
The ePNK:
A model bases development project

Ekkart Kindler

Ekkart Kindler

2MBSE f/w Petri Nets:ePNK a model-based software project

Motivation

Ekkart Kindler

3MBSE f/w Petri Nets:ePNK a model-based software project

Motivation

:Place

:Transition

:Arc

:Transition

:Place

:Arc

:Arc

source

target source

target

targetsource

:Arc
sourcetarget

:Petrinet

:Token

PlaceTransition

1 source

1 target
Arc

*

PetriNet

Token
*

Node

Object

concrete syntax abstract syntax

Place

Transition

Arc

Token

generate an
editor

Ekkart Kindler

4MBSE f/w Petri Nets:ePNK a model-based software project

Motivation

Ekkart Kindler

5MBSE f/w Petri Nets:ePNK a model-based software project

Real world issues

 Many more features:
Pages, reference nodes, ...

 Need to define specific XML syntax (PNML)

 Different versions of Petri nets
(each would need a separate GMF-editor)

 Definition of new versions of Petri net types
(without touching the existing tool,
without programming at all?)

Ekkart Kindler

6MBSE f/w Petri Nets:ePNK a model-based software project

Outline

 Motivation
 PNML
 Overview
 Core model
 Type model
 Mapping to XML

 Problems and issues
 Concepts for solutions
 Example: YAWL nets and simulator

Ekkart Kindler

7MBSE f/w Petri Nets:ePNK a model-based software project

PNML in a nutshell

 The Petri Net Markup Language (PNML) is an XML-based
transfer format for “all kinds” of Petri nets.

 PNML is an International Standard: ISO/IEC-15909-2
Part 2: focus on high-level nets (under ballot – again)
Part 3: different extensions

 modularity
 type and feature definitions
 particular versions of Petri nets
 …

Ekkart Kindler

8MBSE f/w Petri Nets:ePNK a model-based software project

But ...

Ekkart Kindler

9MBSE f/w Petri Nets:ePNK a model-based software project

PNML and XML

 The Petri Net Markup Language (PNML) is an XML-based
transfer format for “all kinds” of Petri nets.

 For exchanging, PNML between different tools, the XML
syntax is important; but that’s a technical issue.

 The interesting stuff are the concepts of PNML.

Ekkart Kindler

10MBSE f/w Petri Nets:ePNK a model-based software project

Challenges

many versions and variants of Petri nets

 with many common features,

 but also with many variations,

 some fundamental differences,

 and many different combinations of the same or
similar features

Ekkart Kindler

11MBSE f/w Petri Nets:ePNK a model-based software project

Objective

 PNML should enable the exchange of all
kinds of Petri nets, and, ultimately,

 alleviate exchanging between Petri net tools
that support different versions of Petri nets
without loosing too much information.

Ekkart Kindler

12MBSE f/w Petri Nets:ePNK a model-based software project

A first example

<place id="p1"/>
<arc id="a1" source="p1" target="t1"/>
<transition id="t1"/>
<arc id="a2" source="t1" target="p2"/>
<place id="p2"/>

Ekkart Kindler

13MBSE f/w Petri Nets:ePNK a model-based software project

A first example

<pnml xmlns="http://www.pnml.org/...">
<net id="n1" type="...">
...
<place id="p1"/>
<arc id="a1" source="p1" target="t1"/>
<transition id="t1"/>
<arc id="a2" source="t1" target="p2"/>
<place id="p2"/>
...

</net>
</pnml>

Ekkart Kindler

14MBSE f/w Petri Nets:ePNK a model-based software project

A first example

...
<place id="p1">
<name>
<text>i</text>

</name>
<initialMarking>
<text>1</text>

</initialMarking>
</place>

...

i action o
1

Label

2

Ekkart Kindler

15MBSE f/w Petri Nets:ePNK a model-based software project

Basic Idea

„All kinds“ of Petri nets can be represented by
 places
 transitions, and
 arcs

along with some
 labels

PNML Core Model

Petri Net Type
Definition

«merge»

Ekkart Kindler

16MBSE f/w Petri Nets:ePNK a model-based software project

Outline

 Motivation
 PNML
 Overview
 Core model
 Type model
 Mapping to XML

 Problems and issues
 Concepts for solutions
 Example: YAWL nets and simulator

Ekkart Kindler

17MBSE f/w Petri Nets:ePNK a model-based software project

Core Model (overview)

TransitionPlace

source

target
Node Arc

Label
*

*

i action o

Object

1
5

PNML Core Model

PetriNet

label

Ekkart Kindler

18MBSE f/w Petri Nets:ePNK a model-based software project

Core Model (overview)

TransitionPlace

source

target
Node Arc

Object Label
*

*

PetriNet

label

Ekkart Kindler

19MBSE f/w Petri Nets:ePNK a model-based software project

Core Model (overview)

TransitionPlace

source

target
Node Arc Annotation Attribute

LabelObject
*

**

i o
2 11

PetriNet

label

Ekkart Kindler

20MBSE f/w Petri Nets:ePNK a model-based software project

Name

Core Model (overview)

TransitionPlace

source

target
Node Arc Annotation Attribute

LabelObject
*

**

name

{redefines label}

label

PetriNet

Ekkart Kindler

21MBSE f/w Petri Nets:ePNK a model-based software project

PNML Core Model

pages and
reference
nodes

graphical
information

Tool specific
information

Ekkart Kindler

22MBSE f/w Petri Nets:ePNK a model-based software project

Tool specific information
<initialMarking>
<text>3</text>
<toolspecific tool="org.pnml.tool"

version="1.0">
<tokengraphics>
<tokenposition x="-2" y="-2" />
<tokenposition x="2" y="0" />
<tokenposition x="-2" y="2" />

</tokengraphics>
</toolspecific>

</initialMarking>

Ekkart Kindler

23MBSE f/w Petri Nets:ePNK a model-based software project

Outline

 Motivation
 PNML
 Overview
 Core model
 Type model
 Mapping to XML

 Problems and issues
 Concepts for solutions
 Example: YAWL nets and simulator

Ekkart Kindler

24MBSE f/w Petri Nets:ePNK a model-based software project

Type Definition: PT-Net

initialMarking

Arc

PTMarkingPlace

XML_Schema::
NonNegativeInteger

XML_Schema::
PositiveInteger

inscription

text text

{redefines label}

{redefines label}

3
2 Annotation

PTInscription

Petri Net Type
Definition

Ekkart Kindler

25MBSE f/w Petri Nets:ePNK a model-based software project

Type Definition: PT-Net

initialMarking

Arc

Place

XML_Schema::
NonNegativeInteger

XML_Schema::
PositiveInteger

inscription

text text

{redefines label}

{redefines label}

context Arc inv:
(self.source.isKindOf(Place) and

self.target.isKindOf(Transition)) or
(self.source.isKindOf(Transition) and

self.target.isKindOf(Place))

Annotation

PTInscription

PTMarking

Ekkart Kindler

26MBSE f/w Petri Nets:ePNK a model-based software project

Type Definition: HLPNG (overview)

Ekkart Kindler

27MBSE f/w Petri Nets:ePNK a model-based software project

Outline

 Motivation
 PNML
 Overview
 Core model
 Type model
 Mapping to XML

 Problems and issues
 Concepts for solutions
 Experience and statistics

Ekkart Kindler

28MBSE f/w Petri Nets:ePNK a model-based software project

Core Model in XML

<pnml xmlns="http:...">
<net id="n1" type="...">
<place id="p1"/>
<arc id="a1" source="p1"

target="t1"/>
<transition id="t1"/>
<arc id="a2" source="t1"

target="p2"/>
<place id="p2"/>
</net>
</pnml>

TransitionPlace

source

target
Node Arc

Object
*

PetriNet

Ekkart Kindler

29MBSE f/w Petri Nets:ePNK a model-based software project

XML::
PCDATA

text

Labels in XML

...
<place id="p1">
<name>
<text>i</text>

</name>
<initialMarking>
<text>1</text>

</initialMarking>
</place>

...

Name
name

XML_Schema::
NonNegativeInteger

initialMarking

text

PTMarking

PNML Core Model

PT-Net

Node

Place

Ekkart Kindler

30MBSE f/w Petri Nets:ePNK a model-based software project

In general
 How can this be defined in general?

 Core model:
Just implement it

 Petri net type:
Just implement it
 code it for every new type!
 interface with rest?

Ekkart Kindler

31MBSE f/w Petri Nets:ePNK a model-based software project

Outline

 Motivation
 PNML
 Overview
 Core model
 Type model
 Mapping to XML

 Problems and issues
 Concepts for solutions
 Example: YAWL nets and simulator

Ekkart Kindler

32MBSE f/w Petri Nets:ePNK a model-based software project

Idea: Extended Metadata

whatever
Place blubs

A B

<place ...>
<bla type="...ptnets.A">

<text>... </text>
</bla>

</place>

kind = “element”
name =“bla”
typeEnc = “attribute”

Ekkart Kindler

33MBSE f/w Petri Nets:ePNK a model-based software project

Problems
 Mapping from concepts (model) to XML (and vice versa)

 How to plug in net type models and their XML mapping
 Implement a complex type (>= 80 classes) and a complex

concrete syntax in a simple way – and complex conditions

 How to plug in tool-specific features and use standard XMI
mapping along with PNML-serialization

 How to deal with unknown tool-specific extensions
(ignore them without deleting them)

 One graphical editor for all (also future) Petri net types
(generic graphical editor)

 using Model-based Software Engineering technologies
(reusing as much as possible from EMF, GMF, Xtext,
Validation)

Ekkart Kindler

34MBSE f/w Petri Nets:ePNK a model-based software project

Outline

 Motivation
 PNML
 Overview
 Core model
 Type model
 Mapping to XML

 Problems and issues
 Concepts for solutions
 Example: YAWL nets and simulator

Ekkart Kindler

35MBSE f/w Petri Nets:ePNK a model-based software project

Solutions
 PNML-Mapping:

 extended mapping that is flexible enough for all our needs
(and some more)

 hooked into the existing XMI-serialization
(when there is no mapping defined in the ePNK, XMI is used
as default, XMI deals with cross-references even when no id’s exist)

 Net-types plug-in:
 A EMF-model plus a factory for producing all the extended elements
 PNML-Mapping for new elements (if necessary)
 Separate constraints for syntactical constraints (batch and live)

 For structured net types: Interface for parsing and linking
(in concrete type used Xtext worked surprisingly smooth for parsing
and surprisingly bad for serialization)

Ekkart Kindler

36MBSE f/w Petri Nets:ePNK a model-based software project

Solutions
 Tool-specific extensions:

 Plug-in for tool-specific extensions
 “magic” AnyType hooked into XMI-Mapping/PNML-Mapping

(keeps XML structure which you do not care for and writes it again)

 Graphical editor:
 Integrated EMF/GMF-Editor (worked surprisingly simple; but many

nasty little but time-consuming issues)
 ProxyLabels that, below the surface, can be any Petri Net Type

specific label (using a reflective API to get the right ones)

 Explicit generation of GMF diagram from PNML graphical information
 Update of PNML graphical information via listeners to GMF-diagram

 all this required many manual changes in the GMF-generated editor

Ekkart Kindler

37MBSE f/w Petri Nets:ePNK a model-based software project

Outcome

Ekkart Kindler

38MBSE f/w Petri Nets:ePNK a model-based software project

ePNK: Features

 Generic graphical editor for all kinds of Petri nets
 Supporting PNML, PT-Nets, HLPNGs, SN

(some graphical information still ignored)
 Problem reporting mechanism
 Some basic functionality (mostly for demo purposes)
 simple simulator for PT-Nets
 simple codegenerator for PT-Nets
 simple model checker for PT-Nets
 serialiser for HLPNG labels

(in case PNML nets come without textual labels)

Ekkart Kindler

39MBSE f/w Petri Nets:ePNK a model-based software project

ePNK: Features

 Extension mechanisms
 defining new net types (basically, making a model)

(with or without dedicated mapping to XML for new
concepts)

 constraints for net types (OCL or programmed constraints)
 graphical appearance of nets and their elements

(depending on attributes: inhibitor arcs, read arcs, tokens)
 tool specific information (basically, making a model)

 adding new functions (mostly the eclipse plugin
mechanism)

 define ePNK applications, with user interactions

Ekkart Kindler

40MBSE f/w Petri Nets:ePNK a model-based software project

The ePNK

Ekkart Kindler

41MBSE f/w Petri Nets:ePNK a model-based software project

Outline

 Motivation
 PNML
 Overview
 Core model
 Type model
 Mapping to XML

 Problems and issues
 Concepts for solutions
 Example: YAWL nets and simulator

The ePNK:
An Example: YAWL nets and Simulator

Ekkart Kindler

Ekkart KindlerePNK

 Platform for developing Petri net tools based on the
PNML transfer format

 With PNML (core model) at its heart
 Pluggable architecture:
 any new type of Petri net (PNTD)
 new of application with visual feedback and user

interaction

43MBSE f/w Petri Nets:ePNK a model-based software project

Ekkart KindlerePNK: Core Paradigm

 Core paradigm: Model-based Software Enigneering

44MBSE f/w Petri Nets:ePNK a model-based software project

Ekkart KindlerExample: YAWL nets

45MBSE f/w Petri Nets:ePNK a model-based software project

Ekkart KindlerExample: YAWL simulator

46MBSE f/w Petri Nets:ePNK a model-based software project

Ekkart KindlerYAWL net: What to do

Step 1:
 Define the Petri net type by a class diagram

(Ecore diagram)

47MBSE f/w Petri Nets:ePNK a model-based software project

Ekkart KindlerYAWL net: What to do

Step 2:
 Define additional constraints

48MBSE f/w Petri Nets:ePNK a model-based software project

(self.source.oclIsKindOf(pnmlcoremodel::PlaceNode) and
self.target.oclIsKindOf(pnmlcoremodel::TransitionNode))
or

(self.source.oclIsKindOf(pnmlcoremodel::TransitionNode) and
self.target.oclIsKindOf(pnmlcoremodel::PlaceNode) and
self.type->size() = 0)

Ekkart KindlerYAWL net: What to do

Step 3:
 Define dedicated graphics

49MBSE f/w Petri Nets:ePNK a model-based software project

public void update() {
boolean oldIsReadArc = isResetArc;
isResetArc = YAWLFunctions.isResetArc(arc);
if (isResetArc != oldIsReadArc) {

setGraphics();
} }

private void setGraphics() {
if (isResetArc) {

this.setTargetDecoration(
new DoubleArrowHeadDecoration());

this.setLineStyle(SWT.LINE_DASH);
} else {

this.setTargetDecoration(new ArrowHeadDecoration());
this.setLineStyle(SWT.LINE_SOLID);

} }

Ekkart KindlerYou get

 Graphical editor for YAWL (with dedicated graphic
representation of special YAWL features)

 A PNML compatible file format for YAWL along with
a save and load operation for that format

 Consistency check for all constraints (live or batch)

50MBSE f/w Petri Nets:ePNK a model-based software project

Ekkart KindlerExample: YAWL simulator

51MBSE f/w Petri Nets:ePNK a model-based software project

Ekkart KindlerSimulator: What to do

Step 1:
 Define annotations you need

52MBSE f/w Petri Nets:ePNK a model-based software project

Ekkart KindlerSimulator: What to do

Step 2:
 Define how annotations should look:

Presentation handler(s)

53MBSE f/w Petri Nets:ePNK a model-based software project

if (annotation instanceof SelectArc) {
SelectArc selectArc = (SelectArc) annotation;
if (editPart instanceof ConnectionNodeEditPart) {
ConnectionNodeEditPart connectionEditPart =
(ConnectionNodeEditPart) editPart;

Object modelObject =
connectionEditPart.resolveSemanticElement();

if (modelObject instanceof Arc) {
PolylineOverlay overlay = new PolylineOverlay(connectionEditPart);
if (!selectArc.isSelected()) {
overlay.setForegroundColor(ColorConstants.lightGray);
overlay.setBackgroundColor(ColorConstants.lightGray);

} else {
overlay.setForegroundColor(ColorConstants.blue);
overlay.setBackgroundColor(ColorConstants.blue);

}
return overlay;

Ekkart KindlerExample: YAWL simulator

Step 3:
 Define what should happen when user clicks /

double clicks on an annotation: Action handler(s)

54MBSE f/w Petri Nets:ePNK a model-based software project

Ekkart KindlerYou get:

 Graphical overlays on top of the graphical editor

 The user can interact with the overlays
(selecting arcs, firing transitions)

 The user can save the annotations and load them
again (in the YAWL example, a firing trace)

55MBSE f/w Petri Nets:ePNK a model-based software project

Ekkart KindlerExample: YAWL simulator

56MBSE f/w Petri Nets:ePNK a model-based software project

Ekkart KindlerThe ePNK: Material

 More information in private demo
 ePNK: Home page

http://www2.compute.dtu.dk/~ekki/projects/ePNK
 Ekkart Kindler: The ePNK: A generic PNML tool -

Users' and Developers' Guide for Version 1.0.0.
IMM-Technical Report-2012-14, DTU Informatics,
Kgs. Lyngby, Denmark, December 2012 (available
online via ePNK home page).

 Eclipse update site (Indigo – Photon – 4.11):
ePNK 1.2
http://www2.compute.dtu.dk/~ekki/projects/ePNK/
1.2/update/

57MBSE f/w Petri Nets:ePNK a model-based software project

A draft for version 1.2 is
available at this
course’s home page
(updated half way
through)

Ekkart Kindler

58MBSE f/w Petri Nets:ePNK a model-based software project

ePNK in MOF

M3 Ecore (~ EMOF)

M2
ePNK and
YAWL
meta models

M1 YAWL model

M0
YAWL case
(instance of a simulation –
execution trace)

= conforms to / is instance of

Annotation
model (runtime
simulator)

+

ownedAttribute

TypedElement

Property
isReadOnly: Boolean = false
default: String [0..1]
isComposite: Boolean = false
isDerived: Boolean = false
isID: Boolean

Class
isAbstract: Boolean = false

Type

{ordered} 0..1

MultiplicityElement
isOrdered: Boolean = false
isUnique: Boolean = true
lower: Integer = 1
upper: UnlimitedNatural = 1

class

0..1 0..*

0..*

superClass

Ekkart Kindler

Appendix

59MBSE f/w Petri Nets:ePNK a model-based software project

Ekkart Kindler

60MBSE f/w Petri Nets:ePNK a model-based software project

Experience
 Agile development approach (no major design in advance)

 In principle possible. But, you
 need to know pitfalls of technology (unexpected implementations) well
 manual changes must be made with good understanding of technology in

order to achieve maintainability
 this is more tricky for GMF than for EMF (but possible)

 Documentation missing
 Many cool and important features of EMF/GMF are not documented

 Guess what could be supported
 Understand philosophy behind
 Debug to find out details

 EMF/GMF is solid technology
 if you know how to use and understand the philosophy behind
 some parts are made for a very specific purpose and are not

as general as suggested (ExtendedMetaData) ,

Ekkart Kindler

61MBSE f/w Petri Nets:ePNK a model-based software project

Experience
 Time effort: Altogether (up to version 0.9.0) < 5weeks

 ca. 1 week for making the core model and implementing core infrastructure
(only EMF, generic Petri net types, XML mapping mechanism)

 ca. 1 week for HLPNG Petri net type, the model, its PNML-mappings and the
parser for labels (Xtext)

 ca. ½ week for extending the PNML-mapping infrastructure so that all HLPNG
features can be mapped to XML

 ca. ½ week for implementing the validation constraints for HLPNG
(correct typing of expressions, resolution of types, …)

 ca. 1 week for graphical for graphical editor

 ca. ½ week for brushing up the graphical editor (and cleaning a bit up behind
the scenes)

Ekkart Kindler

62MBSE f/w Petri Nets:ePNK a model-based software project

Code inspection
 Petri Net Type: P/T-Net plugin

 model for P/T-nets
 XML-mapping: 2 lines
 manual changes in one generated class

(4 lines, 2 of them for the above XML-mapping)
 1 OCL constraint

 Tool-specific extension: Token position plug-in
 model for token positions
 no XML-/PNML mapping
 manual creation of one class (25 lines, making the “pieces” know to

Eclipse)

 GMF/EMF-editor integration
 45 @generated NOTs

Ekkart Kindler

63MBSE f/w Petri Nets:ePNK a model-based software project

Code inspection
 Petri Net Type: HLPNG plug-in

 model for HLPNG-nets
 Xtext grammar for concrete syntax
 PNML-mapping: ca. 70 entries (+ Factory)
 manual changes in generated classes: ca. 130

(mostly functionality implementing type and sort resolution functions
and helpers)

 1 OCL constraint, and 11 constraint classes (complex constraints)

Ekkart Kindler

64MBSE f/w Petri Nets:ePNK a model-based software project

Statistics
 Project contains

 20 eclipse plug-in projects (11 automatically generated)

 10 models (+ 1 grammar)
 125 model classes (and interfaces)

 ca. 800 code classes
 ca. 36.000 MLOC (> 50.000 TLOC)

 ca. 220 “@generated NOT” tags

 (guess < 2000 manual lines of code)

	The ePNK:�A model bases development project
	Motivation
	Motivation
	Motivation
	Real world issues
	Outline
	PNML in a nutshell
	But ...
	PNML and XML
	Challenges
	Objective
	A first example
	A first example
	A first example
	Basic Idea
	Outline
	Core Model (overview)
	Core Model (overview)
	Core Model (overview)
	Core Model (overview)
	PNML Core Model
	Tool specific information
	Outline
	Type Definition: PT-Net
	Type Definition: PT-Net
	Type Definition: HLPNG (overview)
	Outline
	Core Model in XML
	Labels in XML
	In general
	Outline
	Idea: Extended Metadata
	Problems
	Outline
	Solutions
	Solutions
	Outcome
	ePNK: Features
	ePNK: Features
	The ePNK
	Outline
	The ePNK:�An Example: YAWL nets and Simulator
	ePNK
	ePNK: Core Paradigm
	Example: YAWL nets
	Example: YAWL simulator
	YAWL net: What to do
	YAWL net: What to do
	YAWL net: What to do
	You get
	Example: YAWL simulator
	Simulator: What to do
	Simulator: What to do
	Example: YAWL simulator
	You get:
	Example: YAWL simulator
	The ePNK: Material
	ePNK in MOF
	Slide Number 59
	Experience
	Experience
	Code inspection
	Code inspection
	Statistics

