

ISO/IEC JTC1/SC7
Software & Systems Engineering
Secretariat: CANADA (SCC)

Address reply to: ISO/IEC JTC1/SC7 Secretariat
École de technologie supérieure – Department of Software and IT Engineering

1100 Notre Dame Ouest, Montréal, Québec Canada H3C 1K3
secretariat@jtc1-sc7.org

www.jtc1-sc7.org

ISO/IEC JTC1/SC7 3298

2005-07-03

Document Type Combined WD Circulation, CD Registration and CD Ballot

Title Combined WD Circulation, CD Registration and CD Ballot, WD
15909-2, Software and Systems Engineering, High-level Petri Nets
- Part 2: Transfer Format

Source JTC 1/SC7 WG19

Project 15909-2

Status WD

References Resolution 836

Action ID ACT

Due Date 2005-10-03

Mailing Date 2005-07-03

Distribution SC7_AG; P, O & L Members

Medium Acrobat

No. of Pages 54

Note

ISO/IEC JTC1/SC7 WD 19509-2
Date

2005-07-03
Reference number
ISO/JTC 1/SC 7 N3298

Supersedes document
 N/A

THIS DOCUMENT IS STILL UNDER STUDY AND SUBJECT TO
CHANGE. IT SHOULD NOT BE USED FOR REFERENCE PURPOSES.

ISO/JTC 1/SC 7

Committee Title
Software and Systems Engineering

Secretariat:
Standards Council of Canada (SCC)

Circulated to P- and O-members, and to technical committees and
organizations in liaison for:

X voting by (P-members only)

2005-10-03

Please return all votes and comments in electronic form directly to
the SC 7 Secretariat by the due date indicated.

ISO/IEC JTC1/SC7

Title: WD 19509-2, Software and Systems Engineering, High-level Petri Nets - Part 2: Transfer Format
Note: Combined WD Circulation, CD Registration and CD Ballot

Medium: Acrobat

No. of pages: 54

Vote on WD 19509-2
Date of circulation

2005-07-03

Closing date

2005-10-03

Reference number
ISO/JTC 1/SC 7 N3298

ISO/JTC 1/SC 7

Committee Title
Software and Systems Engineering

Secretariat:
Standards Council of Canada (SCC)

Circulated to P-members of the committee for voting

Please return all votes and comments in electronic form directly to
the SC 7 Secretariat by the due date indicated.

ISO/IEC JTC1/SC7

Title: WD 19509-2, Software and Systems Engineering, High-level Petri Nets - Part 2: Transfer Format
Note: Combined WD Circulation, CD Registration and CD Ballot

Vote:

__ APPROVAL OF THE DRAFT AS PRESENTED

__ APPROVAL OF THE DRAFT WITH COMMENTS AS GIVEN ON THE ATTACHED

 __ general:

 __ technical:

 __ editorial:

__ DISAPPROVAL OF THE DRAFT FOR REASONS ON THE ATTACHED

 __ Acceptance of these reasons and appropriate changes in the text will change our vote to approval

__ ABSTENTION (FOR REASONS BELOW):

P-member voting:

National Body (Acronym)

Date:
YYYY-MM-DD

Submitted by:
Your Name

NOTE: do NOT submit this form for email voting. Simply type your vote into an email message (with comments

where applicable in the completed attached Excel Spreadsheet) and send to Secretariat@jtc1-sc7.org.

Software and Systems Engineering – High-level Petri Nets

Part 2: Transfer Format

International Standard ISO/IEC 15909-2
WD Version 0.9.0

June 23, 2005

ISO/IEC WD 15909-2:2005(E)

(c) ISO/IEC 2005 - All rights reserved ii

ISO/IEC WD 15909-2:2005(E)

Contents

1 Scope 1

2 Conformance 3

3 Normative References 3

4 Terms and Definitions 4

4.1 Definitions from Part 1, ISO/IEC 15909-1 . 4

4.2 Definitions for Part 2 . 4

4.3 Abbreviations . 6

5 Concepts 6

5.1 General Principles . 6

5.2 PNML Core Model . 7

5.2.1 Petri net documents, Petri nets, and objects. 7

5.2.2 Pages and reference nodes. 9

5.2.3 Labels. 10

5.2.4 Graphical information . 11

5.2.5 Tool specific information (ToolInfo) 11

5.3 Petri Net Type Meta Models . 12

5.3.1 Place/Transition Nets . 12

5.3.2 High-Level Petri Net Graphs . 14

5.3.3 BuiltIn Sorts and Functions . 14

6 PNML Syntax 17

6.1 PNML Documents . 18

6.1.1 PNML elements. 18

6.1.2 Labels . 18

6.1.3 Graphics . 19

6.1.4 Example . 22

6.2 PNML Documents for particular Petri Net Types 23

6.3 External Definitions (XML , XMLSchema, and MathML) 25

A RELAX NG Grammar for PNML (normative) 25

A.1 RELAX NG Grammar for BasicPNML (without pages) 26

(c) ISO/IEC 2005 - All rights reserved iii

ISO/IEC WD 15909-2:2005(E)

A.2 RELAX NG Grammar for StructuredPNML (with pages) 36

B RELAX NG Grammars for special types (normative) 39

B.1 Place/Transition Nets . 39

B.1.1 The labels for P/T Nets . 39

B.1.2 The Grammar for P/T Nets . 42

B.2 HLPNGs . 43

C Transformation to SVG (non-normative) 44

D API Framework for Petri Net type Meta-models (non-normative) 45

D.1 Introduction . 45

D.2 Methodology . 46

D.2.1 Overview . 46

D.2.2 P/T System Type Meta-model . 47

D.2.3 HLPNG Type Meta-model . 47

D.3 Using the API framework . 48

D.4 Guidelines to extending Petri Net Type Meta-models 48

(c) ISO/IEC 2005 - All rights reserved iv

ISO/IEC WD 15909-2:2005(E)

Introduction

This International Standard is Part 2 of a multi-part standard concerned with defining a mod- 0.0.0.1
elling language and its transfer format, known asHigh-level Petri Nets. Part 1 of this Interna-
tional Standard provides the mathematical definition of High-level Petri Nets, called the seman-
tic model, the graphical form of the technique, known as High-level Petri Net Graphs (HLP-
NGs), and its mapping to the semantic model. Part 1 also introduces some common notational
conventions for HLPNGs

Part 2 of this International Standard defines a transfer format for High-level Petri Nets in order 0.0.0.2
to support the exchange of High-level Petri Nets among different tools. This format is called the
Petri Net Markup Language(PNML). Since there are many different versions of Petri nets in
addition to High-level Petri Nets, this Standard defines theCore Conceptsof all Petri net types
along with anXML syntax, which can be used for exchanging any kind of Petri Net. Based
on thisPNML Core Model, Part 2 also defines the transfer syntax for the two versions of Petri
Nets that are defined in Part 1 of this International Standard. Place/Transition Nets and High-
level Petri Nets. Accordingly, conformance to this International Standard is in three levels: The
basic level of conformance is to thePNML Core Model. The other levels are according to the
particular type, which is conformance to Place/Transition Nets and conformance to High-Level
Petri Nets.

An addendum to Part 1 of this International Standard defines Well-formed Nets as a subclass of 0.0.0.3
High-level Petri Nets, which uses a restricted set of operators.

Editor’s note 1: The name ‘WFN’ for this class is still under discussion and must be
inserted here, once this name is accepted. A proposal is ‘Structured Class Nets’,
but it is not yet replaced in this text.

Editor’s note 2: An overview of the different Clauses of this International Standard will
be inserted here later.

1 Scope

Editor’s note 1.1: There was a proposal to structure, the Scope as follows:

• Purpose

• Field of Application

• Audience

There was no time to include that yet. But, this restructuring should be easily
possible in the next version.

(c) ISO/IEC 2005 - All rights reserved 1

ISO/IEC WD 15909-2:2005(E)

This International Standard defines a transfer format for Petri nets. It is based onXML and is 1.0.0.1
called thePetri Net Markup Language(PNML). PNML facilitates the exchange of Petri nets
among different Petri net tools.

There are many different variants of Petri nets. Place/Transition Nets and High-level Petri 1.0.0.2
Nets as defined in Part 1 of this International Standard are just two versions. Some possible
extensions and special Petri net types will be defined in Part 3 of this International Standard.

One objective ofPNML is to support the exchange of Petri Nets among different tools, even if 1.0.0.3
the tools support slightly different versions of Petri Nets. Features of Petri nets not known to
other tools can be easily ignored without losing all information associated with the original net.

Therefore, Part 2 of this International Standard defines the core concepts that are common to all 1.0.0.4
kinds of Petri nets. These concepts are captured in thePNML Core Model, which is defined as a
meta model inUML notation. For each concept in this meta model, this International Standard
defines a preciseXML representation.

Based on thePNML Core Model, this International Standard defines a transfer format for the 1.0.0.5
two versions of Petri nets defined in Part 1 of this International Standard: Place/Transition Nets
and for High-level Petri Nets. Well-Formed Petri Nets are defined as a special case of High-level
Petri Nets.

The definition of other features of Petri nets and of other versions of Petri nets, such as those 1.0.0.6
incorporating time, will be defined in Part 3 of this International Standard.

Editor’s note 1.2: Some details on Well-formed Nets (as well as their upcoming name)
must be inserted here.

Editor’s note 1.3: In Helsinki, it was decided not to define the mechanism for defining
Petri Net Types (Petri Net Type DefinitionsPNTDs) in Part 2 of this standard. The
types will be defined by mergingUML packages here. The mechanism for defining
Petri Net Types could be defined in Part 3.

ThePNML Core Model as defined in this International Standard also includes a simple concept 1.0.0.7
for structuring Petri nets into different pages. More complex structuring mechanisms and a
module concept are not part of this International Standard, but will be addressed in Part 3 of
this International Standard.

Editor’s note 1.4: In Helsinki, it was decided to include the page concept, but not to
include the module concept to this part of the standard.

(c) ISO/IEC 2005 - All rights reserved 2

ISO/IEC WD 15909-2:2005(E)

2 Conformance

There are different levels of Conformance. All conformance levels impose additional conditions 2.0.0.1
on XML documents.

An XML document is conformant to thePNML Core Model if it meets the definitions of Clauses 5.22.0.0.2
(PNML Core Model) and 6.1 (itsXML representation) – such a document is called aPNML Doc-
ument or a Petri Net Document. A Petri net tool is conformant to thePNML Core Model, if it
can import allPNML Documents, and if it can export all Petri nets to aPNML Document.

A PNML Document is a conformant Place/Transition Net, if it meets the additional restrictions 2.0.0.3
of Clause 5.3.1 – such a document is called aPNML Place/Transition Net Document. A Petri net
tool is conformant toPNML Place/Transition Nets, if it can import allPNML Place/Transition
Net Documents, and if it can export all Place/Transition Net to aPNML Place/Transition Net
Document.

A PNML Document is a conformant High-level Petri Nets, if it meets the additional restrictions 2.0.0.4
of Clause 5.3.2 – such a document is called aPNML High-level Petri Net Document. A Petri net
tool is conformant toPNML High-level Petri Nets, if it can import allPNML High-level Petri
Net Documents, and if it can export all High-level Petri Nets to aPNML High-level Petri Net
Document.

3 Normative References

The following references are indispensable for the application of this International Standard. 3.0.0.1

• CSS: Cascading Style Sheets, level 2 revision 1, CSS 2.1 Specification.W3C Candidate
Recommendation 25 February 2004.

• High-level Petri Nets: ISO/IEC 15909:2004 (E) Software and system engineering – High-
level Petri nets – Part 1: Concepts, definitions and graphical notation. First edition, De-
cember 1, 2004, ISO/IEC.

• JPEG: ISO/IEC 15444: Information technology – JPEG 2000 image coding system.

• MathML: Mathematical Markup Language (MathML) Version 2.0 (Second Edition).W3C
Recommendation 21 October 2003.

• PNG: Portable Network Graphics (PNG) Specification (Second Edition).W3C Recom-
mendation 10 November 2003.
Also: ISO/IEC 15948:2003 (E) Information technology – Computer graphics and image
processing – Portable Network Graphics (PNG): Functional specification.

• UML 2.0: Unified Modeling Language: Superstructure, version 2.0, Revised Final Adopted
Specification. OMG ptc/04-10-02, October 8, 2004 OMG.

(c) ISO/IEC 2005 - All rights reserved 3

ISO/IEC WD 15909-2:2005(E)

Editor’s note 3.1: In Helsinki, we decided to use some notation from UML 2.0,
which should be compatible with WG 19’s move towards UML 2.0

• XML 1.0: Extensible Markup Language (XML), Version 1.0 (Third Edition);W3C Rec-
ommendation 04 February 2004.

• XMLSchemaDatatypes:XMLSchemaPart 2: Datatypes (Second Edition); W3C Recom-
mendation 28 October 2004

Editor’s note 3.2: It is not clear yet, whether we will be needing references to OCL,
XSLT, SVG orRELAX NG

4 Terms and Definitions

For the purpose of this International Standard, the following terms and definitions apply. 4.0.0.1

4.1 Definitions from Part 1, ISO/IEC 15909-1

The following terms and definitions are adopted from Part 1 of this International Standard. 4.1.0.1

Arc, Arc Annotation, Arity, Basis Set, Declaration, High-level Petri Net, High-level Petri Net 4.1.0.2
Graph, Many Sorted Algebra, Marking (of a net), Marking of a place, Multiset, Net, Net Graph,
Node, Operator, Petri Net, Place/Transition Net, Place, Place Type, Signature, Sort, Argument
Sort, Range Sort, Term, Closed Term (Ground Term), Transition, Transition Condition, Type.

4.2 Definitions for Part 2

4.2.1 Annotation A Label represented as text near to the Object it is associated with.

Editor’s note 4.1: I am not sure when terms should be capitalized. If all occurrences
of these terms need to be capitalized, the text looks a bit awkward. Are there any
rules? If not, can we just emphasis these terms? In the next version, this will be
made consistent.

4.2.2 Attribute A Label that governs the form or shape of the Object it is associated with. In
contrast to an Annotation, the Attribute is not shown as a text.

4.2.3 Graphical Information The information required to define the graphical appearance of
Objects and Labels of a Net Graph. This can be the position, size, line colour, fill colour, font
or the line width.

(c) ISO/IEC 2005 - All rights reserved 4

ISO/IEC WD 15909-2:2005(E)

4.2.4 Global Label A Label associated with the Net Graph itself, rather than with an Object
of a Net Graph.

4.2.5 Label Information associated with the Net Graph or one of its Objects.

4.2.6 Meta Model A model defining the concepts and their relations for some modelling
notation. In this International Standard, we useUML diagrams – in particular class diagrams –
for defining the core concepts ofPNML (PNML Core Model) as well as the concepts specific to
some Petri net types.

4.2.7 Object (of a Net Graph) The Arcs, Nodes, Reference Nodes, and the Pages of a Net
Graph.

4.2.8 Page A structuring mechanism used to split large Net Graphs into smaller parts, which
are also the units of the net to be printed.

4.2.9PNML Core Model The Meta Model defining the basic concepts and structure of Petri
Net models that are common to all versions of Petri nets.

4.2.10PNML Document (Petri Net Document) A document that contains one or more Net
Graphs.

4.2.11PNML High-level Document A PNML Document that contains one or more Net Graphs,
where all Petri nets conform to High-level Petri Nets.

4.2.12PNML Place/Transition Net Document A PNML Document that contains one or more
Petri Net Graphs, where all Petri nets conform to Place/Transition Nets.

4.2.13 Reference Node A Node of a Net Graph that is a representative of another Node pos-
sibly defined on another Page of the Net Graph. Cyclic references, however, are forbidden. A
Reference Node does not carry any semantical information itself. Rather, it is a pointer to the
Node that is being referenced.

4.2.14 Reference Place A reference node that is a place; it must refer to either another refer-
ence place or to a place.

4.2.15 Reference Transition A reference node that is a transition; it must refer to either
another reference transition or to a transition.

(c) ISO/IEC 2005 - All rights reserved 5

ISO/IEC WD 15909-2:2005(E)

4.2.16 Source Node The node associated with the start of an arc.

4.2.17 Target Node The node associated with the end of an arc.

4.2.18 Tool Specific Information Information associated with Objects of a Net Graph or with
the Net Graph itself that is specific to a particular tool and is not meant to be used by other tools.

4.3 Abbreviations

• HLPNG: High-level Petri Net Graph

• WFN: Well-Formed Petri Net

• UML: Unified Modelling Language

• XML : eXtensible Markup Language

• PNML: Petri Net Markup Language

• P/T Net: Place/Transition Net

• CSS: Cascading Stylesheets

Editor’s note 4.2: This list needs to be fixed in the end.

5 Concepts

5.1 General Principles

This International Standard defines a transfer format for High-level Petri Net Graphs and Place/- 5.1.0.1
Transition Nets as defined in Part 1 of this Standard. This transfer format has been designed to
be extensible and open for future variants of Petri nets and possibly for other use, such as the
transfer of results associated with the analysis of Petri nets, e.g., reachability graphs. In order
to obtain this flexibility, the transfer format considers a Petri net as a labelled directed graph,
where all type specific information of the net is represented in labels. A label may be associated
with a node or an arc of the net or with the net itself. This basic structure is defined in thePNML
Core Model, which is defined in Clause 5.2.

ThePNML Core Model is presented usingUML class diagrams. Note that theseUML diagrams 5.1.0.2
do not define the concreteXML syntax forPNML Documents. Clause 6 defines the mapping of
thePNML Core Model elements toXML syntax.

(c) ISO/IEC 2005 - All rights reserved 6

ISO/IEC WD 15909-2:2005(E)

Editor’s note 5.1: We do not use RELAX NG for this mapping anymore (though we
give a definition of the syntax ofPNML Documents in RELAX NG). We give an
explicit translation for each element. Suggestions for an appropriate technology are
welcome.

The PNML Core Model imposes no restrictions on labels. Therefore, thePNML Core Model 5.1.0.3
can represent any kind of Petri net. Due to this generality of thePNML Core Model, there can
be even models that do not correspond to a Petri net at all. For a concrete version of Petri nets,
the legal labels will be defined by extending thePNML Core Model with another Meta Model
that exactly defines the legal labels of this type.

Technically, thePNML Core Model is aUML package, and there are additionalUML packages 5.1.0.4
for the different Petri net types that depend on thePNML Core Model package. Part 2 of this
International Standard defines a package for Place/Transition Nets and for High-level Petri Net
Graphs. High-level Net Graphs subsume Place/Transition Nets, which means that any legal
label of a Place/Transition Net may occur also in a High-level Petri Net Graph.

Editor’s note 5.2: We do not explicitly mention the Type and Feature Definitions any-
more. These concepts will be introduced in Part 3. Also we do not have the Con-
ventions anymore.

Figure 1 gives an overview of the different meta models defined and on their dependencies. 5.1.0.5
The packagePNML Core Model defines the basic structure of Petri nets; this structure will be
extended by the package for the two types. ThePNML Core Model will be defined in Clause 5.2,
the package PT-Net will be defined in Clause 5.3.1, and the package HLPNG will be defined in
Clause 5.3.2. In Clause 6 we will show how the concepts defined in these packages are mapped
to concreteXML syntax.

Part 2 of this International Standard introduces some concepts that are not defined in Part 1. In 5.1.0.6
Part 1, there are no concepts of pages and reference nodes, and there are no concepts for defining
the graphical appearance of Petri nets. Since this is important information when it comes to the
exchange of Petri nets between different tools, its was necessary to introduced these concepts
here. Since, this information does not carry any semantics, these concepts are compatible with
Part 1 of this International Standard.

5.2 PNML Core Model

Figure 2 shows thePNML Core Model as aUML class diagram. This diagram will be discussed 5.2.0.1
in the following Clauses.

5.2.1 Petri net documents, Petri nets, and objects.

A document that meets the requirements ofPNML is called aPetri net document(PetriNetDoc). 5.2.1.1
It may contain severalPetri Nets. Each Petri Net includes a unique identifier and type. The type
is a URL referring to the name of the package with its definition.

(c) ISO/IEC 2005 - All rights reserved 7

ISO/IEC WD 15909-2:2005(E)

PNML Core Model

HLPNG

PT−Net

<<merge>>

<<merge>>

Figure 1: Overview on theUML packages ofPNML

Editor’s note 5.3: We require that every object and every annotation has a graphical
information (at least the position). This it not strictly necessary; but, I suggest to
require it anyway. Because not having positions, will make it quite hard to exchange
nets among graphical tools.

Editor’s note 5.5: We need a naming convention for the packages. Would it be some-
thing ISO-IEC.PNML.PT-System ? Up to now, we used a URL referring to the
RELAX NG grammar. But with usingUML technology, this is deprecated.

We could use also the Eclipse naming conventions for PlugIns and packages as
proposed by AFNOR. E. g.org.iso iec.15909 2.pnml.ptnets 1.0.0 .
The corresponding jar files of the API could be named accordingly.

A Petri net consists of a single top-levelpagethat in turn consists of severalobjects. These 5.2.1.2
objects, basically, represent the graph structure of the Petri net. Each object within a Petri net
document has a uniqueidentifier, which can be used to refer to this object. Moreover, each
object may be equipped with graphical information defining its position, size, colour, shape and
other attributes on its graphical appearance. The precise graphical information that can or must
be provided for an object depends on the particular type of object (see Clause 5.2.4).

An object is aplace, atransitionor anarc. For convenience, a place or a transition is generalized 5.2.1.3
to anode, which can be connected by arcs.

Note that it is legal to have an arc from a place to a place or from a transition to a transition 5.2.1.4
according to thePNML Core Model. The reason is that there are versions of Petri nets that
support such arcs. If a Petri net type does not support such arcs, this restriction will be defined
in the particular package defining this type.

(c) ISO/IEC 2005 - All rights reserved 8

ISO/IEC WD 15909-2:2005(E)

PlaceNode

PetriNetDoc

Label

PetriNet

type
id

AttributeAnnotation

Place

Graphics

Node

RefPlace RefTrans

1

1
Page

TransitionNode
1

ref

1

ref

source

target

page

Transition

Arc

* *

*

*

page

ToolInfo

Object
id

*

tool
version

*
object

label *

label *

*

*
*toolinfo

toolinfo
toolinfo

net

1

1

graphic

graphic

 self.target.page
 self.source.page =
context Arc inv:

Figure 2: ThePNML Core Model

Editor’s note 5.4: The OCL expression in this diagram expresses that the nodes con-
nected by an arc must be on the same page. It should be discussed whether we
would should use these OCL expressions in this Standard or not. In either case, the
corresponding condition will be stated also in the text.

5.2.2 Pages and reference nodes.

Three other kinds of objects are used for structuring a Petri net:pages, reference places, and 5.2.2.1
reference transitions. As mentioned above, a page may contain objects; since a page is an object
itself, a page may even contain other pages, which defines a hierarchy of subpages.

This International Standard requires that an arc must connect nodes on the same page only. The 5.2.2.2
reason for this requirement is that arcs connecting nodes on different pages cannot be drawn
graphically on a single page.

Editor’s note 5.6: Just to show how this condition could be expressed in OCL, I in-
cluded the corresponding OCL expression to theUML diagram.

In order to connect two nodes on different pages by an arc, a representative of one of the two 5.2.2.3

(c) ISO/IEC 2005 - All rights reserved 9

ISO/IEC WD 15909-2:2005(E)

nodes is drawn on the same page as the other node. Then, this representative may be connected
with the other nodes by an arc. This representative is called areference node, because it has a
reference to the node it represents (see Clause 5.2.2). Note that a reference place must refer to
a place or a reference place, and a reference transition must refer to a reference transition or a
transition. Cyclic references among reference nodes are not allowed.

Editor’s note 5.7: The condition of cycle free references can – to the best of my knowl-
edge – not be expressed in the current version of OCL.

5.2.3 Labels.

In order to assign further meaning to an object, each object may havelabels. Typically, a label 5.2.3.1
represents the name of a node, the initial marking of a place, the transition condition, or an arc
annotation. In addition, the Petri net itself, resp. its pages may have some labels. These are
calledglobal labels. For example, the package HLPNG defines declarations of types as global
labels of a high-level Petri net.

This International Standard distinguishes two kinds of labels:annotationsandattributes. An 5.2.3.2
annotation comprises information that is typically displayed as text near the corresponding ob-
ject. Examples of annotations are names, initial markings, arc annotations, transition conditions,
and timing or stochastic information.

Editor’s note 5.8: There was a comment that text should be defined here. In XML
documents text will be represented asXML PCDATA elements, i.e. a sequence
of characters. This is defined in Clause 6, where we deal with the mapping of the
concepts of the meta model toXML syntax.

In contrast, an attribute is not displayed as text near the corresponding object. Rather, an at- 5.2.3.3
tribute has an effect on the shape or colour of the corresponding object. For example, an at-
tributearc typecould have domainnormal , read , inhibitor , reset . This International
Standard, however, does not mandate the effect on the graphical appearance of an attribute.

Note that Label, Annotation and Attribute are abstract classes in thePNML Core Model, which 5.2.3.4
means that thePNML Core Model does not define concrete labels, annotations, and attributes.
The concrete labels will be defined in the meta models for the concrete types of Petri nets (see
Clause 5.3).

In order to support the exchange of information among tools that have different textual repre- 5.2.3.5
sentation for the same concepts (i. e. if they have different concrete syntax), there are two ways
for representing the information within an annotation: textually in some concrete syntax and
structurally as an abstract syntax tree (see Clause 6.1.2 for details).

(c) ISO/IEC 2005 - All rights reserved 10

ISO/IEC WD 15909-2:2005(E)

Editor’s note 5.9: There could be aUML diagram that defines this general structure of
labels. Since it was decided not to include the definition of the type definition
interface to Part 2, this is not necessary for Part 2.

Editor’s note 5.10: Right now, it is legal to have the abstract syntax tree only. We could
require that there must always be a textual representation. This needs to be dis-
cussed.

Note that reference nodes may have labels but these labels can only specify information about 5.2.3.6
their appearance. They cannot specify any information about the referenced node itself, which
already has its own labels for this purpose.

5.2.4 Graphical information

Graphical information can be associated with each object and each annotation. For a node, this 5.2.4.1
information includes its position; for an arc, it includes a list of positions that define intermediate
points of the arc; for an object’s annotation, it includes its relative position with respect to the
corresponding object; and for an annotation of the net itself, the position is absolute. There can
be further information concerning the size, colour and shape of nodes or arcs, or concerning the
colour, font and font size of labels (see Clauses 6.1.3 for more information).

Editor’s note 5.11: There was a proposal of a much more detailed meta model for the
graphical information on the PNX Mailing list from Celso Gonzalez from Canada,
which covers most of the details.

For lack of time, this is not yet included here.

5.2.5 Tool specific information (ToolInfo)

For some tools, it might be necessary to store tool specific information, which is not meant 5.2.5.1
to be used by other tools. In order to store this information,tool specific informationmay be
associated with each object and each label. Its internal structure depends on the tool and is not
specified byPNML. PNML provides a mechanism for clearly marking tool specific information
along with the name and the version of the tool adding this information. Therefore, other tools
can easily ignore it, and adding tool specific information will never compromise a Petri net
document.

The same object may be tagged with tool specific information from different tools. This way, 5.2.5.2
the same document can be used and changed by different tools at the same time. The intention
is that another tool should not change or delete the information added by another tool as long
as the corresponding object is not deleted. Moreover, the tool specific information should be
self contained and not refer to other objects of the net because the deletion of other objects

(c) ISO/IEC 2005 - All rights reserved 11

ISO/IEC WD 15909-2:2005(E)

by a different tool might make this reference invalid and leave the tool specific information
inconsistent. This use of the tool specific information is strongly recommended; however, it is
not normative!

5.3 Petri Net Type Meta Models

This Clause defines meta models for two versions of Petri nets: Place/Transition Net and High- 5.3.0.3
Level Petri Net Graphs (HLPNGs) as defined in Part 1 of this International Standard. These
meta models define the labels of the respective Petri net type.

Though HLPNGs conceptually capture and generalize Place/Transition Nets, there are differ- 5.3.0.4
ences in syntax. Of course, there are mappings from the syntax of the concepts of Place/Tran-
sition Nets to HLPNGs. But, in order not to force tools that support Place/Transition Nets only
to use the syntax of HLPNGs, we introduce a simple syntax for Place/Transition Nets. The
transfer syntax for HLPNGs, however, also supports the syntax of Place/Transition Nets (cf.
Fig. 1).

Editor’s note 5.12: This was decided in Helsinki. It was also decided to include some
guidelines on how HLPNG tools should deal with the Place/Transition Net con-
cepts. These guidelines are not yet included to this text.

AFNOR suggested that they could make a proposal.

Note that Well-formed Petri Nets, which are defined in an Addendum to Part 1 of this Inter- 5.3.0.5
national Standard, are a special version of HLPNGs with a restricted set of built-in types and
operations (see Addendum to Part 1). Since this is a semantical issue, it is hard to capture this
difference syntactically, which is the reason for not making it a separate (syntactical) Petri net
type.

Editor’s note 5.13: The problem is that we do not know yet how to define this restric-
tion of MathML expressions. So this is a semantical restriction as defined in the
Addendum to Part 1.

5.3.1 Place/Transition Nets

This Clause defines the meta model for Place/Transition Nets in terms of aUML packagePT- 5.3.1.1
Net.

A Place/Transition Net is a Net Graph, where the places and transitions have names, and where 5.3.1.2
each place is labelled with a natural number representing the Initial Marking, and each arc is
labelled with a non-zero natural number representing the Arc Annotation. The meaning of these
labels are defined in Part 1 of this International Standard.

Figure 3 shows the package PT-Net. The OCL expression on the lower left side expresses that 5.3.1.3
in Place/Transition Nets arcs must not connect places to places or transitions to transitions.

(c) ISO/IEC 2005 - All rights reserved 12

ISO/IEC WD 15909-2:2005(E)

Place

Arc

Node

Annotation

Name

1text 1text 1text (self.source.isKindOf(PlaceNode) and
 self.target.isKindOf(TransitionNode))

or
 (self.source.isKindOf(TransitionNode) and
 self.target.isKindOf(PlaceNode))

Net

{redefines label}

{redefines label}
inscription

1

{redefines label}
name

1

name
{redefines label}

1
initialMarking

PT−Net

XML_Schema::
NonNegativeInteger PositiveInteger

XML_Schema::
XML::PCDATA

PTMarking

PTAnnotation

context Arc inv:
−− no arcs between nodes of the same kind

PNML Core Model

<<merge>>

Figure 3: The package PT-Net

Editor’s note 5.14: Maybe the OCL condition will be deleted in the end. This example
should give an impression of an extra condition expressed in OCL. Even if the OCL
condition is omitted from theUML diagram, the conditions in the text above will
stay and are mandatory.

This package defines that each node of a P/T-Net must have an AnnotationNamethat consists of 5.3.1.4
text (in addition to the standard information for annotations such as graphical and tool specific
information, which are defined in thePNML Core Model). The text will be represented asXML
PCDATA, which is expressed by referring to the class XML::PCDATA (see Clause 6.2).

In addition, the package defines that each Place must have an AnnotationPTMarkingthat rep- 5.3.1.5
resents a natural number. Technically, the type and the representation of the contents of this
label is defined by referring to the data typeNonNegativeIntegerof XMLSchema.

Each Arc must have an AnnotationPTAnnotationthat consists of a non-zero natural number, 5.3.1.6
where the representation of this label is defined by the data typePositiveIntegerof XMLSchema.

The UML Meta Models do not yet fix all details of theXML syntax for these elements. The 5.3.1.7
exact mapping toXML syntax will be defined in Clause 6.2.

Note that the only classes defined here are Name, PTMarking, and PTAnnotation. The classes 5.3.1.8
Node, Place, Arc, and Annotation come from the packagePNML Core Model. They are im-
ported here in order to define the concrete Labels attached to these Nodes in this particular type,
i.e. in Place/Transition Nets. Likewise, the classed prefixed withXML andXMLSchemaare

(c) ISO/IEC 2005 - All rights reserved 13

ISO/IEC WD 15909-2:2005(E)

defined in other packages in order to refer to standard concepts ofXML and standard data types
of XMLSchema.

Editor’s note 5.15: Eventually, the class Name, PTMarking, and PTAnnotation could
be imported from a package of standard Labels. But, this is left to Part 3

5.3.2 High-Level Petri Net Graphs

This Clause defines the meta model for High-Level Petri Net Graphs. 5.3.2.1

A HLPNG is a Petri Net Graph that is equipped with Declarations that defines Types, Functions, 5.3.2.2
and Variables that are the basis for defining Terms. The Declarations can be Annotations of the
Petri Net Graph itself or of some of its Pages; the Types can be Annotations of the Place; a
place can also have an Annotation with its Initial Marking which is an Expression for some
multiset; an Arc Annotations is some MathML expression; a Transition can have a Condition
as its Annotation, which is a MathML expression of type boolean. These concepts and their
semantics are precisely defined in Part 1 of this International Standard.

The package defining the concepts of HLPNGs is shown in Fig. 4. Where the contents of these 5.3.2.3
Annotations isXML in MathML syntax, which is indicated by classes prefixed with MathML.

Editor’s note 5.16: In Helsinki, it was decided to use MathML. Unfortunately, we do
not know yet, how to make sure that these MathML expressions are legal at their
position in a syntactical way.

Note that this model defines an abstract syntax for all HLPNG concepts only. In order to allow 5.3.2.4
tools to store some concrete text, the Annotation may also consist of text, which should be the
same expression in some concrete syntax of some tool. The concrete syntax, however, will not
be defined in this International Standard.

In addition to the Annotations defined above, the package for HLPNGs requires that arcs must 5.3.2.5
not connect two places and must not connect two transitions; this however, is a property inher-
ited from Place/Transition Nets. Therefore, it is not necessary to include this condition here.

5.3.3 BuiltIn Sorts and Functions

Editor’s note 5.17: I left the text of this section from an earlier version in this document,
so it is not consistent anymore. Due to the use of MathML we cannot define our
own built-in sorts anymore. The problem with MathML is that there are some types
that do not make sense in Petri nets (complex) and some types (such as Strings) do
not exist in MathML. Moreover, we cannot characterize an appropriate subset of
MathML syntactically. This is an open issue.

(c) ISO/IEC 2005 - All rights reserved 14

ISO/IEC WD 15909-2:2005(E)

Place

Transition

PetriNet

Arc

Declaration

HLAnnotation

{redefines label}
declaration

*

1
{redefines label}

hlinscription

1
{redefines label}

condition

MathML::
Declaration

MathML::
Expression

MathML::
BoolExpression

MathML::
TypeExpression

Annotation XML::PCDATA1
text

HLPNG

Page

*

Type structure
1

structure

structure

structure

1

1

Condition

declaration

1
{redefines label}

condition

{redefines label}

HLMarking
1

structure
1

{redefines label} MathML::
GroundExpression

1

hlinitialMarking

<<merge>>

PT−Net

Figure 4: The package HLPNG

HLPNGs and WFN are defined using the very same Meta Model as defined in Clause 5.3.2. The 5.3.3.1
only difference is in the builtin Sorts, the builtin Functions, and the Sorts that can be defined by
the User.

Editor’s note 5.18: The Type Model for HLPNGs is an abstract version of theRE-
LAX NG definitions circulated in the previous draft. Moreover, it seems to match
the AFNOR proposal (cf. [15]).

For defining HLPNGs and WFNs we must define the builtin Sorts and Functions only. These 5.3.3.2
will be defined blow:

Editor’s note 5.19: This is a first proposal that is based on the Bologna discussions.

HLPNGs 5.3.3.3

(c) ISO/IEC 2005 - All rights reserved 15

ISO/IEC WD 15909-2:2005(E)

• boolean with all boolean operations: and, or, not, implication, equality.

• integer with addition, subtraction, multiplication, div, and mod and the operations for
comparison (=, <=, <, >, >=, <>).

Editor’s note 5.20: At the Bologna the question was raised how to deal with the
finiteness of integers. Should this standard give a particular definition or do we
leave it open.

• ranges of integers with comparison (=, <=, <, >, >=, <>).

• explicit enumerations with successor and predecessor operation and with equality and
comparison operations.

• strings with concatenation and comparison operations.

• For each Sort, there are implicit operations, converting a sequence of elements of this Sort
to a multiset [a1, a2, a3].

Editor’s note 5.21: Products are included explicitly in the Meta Model; so it is not
necessary to include this here

Editor’s note 5.22: At the Bologna meeting List and Disjoint Sets were discussed.
As far as I remember, it was not yet decided whether to include them or not.

Editor’s note 5.23: • The following text was copied verbatim from a AFNOR pro-
posal. It is not yet polished and adapted to this context.

• It is important to notice that WFN name has changed to Structured Class Net.

• Shall we really put in the following definitions since they have been already
fully detailed in Annex B2 of part 1? May be should we just put a reference
to Annex B2.

Structured Class Nets 5.3.3.4

Structured Class Nets is a Class of High-level Petri Net Graphs. It is defined in Annex B.2 of the
Part 1 of this International Standard. This class places restrictions on the many-sorted algebra
of HLPNGs. The carriers of the algebra are finite, and only a small set of functions, as defined
below, are allowed. The carriers in the algebra are referred to as types or domains. Basic types
are defined and then further (structured) types are built from the basic types. Basic types can be
ordered-circular or unordered.

The following basic types and their usual operators are required:

(c) ISO/IEC 2005 - All rights reserved 16

ISO/IEC WD 15909-2:2005(E)

• The Booleans,Boolean, with unary function ‘not’, and binary functions: ‘equals’ (=),
‘not equals’ (6=), and usual connectives: ‘and’ and ‘or’;

• Any restricted finite range of Integers (e.g.{0, 1, 2, 3, 4}, also written [0,4]) with the
Identity function;

• Enumerated types (i.e. types that can be placed in one to one correspondence with a finite
integer range);

• binary functions ’equal’ (=) and ’not equal’ (6=) are defined on both ordered-circular and
unordered types.

• Successor and predecessor unary functions are defined on ordered-circular types;

• binary operator ’is element of’ (noted∈), x ∈ Ci means that x is an element of subclass
Ci ;

The following structured types built from the above basic types are also required:

• Cartesian products of basic types ; recursive definitions of product types is allowed;

• Multisets over basic types, product and set types.

The following functions on basic types can be combined with the product operator:=, 6=,
identity. No user-defined functions are allowed in Structured Class Nets.

The type of a Place in a Structured Class Nets is restricted to basic types, products and set types.

6 PNML Syntax

Clause 5 defines the concepts of thePNML Core Model and the concepts of Place/Transition 6.0.3.1
Nets and High-level Petri Nets. Clause 5, however, does not define a preciseXML syntax for
representing these concepts. The precise syntax of thePNML Core Model and the two Petri net
types will be defined in this Clause.

Clause 6.1 defines the format of generalPNML Documents. Clause 6.2 defines the format for 6.0.3.2
Place/Transition Nets and High-level Petri Nets. In fact, it gives general rules, how the concepts
of a package defining some Petri net type are mapped toXML .

Editor’s note 6.1: Here, we give an explicit mapping from thePNML concepts toXML
syntax. This could be done by someUML /XML -technology. This is an open issue.
I am not sure whether we should deal with that in Part 2. Maybe, this could be
covered in Part 3 – in the context of thePNML API.

(c) ISO/IEC 2005 - All rights reserved 17

ISO/IEC WD 15909-2:2005(E)

Editor’s note 6.2: Some of the element names or attribute names chosen below, might
be a bit misleading. But, for sake of compatibility with existing implementations,
we should have very good reasons for changing them. Incompatibilities will in-
evitably result, when we changePNML keywords.

6.1 PNML Documents

The mapping of thePNML Core Model concepts toXML syntax is defined for each class of the 6.1.0.3
PNML Core Model diagram.

6.1.1 PNML elements.

Each concrete class1 of thePNML Core Model is mapped to anXML element. The translation 6.1.1.1
of these classes along with the attributes and their data types is given in Table 1. TheseXML
elements are thekeywordsof PNML and are calledPNML elementsfor short. For eachPNML
element, the compositions of thePNML Core Model define in which elements it may occur as a
child element.

The data typeID in Table 1 refers to a set of unique identifiers within thePNML Document. 6.1.1.2
The data typeIDRef refers to the set of all identifiers occurring in the document, i. e. they are
meant as references to identifiers. A reference at some particular position, however, is restricted
to objects of a particular type – as defined in thePNML Core Model. For instance, the attribute
ref of a reference place must refer to a place or a reference place of the same net. The set to
which a reference is restricted, is indicated in the table (e. g. for a reference place, the attribute
ref should refer to theid of a Place or a RefPlace).

Editor’s note 6.3: Technically, indicating this restriction is not necessary anymore be-
cause it is now captured in theUML diagrams. But, for readability reasons, I left
this information in this table.

6.1.2 Labels

There are noPNML elements for labels because thePNML Core Model does not define any 6.1.2.1
concrete labels. For concrete Petri net types, such as Place/Transition Nets and High-level Petri
nets, the corresponding packages define these labels.

In generalPNML Documents, anyXML element that is not defined in thePNML Core Model 6.1.2.2
(i. e. not occurring in Table 1) is considered as a label of thePNML element in which it occurs.
For example, an<initialMarking> element could be a label of a place, which represents its
initial marking. Likewise<name> could represent the name of an object, and<inscription>

an arc annotation.

A legal element for a label must contain at least one of the two following elements, which 6.1.2.3

1A class in aUML diagram is concrete if its name is not displayed in italics.

(c) ISO/IEC 2005 - All rights reserved 18

ISO/IEC WD 15909-2:2005(E)

Table 1: Translation of thePNML Core Model intoPNML elements
Class XML element XML Attributes

PetriNetDoc <pnml >
PetriNet <net > id : ID

type : anyURI
Place <place > id : ID
Transition <transition > id : ID
Arc <arc > id : ID

source : IDRef (Node)
target : IDRef (Node)

Page <page > id : ID
RefPlace <referencePlace > id : ID

ref : IDRef (Place or RefPlace)
RefTrans <referenceTransition > id : ID

ref : IDRef (Transition or RefTrans)
ToolInfo <toolspecific > tool : string

version : string
Graphics <graphics >

represents the actual value of the label: a<text > element represents the value of the label as a
simple string; the<structure > element can be used for representing the value as an abstract
syntax tree inXML 2.

Editor’s note 6.4: Right now, it is legal to have the abstract syntax tree only. We could
require that there must always be a textual representation. This needs to be dis-
cussed.

An optionalPNML <graphics > element defines its graphical appearance; and optionalPNML 6.1.2.4
<toolspecific > elements may add tool specific information to the label.

6.1.3 Graphics

All PNML elements and all labels may include graphical information. The internal structure 6.1.3.1
of the PNML <graphics > element, i. e. the legalXML children, depends on the element in
which the graphics element occurs. Table 2 shows the elements which may occur within the
<graphics > element.

Editor’s note 6.5: Actually, the different graphical elements could be captured in the
UML diagram. Then, the mapping of graphics will be more straight-forward. This
is an open issue (not difficult, but not done for lack of time).

2In order to be compatible with earlier versions ofPNML, the text element<value> may occur alternatively
to the<text > <structure > pair.

(c) ISO/IEC 2005 - All rights reserved 19

ISO/IEC WD 15909-2:2005(E)

Table 2: Possible child elements of the<graphics > element
Parent element class Sub-elements of<graphics >

Node, Page <position > (required)
<dimension >
<fill >
<line >

Arc <position > (zero or more)
<line >

Annotation <offset > (required)
<fill >
<line >

There is a first proposal from AFNOR:

But, there should be even different graphics classes in order to formalize inUML
which kind of graphical information could go to which kind of Object. There should
be at least three classes: NodeGraphics, ArcGraphics, and AnnotationGraphics.

Editor’s note 6.6: There was a proposal to attach graphical information to a net at the
PNML workshop at HUT. Since we decided that every net should have at least on
page containing all other objects, this is not necessary anymore. Therefore, there is
no graphical information for the complete net. This goes to the top-level page.

The<position > element defines an absolute position and is required for each node, whereas 6.1.3.2

(c) ISO/IEC 2005 - All rights reserved 20

ISO/IEC WD 15909-2:2005(E)

the <offset > element defines a relative position and is required for each annotation. Each
absolute or relative position refers to Cartesian coordinates(x, y). As for many graphical tools,
thex-axis runs from left to right and they-axis from top to bottom.

Editor’s note 6.7: There was a discussion that it should be possible to give an absolute
position for labels. The result, however, was that we should not have them.

The other sub-elements of<graphics > are optional. For an arc, the (possibly empty) sequence 6.1.3.3
of <position > elements defines its intermediate points (bend points).

The only required graphical information for a Node and Page is the position; the graphical 6.1.3.4
information required for Annotations is the offset. Note that, for arcs, it is not necessary to give
a position, because these are intermediate positions only. The start and end is defined by the
source and target node.

Table 3 defines the attributes for each graphical element defined in Table 2. The domain of the 6.1.3.5
attributes refers to the data types of eitherXML Schema, or Cascading Stylesheets 2 (CSS2), or
is given by an explicit enumeration of the legal values.

Table 3:PNML graphical elements
XML element Attribute Domain

<position > x decimal
y decimal

<offset > x decimal
y decimal

<dimension > x nonNegativeDecimal
y nonNegativeDecimal

<fill > color CSS2-color
image anyURI
gradient-color CSS2-color
gradient-rotation {vertical, horizontal, diagonal}

<line > shape {line, curve}
color CSS2-color
width nonNegativeDecimal
style {solid, dash, dot}

 family CSS2-font-family
style CSS2-font-style
weight CSS2-font-weight
size CSS2-font-size
decoration {underline, overline, line-through}
align {left, center, right}
rotation decimal

The <position > element defines the absolute position of a node on a page. The<offset > 6.1.3.6
element defines the position of an annotation relative to the position of the object – if it is a
global annotation, it defines the absolute position on that page.

(c) ISO/IEC 2005 - All rights reserved 21

ISO/IEC WD 15909-2:2005(E)

For an arc, there may be a (possibly empty) list of<position > elements. These elements 6.1.3.7
define intermediate points of the arc. Altogether, the arc is a path from the source node of
the arc to the destination node of the arc via the intermediate points. Depending on the value
of attributeshape of element<line >, the path is displayed as a polygon or as a (quadratic)
Bezier curve, where the points act as line connectors or Bezier control points.

The <dimension > element defines the height and the width of a Node. Depending on the 6.1.3.8
ratio of height and width, a Place is displayed as an ellipse rather than a circle. A Transition is
displayed as a rectangle of the corresponding size.

Editor’s note 6.8: Note that there is no need for explicitly stating that a place is dis-
played as an ellipse and a transition as a rectangle in theXML syntax. This infor-
mation comes from the fact that the node is a place or a transition. The only way to
override this is by using attribute images in the graphical element fill.

If the dimension of an element is missing, each tool is free to use its own default value for the 6.1.3.9
dimensions.

The two elements<fill > and <line > define the interior and outline colours of the corre- 6.1.3.10
sponding element. The value assigned to a colour attribute must be aRGBvalue or a predefined
colour as defined byCSS2. When the attributegradient-color is defined, the fill colour con-
tinuously varies from color to gradient-color. The additional attributegradient-rotation

defines the orientation of the gradient. If the attributeimage is defined, the node is displayed
as the image at the specifiedURI, which must be a graphics file inJPEGor PNG format. In this
case, all other attributes of<fill > and<line > are ignored.

For an annotation, the element defines the font used to display the text of the label. 6.1.3.11
The complete description of possible values of the different attributes can be found in theCSS2
specification. Additionally, thealign attribute defines the justification of the text with respect
to the label coordinates, and therotation attribute defines a clockwise rotation of the text.

6.1.4 Example

Editor’s note 6.9: At the Brisbane meeting, there was a proposal that there should be
a better example. I do agree to that. unfortunately, I had no time for producing a
better example. But, I hope that with the support from others, we can have a better
example in the next version of the Working Draft. This could be a running example.

In order to illustrate the structure of aPNML Document, we give an examplePNML document 6.1.4.1
representing the Petri net shown in Fig. 5, which actually is a Place/Transition Net. Listing 1
shows the correspondingPNML Document. It is a straight-forward translation, where there are
labels for the names of objects, for the initial markings, and for arc annotation.

Note that a tool would typically display the initial marking as a textual label. But, we assume 6.1.4.2

(c) ISO/IEC 2005 - All rights reserved 22

ISO/IEC WD 15909-2:2005(E)

2ready

10 20 30 40 50 60

10

20

y

x

Figure 5: A simple Place/Transition Net

that this net is viewed by an imaginary toolPN4all; in the PNML Document, this tool has
added some tool specific information in the annotation for the initial marking. We assume that
the imaginary tool interprets its own tool specific information in such a way that it shows the
tokens at individual positions as given in the elements<tokenposition>

Since there is no information on the dimensions in this example (in order to fit the listing to a 6.1.4.3
single page), the tool has chosen its default dimensions for the place and the transition.

Editor’s note 6.10: In Part 1 there were no pages and reference nodes. In order to use
the semantics of Part 1, we give a ‘semantics’ of net with pages of reference in
terms of a net without. This could be done by simply flattening the net: Omit pages
and merge all reference nodes to the node they refer to (by omitting the labels of
the reference nodes). This way, one gets a net with Places, Transitions and Arcs
only. The details can be taken from [13]. Is it necessary to talk about this in Part 2
of this standard?

6.2 PNML Documents for particular Petri Net Types

Based on thePNML Core Model of Clause 5.2, Clauses 5.3.1 and 5.3.2 define the concepts of 6.2.0.4
two particular Petri net types, which restrictPNML Documents to the particular labels defined
in the corresponding packages.

These packages define the labels that can or must be used in the particular Petri net. Here, 6.2.0.5
we will show how to map such a package to the correspondingXML syntax. This mapping is
the same for all type definitions. We will explain this mapping by the help of the example of
Place/Transition Nets (see Fig. 3 and thePNML Document in Listing 1).

The PT-Net package defines three kinds of labels that can be used in a Place/Transition Net: 6.2.0.6
Names, PTMarkings, and PTAnnotations. Every Net and each Node must have one Annota-
tion Name, each Place must have one Annotation PTMarking, and each Arc must have one
Annotation PTAnnotation. This is indicated by the compositions in theUML diagram.

TheXML syntax for these labels is derived from the roles of these compositions. For example, 6.2.0.7
an Annotation Name is mapped to anXML element<name>, an Annotation PTMarking is
mapped to anXML element<initialMarking> , and an Annotation PTAnnotation will be
mapped to an element<inscription> (see Listing 1).

Since all Labels in this package are derived from Annotation, all graphical elements defined for 6.2.0.8
Annotations may occur as children in these elements.

In the PT-System package each label is defined to have a<text > element, which defines the 6.2.0.9

(c) ISO/IEC 2005 - All rights reserved 23

ISO/IEC WD 15909-2:2005(E)

Listing 1: PNML code of the example net in Fig. 5

<pnml xmlns= "http://www.example.org/pnml" >
<net id= "n1" type= "http://www.example.org/pnml/PTNet" >
<page id= "top-level" >
<name>

5 <text >An example P/T-net</text >
</name>
<place id= "p1" >

<graphics >
<position x="20" y="20" />

10 </graphics >
<name>

<text >ready</text >
<graphics >

<offset x="-10" y="-8" />
15 </graphics >

</name>
<initialMarking>

<text >3</text >
<toolspecific tool= "PN4all" version= "0.1" >

20 <tokenposition x= "-2" y="-2" />
<tokenposition x= "2" y="0" />
<tokenposition x= "-2" y="2" />

</toolspecific >
</initialMarking>

25 </place >
<transition id= "t1" >

<graphics >
<position x="60" y="20" />

</graphics >
30 </transition >

<arc id= "a1" source= "p1" target= "t1" >
<graphics >

<position x="30" y="5" />
<position x="60" y="5" />

35 </graphics >
<inscription>

<text >2</text >
<graphics >

<offset x="15" y="-2" />
40 </graphics >

</inscription>
</arc >

</page >
</net >

45 </pnml >

(c) ISO/IEC 2005 - All rights reserved 24

ISO/IEC WD 15909-2:2005(E)

actual content of this Annotation. For Place/Transition Net we do not need the structured ele-
ment.

The corresponding classes define theXML content of the<text > element. 6.2.0.10

Editor’s note 6.11: This should give the basic idea of this mapping. The same principle
works for other type packages.

I will finish this later.

6.3 External Definitions (XML , XMLSchema, and MathML)

Editor’s note 6.12: Here we must define the syntax of all classes prefixed with XML::,
XMLSchema::, MathML::

For XML and XMLSchema, this is obvious. For MathML expressions this is more
involved.

Editor’s note 6.13: Some open issues:

• When combining different packages for different types, there might be name
clashes. These name clashes could be resolved by using namespaces. Since
this does not occur with the packages defined in Part 2, we did not mention
this. But, there should be at least a comment, how this problem will be solved.

A RELAX NG Grammar for PNML (normative)

This Annex gives a complete definition of thePNML Core Model and itsXML format in terms
of a RELAX NG grammar. We start with a definition of basicPNML (i.e. PNML without pages)
and then give the extensions for structuredPNML (i.e PNML with pages).

Note that it is not the RELAX NG grammar that is defined here. It is the legalPNML Documents
defined by this grammar that is normative.

Note that some syntactical restrictions of thePNML Core Model cannot be expressed inRE-
LAX NG . Still, these restrictions expressed in thePNML Core Model are mandatory for valid
PNML Documents.

(c) ISO/IEC 2005 - All rights reserved 25

ISO/IEC WD 15909-2:2005(E)

Editor’s note A.1: The RELAX NG grammars are adopted from an earlier version.
They do not yet reflect the changes proposed at the Helsinki meeting (top-level
page). Actually, there should be single a grammar, since we do not distinguish
basicPNML Documents anymore.

I need support from Michael Weber for doing that.

Editor’s note A.2: If there is a proposal in some other technology that precisely defines
the mapping ofUML Meta Models (packages) toXML , I would be happy to use
that technology.

I included the RELAX NG grammar because it is the only technical definition of
PNML Documents that we have right now.

A.1 RELAX NG Grammar for Basic PNML (without pages)

<?xml version= "1.0" encoding= "UTF-8" ?>

<grammar xmlns= "http://relaxng.org/ns/structure/1.0"
xmlns:a= "http://relaxng.org/ns/compatibility/annotations/1.0"

5 datatypeLibrary= "http://www.w3.org/2001/XMLSchema-datatypes" >

<a:documentation>
Petri Net Markup Language schema
RELAX NG implementation of basic PNML

10 version: 1.3.2b
according to the paper by Billington et al
(c) 2001-2004

Michael Weber (mweber@informatik.hu-berlin.de),
Ekkart Kindler,

15 Christian Stehno (for the graphical elements)
</a:documentation>

<start >
<ref name="pnml.element" />

20 </start >

<define name="pnml.element" >
<element name="pnml" >

<a:documentation>
25 A PNML document consists of one or more Petri nets.

</a:documentation>
<oneOrMore >

<ref name="pnml.content" />
</oneOrMore >

30 </element >
</define >

(c) ISO/IEC 2005 - All rights reserved 26

ISO/IEC WD 15909-2:2005(E)

<define name="pnml.content" >
<ref name="net.element" />

35 </define >

<define name="net.element" >
<element name="net" >

<a:documentation>
40 A net has a unique identifier (id) and refers to

its Petri Net Type Definition (PNTD) (type).
</a:documentation>
<attribute name="id" >

<data type= "ID" />
45 </attribute >

<attribute name="type" >
<ref name="nettype.uri" />

</attribute >
<a:documentation>

50 The sub-elements of a net may occur in any order.
A net consists of several net labels (net.labels), several
objects (net.content), tools specific information, and a set of
graphical information in any order.

</a:documentation>
55 <interleave >

<ref name="net.labels" />
<zeroOrMore >

<ref name="net.content" />
</zeroOrMore >

60 <zeroOrMore >
<ref name="toolspecific.element" />

</zeroOrMore >
<optional >

<element name="graphics" >
65 <ref name="netgraphics.content" />

</element >
</optional >

</interleave >
</element >

70 </define >

<define name="nettype.uri" >
<a:documentation>

The net type (nettype.uri) of a net should be redefined in a PNTD.
75 </a:documentation>

<data type= "anyURI" />
</define >

<define name="net.labels" >
80 <a:documentation>

(c) ISO/IEC 2005 - All rights reserved 27

ISO/IEC WD 15909-2:2005(E)

A net may have unspecified many labels. This pattern should be used
within a PNTD to define the net labels.

</a:documentation>
<empty />

85 </define >

<define name="net.content" >
<a:documentation>

A net object is either a place, or a transition, or an arc.
90 </a:documentation>

<choice >
<element name="place" >

<ref name="place.content" />
</element >

95 <element name="transition" >
<ref name="transition.content" />

</element >
<element name="arc" >

<ref name="arc.content" />
100 </element >

</choice >
</define >

<define name="place.content" >
105 <a:documentation>

A place may have several labels (place.labels) and the same content
as a node.

</a:documentation>
<interleave >

110 <ref name="place.labels" />
<ref name="node.content" />

</interleave >
</define >

115 <define name="place.labels" >
<a:documentation>

A place may have unspecified many labels. This pattern should be used
within a PNTD to define the place labels.

</a:documentation>
120 <empty />

</define >

<define name="transition.content" >
<a:documentation>

125 A transition may have several labels (transition.labels) and the same
content as a node.

</a:documentation>
<interleave >

<ref name="transition.labels" />

(c) ISO/IEC 2005 - All rights reserved 28

ISO/IEC WD 15909-2:2005(E)

130 <ref name="node.content" />
</interleave >

</define >

<define name="transition.labels" >
135 <a:documentation>

A transition may have unspecified many labels. This pattern should be
used within a PNTD to define the transition labels.

</a:documentation>
<empty />

140 </define >

<define name="node.content" >
<a:documentation>

A node has a unique identifier.
145 </a:documentation>

<attribute name="id" >
<data type= "ID" />

</attribute >
<interleave >

150 <a:documentation>
The sub-elements of a node occur in any order.
A node may consist of grahical and tool specific information.

</a:documentation>
<optional >

155 <element name="graphics" >
<ref name="nodegraphics.content" />

</element >
</optional >
<zeroOrMore >

160 <ref name="toolspecific.element" />
</zeroOrMore >

</interleave >
</define >

165 <define name="arc.content" >
<a:documentation>

An arc has a unique identifier (id) and
refers both to the node ’s id of its source and
the node’ s id of its target.

170 In general, if the source attribute refers to a place,
then the target attribute refers to a transition and vice versa.

</a:documentation>
<attribute name="id" >

<data type= "ID" />
175 </attribute >

<attribute name="source" >
<data type= "IDREF" />

</attribute >

(c) ISO/IEC 2005 - All rights reserved 29

ISO/IEC WD 15909-2:2005(E)

<attribute name="target" >
180 <data type= "IDREF" />

</attribute >
<a:documentation>

The sub-elements of an arc may occur in any order.
An arc may have several labels. Furthermore, an arc may consist of

185 grahical and tool specific information.
</a:documentation>
<interleave >

<ref name="arc.labels" />
<optional >

190 <element name="graphics" >
<ref name="edgegraphics.content" />

</element >
</optional >
<zeroOrMore >

195 <ref name="toolspecific.element" />
</zeroOrMore >

</interleave >
</define >

200 <define name="arc.labels" >
<a:documentation>

An arc may have unspecified many labels. This pattern should be used
within a PNTD to define the arc labels.

</a:documentation>
205 <empty />

</define >

<define name="netgraphics.content" >
<a:documentation>

210 Currently, there is no content of the graphics element of net defined.
</a:documentation>
<empty />

</define >

215 <define name="nodegraphics.content" >
<a:documentation>

The sub-elements of a node ’s graphical part occur in any order.
At least, there must be exactly one position element.
Furthermore, there may be a dimension, a fill, and a line element.

220 </a:documentation>
<interleave>

<ref name="position.element"/>
<optional>

<ref name="dimension.element"/>
225 </optional>

<optional>
<ref name="fill.element"/>

(c) ISO/IEC 2005 - All rights reserved 30

ISO/IEC WD 15909-2:2005(E)

</optional>
<optional>

230 <ref name="line.element"/>
</optional>

</interleave>
</define>

235 <define name="edgegraphics.content">
<a:documentation>

The sub-elements of an arc’ s graphical part occur in any order.
There may be zero or more position elements.
Furthermore, there may be a fill and a line element.

240 </a:documentation>
<interleave >

<zeroOrMore >
<ref name="position.element" />

</zeroOrMore >
245 <! --

<optional >
<ref name="fill.element"/>
</ optional >

-- >
250 <optional >

<ref name="line.element" />
</optional >

</interleave >
</define >

255

<define name="annotationgraphics.content" >
<a:documentation>

An annotation ’s graphics part requires an offset element describing
the offset the lower left point of the surrounding text box has to

260 the reference point of the net object on which the annotation occurs.
Furthermore, an annotation’ s graphic element may have a fill, a line,
and font element.

</a:documentation>
<ref name="offset.element" />

265 <optional >
<ref name="fill.element" />

</optional >
<optional >

<ref name="line.element" />
270 </optional >

<optional >
<ref name="font.element" />

</optional >
</define >

275

<define name="position.element" >

(c) ISO/IEC 2005 - All rights reserved 31

ISO/IEC WD 15909-2:2005(E)

<a:documentation>
A position element describes a Cartesian coordinate.

</a:documentation>
280 <element name="position" >

<ref name="coordinate.attributes" />
</element >

</define >

285 <define name="offset.element" >
<a:documentation>

An offset element describes a Cartesian coordinate.
</a:documentation>
<element name="offset" >

290 <ref name="coordinate.attributes" />
</element >

</define >

<define name="coordinate.attributes" >
295 <a:documentation>

The coordinates are decimal numbers and refer to an appropriate
xy-system where the x-axis runs from left to right and the y-axis
from top to bottom.

</a:documentation>
300 <attribute name="x" >

<data type= "decimal" />
</attribute >
<attribute name="y" >

<data type= "decimal" />
305 </attribute >

</define >

<define name="dimension.element" >
<a:documentation>

310 A dimension element describes the width (x coordinate) and height
(y coordinate) of a node.
The coordinates are actually positive decimals.

</a:documentation>
<element name="dimension" >

315 <attribute name="x" >
<data type= "decimal" />

</attribute >
<attribute name="y" >

<data type= "decimal" />
320 </attribute >

</element >
</define >

<define name="fill.element" >
325 <a:documentation>

(c) ISO/IEC 2005 - All rights reserved 32

ISO/IEC WD 15909-2:2005(E)

A fill element describes the interior colour, the gradient colour,
and the gradient rotation between the colours of an object. If an
image is available the other attributes are ignored.

</a:documentation>
330 <element name="fill" >

<optional >
<attribute name="color" >

<ref name="color.type" />
</attribute >

335 </optional >
<optional >

<attribute name="gradient-color" >
<ref name="color.type" />

</attribute >
340 </optional >

<optional >
<attribute name="gradient-rotation" >

<choice >
<value >vertical</value >

345 <value >horizontal</value >
<value >diagonal</value >

</choice >
</attribute >

</optional >
350 <optional >

<attribute name="image" >
<data type= "anyURI" />

</attribute >
</optional >

355 </element >
</define >

<define name="line.element" >
<a:documentation>

360 A line element describes the shape, the colour, the width, and the
style of an object.

</a:documentation>
<element name="line" >

<optional >
365 <attribute name="shape" >

<choice >
<value >line</value >
<value >curve</value >

</choice >
370 </attribute >

</optional >
<optional >

<attribute name="color" >
<ref name="color.type" />

(c) ISO/IEC 2005 - All rights reserved 33

ISO/IEC WD 15909-2:2005(E)

375 </attribute >
</optional >
<optional >

<attribute name="width" >
<data type= "decimal" /> <! -- actually , positive decimal -- >

380 </attribute >
</optional >
<optional >

<attribute name="style" >
<choice >

385 <value >solid</value >
<value >dash</value >
<value >dot</value >

</choice >
</attribute >

390 </optional >
</element >

</define >

<define name="color.type" >
395 <a:documentation>

This describes the type of a color attribute. Actually, this comes
from the CSS2 data type system.

</a:documentation>
<text />

400 </define >

<define name="font.element" >
<a:documentation>

A font element describes several font attributes, the decoration,
405 the alignment, and the rotation angle of an annotation ’s text.

The font attributes (family, style, weight, size) should be conform
to the CSS2 data type system.

</a:documentation>
<element name="font">

410 <optional>
<attribute name="family">

<text/> <!-- actually, CSS2-font-family -->
</attribute>

</optional>
415 <optional>

<attribute name="style">
<text/> <!-- actually, CSS2-font-style -->

</attribute>
</optional>

420 <optional>
<attribute name="weight">

<text/> <!-- actually, CSS2-font-weight -->
</attribute>

(c) ISO/IEC 2005 - All rights reserved 34

ISO/IEC WD 15909-2:2005(E)

</optional>
425 <optional>

<attribute name="size">
<text/> <!-- actually, CSS2-font-size -->

</attribute>
</optional>

430 <optional>
<attribute name="decoration">

<choice>
<value>underline</value>
<value>overline</value>

435 <value>line-through</value>
</choice>

</attribute>
</optional>
<optional>

440 <attribute name="align">
<choice>

<value>left</value>
<value>center</value>
<value>right</value>

445 </choice>
</attribute>

</optional>
<optional>

<attribute name="rotation">
450 <data type="decimal"/>

</attribute>
</optional>

</element>
</define>

455

<define name="toolspecific.element">
<a:documentation>

The tool specific information refers to a tool and its version.
The further substructure is up to the tool.

460 </a:documentation>
<element name="toolspecific">

<attribute name="tool">
<text/>

</attribute>
465 <attribute name="version">

<text/>
</attribute>
<ref name="anyElement"/>

</element>
470 </define>

<define name="anyElement">

(c) ISO/IEC 2005 - All rights reserved 35

ISO/IEC WD 15909-2:2005(E)

<element>
<anyName>

475 <except>
<nsName/>

</except>
</anyName>
<zeroOrMore>

480 <choice>
<attribute>

<anyName/>
</attribute>
<text/>

485 <ref name="anyElement"/>
</choice>

</zeroOrMore>
</element>

</define>
490 </grammar>

A.2 RELAX NG Grammar for Structured PNML (with pages)

<?xml version= "1.0" encoding= "UTF-8" ?>

<grammar xmlns= "http://relaxng.org/ns/structure/1.0"
xmlns:a= "http://relaxng.org/ns/compatibility/annotations/1.0"

5 datatypeLibrary= "http://www.w3.org/2001/XMLSchema-datatypes" >

<a:documentation>
Petri Net Markup Language schema
RELAX NG implementation of structured PNML

10 version: 1.3.2c
according to the paper by Billington et al
(c) 2001-2004

Michael Weber, mweber@informatik.hu-berlin.de
Ekkart Kindler

15 </a:documentation>

<include href= "basicPNML.rng" />

<define name="net.content" combine= "choice" >
20 <a:documentation>

Now, a net object is additionally a page, a reference place, or
a reference transition.

</a:documentation>
<choice >

25 <element name="page" >
<ref name="page.content" />

</element >
<element name="referencePlace" >

(c) ISO/IEC 2005 - All rights reserved 36

ISO/IEC WD 15909-2:2005(E)

<ref name="refplace.content" />
30 </element >

<element name="referenceTransition" >
<ref name="reftrans.content" />

</element >
</choice >

35 </define >

<define name="page.content" >
<a:documentation>

A page has a unique identifier (id). It consists of several objects
40 (the same as for a net), tool specific information, and graphical

information.
</a:documentation>
<attribute name="id" >

<data type= "ID" />
45 </attribute >

<interleave >
<zeroOrMore >

<ref name="net.content" />
</zeroOrMore >

50 <zeroOrMore >
<ref name="toolspecific.element" />

</zeroOrMore >
<optional >

<element name="graphics" >
55 <ref name="pagegraphics.content" />

</element >
</optional >

</interleave >
</define >

60

<define name="reference" >
<a:documentation>

Here, we define the attribute ref including its data type.
Modular PNML will extend this definition in order to change

65 the behavior of references to export nodes of module instances.
</a:documentation>
<attribute name="ref" >

<data type= "IDREF" />
</attribute >

70 </define >

<define name="refplace.content" >
<a:documentation>

A reference place is a reference node.
75 </a:documentation>

<a:documentation>
Validating instruction:

(c) ISO/IEC 2005 - All rights reserved 37

ISO/IEC WD 15909-2:2005(E)

- _ref_ MUST refer to _id_ of a reference place or of a place.
- _ref_ MUST NOT refer to _id_ of its reference place element.

80 - _ref_ MUST NOT refer to a cycle of reference places.
</a:documentation>
<ref name="refnode.content" />

</define >

85 <define name="reftrans.content" >
<a:documentation>

A reference transition is a reference node.
</a:documentation>
<a:documentation>

90 Validating instruction:
- The reference (ref) MUST refer to a reference transition or to a

transition.
- The reference (ref) MUST NOT refer to the identifier (id) of its

reference transition element.
95 - The reference (ref) MUST NOT refer to a cycle of reference transitions.

</a:documentation>
<ref name="refnode.content" />

</define >

100 <define name="refnode.content" >
<a:documentation>

A reference node has the same content as a node.
It adds a reference (ref) to a (reference) node.

</a:documentation>
105 <ref name="node.content" />

<ref name="reference" />
</define >

<define name="pagegraphics.content" >
110 <a:documentation>

Currently, there is no content of the graphics element of page defined.
</a:documentation>
<empty />

</define >
115 </grammar >

Editor’s note A.3: It appears that pages do not have names according to this definition.
I think, we agreed that pages could have names. This must be checked.

Editor’s note A.4: There is a TeXnical Problem with italics in comments in combina-
tion with quotes. This needs some polishing.

(c) ISO/IEC 2005 - All rights reserved 38

ISO/IEC WD 15909-2:2005(E)

B RELAX NG Grammars for special types (normative)

B.1 Place/Transition Nets

B.1.1 The labels for P/T Nets

First, there is a definition of the labels of P/T Nets

<?xml version= "1.0" encoding= "UTF-8" ?>

<!DOCTYPE grammar PUBLIC "-//thaiopensource//DTD RNG 20010705//EN" "" >

5 <grammar xmlns= "http://relaxng.org/ns/structure/1.0"
xmlns:a= "http://relaxng.org/ns/compatibility/annotations/1.0" >

<a:documentation>
Conventions Document (conv.rng)

10 RELAX NG implementation
version: 0.1 (2003-06-18)
(c) 2003

Michael Weber, mweber@informatik.hu-berlin.de
</a:documentation>

15

<a:documentation>
First, we define several short cuts for label definitions. They are
used for simple data or if the label data are not really specified.
The usage of these short cuts is documented at the end of this file.

20 Furthermore, these short cuts also can be used if the rest of the
Conventions Document is ignored.

</a:documentation>

<define name="attribute.content" >
25 <a:documentation>

The definition attribute.content describes the content of a
simple text label without graphics (i.e. attribute to net objects).
It can be used as a schema for those labels.

</a:documentation>
30 <optional >

<element name="text" >
<a:documentation>

A text label may have a value;
if not, then there must be a default.

35 </a:documentation>
<text />

</element >
</optional >

</define >
40

<define name="annotationstandard.content" >

(c) ISO/IEC 2005 - All rights reserved 39

ISO/IEC WD 15909-2:2005(E)

<a:documentation>
The definition annotationstandard.content describes the
standard stuff of an annotation.

45 Each annotation may have graphical or tool specific information.
</a:documentation>
<optional >
<element name="graphics" >
<ref name="annotationgraphics.content" />

50 </element >
</optional >
<zeroOrMore >
<ref name="toolspecific.element" />

</zeroOrMore >
55 </define >

<define name="simpletextlabel.content" >
<a:documentation>

A simple text label is an annotation to a net object containing
60 unspecified text.

Its sub-elements occur in any order.
A simple text label behaves like an attribute to a net object.
Furthermore, it contains the standard annotation content.

</a:documentation>
65 <interleave >

<ref name="attribute.content" />
<ref name="annotationstandard.content" />

</interleave >
</define >

70

<define name="nonnegativeintegerlabel.content" >
<a:documentation>

A non negative integer label is an annotation with a natural
number as its value.

75 Its sub-elements occur in any order.
It contains the standard annotation content.

</a:documentation>
<interleave >
<element name="text" >

80 <data type= "nonNegativeInteger"
datatypeLibrary= "http://www.w3.org/2001/XMLSchema-datatypes" />

</element >
<ref name="annotationstandard.content" />

</interleave >
85 </define >

<define name="complexlabel.content" >
<a:documentation>

A complex label is a sub-structured annotation to a net object.
90 The definition complexlabel.content can be used as a general

(c) ISO/IEC 2005 - All rights reserved 40

ISO/IEC WD 15909-2:2005(E)

schema for those labels.
A complex label is at least a simple text label. It may further
contain XML structured data. The subelement text contains the
string representation of the structured data.

95 </a:documentation>
<interleave >
<ref name="attribute.content" />
<optional >
<element name="structure" >

100 <ref name="anyElement" />
</element >

</optional >
<ref name="annotationstandard.content" />

</interleave >
105 </define >

<! -- The following definitions are the Conventions Document’s
label definitions -->

110 <define name="Name">
<a:documentation>

Label definition for a user given identifier of an element describing
its meaning.
<contributed>Michael Weber</contributed>

115 <date>2003-06-16</date>
</a:documentation>
<element name="name">
<ref name="simpletextlabel.content"/>

</element>
120 </define>

<define name="PTMarking">
<a:documentation>

Label definition for initial marking in nets like P/T-nets.
125 <contributed>Michael Weber</contributed>

<date>2003-06-16</date>
<reference>
W. Reisig: Place/transition systems. In: LNCS 254. 1987.

</reference>
130 </a:documentation>

<element name="initialMarking">
<ref name="nonnegativeintegerlabel.content"/>

</element>
</define>

135

<define name="PTArcInscription">
<a:documentation>

Label definition for arc inscriptions in nets like P/T-nets.
<contributed>Michael Weber</contributed>

(c) ISO/IEC 2005 - All rights reserved 41

ISO/IEC WD 15909-2:2005(E)

140 <date>2003-06-16</date>
<reference>
W. Reisig: Place/transition systems. In: LNCS 254. 1987.

</reference>
</a:documentation>

145 <element name="inscription">
<ref name="nonnegativeintegerlabel.content"/>

</element>
</define>

150 </grammar>

B.1.2 The Grammar for P/T Nets

<?xml version= "1.0" encoding= "UTF-8" ?>

<grammar ns="http://www.informatik.hu-berlin.de/top/pnml/ptNetb"
xmlns= "http://relaxng.org/ns/structure/1.0"

5 xmlns:a= "http://relaxng.org/ns/compatibility/annotations/1.0" >

<a:documentation>
Petri Net Type Definition for Place/Transition nets (bases on basic PNML)
RELAX NG implementation of ptNetb.pntd

10 version: 1.0
(c) 2001-2003

Michael Weber, mweber@informatik.hu-berlin.de
</a:documentation>

15 <a:documentation>
We include PNML with the correct URI for our Petri Net Type Definition.

</a:documentation>
<include href= "http://www.informatik.hu-berlin.de/top/pnml/basicPNML.rng" >
<define name="nettype.uri" combine= "choice" >

20 <a:documentation>
We define the net type URI declaring the namespace of this
Petri net type definition.

</a:documentation>
<value >http://www.informatik.hu-berlin.de/top/pntd/ptNetb</value >

25 </define >
</include >

<a:documentation>
All labels of this Petri net type come from the Conventions Document.

30 </a:documentation>
<include href= "http://www.informatik.hu-berlin.de/top/pnml/conv.rng" />

<define name="net.labels" combine= "interleave" >
<a:documentation>

(c) ISO/IEC 2005 - All rights reserved 42

ISO/IEC WD 15909-2:2005(E)

35 A P/T net may have a name.
</a:documentation>
<optional ><ref name="Name" /></optional >

</define >

40 <define name="place.labels" combine= "interleave" >
<a:documentation>

A place of a P/T net may have a name and an initial marking.
</a:documentation>
<interleave >

45 <optional ><ref name="PTMarking" /></optional >
<optional ><ref name="Name" /></optional >

</interleave >
</define >

50 <define name="transition.labels" combine= "interleave" >
<a:documentation>

A transition of a P/T net may have a name.
</a:documentation>
<optional ><ref name="Name" /></optional >

55 </define >

<define name="arc.labels" combine= "interleave" >
<a:documentation>

An arc of a P/T net may have an inscription.
60 </a:documentation>

<optional ><ref name="PTArcInscription" /></optional >
</define >

</grammar >

Editor’s note B.1: There seems to be a slight difference between the Type Model of
Place/Transition Nets as defined in Clause 5.3.1. For example, there can be Arc
Annotations with value 0 according to theRELAX NG PNTD, which is not possible
in the Meta Model.

This needs to be checked and corrected.

B.2 HLPNGs

Editor’s note B.2: This is not yet theRELAX NG grammar for HLPNGs! The reason is
that we did not work out the details on how to include MathML (in RELAX NG or
any other technology).

(c) ISO/IEC 2005 - All rights reserved 43

ISO/IEC WD 15909-2:2005(E)

C Transformation to SVG (non-normative)

Editor’s note C.1: In order to define the graphical appearance of a PNML Document,
this Annex introduces transformation to SVG. Whether this should be part of the
Standard (normative or non-normative) needs to be discussed.

The text here was taken from an earlier version of this Standard.

In order to give a precise definition of the graphical presentation of aPNML document with C.0.0.1
all its graphical features, we define a translation toSVG. Petri net tools that supportPNML can
visualize Petri nets using other means thanSVG, but theSVG translation can act as a refer-
ence model for such visualizations. Technically, this translation is done by means of anXSLT
stylesheet. The basic idea of this transformation was already presented in. A completeXSLT
stylesheet can be found on thePNML web pages.

Editor’s note C.2: The transformations still need some polishing; then they could go to
the Appendix (normative or non-normative)

Transformations of basicPNML . The overall idea of the translation fromPNML to SVG is to C.0.0.2
transform eachPNML object to someSVGobject, where the attributes of thePNML element and
its child elements are used to give theSVG element the intended graphical appearance.

As expected, a place is transformed into an ellipse, while a transition is transformed into a C.0.0.3
rectangle. Their position and size are calculated from the<position > and <dimension >

elements. Likewise, the other graphical attributes from<fill > and <line > can be easily
transformed to the correspondingSVG attributes.

An annotation is transformed toSVG text such asname: someplace . The location of this text C.0.0.4
is automatically computed from the attributes in<offset > and the position of the correspond-
ing object. For an arc, this reference position is the center of the first line segment. If there
is no <offset > element, the transformation uses some default value, while trying to avoid
overlapping.

An arc is transformed into aSVG path from the source node to the target node – possibly via C.0.0.5
some intermediate points – with the corresponding attributes for its shape. The start and end
points of a path may be decorated with some graphical object corresponding to the nature of the
arc (e.g. inhibitor). The standard transformation supports arrow heads as decorations at the end,
only. The arrow head (or another decoration) should be exactly aligned with the corresponding
node. This requires computations using complex operations that are neither available inXSLT
nor in SVG – the current transformation uses recursive approximation instead.

Transformations for structured PNML . Different pages of a net should be written to different C.0.0.6
SVG files sinceSVG does not support multi-image files. Unfortunately,XSLT does not support
output to different files yet, butXSLT 2.0 will. Hence, a transformation of structuredPNML to
SVG will be supported onceXSLT 2.0 is available.

(c) ISO/IEC 2005 - All rights reserved 44

ISO/IEC WD 15909-2:2005(E)

The transformations for reference places and reference transitions are similar to those for places C.0.0.7
and transitions. In order to distinguish reference nodes from other nodes, reference nodes are
drawn slightly translucent and an additional label gives the name of the referenced object.

Editor’s note C.3: A concrete XSLT transformation could be contributed by Christian
Stehno.

D API Framework for Petri Net type Meta-models (non-normative)

Editor’s note D.1: This is a verbatim copy of an AFNOR proposal; there was no time
adapting its layout, and spelling etc. to the standard. This will be polished in the
next version.

D.1 Introduction

A software framework is proposed to tools developers along with this International Standard
with the following purposes :

• Making this International Standard applicable . Indeed, PNML transfer format has
been designed to enable easy interchange of many variants of Petri nets between Petri
net tools. Therefore, interoperability will be made possible by compatibility between the
main Petri nets types and by their extensibility to other variants.

• Easing this International Standard applicability by providing tools designers with im-
mediate low-cost integration of PNML to their applications and thus making their con-
vergence to this Standard homogeneously through the proposed framework. Such an ap-
proach will ensure tools compatibility with this Standard without having to perform the
tedious and costly work of dealing with whatever version of PNML. In fact, designing a
program to load/save Petri net models according to the Standard could be an error-prone
task and may lead to compliance problems.

• Providing tools developers with standard APIsto manipulate Petri net models. These
APIs are automatically generated from the corresponding Petri net type meta-model.
They also have to be multi-platform.

• Enabling Petri nets tools designers to add their own extensionsto the main Petri nets
types defined by this Standard while keeping some level of conformance. This is achieved
by providing tools designers with guidelines to make these extensions. Consequently the
generated APIs will adapt to these extensions.

(c) ISO/IEC 2005 - All rights reserved 45

ISO/IEC WD 15909-2:2005(E)

The proposed object-oriented framework has been built by means of model engineering tech-
niques, thanks to OMG’s Model Driven Architecture (MDA) approach guidelines [?] and re-
lated technologies such as MOF [?] and its implementation through Eclipse Modelling Frame-
work [?].

In the following, we first describe the methodology to build the standard APIs from each main
Petri net type meta-model, then we show an example API usage in the example context of a
specific Petri net modelling tool such as CPN-AMI [?]. This step helps taking a tool developer
point of view, regarding the API use, in order to estimate the work required from him/her.
Finally, we provide the main guidelines to build extensions to the Petri net type meta-models
and show an example.

D.2 Methodology

D.2.1 Overview

The API framework has been designed following a three-level structuring approach:

1. First of all, aPetri Net Core Metamodel(PNCM) has been created. It is based on PNML
Core Model and Place/Transition System Type Model defined by this Standard. Thus, it
is minimal for P/T nets. This metamodel represents the modelling process starting point.
It means that from the PNCM, a hierarchical classification allows for structuring the main
Petri Net type Models defined by this Standard and through its future versions. Each
main Petri Net Type Model represents a significant Petri net family (e.g, P/T Systems,
High-Level Petri Nets, etc.) which could contain many variants (e.g., P/T Systems with
capacity, Timed Petri nets with priorities, etc.), thus meeting the extensibility goal. From
this Standard point of view, the classification approach roughly corresponds to the rela-
tionship between the Petri Net type Metamodels packages, symbolically represented by
the UML mergeconcept.

2. From a given Petri Net Type Metamodel,a tailored API is automatically generatedto ma-
nipulate models structured by the given metamodel specification. Another programming
interface is generated to import/export the models from/into PNML documents, accord-
ing to the specified Petri Net Type Metamodel and its variants. This import/export API
uses the tailored one.

3. To start model manipulation (i.e., creation, modification, navigation to fetch information)
and having them eventually written in PNML or translated into a tool internal Petri net
representation, a client program is needed. Writing this client program should be done by
tools developers in order to perform the mapping between their own tool internal repre-
sentation and the information retrieved or injected into the models. At this stage, the only
requirement from tools developers is to know the specified Petri Net Type Metamodel el-
ements and their structuring relationships, in order to use the corresponding API to create
models and fetch information.

Figure 6 illustrates the three-level approach described above.

(c) ISO/IEC 2005 - All rights reserved 46

ISO/IEC WD 15909-2:2005(E)

Eclipse Modelling Framework
Meta-model (Ecore)

Petri Net Type Meta-model
(e.g., P/T Systems)

A Petri net model
(e.g., P/T model)

Is structured by

Is structured by

Is structured byMeta-metamodel
level (MOF)

Meta-model level

Model level

 EMF
Code generator

Tailored API

PNML API
Imports/
Exports

PNML
Document

Proprietary
Petri net
document
(e.g.: CAMI)

User’s tool
client program
(e.g.: CPN-AMI)

Imports/
ExportsUses

UsesUses

 PNML API
Code generator

Is created
 by

Figure 6: The production chain

In the following, the main Petri net Type Meta-models defined in this Standard will be intro-
duced, along with their designing process.

D.2.2 P/T System Type Meta-model

In this section,the P/T Systems Type meta-model is specified. Since it is an implementation
of the corresponding formal Type meta-model introduced in this Standard in clause 5.3, its
designing process is explained. Especially, when speaking of involved technologies such as
Eclipse Modelling Framework, model productivity is considered and consequently restrictions
are set on the formal Type meta-model, without any lost of requirements.

Note: More details to follow

D.2.3 HLPNG Type Meta-model

In this section,the HPLNGs Type meta-model is specified. The designing approach is the same
as for P/T Systems. Relationship between these two meta-models, when considering the UML
formal mergeconcept, will be explained. Some consideration about MathML will be intro-
duced.

Note: More details to follow

(c) ISO/IEC 2005 - All rights reserved 47

ISO/IEC WD 15909-2:2005(E)

D.3 Using the API framework

Code generation is the next step to the meta-models specification. For each meta-model, two
application programming interfaces (API) and their implementation are generated in Java pro-
gramming language. Their main functions are shown, along with their use. As said before in
the introductory section of this annex, a tool developer point of view is adopted in order to eval-
uate the low-cost integration of this Standard to an existing tool. CPN-AMI [?] and his internal
proprietary CAMI format will be taken as an example.

Note: More details to follow

D.4 Guidelines to extending Petri Net Type Meta-models

There are many variants of Petri nets, when considering each main Petri Net Type. This Stan-
dard has defined some of them, namely, P/T Systems and HLPNGs. However, tools developers
may need using these variants (e.g., P/T Systems with capacity, etc.) even if they are not yet
formally defined. Therefore, it would be interesting to have means to extend the provided meta-
models by the proposed framework in order to adapt the corresponding APIs while keeping
some level of conformance to the Standard. To meet this expectation somehow, guidelines are
provided to help tools developers to enhance the given meta-models. Following mostly these
guidelines ensures that the generated API will adapt to the extended meta-models.

Note: More details to follow

Note: More details to follow

Bibliography

[1] R. Bastide, J. Billington, E. Kindler, F. Kordon, and K. H. Mortensen, editors.Meeting on
XML/SGML based Interchange Formats for Petri Nets, Århus, Denmark, June 2000. 21st
ICATPN.

[2] F. Bause, P. Kemper, and P. Kritzinger. Abstract Petri net notation.Petri Net Newsletter,
49:9–27, October 1995.

[3] G. Berthelot, J. Vautherin, and G. Vidal-Naquet. A syntax for the description of Petri nets.
Petri Net Newsletter, 29:4–15, April 1988.

[4] Jonathan Billington, Søren Christensen, Kees van Hee, Ekkart Kindler, Olaf Kummer,
Laure Petrucci, Reinier Post, Christian Stehno, and Michael Weber. The Petri Net Markup
Language: Concepts, technology, and tools. In W. van der Aalst and E. Best, editors,
Application and Theory of Petri Nets 2003, 24th International Conference, volume 2679
of LNCS, pages 483–505. Springer, June 2003.

(c) ISO/IEC 2005 - All rights reserved 48

ISO/IEC WD 15909-2:2005(E)

[5] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs (ed.). Cascading Style Sheets, level 2 – CSS2
Specification. URLhttp://www.w3.org/TR/CSS2 , 1998.

[6] J. Clark. TREX – tree regular expressions for XML. URLhttp://www.
thaiopensource.com/trex/ . 2001/01/20.

[7] J. Clark and M. Murata (eds.). RELAX NG specification. URLhttp://www.
oasis-open.org/committees/relax-ng/ . 2001/12/03.

[8] J. Clark (eds.). XSL Transformations (XSLT) Version 1.0. URLhttp://www.w3.
org/TR/XSLT/xslt.html , 1999.

[9] J. Ferraiolo, F. Jun, and D. Jackson (eds.). Scalable Vector Graphics (SVG) 1.1 Specifica-
tion. URL http://www.w3.org/TR/SVG11/ , 2003.

[10] ISO/IEC/JTC1/SC7. Software Engineering - High-Level Petri Nets - Concepts, Defini-
tions and Graphical Notation. ISO/IEC 15909-1, December 2004.

[11] M. Jüngel, E. Kindler, and M. Weber. The Petri Net Markup Language.Petri Net Newslet-
ter, 59:24–29, 2000.

[12] M. Jüngel, E. Kindler, and M. Weber. The Petri Net Markup Language. In S. Philippi,
editor,7. Workshop Algorithmen und Werkzeuge für Petrinetze, pages 47–52, Universität
Koblenz-Landau, Germany, June 2000. AWPN. URLhttp://www.informatik.
hu-berlin.de/top/pnml/ .

[13] E. Kindler and M. Weber. A universal module concept for Petri nets. An implementation-
oriented approach. Informatik-Berichte 150, Humboldt-Universität zu Berlin, June 2001.

[14] A. M. Koelmans. PNIF language definition. Technical report, Computing Science Depart-
ment, University of Newcastle upon Tyne, UK, July 1995. version 2.2.

[15] F. Kordon and L. Petrucci. Structure of abstract syntax trees for coloured nets in PNML.
version 0.2 (draft), June 2004.

[16] R. B. Lyngsø and T. Mailund. Textual interchange format for high-level Petri nets. In
Proc. Workshop on Practical use of Coloured Petri Nets and Design/CPN, pages 47–63,
Department of Computer Science, University ofÅrhus, Denmark, 1998. PB-532.

[17] T. Mailund and K. H. Mortensen. Separation of style and content with XML in an inter-
change format for high-level Petri nets. In Bastide et al. [1], pages 7–11.

[18] Petri Net Markup Language. URLhttp://www.informatik.hu-berlin.de/
top/pnml/ . 2001/07/19.

[19] M. Sperberg-McQueen and H. Thompson (eds.). XML Schema. URLhttp://www.
w3.org/XML/Schema , April 2000. 2002-03-22.

[20] C. Stehno. Petri Net Markup Language: Implementation and Application. In J. Desel
and M. Weske, editors,Promise 2002, volume P-21 ofLecture Notes in Informatics, pages
18–30. Gesellschaft für Informatik, 2002.

(c) ISO/IEC 2005 - All rights reserved 49

ISO/IEC WD 15909-2:2005(E)

[21] O. Sy, M. Buffo, D. Buchs, F. Kordon, and R. Bastide. An experimental approach towards
theXML representation of Petri net models. Technical Report 2000/336,École Polytech-
nique F́ed́eral de Lausanne, Departement D’Informatique, June 2000.

[22] M. Weber and E. Kindler. The Petri Net Markup Language. In H. Ehrig, W. Reisig,
G. Rozenberg, and H. Weber, editors,Petri Net Technology for Communication Based
Systems, number 2472 in Lecture Notes in Computer Science, pages 124–144. Springer,
Berlin Heidelberg, 2003.

[23] G. Wheeler. A textual syntax for describing Petri nets. Foresee design document, Telecom
Australia Research Laboratories, 1993. version 2.

[24] World Wide Web Consortium (W3C) (ed.). Extensible Markup Language (XML). URL
http://www.w3.org/XML/ . 2000/10/06.

Editor’s note D.2: These references are very prelimary. The strong bias on my (E.K.)
own publications should be eliminated.

(c) ISO/IEC 2005 - All rights reserved 50

