org.pnml.tools.epnk.validation">

6 <constraint

id="org.pnml.tools.epnk.tutorials.app.pntd.

validation.correct-arc-connection"

lang="OCL" mode="Live"

name="Arc connection constraint for Technical Net"

11 severity="ERROR" statusCode="401">

<message>

The arc {0} with this arc type is not allowed.

</message>

<description>

16 Arcs must be between a place and a transition, a

transition and a place, or between two transitions.

</description>

<target class="Arc">

<event name="Set">

21 <feature name="source"/>

<feature name="target"/>

<feature name="type"/>

</event>

</target>

26 <![CDATA[

( self.source.oclIsKindOf(pnmlcoremodel::PlaceNode) and

self.target.oclIsKindOf(pnmlcoremodel::TransitionNode) )

or

( self.source.oclIsKindOf(pnmlcoremodel::TransitionNode) and

31 self.target.oclIsKindOf(pnmlcoremodel::PlaceNode) and

self.type->size() = 0 )

or

( self.source.oclIsKindOf(pnmlcoremodel::Page) and

self.target.oclIsKindOf(pnmlcoremodel::TransitionNode) and

36 self.type->size() = 0 ) ]]>

</constraint>

...

</constraints>

</constraintProvider>

41 </extension>



192 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

situation. To this end, we had recommended to install the “OCL Examples
and Editors SDK” feature to your Eclipse in Sect. 4.3.1.1. If this feature is
installed in Eclipse, you can open the “Console” view, and in that view se-
lect “Interactive OCL” as shown in Figure 4.12. In this console, select M1 in
the drop down menu (marked by a red circle). If you then select an element
in the Ecore editor, you can type some OCL constraint in the field at the
bottom of the “Interactive OCL” view and check whether it is syntactically
correct (you even get some syntax support, which indicates possible options
while typing). Once you type enter, the field on top will show whether the
syntax of the OCL constraint for the element selected in the Ecore model is
syntactically correct.

Actually, the “Interactive OCL” console can not only be used for check-
ing the syntactical correctness of OCL constraints. If you start the runtime
workbench, and open an instance of a model, you can select an element of
the instance, and evaluate an OCL expression on this instance. For example,
you could open a PNML document and a page in the graphical editor, select
an arc and evaluate the constraint. This is shown in Fig. 4.13, where the
OCL expression self.type.text is evaluated on an arc (the one running
from place p7 to transition t5; the evaluation shows that it is an inhibitor arc.
Note that you need to switch the “Interactive OCL” console to “Modeling
level” M2 for this purpose.

Checking syntactical correctness, exploring the possible options for ex-
pressions, and even for checking whether an OCL expression is evaluating
as expected, the “Interactive OCL” console is a very efficient tool.

4.3.3.2 Java constraint

Listing 4.9 shows a Java implementation of a constraint, which guarantees
that there are no duplicate arcs of type read or inhibitor between the same
nodes. The validation() method of this class is called with some validation
context from which the object on which the constraint should be checked can
be obtained (the target that will be defined when the constraint is plugged
in).

The implementation of the validation() method first obtains the target
object form the validation context and checks whether it is an Arc of the
our technical arc type. Then, it computes the “interpreted” type, of the arc
via the utility class TechnicalNetTypeFunctions, which we had discussed
in Sect. 4.3.2.4, as well as the nodes to which the source and target of
this arc resolve (in case these are reference nodes); this is done with the
NetFunctions utility class coming from the ePNK.



4.3. TECHNICAL STEPS 193

Figure 4.12: OCL console in Eclipse development workbench

Figure 4.13: OCL console in Eclipse runtime workbench



194 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

After that a so-called FlatAccess object is obtained, which allows us to
obtain all arcs that conceptually belong to a node, even when the node is
actually split up via reference nodes on different pages. In case the arc is an
inhibitor or read arc, and it has a source node and if the flatAccess object
could be obtained, it iterates over all the other arcs that have the source
node as their source too. The set of all these arcs can be easily obtained
from the flatAccess object. Than it checks for all these other arcs (if they
are different from the arc itself), whether the other arc is a duplicate, i.e.
whether the other arc has the same target and the same type. In that case,
the validation() method returns a failure status using the context – the
singleton array contains the arc on which the constraint had failed.

Basically, a Java constraint is a class implementing a validation()

method, which should return a failure status when the constraint is violated
on the target object and a success status otherwise. The rest is left to
your Java skills – which, it in many cases, makes Java constraints easier
to formulate than OCL even tough the implementation looks a bit more
verbose.

Note that the Java constraint is also marked @generated NOT since it is
is manually written code in an plugin where most other code is automatically
generated. This is not strictly necessary since also this class is placed in a
Java package without any generated code. It is good practice to have clearly
separate packages with generated code and manually written code.

After implementing a Java constraint it needs to be added to a constraint
provider, which is similar to plugging in OCL constraints. It is in this
part where it is defined on which target object the constraint should be
checked and whether it acts as a live constraint or as a batch constraint. We
chose to make the duplicate arcs constraint a batch constraint only. A batch
constraint is checked only when the end-user explicitly starts a validation
in the tree editor of a PNML document.

Listing 4.9 shows how the Java constrain is added to our constraint
provider from earlier (see Listing 4.8, where some of the important features
are highlighted in red. But, except for the language, which is Java now, and
the class attribute, which refers to the fully qualified name of the Java class,
this is very similar to the OCL constraint. Note that since the constraint
is a batch constraint only, we do not need to define an event for the target
object. The target itself refers to the same Ecore class as before, the arc of
our new model.



4.3. TECHNICAL STEPS 195

Listing 4.9: Java class implementing the no duplicate arcs constraint

package org.pnml.tools.epnk.tutorials.app.technical.constraints;

// [...]

4 /**

* [...]

*

* @author ekki@dtu.dk

* @generated NOT

9 */

public class NoDuplicateArcs extends AbstractModelConstraint {

public IStatus validate(IValidationContext ctx) {

EObject object = ctx.getTarget();

14 if (object instanceof Arc) {

Arc arc = (Arc) object;

ArcType arcType = TechnicalNetTypeFunctions.getArcType(arc);

Node source = NetFunctions.resolve(arc.getSource());

Node target = NetFunctions.resolve(arc.getTarget());

19

FlatAccess flatAccess =

FlatAccess.getFlatAccess(NetFunctions.getPetriNet(arc));

if ((arcType == ArcType.INHIBITOR ||

arcType == ArcType.READ) ) &&

24 source != null &&

flatAccess != null) {

for (org.pnml.tools.epnk.pnmlcoremodel.Arc other:

flatAccess.getOut(source)) {

if (other != arc) {

29 if (other instanceof Arc) {

Arc arc2 = (Arc) other;

Node target2 =

NetFunctions.resolve(arc2.getTarget());

if (target == target2) {

34 if (TechnicalNetTypeFunctions.getArcType(arc) ==

TechnicalNetTypeFunctions.getArcType(arc2)) {

return ctx.createFailureStatus(new Object[]{arc});

} } } } } } }

return ctx.createSuccessStatus();

39 }

}



196 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

Listing 4.10: plugin.xml adding the Java constraint

<extension point="org.eclipse.emf.validation.constraintProviders">

<constraintProvider cache="true">

3 <package namespaceUri=

"http://epnk.tools.pnml.org/tutorials/app/technical"/>

<constraints categories="org.pnml.tools.epnk.validation">

...

8 <constraint

lang="Java"

class="org.pnml.tools.epnk.tutorials.app.technical.

constraints.NoDuplicateArcs"

severity="ERROR"

13 mode="Batch"

name="No duplicate arcs"

id="org.pnml.tools.epnk.tutorials.app.technical.

validation.no-duplicate-arcs"

statusCode="402">

18 <target class="Arc"/>

<message>

The arc {0} is a duplicate arc.

</message>

<description>

23 Arcs of the same type (read or inhibitor) are not

allowed between the same nodes.

</description>

</constraint>

</constraints>

28 </constraintProvider>

</extension>



4.3. TECHNICAL STEPS 197

4.3.4 Graphical extensions

In this section, we discuss how to implement the graphical extensions for our
technical net type in more detail. As discussed in Sect. 4.1.1 and Sect. 4.2.2,
our technical net type needs a customized graphical representation for arcs
and for transitions.

In this tutorial, we demonstrate two different ways of implementing cus-
tomized graphics for some net object. The first one is on a high level of
abstraction: it, basically, changes attributes of the figure and composes the
figure from other figures. The second one is on a lower level of abstrac-
tion: it overrides the method which draws the figure on the canvas. And, of
course, both methods could be combined. We had discussed this already in
Sect. 4.2.2.

In this section, we also discuss the mechanisms, which make sure that
the graphical representation is properly updated, when attributes that affect
the appearance change. Moreover, we discuss how to plug in the customized
figures into the ePNK.

4.3.4.1 Project set up

Since graphics is conceptually separate from the model defining the Petri net
type and since all code for graphics is programmed manually, the graphical
extensions are typically implemented in a separate project. This project is
a normal Eclipse Plug-in Project. In our example, it is the project org.

pnml.tools.epnk.tutorials.app.pntd.graphics. But, the name “pntd”
as part of the name indicates that this project belongs to the definition of
the Petri net type conceptually.

In case you need to create a new such project, you can simply create
a new Plug-in project in your workspace by choosing “New” in the “File”
menu and then selecting “Plug-in project” from category “Plug-in Develop-
ment”; we recommend to switch to the “Plug-in Development” perspective
of Eclipse, which offers you the relevant tools and views for developing plug-
ins in the toolbar and menus.

Once you have created a new plug-in project, you should add some de-
pendencies to this project, which you typically will need for graphical exten-
sions for a PNTD. You can do that by opening the “Plug-in manifest” editor
by double-clicking on the MNIFEST.MF file in the META-MF folder and select-
ing the “Dependencies” tab. In addition to the project defining your Petri
net type, you should add the project org.eclipse.tools.epnk.diagram

to the “Required Plug-ins”. In a plug-in project set up this way, you could



198 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

then implement the classes as discussed below yourself.

4.3.4.2 Arc: composing a figure

We start with discussing the graphical extension for arcs, where we use com-
pose and configure the figure on a higher level of abstraction. Listing 4.11
shows the class implementing the graphical appearance of an arc of the
technical net type. Part of this class, the setGraphics() method, has been
shown in Listing 4.2 an discussed in Sect. 4.2.2 already; therefore, we have
omitted this part indicated by ellipses and do not discuss this method here
again. Listing 4.11 shows the remaining parts, in particular the constructor
and the update() method, which we discuss below. We have discussed the
setGraphics() method (lines 28–30) already in Sect. 4.2.2. Based on the
current type (attribute arcType) of the arc. This attribute is actually the
type that we had manually implemented (see Sect. 4.3.2.4) in the PNTD
project for guaranteeing a uniform interpretation of the arc type values.
The initial value of this attribute is computed in the constructor (line 5) by
using the utility class TechnicalNetTypeFunctions, which also was man-
ually implemented in the PNTD project. After setting this attribute the
setGraphics() method is called from the constructor, in order to configure
the graphics accordingly.

Note that the figure class inherits from class ArcFigure, which is de-
fined by the ePNK, along with similar classes for figures for transitions and
places. All these classes have an update() method, which will be called
whenever something that might have an effect on the graphical appearance
has changed. By default, a change of the source, the target, and any of the
arcs labels and attributes defined in the respective net type are considered
as potentially changing the graphical appearance, triggering the ePNK to
call the update() method of the respective ArcFigure. It is up to the imple-
menting figure to react to this update by overriding the update() method.
In our example, this method temporarily stores the latest type of the arc,
and then computes it again. If there was a change the setGraphics() is
called again to properly configure the graphics.

Note that our implementation in lines 21-25 does slightly more. It com-
putes the target of the arc and issues a notification of some change (not
specified in detail) to the target. The reason for this is the following: The
graphical appearance of a transition depends on whether it has normal in-
coming arcs or not. The transition figure will automtically be notified by
the ePNK when arcs are attached to it or removed from it; but when the
type of an attached arc changes, the transition is not notified automatically



4.3. TECHNICAL STEPS 199

Listing 4.11: Class for arc graphics

1 package org.pnml.tools.epnk.tutorials.app.graphics.figures;

// [...]

public class TechnicalNetTypeArcFigure extends ArcFigure {

6

private ArcType arcType;

public TechnicalNetTypeArcFigure(Arc arc) {

super(arc);

11 arcType = TechnicalNetTypeFunctions.getArcType(arc);

setGraphics();

}

@Override

16 public void update() {

ArcType oldArcType = arcType;

arcType = TechnicalNetTypeFunctions.getArcType(arc);

if (arcType != oldArcType) {

setGraphics();

21 Node target = arc.getTarget();

if (target instanceof InternalEObject) {

target.eNotify(new ENotificationImpl(

(InternalEObject) target,

Notification.NO_FEATURE_ID, null, null, null));

26 } } }

private void setGraphics() {

// [ ... ] discusses before

}

31

}



200 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

by the ePNK, because the type attribute belongs to the arc and not to the
transition. Therefore, the arc figure needs to notify the target transition
about a potential change, so that the transition figure can update its ap-
pearance if necessary. Our implementation does that with the code in lines
21-25. Generally, the implementation of the custom figures for a Petri net
type can be mostly independent of each other. But, if the appearance of
one element depends on features belonging to other elements, it would be
the responsibility of these other figures to issue a notification as shown in
21-25. In our case, it is the target of the arc taht needs to be notified.
Note that we do not need not notify the source of an arc, because only for
arcs pointing to a transition the end-user is allowed to change the type (see
discussion of constraints in Sect. 4.3.3.1). This shows that the notification
might take careful considerations, taking the appearances of other figures
and even constraints into account.

Issuing notifications actually needs some more consideration in order not
to issue cyclic notifications. This is the most important reason to issue a
notification only, if the type of the arc really changed. Another reason is
efficiency – you do not need to redraw a figure if its appearance does not
change.

4.3.4.3 Transition: drawing a figure

Listing 4.12 shows the complete implementation the appearance of transi-
tions. It extends the TransitionFigure, which is provided by the ePNK.
Similar to arcs, the constructor computes whether, initially the transition
has normal input arcs and normal output arcs. The TechnicalNetType

Function class provides two methods for that, which we did not discuss
though. The reason for implementing these methods is again to make sure
that there is a uniform interpretation of transition having normal in and
out arcs. In the update() method, the old values of both attributes are
temporarily stored, then these attributes are recomputed. If either of these
values has changed the graphics is updated. Note however, that this is
not done by changing the figure as such. Instead the repaint() method
is called, which is a method every figure has; it will indirectly call the
fillShape() method, which implements how a transition is drawn. We
have seen this fillShape() method in Listing 4.3 on page 171 in Sect. 4.2.2
already. Therefore, we do not discuss it here again. Note that the update()

method does not issue notifications on other object since other objects’ ap-
pearance does not depend on features of a transition.

Note, however, that the graphical appearance of a transition might



4.3. TECHNICAL STEPS 201

Listing 4.12: Class for transition graphics

package org.pnml.tools.epnk.tutorials.app.graphics.figures;

// [...] import org.eclipse.draw2d.Graphics;

3

public class TechnicalNetTypeTransitionFigure

extends TransitionFigure {

private boolean hasNormalInArcs;

8 private boolean hasNormalOutArcs;

public TechnicalNetTypeTransitionFigure(Transition transition) {

super(transition);

hasNormalInArcs = TechnicalNetTypeFunctions.hasNormalInArcs(

13 (org.pnml.tools.epnk.tutorials.app.technical.Transition)

transition);

hasNormalOutArcs = TechnicalNetTypeFunctions.hasNormalOutArcs(

(org.pnml.tools.epnk.tutorials.app.technical.Transition)

transition);

18 }

@Override

public void update() {

boolean oldHasNormalInArcs = this.hasNormalInArcs;

23 boolean oldhasNormalOutArcs = this.hasNormalOutArcs;

hasNormalInArcs = TechnicalNetTypeFunctions.hasNormalInArcs(

(org.pnml.tools.epnk.tutorials.app.technical.Transition)

transition);

hasNormalOutArcs = TechnicalNetTypeFunctions.hasNormalOutArcs(

28 (org.pnml.tools.epnk.tutorials.app.technical.Transition)

transition);

if (oldHasNormalInArcs != this.hasNormalInArcs ||

oldhasNormalOutArcs != this.hasNormalOutArcs) {

this.repaint();

33 }

}

@Override

protected void fillShape(Graphics graphics) {

38 // [...] discussed earlier already

}

}



202 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

change when an arc is added to a reference transition which refers to this
transition. But, the ePNK takes care of issuing an update, also when fea-
tures of reference transitions change. So, we do not need to do anything
about that at all.

4.3.4.4 Graphical extension

The different figures that define a graphical extension of a Petri net type
need to be combined and made available to the ePNK. This is done by
implementing a class, which extends the class GraphicalExtension from the
ePNK. This class serves two purposes: first, it has methods with some meta
information on which Petri net types this class provides graphical extensions
for and saying for which elements of the Petri net it provides graphical
extensions; second, it serves as a factory that, for a given net element,
creates an instance of a figure implementing the graphical representation of
that element.

Listing 4.13 shows the class TechnicalNetGraphics, which combines the
features of our graphical extensions and makes them available to the ePNK.
The method getExtendedNetTypes() returns a list of classes representing
the Petri net types for which this is an extension. Note that, this list does
not refer to Java classes but to classes from the Ecore models (EClass)
defining the Petri net type. Programmatically, these classes are available via
objects that represent this package which have type EPackage. An instance
of this class can be obtained from a class in the generated code; in our
example, it is the available via the generated interface TechnicalPackage.
The call TechnicalPackage.eINSTANCE.getTechnicalNetType() returns
the Ecore class TechnicalNetType. Note that we can obtain the Ecore
classes representing the place, the transition, and arc of the technical package
in a similar way. Basically, The implementation of method getExtended

NetTypes() says that it is responsible for Petri nets of TechnicalNetType.
Note that it is actually possible that the same graphical extension provides
graphical extensions for several Petri net types. This can be either by adding
more net types to the list returned by getExtendedNetTypes(); or this can
be by saying that the graphical extension applies to subtypes of the Petri
net type, which we briefly discuss later.

Similarly, for a given net type the method getExtendedNetObjects()

returns a list of Ecore classes extending places, transition and arcs, for which
it defines graphical extensions. At last, there are methods which for a given
net element provide a new instance of a figure for that element. In our
case, it returns the figures that we have defined in Sect. 4.3.4.2 for arcs and



4.3. TECHNICAL STEPS 203

Listing 4.13: The graphical extension class for the Technical Net type

package org.pnml.tools.epnk.tutorials.app.graphics.factory;

// [...]

public class TechnicalNetGraphics extends GraphicalExtension {

4

@Override

public List<EClass> getExtendedNetTypes() {

ArrayList<EClass> results = new ArrayList<EClass>();

results.add(TechnicalPackage.eINSTANCE.getTechnicalNetType());

9 return results;

}

@Override

public List<EClass> getExtendedNetObjects(EClass netType) {

14 ArrayList<EClass> results = new ArrayList<EClass>();

if (netType.equals(TechnicalPackage.eINSTANCE.

getTechnicalNetType())) {

results.add(TechnicalPackage.eINSTANCE.getArc());

results.add(TechnicalPackage.eINSTANCE.getTransition());

19 }

return results;

}

@Override

24 public IArcFigure createArcFigure(Arc arc) {

if (arc instanceof

org.pnml.tools.epnk.tutorials.app.technical.Arc) {

return new TechnicalNetTypeArcFigure(arc);

}

29 return null;

}

@Override

public IUpdateableFigure createTransitionFigure(

34 Transition transition) {

if (transition instanceof

org.pnml.tools.epnk.tutorials.app.technical.Transition) {

return new TechnicalNetTypeTransitionFigure(transition);

}

39 return null;

}

}



204 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

Sect. 4.3.4.3 for transitions, provided that the arc or transition are of the
respective Java type.

Note that the class GraphicalExtension of the ePNK, has several other
methods, which allow us to define a priority for a graphical extension, which
might be needed when several extensions for the same net type and element
would be available. Moreover there are methods for defining whether the
extension would apply for all subtypes of a given net type and for extended
elements. By default, a graphical extension has priority 0 and does neither
apply to subtypes of net types nor to extended elements. Changing these
setting might have quite far-reaching consequences, which we do ot discuss
here in detail. Therefore, we recommend not to change the defaults.

4.3.4.5 Pluging in the graphical extension

Ultimately, the GraphicalExtension needs to be plugged in to the ePNK,
so that the ePNK will know about it. The easiest way to do that is again
to copy a XML snippet to the plugin.xml of the project where the graph-
ical extension class is defined. A minor complication might be that the
plugin.xml does not exist in a newly created plug-in project. So we need
to create it first. The easiest way to do that is opening the “Plug-in man-
ifest” as discussed above and to select the “Extensions” tab; pressing the
“Add...” button, but cancelling the opened dialog right away. After that,
we have create a new and empty plugin.xml file in our project.

The snippet that plugs in our TechnicalNetGraphics to the ePNK is
shown in Listing 4.14. The parts which can be freely chosen are marked in
red: the id, the name, the class and the description. The class attribute,
must of course refer to a Java class extending GraphicalExtension by a
fully qualified name of a Java class; and this class must be on the class path
of this project; a warning in the plugin.xml will indicate if this is not the
case. The point attribute of the extension must refer to the ePNK extension
point org.pnml.tools.epnk.diagram.graphics for graphical extensions.

Once you have finished a plugin project with a graphical extension, it
is a good idea to check whether it works in the ePNK. To this end, start
the runtime workbench of Eclipse and, in this runtime workbench create a
net of your new type and open a graphical editor on it. If your graphical
extensions do not properly appear, it is a good idea to start the runtime
workbench in a debugger. By setting a break point in the constructor of the
graphical extension, you can see whether your extension is ever loaded by
the ePNK. If not, you probably forgot to plug in the extension, or the class



4.3. TECHNICAL STEPS 205

Listing 4.14: Snippet from plugin.xml for pluggin in the graphical extension

<extension

id="org.pnml.tools.epnk.tutorials.app.graphics"

name="Technical Net Graphics"

4 point="org.pnml.tools.epnk.diagram.graphics">

<graphicsextension

class="org.pnml.tools.epnk.tutorials.app.graphics.

factory.TechnicalNetGraphics"

description="Dedicated graphics for Technical Net Type">

9 </graphicsextension>

</extension>

the extension is referring to does not exist at all or is not on the class path.
If the class is loaded, you might set break point in the other methods and
see what happens when the ePNK calls these methods.

4.3.5 Simulator application

At last, we discuss the technical details of the implementation of the sim-
ulator for our technical Petri net type. In our example projects, this is
realized in a separate EMF project: org.pnml.tools.epnk.tutorials.

app.simulator. It is realized as an EMF project, since we extend the
ePNK annotation model by some specific types of annotations. This is done
by an Ecore model which extends the ePNK annotation model.

In the following, we briefly discuss our extended annotation model, which
we call technicalannotations (refering to our technical net type), where
the focus is on how to create it and how to generate code from it. Then, we
discuss some core parts of the implementation, a class representing a marking
of nets of our technical Petri net type, and core functions for realzing the
functionality.

In the end, we discuss the presentation handler defining the graphical
representation of the annotations, the action handler which handles user
actions, and how to combine all the parts into an application, and how to
plug in the simulator application to the ePNK.

4.3.5.1 Annotation model

We had discussed the annotations that we need for our simulator already in
Sect. 4.2.3.1. The Ecore model of these annotations was shown in Fig. 4.7



206 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

on page 173. Basically, there is an annotation for weakly enabled transitions,
which has an attribute saying whether the transition is truly enabled or only
weakly enabled. Moreover, there is an annotation for the arcs that prevent
the true enabledness of a transition; we call this annotation InvolvedArc.
This annotation allows the end-user to activate or deactivate these arcs,
where the current status is indicated by attribute active. The InvolvedArc

is associated with the corresponding EnabledTransition annotation so that
we can navigate back and forth between these related annotations. The
EnabledTransition is also used for annotating reference transitions that
refer to enabled transitions. Conceptually, these EnabledTransition an-
notations belong to each other, which is represented by the reference ref

and resolve which are opposites of each other. At last, there is an annota-
tion indicating the Marking of a place or an associated reference place. The
attribute value represents the current number of tokens on that place.

When creating the project from scratch, you would first create an empty
EMF project and then a new Ecore model as discussed in Sect. 4.3.2.2.
Again, you would give the package a reasonable name, techsimannotations
in our example, and chose some namespace prefix and a URI for this pack-
age.

Then, you would create the classes of the model as shown in Fig. 4.7
on page 173. Note that these classes inherit from the ePNK ; the Marking

inherits also from TextualAnnotation. Both class ObjectAnnotation and
TextualAnnotation come from the ePNK base package http://tools.

pnml.org/epnk/netannotations/1.0. Before you can add these classes
as super types to your classes, you must load the http://tools.pnml.

org/epnk/netannotations/1.0 as a resource to your editor by using the
“Load Resource” action as discussed in Sect. 4.3.2.2; make sure that you
use the “Browse Target Platform Packages...” feature to selec the package
http://tools.pnml.org/epnk/netannotations/1.0.

Then, you can choose the super types for your new annotation classes.
Note that in Ecore models, it is possible to chose more than one super type;
Ecore supports multiple inheritance.

In this Ecore model there occurs one feature which we have not discussed
before. There are references which are opposites of each other, in a sense
they form two ends of the same association. In order to create such oppo-
site references in the Ecore model editor, you would create two independent
references in opposite directions first; then, you would make them opposites
of each other: to this end, you would chose one reference, and in the prop-
erties set the property “EOpposite” choosing the reference into the other
direction.



4.3. TECHNICAL STEPS 207

After that, you can create an EMF Generator model from your new
Ecore model and generated code from it as discussed in Sect. 4.3.2.3. In the
“Package Selection” dialog when creating a new generator model, remember
that the only package selected in section “Root package” should be your
new model; for all models loaded from the ePNK, the gen models should
be selected in the “Referenced generator models”. Don’t forget to set the
Base Package property in your generator model and to set the Operation

Reflection to false as discussed in Sect. 4.3.2.3.

Once the gen model is created, you can generate the model code. Note
that, for the annotation model, it is enough that you generate the model
code; you do not need to generate the edit, the editor or the test code.

Once you have generated the code for your annotations, you can start
realizing the actual simulator application. Before you start with that, you
might want to add some additional dependencies to your project (by open-
ing the “Plug-in manifest” editor clicking on the plugin.xml). The code
generator will have added some dependencies to your project already.

In addition to the project which defines your PNTD, the project org.

pnml.tools.epnk.tutorials.app.pntd in our example, and the ones
which the code generator has added already, you will probably need to
add the following projects to the dependencies of your project: org.pnml.

tools.epnk.applications and org.eclipse.gmf.runtime.diagram.ui.

4.3.5.2 NetMarking

In a simulator, the marking of a net plays a key role since it represents
the current state of a Petri net in a simulation. Conceptually, a marking
is a mapping from places to integers. So the marking could be represented
as a Java Map<Place,Integer>. But, accessing a Java Map<Place,Integer>

and keeping it consistent, might be a bit tedious. Therefore, we imple-
mented a class NetMarking in our simulator, which eases the access and
update of such mappings. Internally, the marking is represented as a Java
Map<Place,Integer>; but the class NetMarking provides some methods for
easier manipulating the marking.

Programming this class is straight-forward; therefore, we do not discuss
the implementation here. You can look up the implementation of this class
in the project org.pnml.tools.epnk.tutorials.app.simulator of the
code provided for this tutorial; you will find it in the Java package org.

pnml.tools.epnk.tutorials.app.simulator.marking. Here, we show
the available methods of this class only, since we will use them later in the
implementation of the simulator. Listing 4.15 shows all the methods of class



208 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

NetMarking.

Listing 4.15: Methods of the class NetMarking

public class NetMarking {

private Map<Place,Integer> marking;

5 // Creates a new empty marking.

public NetMarking()

//Creates a new marking, which is a copy of a given marking.

public NetMarking(NetMarking marking)

10

public void setMarking(Place place,int value)

public int getMarking(Place place)

15 public void incrementMarkingBy(Place place, int increment)

public void decrementMarkingBy(Place place, int decrement)

// Adds marking2 to this marking

20 public void add(NetMarking marking2)

// Subtracts marking2 from this marking

public void subtract(NetMarking marking2)

25 // Checks whether this marking is greater or equal than marking2

public boolean isGreaterOrEqual(NetMarking marking2)

// Returns the set of all places that have at least one token

public Collection<Place> getSupport()

30

}

4.3.5.3 Core functions

In this section, we discuss the implementation of the method which com-
putes from a given marking and a given enabled transition a new marking,
which results from firing this transition. This methods implements the core
functionality of our simulator.



4.3. TECHNICAL STEPS 209

In order to make it easy to implement this method, our simulator im-
plements some more basic functions. The first two methods compute for a
given marking how many tokens a transition will consume from each place
and how many tokens it will produce on each place. Actually, the num-
ber of consumed and produced tokens for each place can be considered to
be markings again. So the result type of these methods is NetMarking.
The implementation of these two methods are shown in Listing 4.16. The
implementation is straight-forward: Initially an new empty marking is cre-
ated. Then, the methods iterate over all in-coming or out-going arcs, and,
for each normal arc, incrementing the marking for the source or the target
place, respectively. In the end, the resulting marking is returned. The only
interesting point is that we, again, use the FlatAccess for obtaining all
in-coming and out-going arcs of the transition and for resolving reference
places to the actual place they refer to. As we see later, our simulator has a
method, which obtains an instance of FlatAccess for the net on which the
application is running, and we use this method getFlatAccess() in these
methods consumes and produces.

There are two other functions, which we need in our simulator: isWeakly
Enabled(), which computes for a given marking whether a given transition
is weakly enabled, meaning that considering normal arcs only, the transi-
tion would be enabled; the other preventingArcs() computes for a given
marking and a given weakly enabled transition, which read arcs and which
inhibitor arcs would prevent it from firing anyway. The implementation
of both of these methods is shown in Listing 4.17. Note that due to our
consumes() method and the isGreaterOrEqual() method for markings
the implementation of the isWeaklyEnabled() method is very simple. We
just need to compute that consumed tokens of the transition and check
whether the marking is greater than that. For computing the preventing
arcs, we need to iterate over all the incoming arcs: a read arc will be added
to the result, if its source place does not have a token in the given marking;
a inhibitor arc will be added, if the source place has a token in the given
marking.

At last, it is easy to implement the fireTransition() method based
on the previous methods. Listing 4.18 shows the implementation of this
method. It starts with copying the marking from which the transition should
be fired. Then, it consumes the token from the incoming normal arcs, resets
the places on pages that have a reset arc to the transition; and, at last,
it produces the tokens on the out-going normal arcs. The trickiest part
is the reset of all places on sub pages, even though the implementation is
straight-forward.



210 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

Listing 4.16: Implementation of the consumes() and produces() methods

private NetMarking consumes(Transition transition) {

FlatAccess flatAccess = this.getFlatAccess();

4 NetMarking consumes = new NetMarking();

for (org.pnml.tools.epnk.pnmlcoremodel.Arc arc:

flatAccess.getIn(transition)) {

if (arc instanceof Arc &&

TechnicalNetTypeFunctions.getArcType(arc) ==

9 ArcType.NORMAL ) {

Node source = arc.getSource();

if (source instanceof PlaceNode) {

source = flatAccess.resolve((PlaceNode) source);

if (source instanceof Place) {

14 consumes.incrementMarkingBy((Place) source, 1);

} } } }

return consumes;

}

19 private NetMarking produces(Transition transition) {

FlatAccess flatAccess = this.getFlatAccess();

NetMarking produces = new NetMarking();

for (org.pnml.tools.epnk.pnmlcoremodel.Arc arc:

24 flatAccess.getOut(transition)) {

if (arc instanceof Arc &&

TechnicalNetTypeFunctions.getArcType(arc) ==

ArcType.NORMAL ) {

Node target = arc.getTarget();

29 if (target instanceof PlaceNode) {

target = flatAccess.resolve((PlaceNode) target);

if (target instanceof Place) {

produces.incrementMarkingBy((Place) target, 1);

} } } }

34 return produces;

}



4.3. TECHNICAL STEPS 211

Listing 4.17: Code for isWeaklyEnabled() and preventingArcs()

private boolean isWeaklyEnabled(NetMarking marking,

Transition transition) {

NetMarking consumes = consumes(transition);

return marking.isGreaterOrEqual(consumes);

5 }

private Collection<Arc> preventingArcs(NetMarking marking,

Transition transition) {

FlatAccess flatAccess= this.getFlatAccess();

10

Collection<Arc> preventors = new ArrayList<Arc>();

for (org.pnml.tools.epnk.pnmlcoremodel.Arc arc:

flatAccess.getIn(transition)) {

ArcType arcType = TechnicalNetTypeFunctions.getArcType(arc);

15 if (arc instanceof Arc &&

( arcType == ArcType.INHIBITOR ||

arcType == ArcType.READ)) {

Node source = arc.getSource();

if (source instanceof PlaceNode) {

20 source = flatAccess.resolve((PlaceNode) source);

if (source instanceof Place) {

if (arcType == ArcType.INHIBITOR &&

marking.getMarking((Place) source) > 0) {

preventors.add((Arc) arc);

25 } else if (arcType == ArcType.READ &&

marking.getMarking((Place) source) == 0) {

preventors.add((Arc) arc);

} } } } }

return preventors;

30 }



212 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

Listing 4.18: Impementation of the fireTransition() method

private NetMarking fireTransition(NetMarking marking1,

Transition transition ) {

FlatAccess flatAccess= this.getFlatAccess();

5 NetMarking marking2 = new NetMarking(marking1);

// consume tokens from preset

NetMarking consumes = consumes(transition);

marking2.subtract(consumes);

10

// reset places on page connected to reset arc

for (Object a: flatAccess.getIn(transition)) {

if (a instanceof Arc &&

TechnicalNetTypeFunctions.getArcType((Arc) a) ==

15 ArcType.RESET) {

Arc arc = (Arc) a;

Node source = arc.getSource();

if (source instanceof Page) {

Page page = (Page) source;

20 for (Object object: page.getObject()) {

if (object instanceof PlaceNode) {

Object resolved =

flatAccess.resolve((PlaceNode) object);

if (resolved instanceof Place) {

25 marking2.setMarking((Place) resolved, 0);

} } } } } }

// produce tokens on postset

NetMarking produces = produces(transition);

30 marking2.add(produces);

return marking2;

}



4.3. TECHNICAL STEPS 213

4.3.5.4 Annotation functions

In Sect. 4.3.5.3, we have discussed the methods which implement pure func-
tionality on Petri nets. In order to visualize the markings, we need some
additional functions or methods which ultimately show the markings in a
net. To this end, we need to convert a marking into a net annotation. And
we need a way to convert a net annotation into a marking. This separation
would actually not be strictly necessary, but it makes the design clearer and
the easier implementation easier understand.

Basically, we need the following methods: One for computing the initial
marking from the net itself, one for computing a marking from the current
annotation of the net, and one for creating a new net annotation from a given
marking (showing the marking as well as the weakly enabled transitions and
the involved arcs).

Listing 4.19 shows the method for computing the initial marking of a
net. The method initializes a new empty marking. Then, it iterates over
all the places of the net (using the FlatAccess object from the application
again) and sets the value of the marking for each place (if it is not zero)
accordingly.

Listing 4.19: Implementation of the computeInitialMarking() method

private NetMarking computeInitialMarking() {

2 NetMarking marking = new NetMarking();;

for (org.pnml.tools.epnk.pnmlcoremodel.Place place:

this.getFlatAccess().getPlaces()) {

if (place instanceof Place) {

int number = TechnicalNetTypeFunctions.getMarking(place);

7 if (number > 0) {

marking.setMarking((Place) place, number);

} } }

return marking;

}

The method for computing the marking from the current annotation
of the application is similar. It is shown in Listing 4.20. The only differ-
ence is that the value of the marking of each place is not taken from the
model of the net, but from the Marking annotations of the current anno-
tation of the application. This current annotation is obtained by calling
getNetAnnotations().getCurrent() the call getObjectAnnotations()

returns a list of all the individual object annotations. For each annotation



214 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

it is checked whether it is a Marking annotation, and the underlying object
is obtained. If the underlying object is a place, the value of the Marking

annotation is set as marking for that place.

Listing 4.20: Implementation of the computeMarking() method

private NetMarking computeMarking() {

NetMarking marking = new NetMarking();

for (ObjectAnnotation annotation:

4 getNetAnnotations().getCurrent().getObjectAnnotations()) {

if (annotation instanceof Marking) {

Marking markingAnnotation = (Marking) annotation;

Object object = markingAnnotation.getObject();

int value = markingAnnotation.getValue();

9 if (object instanceof Place && value > 0) {

Place place = (Place) object;

marking.setMarking(place, value);

} } }

return marking;

14 }

The most intricate method is computeAnnotation(), which takes a
NetMarking and computes a new net annotation (NetAnnotation) repre-
senting this marking and also indicating the enabled transitions and the
preventing arcs in this marking. The implementation of this method is
shown in Listings 4.21 and 4.22 (we needed to split this listing up in two).
In addition to obtaining the FlatAccess, the method initially creates a new
and empty NetAnnotation by using the factory (from the ePNK). And it
sets the net annotation to the Petri net of the application.

Then, there are two major loops. The first (in Listing 4.21) deals with
annotating enabled transitions and their arcs; the second (in Listing 4.22)
deals with annotating the places with the markings. When a transition is
enabled, an EnabledTransition object is created (using the factory which
was generated from our new annotation model). The object of this annota-
tion is set to the transition and added to the net annotations, the enabled

attribute is set to true or not; if there are preventing arcs, these are an-
notated with an InvolvedArc annotation, initially setting them to active.
Note that these InvolvedArc annotations are attached to the respective
EnabledTransition. At last, all the reference transitions pointing to the
enabled transitions are also annotated with an EnabledTransition anno-
tation.



4.3. TECHNICAL STEPS 215

Listing 4.21: Implementation of computeAnnotation() (part 1)

1 private NetAnnotation computeAnnotation(NetMarking marking) {

FlatAccess flatAccess = this.getFlatAccess();

NetAnnotation annotation =

NetannotationsFactory.eINSTANCE.createNetAnnotation();

6 annotation.setNet(getPetrinet());

for (Object object: flatAccess.getTransitions()) {

if (object instanceof Transition) {

Transition transition = (Transition) object;

if (isWeaklyEnabled(marking, transition)) {

11 EnabledTransition enabledTransition =

TechsimannotationsFactory.eINSTANCE.

createEnabledTransition();

enabledTransition.setObject(transition);

annotation.getObjectAnnotations().add(enabledTransition);

16 Collection<Arc> preventingArcs =

this.preventingArcs(marking, transition);

if (preventingArcs.isEmpty()) {

enabledTransition.setEnabled(true);

} else {

21 enabledTransition.setEnabled(false);

for (Arc arc : preventingArcs) {

InvolvedArc involvedArc =

TechsimannotationsFactory.eINSTANCE.

createInvolvedArc();

26 involvedArc.setObject(arc);

involvedArc.setTarget(enabledTransition);

involvedArc.setActive(true);

annotation.getObjectAnnotations().add(involvedArc);

} }

31 for (RefTransition refTransition:

flatAccess.getRefTransitions(transition)) {

EnabledTransition enabledTransition2 =

TechsimannotationsFactory.eINSTANCE.

createEnabledTransition();

36 enabledTransition2.setObject(refTransition);

enabledTransition2.setResolve(enabledTransition);

enabledTransition2.setEnabled(enabledTransition.

isEnabled());

annotation.getObjectAnnotations().add(enabledTransition2);

41 } } } }



216 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

Listing 4.22: Implementation of computeAnnotation() (part 2)

for (Place place: marking.getSupport()) {

int m = marking.getMarking(place);

45 if (m > 0) {

Marking mAnnotation =

TechsimannotationsFactory.eINSTANCE.createMarking();

mAnnotation.setObject(place);

mAnnotation.setValue(m);

50 annotation.getObjectAnnotations().add(mAnnotation);

for (RefPlace refPlace: flatAccess.getRefPlaces(place)) {

Marking mAnnotation2 =

TechsimannotationsFactory.eINSTANCE.createMarking();

mAnnotation2.setObject(refPlace);

55 mAnnotation2.setValue(m);

annotation.getObjectAnnotations().add(mAnnotation2);

} } }

return annotation;

}

The second loop (in Listing 4.22) annotates each place that has at least
one token with a Marking annotation – and all reference places referring to
that place get such an annotation too.

Note that all the methods discussed above, are pure functions; they do
not change the state of the application at all. At some point, of course, the
simulator needs to change the state (current marking) of the net. To this
end, the simulator implements another fireTransition() method with a
different signature than the one from before. This method will be called
when the end-user actually fires a transition, which we discuss later in
Sect. 4.3.5.5. This second fireTranstion() method is shown in List-
ing 4.23. It has a transition as a parameter and two sets of arcs, which
are the arcs which the user had selected to be inactive; the first are the
ingoing inactive arcs, the second are the outgoing inactive arcs. Actually,
our implementation needs the ingoing arcs only. But since other applica-
tions might need both, we chose to have this parameter here, just to indicate
the possibility. First, the fireTransition() method computes the marking
from the current annotation, by using the method, which we had discussed
before. Then, the arcs that would prevent its firing in the current mark-
ing are computed, and the inactive arcs are removed from it. If the set
is empty, the transition is actually enabled – and fired. Then, the first



4.3. TECHNICAL STEPS 217

fireTransition() computes the next marking, and a new net annotation
is computed from it with computeAnnotation(), which we had discussed
before. At last, the new net annotation is added to the application (which
will implicitly present it to the user – by mechanisms discussed later). There
is some subtlety though: the application maintains a sequence of net anno-
tations, which reflects the sequence of transitions and resulting markings
the user has fired. The user can, by using the applications GUI elements,
navigate back and forth in this sequence. So the current marking might not
be the last marking in the sequence. When the user fires a transition in a
marking, which is not the last one, we must delete all net annotations after
the current one. Then, we add the new net annotation as the current one
(which will implicitly be added at the end of the sequence).

Listing 4.23: Implementation of the fireTransition() method

1 boolean fireTransition(Transition transition,

Collection<Arc> inactiveInArcs,

Collection<Arc> inactiveOutArcs) {

NetMarking marking1 = this.computeMarking();

6 Collection<Arc> preventors =

this.preventingArcs(marking1, transition);

preventors.removeAll(inactiveInArcs);

if (this.isWeaklyEnabled(marking1, transition) &&

preventors.isEmpty()) {

11 NetMarking marking2 = this.fireTransition(marking1, transition);

NetAnnotation netAnnotation = this.computeAnnotation(marking2);

this.deleteNetAnnotationAfterCurrent();

this.addNetAnnotationAsCurrent(netAnnotation);

16 return true;

}

return false;

}

4.3.5.5 Action handlers

The actions of an application that can be triggered by the end-user are
defined by action handlers, which are registered with the application itself.
An action handler provides methods, which will be called when the user
presses, double clicks or releases a mouse button on some annotation of a



218 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

Petri net object. The implementation of these methods define what should
happen in this case. The action handler can decide to ignore the action, in
which case it would return false in order to indicate that it did not handle
the event, allowing other registered action handlers to kick in. In case the
action handler has handled the event, the action handler should return true.

Listings 4.24 and 4.25 show the implementation of the class Enabled

TransitionHandler, which defines what happens when the end-user double
clicks on a transition with an EnabledTransition annotation. It ignores
single mouse presses and mouse releases, since the respective methods always
return false (see lines 14–24). Note that all these handler methods take two
parameters, a MouseEvent coming from Eclipse’s Draw2D, and an Object

Annotation of the ePNK. Note that the ObjectAnnotation will typically
be of a type defined by your application.

Listing 4.24: Implementation of the EnabledTransitionHandler (part 1)

1 package org.pnml.tools.epnk.tutorials.app.simulator.application;

// [...]

public class EnabledTransitionHandler implements IActionHandler {

6

private TechnicalSimulator application;

public EnabledTransitionHandler(TechnicalSimulator application) {

super();

11 this.application = application;

}

@Override

public boolean mousePressed(MouseEvent arg0,

16 ObjectAnnotation annotation) {

return false;

}

@Override

21 public boolean mouseReleased(MouseEvent arg0,

ObjectAnnotation annotation) {

return false;

}

The interesting method in the EnabledTransitionHandler is the mouse



4.3. TECHNICAL STEPS 219

Listing 4.25: Implementation of the EnabledTransitionHandler (part 2)

@Override

public boolean mouseDoubleClicked(MouseEvent arg0,

ObjectAnnotation annotation) {

NetAnnotations netAnnotations = application.getNetAnnotations();

30 NetAnnotation current = netAnnotations.getCurrent();

if (current.getObjectAnnotations().contains(annotation)) {

Object object = annotation.getObject();

if (object instanceof TransitionNode) {

object = NetFunctions.resolve((TransitionNode) object);

35 }

if (object instanceof Transition &&

annotation instanceof EnabledTransition) {

Transition transition = (Transition) object;

EnabledTransition enabledTransition =

40 (EnabledTransition) annotation;

if (enabledTransition.isEnabled()) {

Collection<Arc> inactiveInArcs = new HashSet<Arc>();

for (InvolvedArc a: enabledTransition.getIn()) {

Object o = a.getObject();

45 if (o instanceof Arc && !a.isActive()) {

inactiveInArcs.add((Arc) o);

} }

Collection<Arc> inactiveOutArcs = new HashSet<Arc>();

for (InvolvedArc a: enabledTransition.getOut()) {

50 Object o = a.getObject();

if (o instanceof Arc && !a.isActive()) {

inactiveOutArcs.add((Arc) o);

} }

return application.fireTransition(transition,

55 inactiveInArcs,

inactiveOutArcs);

} } }

return false;

}

60

}



220 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

DoubleClicked() method (lines 26–59 in Listings 4.25), which issues the
fireTransition() method of the simulator application. Implemented in a
defensive way, this method first checks whether the provided object annota-
tion is actually in the current annotation. Then it checks whether the anno-
tated object is a transition (maybe resolving a reference transition) and the
annotation is an EnabledTransition annotation. Then it computes which
of the incoming and out-going arcs are inactive. The transition and the sets
of these arcs are then provide as parameters when the fireTransition()

method of the application is called, which will do the “heavy lifting”.

There is one other action of the end-user that our simulator application
needs to handle: the end-user deactivating or activating an arc, which might
prevent a weakly enabled transition from firing. In principle, this could be
implemented within the same action handler as firing the transition. To
keep things separate, however, we have chosen to implement a separate
InvolvedArcHandler, which is shown in Listing 4.26. This handler, han-
dles a single mouse press, which is implemented in the mousePressed()

method on an InvolvedArc annotation; all other events and other anno-
tations will be ignored (the respective methods returning fase are omit-
ted from the code in Listing 4.26). In case the involved annotation is an
InvolvedArc annotation, the active attribute of this annotation is toggled,
and for the attached EnabledTransition annotation, we recompute its ac-
tivation status: if all InvolvedArcs are inactive, the transition is enabled;
if at least one InvolvedArc is active, the transition is not enabled. If
the enabledness of the transition has changed, the enabled attribute of the
EnabledTransition annotation and all the ones referring to it are updated.

At last, all NetAnnotations after the current one are deleted – just to
make sure that all the net annotations of the application form a consistent
firing sequence. In case this operation actually deletes a net annotation, the
ePNK will automatically update the presentation of the annotations. But,
in case nothing changes, we need to issue an update of the presentation of
the annotations explicitly by calling update() on the application.

4.3.5.6 Presentation handler

Up to now, our application was defined by adding, changing, and updating
annotations. In this section, we discuss how to define how annotations
are actually shown to the end-user. This is implemented by one or more
PresentationHandlers. Actually, for very simple applications, the default
PresentationHandler provided by the ePNK might me enough already.
But, as soon as you want to use different colors or different shapes, an



4.3. TECHNICAL STEPS 221

Listing 4.26: Implementation of the InvolvedArcHandler

package org.pnml.tools.epnk.tutorials.app.simulator.application;

// [...]

public class InvolvedArcHandler implements IActionHandler {

4 private TechnicalSimulator application;

public InvolvedArcHandler(TechnicalSimulator application) {

super();

this.application = application;

9 }

@Override

public boolean mousePressed(MouseEvent arg0,

ObjectAnnotation annotation) {

14 if (annotation instanceof InvolvedArc) {

InvolvedArc involvedArc = (InvolvedArc) annotation;

involvedArc.setActive(!involvedArc.isActive());

EnabledTransition transition = involvedArc.getTarget();

if (transition != null) {

19 boolean active = transition.isEnabled();

boolean result = true;

for (InvolvedArc other: transition.getIn()) {

if (other.isActive()) {

result = false;

24 break;

} }

if (active != result) {

transition.setEnabled(result);

for (EnabledTransition refTrans: transition.getRefs()) {

29 refTrans.setEnabled(result);

} }

int size = application.getNetAnnotations().

getNetAnnotations().size();

application.deleteNetAnnotationAfterCurrent();

34 if (size == application.getNetAnnotations().

getNetAnnotations().size()) {

application.update();

}

return true;

39 } }

return false;

} // [...]



222 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

application needs to implement its own PresentationHandlers.
In our case, Marking annotations for places should be shown as a text

label to the top-right corner of the places. This, will actually be handled
by the default presentation handler, which will show all textual annota-
tions as a blue label to the top-right of the corresponding element. For
EnabledTransitions and InvolvedArc annotations, we need to define a
dedicated presentation handler, since the colour changes depending on the
annotation’s attributes. Transitions that are weakly enabled only should be
shown in grey, transitions that are truly enabled (maybe by the user de-
activating the preventing arcs) should be shown in red. Involved arcs that
are activated (and therefore preventing the transition from firing) should
be shown in grey; deactivated arcs should be shown in red (reminding the
end-user that firing them might deviate from the usual behaviour).

Listings 4.27 and 4.28 show the implementation of the class Technical

AnnotationsPresentationHandler of our implementation. The presenta-
tion handler() method has two parameters: an ObjectAnnotation and an
AbstractGraphicalEditPart. The ObjectAnnotation is the one which the
handler should provide an graphical representation for, and the Abstract

GraphicalEditPart provides access to the editor graphics of the underly-
ing Petri net element (which is a concept from GEF). The implementation
handles two main cases: the first case handles EnabledTransition anno-
tations, the other InvolvedArc annotations. For an EnabledTransition

annotation, the method creates a RectangleOverlay, and sets its colours
according to the value of the enabled attribute to red or grey (using Eclipse
SWT’s colour constants). The RectangleOverlay is defined by the ePNK
and is supposed to be an overlay over an existing figure – underlying the
GraphicalEditPart. For an InvolvedArc, the method creates a Polyline

Overlay, and sets its colours according to the value of the active attribute
to grey or red. Similar to the RectangleOverlay, access to the underly-
ing graphical representation of the arc is via the ConnectionNodeEditPart.
Note that depending on whether the underlying object is a node or an arc,
the AbstractGraphicalEditPart needs to be cast to either GraphicalEdit
Part or ConnectionNodeEditPart. In either case, the overlays adjust their
size and position to the underlying graphical object – even when the user
changes the size and position later on.

Note that the handler can also return null, which indicates that it does
does not have a graphical representation for the annotation in the given
situation; in that case, an other handler might provide one. If no handler can
provide a representation, the annotation is not shown at all. But, typically
the default presentation handler takes care of them – unless the default



4.3. TECHNICAL STEPS 223

Listing 4.27: Implementation of the presentation handler (part 1)

package org.pnml.tools.epnk.tutorials.app.simulator.application;

// [...]

4 public class TechnicalAnnotationsPresentationHandler

implements IPresentationHandler {

@Override

public IFigure handle(ObjectAnnotation annotation,

9 AbstractGraphicalEditPart editPart) {

if (annotation instanceof EnabledTransition) {

if (editPart instanceof GraphicalEditPart) {

GraphicalEditPart graphicalEditPart =

(GraphicalEditPart) editPart;

14 java.lang.Object modelObject =

graphicalEditPart.resolveSemanticElement();

if (modelObject instanceof TransitionNode) {

RectangleOverlay overlay =

new RectangleOverlay(graphicalEditPart);

19 if (((EnabledTransition) annotation).isEnabled()) {

overlay.setForegroundColor(ColorConstants.red);

overlay.setBackgroundColor(ColorConstants.red);

} else {

overlay.setForegroundColor(ColorConstants.lightGray);

24 overlay.setBackgroundColor(ColorConstants.lightGray);

}

return overlay;

} }



224 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

Listing 4.28: Implementation of the presentation handler (part 2)

} else if (annotation instanceof InvolvedArc) {

InvolvedArc involvedArc = (InvolvedArc) annotation;

30 if (editPart instanceof ConnectionNodeEditPart) {

ConnectionNodeEditPart connectionEditPart =

(ConnectionNodeEditPart) editPart;

java.lang.Object modelObject =

connectionEditPart.resolveSemanticElement();

35 if (modelObject instanceof Arc) {

PolylineOverlay overlay =

new PolylineOverlay(connectionEditPart);

if (involvedArc.isActive()) {

overlay.setForegroundColor(ColorConstants.lightGray);

40 overlay.setBackgroundColor(ColorConstants.lightGray);

} else {

overlay.setForegroundColor(ColorConstants.red);

overlay.setBackgroundColor(ColorConstants.red);

}

45 return overlay;

} } }

return null;

}

}



4.3. TECHNICAL STEPS 225

presentation handler is explicitly removed from the application.

Note that the default annotation handlers will provide representation for
all object annotations, which will be overlays in red; if the annotation is a
TextualAnnotation and the underlying object is a node, the value of the
TextualAnnotation is shown to the top-right of the node in blue.

4.3.5.7 Combining the pieces

Above, we have discussed the nost relevant bits and pieces of our simula-
tor for our technical Petri net type. Next, we show how to combine these
bits and pieces into a working application. Listings 4.29 and4.30show the
remaining methods implemented in the class TechnicalSimulator, which
implements the simulator application. Note that the omissions in line 40
indicate the left out methods, which we have discussed in Sect. 4.3.5.3 and
Sect. 4.3.5.4 already.

The constructor of this class sets the name, and then creates and adds the
action handlers and the presentation handler, which we had discussed above.
It also initializes a listener class, which will take care of notifying a user when
the end-user modifies the net on which this application is running. But,
we do not discuss this class here. The method getFlatAccess() provides
access to an instance of FlatAccess for the net of the application; note that
we register the NetChangeListener with this instance, since this instance
will be notified when the underlying net changes, and it will notify other
registered adapters when this happens. But, we don’t discuss this in more
detail here.

The initializeContents() method creates the first net annotation,
which represents the initial marking in our case. To this end, it uses the
methods which we had discussed earlier: it computes the initialMarking()
and computes the initial net annotation from it (computeAnnotation()),
adds it to the application’s net annotations and makes it the current anno-
tation.

At last, there are two more technical methods: isSavable() indicates
that the net annotations of this application can be saved. In that case,
the “ePNK: Applications” view will allow the end-user to save and load the
current situation of the simulator by enabling the respective buttons in the
“ePNK: applications” view. The method shutDown() is called when the
application is shut down. It must release all resource which the application
had acquired. In our case, it is enough to unregister the adapter from the
instance of the FlatAccess (otherwise changing the net would trigger a
notification even after the application shut down).



226 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

Listing 4.29: Implementation of the simulator application (part 1)

1 package org.pnml.tools.epnk.tutorials.app.simulator.application;

\\ [...]

public class TechnicalSimulator extends ApplicationWithUIManager {

6

FlatAccess flatAccess;

private NetChangeListener adapter;

public TechnicalSimulator(PetriNet petrinet) {

11 super(petrinet);

getNetAnnotations().setName("A simple technical simulator");

ApplicationUIManager manager = this.getPresentationManager();

manager.addActionHandler(new EnabledTransitionHandler(this));

manager.addActionHandler(new InvolvedArcHandler(this));

16 manager.addPresentationHandler(

new TechnicalAnnotationsPresentationHandler());

adapter = new NetChangeListener(this);

}

21

public FlatAccess getFlatAccess() {

if (flatAccess == null) {

flatAccess = FlatAccess.getFlatAccess(this.getPetrinet());

if (adapter != null) {

26 flatAccess.addInvalidationListener(adapter);

}

}

return flatAccess;

}

31

@Override

protected void initializeContents() {

NetMarking initialMarking = computeInitialMarking();

NetAnnotation initialAnnotation =

36 computeAnnotation(initialMarking);

this.getNetAnnotations().getNetAnnotations().

add(initialAnnotation);

this.getNetAnnotations().setCurrent(initialAnnotation);

}



4.3. TECHNICAL STEPS 227

Listing 4.30: Implementation of the simulator application (part 2)

\\ [...]

45

@Override

public boolean isSavable() {

return true;

}

50

@Override

protected void shutDown() {

super.shutDown();

if (flatAccess != null && adapter != null) {

55 flatAccess.removeInvalidationListener(adapter);

flatAccess = null;

} }

}

In order to plug in the application to the ePNK, we need to imlement
one other class: a factory, which can create new instances of the application
on a given net. Listing 4.31, shows the implementation of this class. The
most important method is startApplication(), which creates a new ap-
plication on the given net. Moreover, there is a method isApplicable(),
which checks for a given net, whether it would be applicable for that net.
In our case, it returns true if the type of the net is an instance of our
TechnicalNetType. But in some cases, this method might also check some
other consistency criteria that must be met before the application could be
started.

4.3.5.8 Plugging in the application

The last step for making the ePNK run our new application is registering
the application factory as en extension to the ePNK. The easiest way to do
that is adding an XML snippet to the plugin.xml of the project with the
simulator. This snippet is shown in Listing 4.32, where the parts indicated
in red, can be freely changed. The class attribute needs to refer to the
fully qualified Java name of the application factory.

Once you did this last step, the application should work with the ePNK.
To check this, you should start the runtime workbench of Eclipse again and



228 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION

Listing 4.31: Implementation of the application factory

package org.pnml.tools.epnk.tutorials.app.simulator.application;

3 // [...]

public class TechnicalSimulatorFactory extends ApplicationFactory {

public TechnicalSimulatorFactory() {

8 super();

}

@Override

public String getName() {

13 return "Technical Simulator (Tutorial)";

}

@Override

public String getDescription() {

18 return "A technical simulator used in the ePNK tutorial";

}

@Override

public boolean isApplicable(PetriNet net) {

23 return net.getType() instanceof TechnicalNetType;

}

@Override

public ApplicationWithUIManager startApplication(PetriNet net) {

28 return new TechnicalSimulator(net);

}

}



4.3. TECHNICAL STEPS 229

Listing 4.32: Snippet from plugin.xml for plugging in the application

<extension

id="org.pnml.tools.epnk.tutorials.app.simulator.application"

name="Technical Simulator (Tutorial)"

4 point="org.pnml.tools.epnk.applications.applicationfactory">

<applicationfactory

class="org.pnml.tools.epnk.tutorials.app.simulator.

application.TechnicalSimulatorFactory"

description="A simple simulator used as technical example

9 in the ePNK tutorial">

</applicationfactory>

</extension>

create a Petri net of the new type in the runtime workbench of Eclipse.
Open the graphical editor on a page of this net. Then, in the “ePNK:
Applications” view, your new application should show up in the drop down
menu for applications. If you select it, it should start up on the selected net.



230 CHAPTER 4. TUTORIAL: NET TYPE AND APPLICATION



Chapter 5

Installation

This chapter discusses the installation of the ePNK (version 1.0.0). Readers
who are interested in getting an idea of what the ePNK is and who do not
want to work with the PNK right away can skip this chapter.

5.1 Prerequisites

In order to install the ePNK, you need to have Java 1.6 (or higher) and
Eclipse 3.7 (Indigo) or Eclipse 4.2 (Juno) installed on your computer. In this
version of the manual, we discuss the installation of the ePNK version 1.0.0
only. For installing other versions of the ePNK or for installing it on other
versions of Eclipse, you might find information on the ePNK installation
page1.

For the installation of Java, please refer to http://www.java.com/.

If you are new to Eclipse, it is recommended that you install the Eclipse
Classic version. Download this Eclipse version for your operating system
from http://www.eclipse.org/downloads/ and extract the downloaded
file to some directory; after the extraction, you will find a folder named
“eclipse” in this directory, and in this folder, you will find an executable file
also called “eclipse” (e. g. “eclipse.exe” on the Windows platform). Execut-
ing this file will start Eclipse.

If you are new to Eclipse, you can get a quick overview of the Eclipse
Integrated Development Environment (IDE) at http://www.vogella.de/

articles/Eclipse/article.html. Once you have installed and started
Eclipse, you will find much more information on Eclipse in the “Workbench

1http://www2.imm.dtu.dk/~ekki/projects/ePNK/install-details.html

231



232 CHAPTER 5. INSTALLATION

User Guide” in the Eclipse help: You can open it via the “Help” menu in
the Eclipse toolbar under “Help Contents”.

5.2 Installing the ePNK in Eclipse

Once you have installed Eclipse, you can install the ePNK from the Eclipse
workbench. To this end, the ePNK is made available via an Eclipse update
site: http://www2.imm.dtu.dk/~ekki/projects/ePNK/indigo/update/

In order to install the ePNK from there to your Eclipse installation,
you should proceed as follows (after you have started it and selected a
workspace):

1. In the Eclipse toolbar, select “Help” → “Install New Software...”,
which will open an install dialog.

2. In the install dialog, press the “Add...” button to add a new update
site. In the “Add Site” dialog, enter some name (e. g. “ePNK Update
Site”) and the URL

http://www2.imm.dtu.dk/~ekki/projects/ePNK/indigo/update/

as location, and then press okay.

3. Now, select the newly created ePNK update site in the still open install
dialog. After some time, some ePNK items should pop up in the dialog.
From there, you can select the features of the ePNK you want.

For working with this manual, you should at least select the following
features from the category “ePNK Features”:

• ePNK Basic Extensions 1.0.0

• ePNK Core 1.0.0

• ePNK HLPNGs 1.0.0

• ePNK Tutorial 1.0.0

If you intend to import high-level nets from other tools than the ePNK,
it is recommended that you also install the feature

• ePNK: HLPNG Label Serialisation (experimental) 0.2.0

from category “ePNK Experimental Projects”.

If you want to simulate high-level nets, you should also select the
feature



5.2. INSTALLING THE EPNK IN ECLIPSE 233

• ePNK: HLPNG Simulator 0.1.1

from category ”HLPNG Simulator”.

You will not need the features from the “ECNO Projects” category,
which are a project in their own right (see [16] for more information
on the ECNO project). Since they are based on the ePNK, they are
deployed from the same update site.

4. After you have selected the features you want, make sure that the box
“Contact all update sites during install to find required software” is
checked; this will guarantee that all additional features from Eclipse
that the ePNK requires will be automatically installed together with
the ePNK features (EMF, GMF, Xtext, etc.).

Then press press okay.

5. Follow through the installation process (don’t forget to accept the
license agreement).

Note: If you get an error of the kind

Cannot complete the install because one

or more required items could not be found.

...

you probably forgot to check the box “Contact all update
sites during install to find required software” or have selected
a wrong combination of features. In that case, go back and
select the right combination as explained above.

6. Then, the selected features of the ePNK and all other required features
will be installed; it is a good idea to restart Eclipse after that (Eclipse
will ask you to do that anyway).

In case you intend to develop new functions and, in particular, new Petri
net types for the ePNK, you might want to install the tools necessary for
that purpose already now – while at it. You need to install the “EMF
Modeling Framework SDK” and the “Ecore Tools SDK” from the standard
Eclipse update site. The details are described in Sect. 3.1.2.



234 CHAPTER 5. INSTALLATION



Chapter 6

Experience and outlook

With version 1.0.0, the ePNK has reached a mature state and it should
be useful for end users who want to use its graphical editor for creating
PNML files and for using the simple function of the ePNK as they are. The
ePNK should be even more useful for developers who want to implement
new Petri net types and new functionality. In particular, it should be an
ideal platform for scientists who quickly want to test new functions and still
want a graphical editor that is nicely embedded to an IDE. Actually, we
use the ePNK ourselves for implementing the tool support for the Event
Coordination Notation (ECNO) [16].

Some of the plans for future extensions of the ePNK are discussed in
Sect. 6.2. Before discussing the future plans, we briefly discuss the past in
Sect. 6.1: the experiences with developing the ePNK in a model based way
and in particular with using EMF, GMF, and some related technologies

6.1 Experiences with MBSE

There are many Petri net tools out there already. Therefore, implementing
yet another one needed some additional motivation. When developing the
ePNK, this additional motivation was to gain some more experience with the
use of EMF and model-based development. To this end, we kept a detailed
log of how much time was spent on which parts of the development (up to
the first major release of version 0.9.1, the log accounts for minutes).

Eventually, we might break down the time and experiences made in more
detail. Here we give an overview of the major steps and the rough time spent
on the major parts of the ePNK only:

40h The (roughly) first 40 hours were spent on making a first model of

235



236 CHAPTER 6. EXPERIENCE AND OUTLOOK

the PNML core model and implementing the extensions necessary for
plugging in new Petri net types and for hooking into the serialisa-
tion mechanisms of Eclipse and EMF, so that it could be configured
– and on using this new configuration mechanism for implementing
the PNML syntax for serialisation instead of standard XMI. Of these
40 hours, about 10 hours were spent on debugging Eclipse’s and EMF’s
serialisation mechanism in order to understand this serialisation mech-
anism, which unfortunately is not very well documented.

After these first 40 hours, a basic version of the ePNK was working –
not supporting HLPNGs yet and without any graphical editor.

20h The next 20 hours were spent on implementing the framework for tool
specific extensions – and ignoring unknown tool specifc extensions, as
well as on implementing the validation mechanisms and most of the
constraints for the PNML core model1.

50h About 50 hours were spent on implementing HLPNGs, which includes
making the models for most of the sorts and operators of HLPNGs,
implementing a type system for checking correct typing, and for val-
idating correctness, and implementing parsing and linking functions.
These 50 hours include the time spent on adjusting the mechanisms
of the ePNK so that it could deal with parsing and linking structured
Petri net types. The parser itself is based on Xtext.

Implementing a basic version of HLPNGs with only a few but repre-
sentative sorts and operators took roughly 20 hours.

80h Implementing the GMF editor in a generic way and properly inte-
grating it with the EMF tree editor, and the parsing mechanisms for
structured labels took about 80 hours. This time includes a lot of
time investigating and experimenting with different options in achiev-
ing this.

30h The remaining 30 hours were spent on implementing some functions as
examples (used for the tutorials), on adding some of the last remaining
sorts to the definition of HLPNGs, as well as on cleaning up the code
and fixing some errors.

1This concerns not only the constraints that are explicitly formulated as OCL con-
straints in the models of ISO/IEC 15909-2; this concerns all the constraints that are
stated somewhere in the text of the standard, such as forbidden cycles between reference
nodes, etc.



6.2. FUTURE PLANS 237

Altogether, it took about 5 1
2 weeks working time (spent scattered over

about 7 month) to implement version 0.9.1 of the ePNK, which was the first
stable version of the ePNK. The core part of the ePNK was implemented in
60 hours. About the same time went into implementing HLPNGs. The im-
plementation of the graphical editor took a major part of the time (80 hours).
The reason for that was that GMF itself was not made for building generic
editors, and we had to find ways of bringing genericity into GMF – and we
had to work around several GMF problems and quirks. Still, using GMF
might have saved us a significant amount of time considering the overall
functionality that we get for free by a GMF generated graphical editor –
and its smooth integration with the Eclipse IDE.

The overall experience was that the parts of the ePNK that concern EMF
only worked very smoothly and the use of EMF significantly sped up the
development process – for a developer who has some experience with EMF
and some of its more advanced concepts already. Working with GMF was
more tedious and required much more experience and much more endurance
– using the debugger digging in the inner workings of GMF in order to find
out how some things work. This is partly due to the fact that GMF was
lacking the concepts for generic editors; but, genericity aside, GMF requires
much more experience than EMF in order to use it with benefit.

6.2 Future plans

The ePNK can be and is used for different kinds of applications – and it
makes it easy to quickly implement new Petri net types and new functions
and application. For making these functions more usable and also for easing
the fast creation of Petri nets with the ePNK editors, some extension of the
ePNK would be useful.

In this section, we give an overview of some extensions that are planned
for the ePNK in the future. These extensions concern ePNK’s flexibility
and ease of use as well as some additional extension mechanisms. The
order indicates some priorities, and might be roughly the order in which the
features are implemented – but, since nobody is paid for the work, it needs
to be seen how things turn out:

• Right now, the ePNK does not “know” the functions and applications
that are available for the ePNK. These are plugged in to the Eclipse
platform as actions or commands – and initiated by the Eclipse plat-
form. It would be nice if there was an ePNK view that would, for a



238 CHAPTER 6. EXPERIENCE AND OUTLOOK

selected Petri net, show all the available functions and applications,
which could be started from there by a single mouse click.

To this end, an explicit extension point to plug in functions and ap-
plications for the ePNK needs to be defined. This extension point
could also provide some means to give some meta information about
the function or application, saying to which net types it applies and
on its characteristics.

Such a plug-in mechanism along with a view for showing the functions
and applications available for the selected Petri net will be imple-
mented in a future version of the ePNK.

• Right now, the annotations are shown by marking the elements with
a red overlay. Changing this is possible but quite complicated.

A future version of the ePNK will support a mechanism for applica-
tions to provide a presentation descriptor, which defines how annota-
tions should be shown (with some reasonable default implementation).
And this descriptor should also be able to define how the end user can
interact with the annotated elements and define actions that are ini-
tiated by that.

• Right now, adding all the needed labels to a Petri net element of a
more complex net types such as HLPNGs with the ePNK editor is
quite tedious: First, each label must be created, then the label must
be connected to the element, and its type must be selected.

In a future version of the ePNK, an action will be installed that, e. g.
on a double click on a node, will add all the labels required by the
Petri net type for that node.

• Right now only the ePNK tree editor will show the correct “dirty flag”
after a change of the model. And the PNML document can be saved
only from this tree editor.

In a future version of the ePNK, the “dirty flag” will be updated in
all editors that are open on that document and saving (in particular
with CTRL-S) will work from any of these editors.

• Right now, the mapping of the model elements of the ePNK and of
Petri net types to their XML representation must be programmed – if
it needs to be changed. This means programming large tables, which
is boring, tedious and error prone.



6.2. FUTURE PLANS 239

In a future version of the ePNK, we might define an extension point
for such XML mapping that directly takes a table instead of “pro-
gramming the table”.

• Right now, the ePNK comes with its own specific and fixedly imple-
mented concrete syntax for the labels of HLPNGs. Since this syntax is
not mandated by ISO/IEC 15909-2, different tools might use different
concrete syntax for these labels.

It would be nice, if different versions of such concrete syntax for labels
of HLPNGs could be plugged in to the ePNK, from which the user
could choose.

• Up to now, the ePNK supports basic and structured PNML [30] only.
Modular PNML is not supported by the ePNK yet – nor is it part of
ISO/IEC 15909-2:2011.

In the long term, the ePNK should support also modular PNML
(which was proposed in [30] and some aspects worked out in more
detail in [14] already). Implementing the EMF models would actually
not be a big issue – implementing the graphical editor of the ePNK so
that it works for both PNML as of ISO/IEC 15909-2:2011 as well as
for modular PNML is the actual challenge here – and the reason for
not having started on this endeavor yet.



240 CHAPTER 6. EXPERIENCE AND OUTLOOK



Bibliography

[1] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer,
L. Petrucci, R. Post, C. Stehno, and M. Weber. The Petri Net Markup
Language: Concepts, technology, and tools. In W. van der Aalst and
E. Best, editors, Application and Theory of Petri Nets 2003, 24th Inter-
national Conference, volume 2679 of LNCS, pages 483–505. Springer,
June 2003.

[2] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J. Grose.
Eclipse Modeling Framework. The Eclipse Series. Addison-Wesley, 2nd
edition, Apr. 2006.

[3] E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press,
1999.

[4] E. Clayberg and D. Rubel. Eclipse Plug-ins. The Eclipse Series.
Addison-Wesley, 3rd edition edition, 2008.

[5] R. C. Gronback. Eclipse Modeling Project: A Domain-Specific Lan-
guage (DSL) Toolkit. The Eclipse Series. Addison-Wesley Professional,
Mar. 2009.

[6] L. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Treves. A primer
on the Petri Net Markup Language and ISO/IEC 15909-2. In K. Jensen,
editor, 10th Workshop on Coloured Petri Nets (CPN 09), pages 101–
120, Oct. 2009.

[7] L.-M. Hillah, F. Kordon, L. Petrucci, and N. Trèves. PNML Frame-
work: An extendable reference implementation of the Petri Net Markup
Language. In J. Lilius and W. Penczek, editors, Petri Nets, volume 6128
of Lecture Notes in Computer Science, pages 318–327. Springer, 2010.

241



242 BIBLIOGRAPHY

[8] ISO/IEC. Systems and software engineering – High-level Petri nets –
Part 2: Transfer format, International Standard ISO/IEC 15909-2:2011,
Feb. 2011.

[9] K. Jensen and L. M. Kristensen. Coloured Petri Nets – Modelling and
Validation of Concurrent Systems. Springer-Verlag, 2009.

[10] M. Jüngel, E. Kindler, and M. Weber. The Petri Net Markup Language.
Petri Net Newsletter, 59:24–29, Oct. 2000.

[11] M. Jüngel, E. Kindler, and M. Weber. Towards a generic interchange
format for Petri nets – position paper. In R. Bastide, J. Billington,
E. Kindler, F. Kordon, and K. H. Mortensen, editors, Meeting on XM-
L/SGML based Interchange Formats for Petri Nets, pages 1–5, June
2000.

[12] E. Kindler. Der Petrinetz-Kern: Ein Traum wird wahr. In H. Ehrig,
W. Reisig, and H. Weber, editors, Move-On-Workshop der DFG-
Forschergruppe Petrinetz-Technologie, pages 121–124. Technische Uni-
versiät Berlin, 1997.

[13] E. Kindler. The Petri Net Markup Language and ISO/IEC 15909-2:
Concepts, status, and future directions. In E. Schnieder, editor, Entwurf
komplexer Automatisierungssysteme, 9. Fachtagung, pages 35–55, May
2006. invited paper.

[14] E. Kindler. Modular PNML revisited: Some ideas for strict typing. In
Proc. AWPN 2007, Koblenz, Germany, pages 20–25, Sept. 2007.

[15] E. Kindler. Model-based software engineering and process-aware infor-
mation systems. In K. Jensen and W. van der Aalst, editors, Transac-
tions on Petri Nets and Other Models of Concurrency II: Special Issue
on Concurrency in Process-Aware Information Systems, volume 5460
of LNCS, pages 27–45. Springer-Verlag, 2009.

[16] E. Kindler. Modelling local and global behaviour: Petri nets and event
coordination. Transactions on Petri Nets and Other Models of Concur-
rency, 6:71–93, 2012.

[17] E. Kindler. Coordinating interactions: The Event Coordination Nota-
tion. Technical Report DTU Compute Technical Report 2014-05, DTU
Compute, Kgs. Lyngby, Denmark, May 2014.



BIBLIOGRAPHY 243

[18] E. Kindler and J. Desel. Der Traum von einem universellen Petrinetz-
Werkzeug — Der Petrinetz-Kern. In J. Desel, A. Oberweis, and
E. Kindler, editors, 3. Workshop Algorithmen und Werkzeuge für
Petrinetze, number 341 in Forschungsberichte. Institut AIFB, Univer-
sität Karlsruhe, Oct. 1996.

[19] E. Kindler and W. Reisig. Algebraic system nets for modelling dis-
tributed algorithms. Petri Net Newsletter, 51:16–31, Dec. 1996.

[20] E. Kindler, W. Reisig, H. Völzer, and R. Walter. Petri net based ver-
ification of distributed algorithms: An example. Formal Aspects of
Computing, 9:409–424, 1997.

[21] E. Kindler and M. Weber. The Petri Net Kernel – an infrastructure
for building Petri net tools. Software Tools for Technology Transfer,
3(4):486–497, July 2001.

[22] M. Laganeckas. A simulator for high-level Petri nets: Model-based de-
sign and implementation. Master’s thesis, IMM-M.Sc.-2012-101, DTU
Informatics, Technical University of Denmark, Sept. 2012.

[23] OMG. Meta Object Facility (MOF) specification, version 1.4.1. Tech-
nical Report formal/05-05-05, The Object Management Group, Inc.,
May 2005.

[24] W. Reisig. Elements of Distributed Algorithms — Modeling and Anal-
ysis with Petri Nets. Springer, 1998.

[25] W. Reisig, E. Kindler, T. Vesper, H. Völzer, and R. Walter. Distributed
algorithms for networks of agents. In W. Reisig and G. Rozenberg,
editors, Lectures on Petri Nets II: Applications, volume 1492 of LNCS,
pages 331–385. Springer, 1998.

[26] G. Rozenberg. Behaviour of elementary net systems. In W. Brauer,
W. Reisig, and G. Rozenberg, editors, Petri Nets: Central Models and
Their Properties, volume 254 of LNCS, pages 60–94. Springer-Verlag,
1987.

[27] P. H. Starke and H.-M. Hanisch. Analysis of signal/event nets. In
Emerging Technologies and Factory Automation (ETFA ’97), Proceed-
ings, 6th International Conference on, pages 253–257. IEEE, Sept. 1997.

[28] The Eclipse Foundation. The Eclipse platform. http://www.eclipse.org.



244 BIBLIOGRAPHY

[29] P. Thiagarajan. Elementary net systems. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Central Models and Their Proper-
ties, volume 254 of LNCS, pages 26–59. Springer-Verlag, 1987.

[30] M. Weber and E. Kindler. The Petri Net Markup Language. In
H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, editors, Petri Net
Technologies for Modeling Communication Based Systems, volume 2472
of LNCS, pages 124–144. Springer, 2003.

[31] M. Weber, R. Walter, H. Völzer, T. Vesper, W. Reisig, S. Peuker,
E. Kindler, J. Freiheit, and J. Desel. DAWN: Petrinetzmodelle zur
Verifikation Verteilter Algorithmen. Informatik-Bericht 88, Humboldt-
Universität zu Berlin, Dec. 1997.



Index

AbstractEPNKAction, see ePNK
AbstractEPNKJob, see ePNK
Action, see ePNK

AbstractEPNKAction

active application, 43
Add default labels, see ePNK
Annotation, see ePNK, 2
API, see ePNK
Application, see ePNK
Applications view, see ePNK
Arc, 2
Arc annotation (HLPNGs), 30
Arc decoration, see ePNK
Association element, see ePNK
Attribute, see ePNK, 2, 22–24, 52

bend point, 26
bundled association element,

see ePNK

Canvas, see Canvas
Child element, see Eclipse
Command framework, see Eclipse
Command handler, see Eclipse
Condition, 29
Constraint, 4
Constraints, see EMF, see ePNK
context independent element,

see ePNK
Convenience classes, see ePNK
Curved arc, 27

Declaration, 29

Decoration, see GMF

Development workbench, see Eclipse

Diagram information, see ePNK

Dialog, see Eclipse

Dot net, see ePNK

eAllContents(), see EMF

Echo algorithm, 51

eClass(), see EMF

Eclipse, 9–12

Action, 63

Child element, 15

Command framework, 88

Command handler, 63

Default editor, 11

Development workbench, 59–60

Dialog, 63

Editing domain, 88

Editor, 11

Extension, 69, 70

Extension point, 70

Feature, 156

IDE, 9–12, 58, 231

Installation, 231

ISelectionListener, 66

Job, 40, 63

Menu bar, 9

Outline view, 11, 12

Package explorer, 10

245



246 INDEX

Perspective, 9, 12
Plug-in Development

perspective, 59
Plug-ins view, 59
plugin.xml, 69
Problems view, 12, 17, 18
Progress indicator, 40
Progress view, 40
Properties view, 11, 12
Resouce, 14
Resource, 69, 88
Resource set, 69, 72, 88
Runtime workbench, 59–60
Selection listener, 66
Tool bar, 9
Update site, 156
View, 12, 63, 65–66
ViewPart, 66
Wizard, 63, 71
Workbench, 9, 10

eContainer(), see EMF
Ecore model, see EMF
Edit code, see EMF
Edit part, 89
Editing domain, see Eclipse
EMF, 63

AbstractModelConstraint,
125

API (generated from model),
86–87

batch constraint, 114
constraint provider, 114
Constraints, 112–115
Container, see EMF
Container class, 130
eAllContents(), 87
eClass(), 87
eContainer(), 87
Ecore model, 86
Edit code, 109

EObject, 87
eResource(), 88
Factory, 72, 87
Generator model, 109
getContents(), 69, 88
getContents, 72
getResource(), 69
getResourceSet(), 88
getter method, 69, 86
live constraint, 114
Model code, 109
Object class, 130
Package class, 128
Reference, 86
save(), 72
save(), 88
setter method, 69, 86
validate(), 125
Validation, 114

Empty (net type), 28
EmptyType, see ePNK
EObject, see EMF
ePNK

AbstractEPNKAction, 77, 93,
152

AbstractEPNKJob, 78, 93, 152
Action handler, 97
Add default labels (menu), 22
Annotation, 62, 94–96, 153,

154
API, 69, 72–76
Application, 6, 37–38, 41–44,

57, 63, 93–104, 105, 153,
154

Applications view, 37, 41–44
Arc decoration, 141
ArcFigure, 141
Association element, 133, 151
Attribute, 62, 115–117
Attribute, 115



INDEX 247

bundled association element,
135

canCreateObject(), 130
Canvas, 19
Clear image cache, 27
Constraints, 124–128, 151
context independent element,

135
Convenience classes, 92–93,

151
createAttributeObject(),

132
createObject(), 130
createToolInfo(), 148
Customizing graphics, 153
Data types, 150
Decorations, 153
Developer, 6
Diagram information, 151
Dot net, 28
EmptyType, 62
Factory, 130
Figures, 153
FlatAccess, 82, 92, 151
Function, 37–38, 63–86
getFlatAccess(), 92
getglobalLinks(), 123
getLinker(), 123
getRefFeature(), 123
getStructuralFeature(), 122
getStructuralFeature, 124
getSymbolDef(), 124
getSymbolUses(), 124
Graphical editor, 14, 19–27
graphical features, 25–27
GraphicalExtension, 143
HLPNG, 28, 154–155
ID, 63
ID, 123
id, 14, 18

IGraphicalExtension, 146
Image cache, 27
Installation, 232–233
Interaction description, 105
IPNMLFactory, 130
Java constraint, 124–128
Label, 62
Label, 108
Label proxy, 150
Linker, 123
Net annotation, 101–104
Net label, 24
NetFunctions, 93, 151
Object annotation, 101–104
Page label, 24, 138
Page label proxy, 150
parse(), 122
Petri net type, 91–92
Petri net type definition,

105–138
PetriNet, 108, 122
PetriNetType, 62, 106, 122
PetriNetTypeExtensions, 74
PNML core model, 61–63
PnmlcoremodelFactory, 72
PNTD, 151
PNTD extension point,

110–112
Presentation description, 104
Presentation handler, 96–97
PTNet, 28–29
PTNet, 105–115, 152
Reference place, 25
Reference transition, 25
registerExtended

PNMLMetaData(), 128
resolve(), 92
showLabelOnPage(), 138
standard feature, 137
structured label, 122–124



248 INDEX

structured Petri net type,
122–124, 150

StructuredLabel, 122

StructuredPetriNetType, 123

Symbol, 119

Symbol definition, 122

Symbol use, 122

SymbolDef, 121, 123

SymbolUse, 123

SymbolUse, 121

SymbolUseMapping, 123

Symmetric net, 28

text, 108

Tool specific extension, 151

Tool specific information,
146–149

ToolInfo, 147

ToolspecificExtension

Factory, 148

Tree editor, 13, 14–19

Type registry, 74

Unparsed, 55

update(), 141, 143

Update site, 232

User, 6, 9

Validation, 17–19, 22, 151

XML mapping, 128–137

eResource(), see EMF

Extension, see Eclipse

Extension point, see Eclipse

Factory, see EMF, see ePNK

Feature, see Eclipse

Figure class, see GMF

FlatAccess, see ePNK

Flattening (of a net), 25

Function, see ePNK

Generator model, see EMF

genmodel, see EMF: Generator
model

getContents(), see EMF

getglobalLinks(), see ePNK

getLinker(), see ePNK

getRefFeature(), see ePNK

getResource(), see EMF

getResourceSet(), see EMF

getStructuralFeature(),
see ePNK

getter method, see EMF

GMF

Connection, 141

Decoration, 141

Figure class, 139

fillShape(), 143

outlineShape(), 143

setForeGroundColor(), 141

setLineStyle(), 141

Graphical features, see ePNK

High-level net schema, 44

High-level Petri net graph,
see HLPNG

High-level Petri net schema,
see HLPNGS

High-level Petri nets, 28

HLPNG, see ePNK, 9, 14, 29–37

HLPNG Label Serialisation, 30, 37

HLPNGS, 48

ID, see ePNK

id, see ePNK

IDE, see Eclipse

Image, 27

Image cache, see ePNK

Integrated Development
Environment, see IDE

intermediate point, 26

ISelectionListener, see Eclipse



INDEX 249

Job, see Eclipse, see ePNK
AbstractEPNKJob, 76–86

Label, see ePNK, 2, 19, 20–22, 62
Simple, 21
Structured, 22

Label, see ePNK
Label proxy, see ePNK
Linker, see ePNK

Marking, 29
Menu bar, see Eclipse
Minimal distance algorithm, 48
Model checker, 38–40, 153
Model code, see EMF

Name, see Petri net
Net annotation, see ePNK
Net label, see ePNK, 109, 122
NetFunctions, see ePNK
Network algorithm, 48
Network editor, 50
Network model, 50
Node, 2

Object (of a Petri net), 2
Object annotation, see ePNK
OCL constraint, 4
Operator, 29
Outline view, see Eclipse

P/T-System, 105–115
P/T-system, 4
P/T-Systems, 28
Package class, see EMF
Package explorer, see Eclipse
Page, 2, 24–25
Page label, see ePNK, 19
Page label proxy, see ePNK
parse(), see ePNK
Perspective, see Eclipse

Petri net

Name, 3

Petri Net Markup Language,
see PNML

Petri net type, see ePNK, 2

Petri net type definition, see ePNK,
see PNTD

PetriNet, see ePNK

PetriNetType, see ePNK

Place, 2

Place/Transition-System,
see P/T-System

Plug-in Development perspective,
see Eclipse

Plug-ins view, see Eclipse

PNML, 1, 2–6

XML format, 5–6

PNML Core Model, 150

PNML core model, see ePNK, 2–4,
69, 90–91

PNML Document, 13

PnmlcoremodelFactory, see ePNK

PNTD, 1, 4, 27

PNX Document, 13

Polyline arc, 27

Problems view, see Eclipse

Properties view, see Eclipse

PTNet, see ePNK

PtnetFactory, see ePNK

Reference, see EMF

Reference place, see ePNK, 2

Reference transition, see ePNK, 2

Resource, see Eclipse

Resource set, see Eclipse

Runtime workbench, see Eclipse

save(), see EMF

SE-Nets, 115–119

SE-nets, 22, 37, 154



250 INDEX

setter method, see EMF
Sieve of Eratosthenes, 44
Signal event nets, see SE-nets
Signal/Event-systems, 37
Simulation view, 44
Simulator, 44–51

Back button, 46
for network algorithms, 48
Forward button, 46
Pause button, 46
Play button, 46
Simulation speed, 46
Stop button, 46

Simulator (P/T-nets), 41
Smoothness (of an arc), 27
Sort, 29
standard feature, see ePNK
structured label, see ePNK
structured Petri net type, see ePNK
StructuredLabel, see ePNK
StructuredPetriNetType,

see ePNK
Sub-page, 24
Symbol, see ePNK
Symbol definition, see ePNK
Symbol use, see ePNK
SymbolDef, see ePNK
SymbolUse, see ePNK
Symmetric net, see ePNK

Token positions, 152
Tool specific information, 1,

see ePNK
Toolbar, see Eclipse
ToolInfo, see ePNK
Transition, 2
Type, 29

Update site, see Eclipse, see ePNK

Validation, see EMF, see ePNK

Varialble, 29
View, see Eclipse
ViewPart, see Eclipse

Wizard, see Eclipse
Workbench, see Eclipse

XML mapping, see ePNK


