
Realizing a Work�ow Engine with
the Event Coordination Notation

� A Case-study Evaluating the
Event Coordination Notation

Jesper Jepsen

Kongens Lyngby 2013

IMM-M.Sc.-2013-101

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc.-2013-101

Summary (English)

The Event Coordination Notation (ECNO) is a modelling notation for behaviour
modelling, and a technology for generating executable code from these models.
Until now, ECNO has only been demonstrated with small example projects.
That is our motivation to realize a relatively large application in ECNO. In par-
ticular, we have selected to implement a work�ow engine. The work�ow engine is
based on AMFIBIA, which is an aspect oriented meta-model for business process
models. In AMFIBIA, a so-called core is used to integrate the aspects of business
processes, such that no aspect is favoured over others. AMFIBIA demonstrated
their concepts in their own work�ow engine implementation. Some parts were
modelled, but other parts were programmed. A large part of the behaviour was
programmed. When we re-implement the ideas of AMFIBIA using ECNO, we
can model the most of the behaviour.

The result is a fully working work�ow engine, primarily generated from models,
demonstrating that ECNO can be used to develop larger applications. A GUI
demonstrates the functionality of the work�ow engine. We have generated a
simple tool for creating business processes that the engine can execute. Based
on our experiences from the development of the work�ow engine, we have eval-
uated the conceptual and technical aspects of the current release of ECNO. We
conclude overall, that the existing concepts (ECNO release 0.3.1) were su�-
cient for our purpose, except we had to work around minor issues. The most
signi�cant limitation was related to performance. The performance issues were
expected, but we have made the problems more concrete, and provided a test
application for new ECNO concepts.

ii

Summary (Danish)

Event Coordination Notation (ECNO) er en notation, og en teknologi, til mo-
dellering af funktionalitet i software systemer, og til kodegenerering fra disse
modeller. Indtil nu, er ECNO kun demonstreret med mindre eksempler. Dette
er vores motivation til at prøve med en større applikation i ECNO. Vi har valgt at
udvikle en såkaldt work�ow engine. Arkitekturen i vores work�ow engine baserer
sig på en aspektorienteret meta-model til modellering af forretningsprocesser,
ved navn AMFIBIA. I AMFIBIA bruges en såkaldt kerne til at integrere meta-
modeller til modeller af de forskellige aspekter af forretningsprocesser, således at
intet aspekt vægtes højere end de andre. Dette giver arkitekturmæssige fordele
når systemet skal udvides. AMFBIA har selv demonstreret deres koncepter i en
implementation, der er delvist genereret og delvist programmeret. I særdeles-
hed, er større dele af funktionaliteten programmeret. Vi vil gen-implementere
koncepterne fra AMFIBIA, men da vi bruger ECNO, kan vi modellere det meste
af funktionaliteten også.

Resultatet er en fuldt fungerende work�ow engine genereret fra modeller. En
gra�sk brugergrænse�ade demonstrerer, at vores work�ow engine virker. Vi har
genereret et værktøj, hvor brugeren kan de�nere modeller af forretningsproces-
ser, der senere kan afvikles (enactment) af vores work�ow engine. Baseret på
erfaringerne fra udviklingen af denne work�ow engine, har vi evalueret koncep-
terne, samt de tekniske aspekter, i den nuværende version af ECNO (0.3.1). Vi
konkluderer overordnet, at koncepterne var tilstrækkelige til vores formål, omend
vi måtte kompensere for mindre detaljer. Dog savnede vi koncepter til optime-
ring af responstid (performance). At responstiden ikke ville kunne optimeres
med denne version af ECNO var ventet, men vi har konkretiseret problemet og
stillet en testapplikation til rådighed, til afprøvning af fremtidige løsninger.

iv

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�lment of the require-
ments for acquiring an M.Sc. in Informatics.

The thesis has a workload of 35 ECTS points.

The indended audience are people with a background in software enginering and
software modelling (at M.Sc. level and above).

Lyngby, 06-September-2013

Jesper Jepsen

vi

Acknowledgements

I would like to thank my supervisor Ekkart Kindler for very valuable guidance
and advice - and for occasionally breaking his own rule of never repeating himself
more than three times.

In addition, I would like to thank Kenneth Geisshirt and Ste�en Larsen for
reading and commenting on my report.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Objectives . 3
1.3 Overview of Thesis . 4

2 Background 7
2.1 Business Process Management . 7
2.2 The aspects of Business Processes Modelling 10
2.3 Example 1: An Error Management Process 10

2.3.1 Background story . 10
2.3.2 Identi�cation of tasks . 11
2.3.3 Control Aspect . 11
2.3.4 Organisation Aspect . 11
2.3.5 Information Aspect . 12
2.3.6 Discussion . 13

2.4 AMFIBIA . 14
2.4.1 Motivation and Objectives 14
2.4.2 AMFIBIA Meta-Model 15
2.4.3 Aspect synchronisation 20

2.5 The Event Coordination Notation 21
2.5.1 A Simple Execution Engine 21

x CONTENTS

2.5.2 Summary and Advanced Concepts 28
2.6 Related Work . 31

2.6.1 Subject-Oriented Programming 31
2.6.2 Aspect-Oriented Programming 32
2.6.3 Process Algebra . 33

3 Project Scoping 35
3.1 Modelling-environment . 35

3.1.1 Objectives . 36
3.1.2 Limitations . 36

3.2 Enactment-environment . 36
3.2.1 Objectives . 36
3.2.2 Limitations . 37

3.3 Database integration (omitted) 37
3.3.1 Objectives . 37
3.3.2 Limitations . 37

4 Work�ow Engine 39
4.1 Patterns . 40

4.1.1 The �instance-of� stereotype 40
4.1.2 The �aspect-of� stereotype 42

4.2 Architectural overview . 42
4.3 Realizing the Core . 43

4.3.1 Structure of the static model 44
4.3.2 Structure of the dynamic model 46
4.3.3 Global behaviour . 47
4.3.4 Local behaviour . 49

4.4 Realizing the Control Aspect . 52
4.4.1 A formalism independent model 52
4.4.2 An implementation . 54

4.5 Realizing the Information Aspect 58
4.5.1 A formalism independent model 58
4.5.2 An implementation . 62

4.6 Realizing the Organisation Aspect 67
4.6.1 Analysis . 67
4.6.2 Model: Structure . 68
4.6.3 Model: Global behaviour 70
4.6.4 Model: Local behaviour 70

4.7 Discussion . 70
4.7.1 Task identity . 71
4.7.2 Selection of trigger elements in the core 71
4.7.3 Building data structures in actions 72
4.7.4 Duration of events . 72
4.7.5 Agents as core concept . 72

CONTENTS xi

4.7.6 Instantiation of activities 73

4.7.7 Instantiation of cases . 73

4.8 Summary . 74

5 Enactment GUI 75

5.1 ECNO's controller framework . 75

5.1.1 Element Event Controllers 76

5.1.2 Engine Controllers . 76

5.2 Maintaining GUI lists of interactions 77

5.3 ECNO Connectors . 77

5.4 The Enactment GUI . 78

5.5 Worklist Viewer . 78

5.5.1 The Inbox . 78

5.5.2 The Work In Progress . 80

5.6 Design and Implementation . 81

5.6.1 Design of Worklist Viewer 82

5.6.2 Performance optimization 84

5.6.3 Summary . 85

6 Implementation 87

6.1 Work�ow Engine - actual models 87

6.2 Process De�nition Tool and Runtime Information 88

6.2.1 EMF editors . 88

6.2.2 The goal . 89

6.2.3 The problems . 90

6.2.4 The solution . 90

6.3 The behaviour-state resource . 92

6.4 Development workspace . 93

6.4.1 Project Structure . 93

6.5 Summary . 95

7 Acceptance Testing 97

7.1 Example 2: An Online Book Purchase Process 98

7.2 Building the model . 100

7.3 Scenario testing . 100

7.3.1 Scenario 1 (case 1): Purchase which goes through 100

7.3.2 Scenario 2 (case 2): Book is unavailable 101

7.3.3 Scenario 3 (case 3): Credit card is rejected 101

7.3.4 Conclusion . 102

7.4 GUI testing . 106

7.4.1 Test results . 106

7.4.2 Conclusion . 106

xii CONTENTS

8 Evaluation 109
8.1 Evaluation of Work�ow Engine 109
8.2 Evaluation of ECNO . 113
8.3 Performance evaluation . 116

8.3.1 Performance of Start and Finish vs. number of cases . . . 117
8.3.2 Performance of Finish vs. number of sessions 119
8.3.3 Performance of Login vs. number of sessions 119

8.4 Summary . 120

9 Conclusion 121

Chapter 1

Introduction

�A programming language is low level when its programs require attention to
the irrelevant.� - Alan Perlis. Model-Driven Software Development, which deals
with software creation from models, has the potential to become the next step
up the abstraction ladder in software engineering, but it has not yet caught on
in the industry (for instance, refer to [15]). In fact, there are many di�culties
and challenges to resolve before software creation from models can become a
widely used alternative to programming (see [16]). One of these di�culties is
in how the behaviour of a system can be captured in models that integrate well
with the structural models [14].

In this thesis, we investigate a proposed notation and technology called the
Event Coordination Notation (ECNO) [1], which integrates behaviour mod-
els with structural models, and generates executable code from these models.
ECNO has already been proven to work with minor example projects, but ex-
periences from bigger software projects is still missing. We will take this step
and develop a relatively large application with ECNO. As an example, we have
chosen a work�ow engine. As we will elaborate on later, the choice of a work�ow
engine has reasons that relates to the history of ECNO.

2 Introduction

1.1 Motivation

When using software modelling, for instance, UML diagrams 1, in the devel-
opment process, developers can start out at a high level of abstraction and
ignore implementation and platform details. The focus can then be kept on the
more interesting parts such as domain concepts, business logic and use cases.
Furthermore, a graphical notation (as in UML) is often preferable over pure
code for discussions with customers, and for documentation purposes. However,
despite of models often being a good starting point, they require a signi�cant
e�ort to keep them synchronized with the code base after the implementation
of the system has started. When the model and the implementation, over time,
are no longer re�ecting each other, it is tempting to abandon the model, leav-
ing the code as possibly the only remaining updated �design document�. In
other words, a model which was created in the analysis phase is at high risk of
becoming obsolete later on.

Trying to overcome this issue, and just as importantly, with an aim to in-
crease overall productivity by raising the level of abstraction, a large amount
of research has gone into code generation from models (Model-Driven Software
Development). Then the models e�ectively becomes part of the �source code�.
However, the existing tools for model based code generation often focus more
on the structural part of the design, and less on the functionality. While it is
also technically possible to create behavioural (executable) models and generate
code from these models, the integration with the structural models is lacking in
current approaches (according to Kindler in [1]). In an earlier publication [14],
Kindler writes in the abstract that: �the vision of model-based software engi-
neering is to make models the main focus of software development and to auto-
matically generate software from these models. Part of that idea works already
today. But, there are still di�culties when it comes to behaviour. Actually,
there is no lack in models for behaviour, but a lack of concepts for integrating
them with the other models and with existing code.�

The Event Coordination Notation proposed by Kindler [1] addresses the chal-
lenge of integrating structural models and behavioural models. ECNO is a
notation for behaviour modelling on top of UML class diagrams, a code genera-
tor taking these models as input, and an execution engine running the generated
code. Combined, ECNO allows us to generate executable code directly from the
models. The behaviour models are based on the concepts events and coordina-
tions de�ned in a so-called coordination digram. The coordination diagram is
basically just a UML class diagram with these new concepts added on top of
it, and this is the main reason why ECNOs behaviour models integrates so well

1www.uml.org

1.2 Thesis Objectives 3

with traditional structural models.

The concepts and technical aspects of ECNO will be explained in greater detail
in Section 2.5, but now we move on and de�ne the objectives of this thesis.

1.2 Thesis Objectives

It has been shown that ECNO can generate executable code for a program that
simulates a co�ee brewer. Actually, a few more ECNO examples exist. One of
these implements the �ring rule of Petri nets [11]. Another simulates workers
carrying out jobs. These examples are supported by a limited and generic GUI
which enables the user to interact with the simulation. The problem is, that
these examples are still very simple, and we need to �nd out whether this works
for bigger applications. We have therefore selected to perform a case study in
which we realize a work�ow engine. A work�ow engine is an IT system, which
supports management and enactment of business processes. We will argue for
the choice of application in this section, but �rst we will list the overall objectives
of the case study. Note that the requirements to the work�ow engine are in
Chapter 3.

• Identify limitations in ECNO when we use it to develop a larger applica-
tion. It is expected beforehand, that the latest release of ECNO (in the
time frame of this thesis, version 0.3.1) will have signi�cant limitations
when taking this step.

• Produce an application that demonstrates the capabilities of ECNO ver-
sion 0.3.1.

• Collect experiences, which in the future can be taken as input in the devel-
opment of a methodology for ECNO. In other words, provide information
and practises on the usage of ECNO.

In the following we will ague for the choice of implementing a work�ow engine
as a method to achieve these objectives. The choice was slightly biased because
ECNO has roots in business process modelling. In particular, ECNO's concepts
are generalisations of aspect synchronisation concepts developed for an aspect
oriented meta-model and execution engine for business process models. This
work is known under the name of AMFIBIA [2]. We will base our work on
AMFIBIA, which means we don't have to start from scratch, when we develop
the models of the work�ow engine. This will also serve another purpose, in

4 Introduction

particular, to show that the ideas in AMFIBIA can be realized more easily with
ECNO. Therefore, this is not yet a case study for applications in general, but
a �rst step towards it. The task of proving ECNO in a domain other than its
historical origin would be an interesting continuation, which is beyond the scope
of this thesis.

It should be mentioned up-front, that we do not expect this work�ow engine
will be able to compete with the available industrial work�ow engines, this
would simply be too ambitious for a master thesis, not to mention when using
a technology, which is at the prototype level. In addition, the work�ow engine
is not meant to be used by real end users, it is created as a demonstration and
testing application for ECNO. Therefore, we can allow to omit features found
in all real work�ow engines, such as a real database integration, distributed
computing and interfaces to external applications.

In terms of contribution, this thesis aims to advance current knowledge by com-
bining existing concepts in ECNO with those of AMFIBIA within a single ap-
plication, and by creating the �rst �almost-real� application based on ECNO -
a work�ow engine.

1.3 Overview of Thesis

This thesis is structured as follows.

Chapter 2: Background
We will initially introduce Business Process Management (BPM) and business
process modelling. Then we introduce AMFIBIA followed by an introduction
to ECNO. At last we present related work.

Chapter 3: Project Scope
Here we will explain the details of the goals and limitations of this thesis.

Chapter 4: Work�ow Engine
Contains the conceptual contribution of this thesis. In particular, the models
from which we can generate a work�ow engine with ECNO.

Chapter 5: Enactment GUI
This chapter discusses the design and the implementation of an enactment GUI
for the end user. The main purpose of the GUI is to demonstrate that the
work�ow engine is working.

1.3 Overview of Thesis 5

Chapter 6: Implementation
Addresses the implementation concerns for the project overall, which were not
covered in Chapter 4 and 5.

Chapter 7: Acceptance Testing
Here we will do acceptance testing of the work�ow engine based on a business
process example.

Chapter 8: Evaluation
We will here evaluate the work�ow engine and ECNO respectively.

Chapter 9: Conclusion
The �nal conclusion of this thesis.

6 Introduction

Chapter 2

Background

This section will introduce the reader to Business Process Management (BPM)
and to the basics of business process modelling. It will then describe the work,
which this thesis builds on, namely AMFIBIA and ECNO. Finally we will sum-
marise related work. With that, a number of terms and concepts required to
understand the main contribution of this thesis will be explained. The vocabu-
lary in this report follows the ones developed in AMFIBIA and ECNO.

2.1 Business Process Management

In this section we give a brief introduction to Business Process Management
(BPM) and to BPM software. We are inspired mainly by the work in AMFIBIA.
The authors of AMFIBIA are inspired by the work of Wil van der Aalst [6],
Leymann and Roller [7], and by the standard in the Work�ow Management
Coalition 1.

A business process may be de�ned as a collection of tasks, which may be ordered
or partially ordered, and which are acted out by resources within a company
to reach a speci�c goal. As an example, a company may have an equipment

1www.wfmc.org

8 Background

purchasing process involving selection of items, placement of requests, approval
of requests, payment, and so forth. Such a process could serve an internal goal
of owning that piece of equipment. Wikipedia 2 divides business processes into
Mangement processes, Operational processes and Supporting processes. The
example above would belong to the category of Operational processes.

Business Process Management could be described as the management process
of designing, implementing, enacting and continuously improving business pro-
cesses. In principle, BPM has nothing to do with computer science (it is a topic
of business management), but today, most companies are using some form of
IT-support to manage their business processes.

The Work�ow Management Coalition (WfMC) is an organisation founded in
1993 with the aim to develop standards for business processes, and to educate
the market in �related issues�. In what they call �The Work�ow Reference Man-
ual� [10], they de�ne work�ow as �the computerised facilitation or automation
of a business process, in whole or part.� They further de�ne a work�ow man-
agement system as �a system that completely de�nes, manages and executes
work�ows through the execution of software whose order of execution is driven
by a computer representation of the work�ow logic�.

Figure 2.1 shows how WfMC de�nes the components of a work�ow management
system. As can be seen, a de�nition tool generates a process de�nition, which
a work�ow engine can interpret and execute. The process de�nition and the
engine may both refer to an organisation model. Tasks that are relevant to a
particular user are shown in a worklist, that is visible to that user in a GUI.
When needed, the engine invokes external applications (such as word processing
tool, spread sheets etc., and the data is stored in a database. As indicated, a part
of this data is work�ow relevant and directly used by the engine in the process
execution. For instence, this might be a data �eld to indicate a document is
approved or not.

This chapter will continue by focussing on the process de�nitions, which we also
call business process models. The act of creating and maintaining these models,
would be referred to as doing business process modelling. Understanding of the
nature of the business process models is the key to creating a meta-model, which
is what AMFIBIA does. First, we will explain how business processes can be
divided into aspects.

2http://en.wikipedia.org/wiki/Business_process

2.1 Business Process Management 9

Figure 2.1: Image from The Work�ow Reference Model (www.wfmc.org).

10 Background

2.2 The aspects of Business Processes Modelling

A business process model speci�es the artefacts of the process, such as tasks and
documents, and de�nes how actors (human or machine resources) interact with
the artefacts to complete the process goal.

Although the emphasis may be on a single or two aspects, it is commonly ac-
cepted in the literature that there are three main aspects to consider when
modelling business processes. Those are the aspects of organisation, control
and information (data). Very brie�y, the organisation aspect de�nes organi-
sational structure and resources, the control aspect de�nes task order, and the
information aspect de�nes the data of the process. There are other aspects, such
as transaction and authentication, but they are not discussed in this thesis. To
avoid repetition, the main aspects will be further elaborated on in the section
on AMFIBIA instead of here (2.4).

2.3 Example 1: An Error Management Process

At this point, we will give a concrete example of how a business process can
be de�ned using aspect oriented modelling. The example will initially serve as
foundation for understanding the AMFIBIA meta-models, but it will also serve
as a �running example� throughout this thesis.

2.3.1 Background story

An imaginary software company had released a new product but, unfortunately,
the product still contained a number of errors being reported by angry cus-
tomers. But sometimes, the error reports were not descriptive enough to un-
derstand the problem. To make matters worse, the company did not have a
system for routing errors to the right people, and they had di�culties tracking
what happened to the reported errors after they were received. So they decided
to formalise a business process for their error handling, thinking they would
afterwards �nd a suitable work�ow system to help them implement the process.
They broke down the problem to that of identifying the tasks, and then respec-
tively de�ned the control-, the organisation- and the information aspects. The
outcome of this work follows.

2.3 Example 1: An Error Management Process 11

2.3.2 Identi�cation of tasks

Obviously there is a task for creating errors (Submit). It is further known that
some errors are ignored (Ignore). The company is often �xing errors in the
graphical user interface (Correct GUI). Otherwise, the error is usually related
to the database implementation (Correct DB). To make sure errors are routed
correctly, they also need to be �ltered at some point (Filter). Sometimes an
error needs to be clari�ed further (Clarify).

2.3.3 Control Aspect

The Submit task initiates the process. The next task to execute is Filter. After
the error has been �ltered, one of the tasks Correct GUI, Correct DB, Ignore,
or Clarify shall execute. Clarify loops the control back to Filter after execution.
There are several notations to express this ordering of tasks, the company used
a Petri net, which can be seen in Fig. 2.2. We assume the reader to be familiar
with Petri net notation and semantics.

Figure 2.2: The control aspect of an error handling business process.

2.3.4 Organisation Aspect

The rather small company has only 3 roles. Those are Manager, GUI Pro-
grammer and Database Programmer. Apart from this, the role of Custumer is
de�ned. The tasks Submit and Clarify can be taken by the Customer. There
is a restriction that Clarify can only be taken by the person who submitted
the error earlier. This is modelled with a follows up on relation from Clarify
to Submit. Only a Manager may perform the task Filter. A GUI Programmer

12 Background

can perform the task Correct GUI, and a Database Programmer can perform
the task Correct DB. Jack is a Customer, Simon is hired as manager, Paul is a
GUI Programmer and Tim is as Database Programmer. Refer to Fig. 2.3 for
an illustration.

Figure 2.3: The organisation aspect of an error handling business process.

2.3.5 Information Aspect

The task Submit does not require any input documents, however, it outputs one
document named error_report. Filter takes error_report as input document and
cannot start unless this document exists. Filter also outputs error_report. The
tasks Ignore, Correct UI, Correct DB, and Clarify all ask for the same input
document - e.g error_report. In addition, they de�ne start conditions saying
that the document �eld decision is equal to one of the values �clf�, �ign�, �ui�, or
�db� respectively. This allows the manger handling the Filter task to guide the
process based on the value he assigns to this �eld. These conditions are indicated
in the models by dotted arrows with a label stating the condition. Correct UI
and Correct DB both outputs the process document correction_report on their
termination. The task Clarify outputs error_report, hopefully in a clari�ed
state.

Still, we do not know what the documents contains, except we have mentioned

2.3 Example 1: An Error Management Process 13

Figure 2.4: The information aspect of an error handling business process.

a �eld named decision. However we might guess that error_report contains
�elds for describing the nature of an error. In particular, this document has
the type ErrorReportDoc, which de�ne �elds for stating how to reproduce the
error, for giving an error description, for writing a review comment, for de�ning
the severity, and for making a decision (the latter two are enumerations). The
document correction_report has the type CorrectionReportDoc, which de�nes
�elds to hold information about the problem, information about the solution,
the correction release date and so forth. Refer to Fig. 2.4 for an illustration of
the information aspect, the used documents and their types.

Until now we only mentioned one type of condition. This was a document
condition on the decision �eld in error_report. Actually, to ensure a succes-
full process execution, additional conditions would be of help. For example,
the Submit task could have �nish condition saying that the error_description
�eld cannot be empty. The Filter task could have �nish condition stating that
decision must set to one of �clf�, �ign�, �ui� or �db�.

2.3.6 Discussion

This completes the example. We will now add a few more words to the concepts
of input and output documents and how they a�ect a task execution. If a
required input document does not exist (or has unsatis�ed start conditions),
the task is prevented from starting. If a required output document does not

14 Background

exist (or has unsatis�ed �nish conditions), the task is prevented from �nishing.
If an output document does exist when a task is started, the document will be
presented in the task. If it does not exist, it shall be possible to create a new
output document from within the task, or to point to an existing document to
use.

Due to their visual similarity, the reader might wonder if the information aspect
makes the control aspect somewhat redundant. Actually, that is not the case.
The information model does not �care� about the ordering of tasks, it only
de�nes which documents (and perhaps which document conditions) are required
to start and �nish a task. For the sake of argument, let's pretend the control
aspect was omitted. First of all, it would now be possible to execute the Submit
task multiple times. Second, if the Customer sets the decision �eld to the value
of �gui�, it would be possible to by-pass the Filter task, and start a Correct
GUI task without involving the Manager. Note that there exists concepts for
controlling a process execution using data only. These are used in systems,
which do not have an explicit control model, but we will not discuss that here.

2.4 AMFIBIA

While this thesis directly builds on the results of the AMFIBIA project [2], we
will summarise their work in this section.

2.4.1 Motivation and Objectives

The AMFIBIA project is motivated by what the authors view as a lack of con-
sistency in the perception of what a business process model really is. They
argue that while it is recognized in literature that the aspects and concepts of
organisation, control and information are the three most important, �the con-
crete formalisms, notations, and, in particular, the business process modelling
tools vary and are not compatible to each other� (p. 2). The article points out
that many formalisms and tools have a build-in bias towards a single aspect or
a single formalism making it di�cult to add new formalisms or aspects. Accord-
ing to the authors, these problems should be addressed before the problem of
de�ning common exchange formats for data and process models. The authors
summarise their objectives as (p. 3):

• �It should cover all basic aspects of business process models and should
not be biased toward or focused on one of these aspects."

2.4 AMFIBIA 15

• �It should be open so that other aspects can be easily added and integrated
to it.�

• �In particular, there should be clear interfaces for the di�erent aspects and
a mechanism for their integration.�

• �It should be independent of a particular formalism or notation for business
process models. But, it should be easily possible to map existing business
process modelling notations to it.�

2.4.2 AMFIBIA Meta-Model

AMFIBIA is an aspect oriented meta-model for business process models which
does not favour any particular aspect, formalism, or notation. Its elements are
explained below. Most of the concepts in this meta-model can be related directly
to Example 1.

2.4.2.1 The Core

First of all, the concept of having a core is introduced. The purpose of the core
is to have something neutral with which the aspects can be integrated.

The core meta-model can be seen in Fig. 2.5. It contains the business process
modelling concepts that are commons to all aspects; to be speci�c these are
de�ned to be processes containing tasks. Please note that the core concept
process is really meant in a general sense of business process and should not
be confused with the not yet explained control aspect concerned only with the
ordering of tasks. A task is the blueprint of a speci�c piece of work.

The term case is used to refer to a speci�c instance of a process. Likewise,
activity is an instance of a task. Process, task, case and activity are all part
of the core model, however AMFIBA makes a distinction between modelling
concepts (alternatively: static model) and instance concepts (alternatively: dy-
namic model, or runtime model). Case and activity are not in the business
process models but are essential for implementing a runtime environment for
their execution. Both of these categories of concepts exists side-by-side in the
same model using an �instance-of� relation in-between. In the core meta-model,
as well as in the aspect meta-models, it is only allowed to have reference from
the dynamic model to the static model, never in the other direction. It would
be almost impossible to manage, if a static object had to maintain a list of all
their dynamically allocated instances, and it would also be conceptually wrong.

16 Background

In the section about design patters (Sect. 4.1) we will elaborate on the meaning
of the �instance-of� stereotype and relate it to technical instantiation.

Figure 2.5: Meta-model for the Core (image from: [2]). Recall that BPM
refers to the concept process in the text.

2.4.2.2 Aspect integration

For adding aspects to the core, AMFIBA de�nes an �aspect of� relation. Quoting
the article, �the meaning of the stereotype aspect is, that there is a relation to
an element in the core�. For example an aspect is likely to have an element task
which is an aspect of task in the core. The task of the aspect will talk about
the same task, but from the point of view of the aspect. Which aspect a speci�c
task element belongs to is identi�ed by having a unique package name for each
aspect. The meta-model for aspect integration can be seen in Fig. 2.6.

AMFIBIA proposes a mechanism for synchronizing the aspects with the core
(and possibly with each other although it it not demonstrated) but that will
be explained later. We will now turn the attention to the meta-models for the
three main aspects of business process modelling as described in AMFIBIA.

2.4.2.3 Control aspect

The meta-model in Fig. 2.7 de�nes, in the control aspect, the concepts known
from the core: process, case, task and activity. It further de�nes the state
concept which is attached to case. The state holds the information of which

2.4 AMFIBIA 17

Figure 2.6: The AMFIBIA concepts for aspect integration (image from: [2]).

tasks are activated in a given state, as indicated by the reference from state to
task. An activated task is de�ned as one that can be started in a given state.
The task implements the two operations initialize(..) and �nalize(..), both takes
the current state as input and returns a new state. Initialize returns the state
that results from starting a task, while �nalize returns the state that results
from �nishing a task. With this, the order (or partial order) in which tasks can
be executed is expressed in terms of states and state transitions. In general,
tasks may execute in sequence or concurrently.

Figure 2.7: Meta-model for the Control Aspect (image: [2]).

The authors of AMFIBIA have generalized their meta-models, assuming no
speci�c formalism or notation. But they do give examples of an implementation

18 Background

of the control aspect. See in Fig. 2.8 how they implement the control aspect
with Petri nets. Notice how tasks are implemented by transitions and how state
is implemented by a Petri net marking. We say that the model in Fig. 2.7
is formalism independent and that the implementation in Fig. 2.8 plugs in a
formalism dependant model.

Figure 2.8: Meta-model for a Petri net implementation of the Control Aspect
(image: [2]).

2.4.2.4 Information aspect

The meta-model for the information aspect is replicated in Fig. 2.9, where the
main feature is that tasks can have input and output document descriptors.
A document descriptor returns with selectDocument(..) the appropriate docu-
ment given a context (a case). The rules for getting the right document is an
implementation issue that the formalism independent model does not de�ne.
However, as indicated in the model, the document descriptor must use the con-
cept document type. The model also de�nes that input and output documents
are attached to activities at runtime, and that a given document is a conceptual
instance of a given document type. The model also de�nes relations between
documents types, and these are called links when they are instantiated and
refers to documents. Furthermore, document types may be atomic or complex,
where the latter kind can contain several documents.

AMFIBIA proposes an implementation model, based on a relational database,

2.4 AMFIBIA 19

implementing document descriptors by SQL queries and documents by query
results. The �gure is omitted from this report, but the principle of plugging in
a formalism dependant model is the same as shown in the control aspect.

Figure 2.9: Meta-model for the Information Aspect (image: [2]).

2.4.2.5 Organisation aspect

AMFIBIA explains the concepts but omits the meta-model for the organisation
aspect with the comment that is follows the same concepts as already demon-
strated by the other meta-models. So here, we will just brie�y identify the main
concepts from Example 1, and otherwise refer to the main section of this thesis
(Chapter 4) where a meta-model is developed.

The organisation aspect de�nes the structure of the organisation where the
business process is taking place. An organisation model, which may be divided
into units and groups (not in Example 1), de�nes resources and roles. Human
resources are called agents. Resources and agents change frequently, and are
therefore not part of the static organisation model. Per de�nition they belong
in the runtime model. The main purpose of the organisation model is to de�ne
which resources a task could, potentially, be assigned to at runtime. AMFIBIA
mentions that the behaviour could be captured using so-called resource descrip-
tors for tasks, which resembles document descriptors.

20 Background

2.4.3 Aspect synchronisation

As explained, each aspect has process and task elements which are aspects of
elements in the core. We have seen this relationship was modelled structurally
using compositions. AMFIBIA models the behavioural part of this relation
using automata. Automata for a case element in the core, and in the control
aspect can be seen in Fig. 2.10.

Figure 2.10: Automatas for case in the core (left) and for case in the control
aspect (image: [2]).

The automata models consists of states and transitions, where the latter are
coupled to events. AMFIBIA de�nes events as �the points of a case execution,
which are especially interesting in respect to aspect coordination or to the func-
tionality of the core�. Speci�cally the events are named: �start Case�, ��nish
Case�, �request Tasks�, �receive Tasks�, �create Activity� and ��nish Activity�.
The keyword sync means that the event must synchronize with other aspects at
the points in their execution where the same event name (and the sync keyword)
occurs respectively. The keyword notify is used for synchronization of elements
within the same aspect. In particular an activity must notify its owner case
when it has �nished executing.

From the initial state, the �Request Task� event triggers in each aspect a calcu-
lation of activated tasks from the point of view of each aspect, and meanwhile
the core waits in the state �Tasks requested�. The �Receive Task� event is then
used to communicate the results back to the core. The core can then create

2.5 The Event Coordination Notation 21

activities for tasks that are activated in all aspects, and so forth.

Interestingly, the concepts for event coordination in ECNO, are inspired by event
synchronisation in AMFIBIA.

2.5 The Event Coordination Notation

In this section, we will explain the key concepts in the Event Coordination
Notation. To make it concrete, we will use a small example project implemented
within the scope of this thesis. We cannot use Example 1 here, because it would
be too complicated for this purpose. The example project used in this section,
can be viewed in isolated from the work�ow engine, which we will present later.

After the example, we will summarize the concepts, and further introduce some
more advanced concepts.

2.5.1 A Simple Execution Engine

This example consists of a simple business process and a simple execution engine,
which can execute this particular business process (it is build in). The execution
engine comes with a simple GUI for the end user. We will �rst present the
business process, then we present the GUI, before we present the models that
realize the execution engine.

2.5.1.1 Process de�nition

We de�ne a very simple process model consisting of two tasks. Those tasks are
named �activity 1� and �activity 2� and they follow each other in that order.
The tasks can only be assigned to agents that have the right role. Respectively,
they can be assigned to the roles Engineering Manager and CEO. We don't care
about what these tasks really do, it is not important. Using the same graphical
notation as earlier, Fig. 2.11 and Fig. 2.12 represent the process described
above.

22 Background

Figure 2.11: Control aspect of the build-in process.

Figure 2.12: Organisation aspect of the build-in process.

2.5.1.2 The GUI - in action

Figure 2.13 shows a screen shot of the active GUI. In the leftmost GUI frame, a
user can enter a client name, and then press the button to start a new case for
that client. Active cases, are displayed in a list view, showing the case id and
the client name. In the rightmost GUI frame, �agents� may log in and take a
role. When logged in, an agent can press the button �Push...� to get a random
enabled activity matching his role into his worklist.

Note that, we use the term push a bit inaccurately. In BPM, the terms pull and
push are referring to the way a task is assigned to an agent. Very brie�y, when
pulling a task, an agent selects a task, which he then receives. When a tasks is
pushed to him, he just receives it whether he wants it or not. So, in our case, it
would be more right if someone else than the agent pressed that button.

Moving one, the �Push...� button will automatically disable when there are no
more activities, in any active cases, that matches the agents role. The received
activities are listen in the worklist view, and the agent may select one and
execute it at any time. When the two activities corresponding to the two tasks
in our �xed process have been executed, the case will change status to ��nished�
and will disappear from the active cases list in the �rst GUI window.

2.5 The Event Coordination Notation 23

Figure 2.13: Simple Case Management Tool.

2.5.1.3 Execution Engine: Introduction

We now present the ECNO realisation of a selected part of the implementation,
starting with the structural model, which is just a class diagram (Eclipse Ecore
format), and followed by behavioural models.

ECNO uses two kinds of behavioural models. One for de�ning global behaviour,
and one for de�ning local behaviour. Global behaviour de�nes events and coor-
dinations, in a coordination diagram, on top of a class diagram. Local behaviour
de�nes the internal behaviour of the classes (actually, element types) with ECNO
nets.

2.5.1.4 Execution Engine: Structural model

A selected part of the structural model of execution engine is shown in Fig.
2.14, in the form of a conventional class diagram. The model expresses that a
case manager contains cases, and each case contains activities. The case refers
to process representing the build in business process. Speci�cally, the business
process behaviour will be de�ned by local behaviour of process. While the engine
only has a single build-in process, there are no explicit tasks in this meta-model.
Recall that tasks are modelling concepts and activities are instance (runtime)
concepts.

24 Background

Figure 2.14: Structural model (not complete).

2.5.1.5 Execution Engine: Global behavioural model

We will now continue by talking about the behaviour. We will focus on the
behaviour for creating new activities based on the build-in model. Please refer
to Fig. 2.15 showing the relevant part of the coordination diagram. Note that
we use an ad-hoc notation in the �gure, which has same level of abstraction as
the real model (it just looks a bit nicer).

The global behaviour model for creating activities involves two classes from
the structural model: process and case. Process is involved because it knowns
which activities can be created at a given moment. Case is involved because
it shall own the new activity. For our purpose, we de�ne an event type named
CreateActivity in a coordination diagram. In same diagram, we have the two
involved classes, but since this is a coordination diagram, the classes are called
element types instead of classes.

By writing the name of the event type, CreateActivity, inside the element types
of process and case, we are stating that they are capable of participating in an
event of that type, for what concerns the global behaviour. Note that, as we will
see later, the local behaviour of each element respectively, will further restrict
when they can participate. The event type CreateActivity is also annotated on
the reference going from process to case. This de�nes a coordination, saying
that if process is going to participate in CreateActivity, then it must have a link
to a (ONE) case, which also can participate. At last, see that our event type
CreateActivity is taking a single event parameter named �newActivity�, of type
activity. This parameter makes it possible for the two elements to communicate

2.5 The Event Coordination Notation 25

about an activity element, we will clarify this in the following section.

Figure 2.15: Global behaviour for creating activities.

2.5.1.6 Execution Engine: Local behavioural model

The local behaviour of element types de�nes when they from a local point of view
can participate in events, and what happens when they do. For this purpose,
we use the so-called ECNO nets. ECNO nets are a variation of traditional Petri
nets, where some new concepts are added. These concepts are making it possible
to bind event types, conditions, and actions to (Petri net) transitions. These
concepts works as follows in the example project.

In case, we create a single free �oating transition with an event binding to
CreateActivity (see Fig. 2.16). The keyword none expresses there is a single
parameter in the signature of the event type, and that case will not pass a value
to it. In Petri nets, a free �oating transition is always enabled, and since we're
not binding any conditions here, case can locally always perform CreateActivity.
In the �gure, the two lines of Java code below the transition is an action binding.
This code will be executed when the transition �res. The �rst line of code uses
the ECNO keyword self to access the getter for the activity list in case (refer to
the structure model). The second line adds an activity to the list. The activity
it adds is the one in the event parameter, which is accessed though the local
event variable c. We will see shortly, in the local behaviour of the process, how
this parameter value is passed. The second line of code just sets a backward
reference - a bit excessive, and could have been avoided with �opposites� in
EMF.

We continue by explaining the local behaviour of a process as shown in Fig.
2.17. Unlike in case, the transitions in this ECNO net have input (Petri net)
places. Initially, there is a token in the upper left place enabling the �rst of two
transitions, which has an event binding with CreateAcivity. At the position of
the �rst and only parameter of the event, we call a factory method createActiv-
ity(..) creating new activity object (element in ECNO terms), while specifying
the activity name, �activity1�, in the �rst of three parameters accepted by the
factory method. The other two parameters can be ignored for now.

26 Background

Figure 2.16: Local behaviour of case.

After the �rst transitions �res (we will clarify later how this happens) the next
transition becomes enabled. It binds with a di�erent event type, ExecuteAc-
tivity, which allows the execution of the activity, which was just created. We
can ignore ExecuteActivity, since we focus on the creation of activities in this
storyline. After the second transition has �red the same pattern repeats, but
this time for the activity named �activity2�.

Actually, creating an activity element in the parameter list is quite expensive,
because ECNO creates them every time it evaluates the event. A better solution
here would have been passing the string name of the activity, and creating it in
the action binding of case, when the transition �res.

2.5.1.7 Interactions

Now we have �nished explaining the models and we can put everything together
by imaging a scenario at runtime. Note �rst that, event is a term for an instance
of an event type. Likewise, element is an instance of an element type. Elements
are to element types what objects are to classes - this is easy to accept. That
we can also instantiate event types, and get events out of that, is something
that requires a little more getting used to. However, it is easy to accept that
the same kind of event can occur many times in a system during runtime, and
ECNO just uses event type instantiation to enable this.

Assume now a situation at runtime, where we got one process element with a
token in the initial place, and the process element has one linked case element.
Then we say that the global and local pre-conditions to trigger a CreateActivity
event in process are met. In a situation such as this, the ECNO execution
engine can, on request, �nd a so-called interaction for CreateActivity, in the
element process. The interaction represents the fact that a given behaviour can

2.5 The Event Coordination Notation 27

Figure 2.17: Local behaviour of process.

28 Background

be executed. When this particular interaction, of our example, is executed, the
e�ect is that a new activity element will be created and attached to the case.
We will not explain here how the new activity becomes visible in the GUI. In
Chapter 5, we explain how engine controllers are used for this purpose.

The ECNO engine does not execute interactions itself, that is a responsibly of the
application. For this purpose the ECNO engine exposes so-called element event
controllers, which allows applications to �hook in� to the behaviour of elements,
get the possible the interactions, and execute them, if wanted. Applications
that have hooked in via element event controllers, can also request when ECNO
shall update the calculation of interactions. In addition, the application can add
and get event parameters.

Note that coordinations are directed and follows direction of the underlying class
reference. Consequently, there is an important conceptual issue to understand
in relation to interactions. In our example, it matters if we compute the interac-
tions for CreateActivity by hooking into case or by hooking into control. While
case does not have a coordination towards process, it could perform CreateAc-
tivity alone. Therefore, we have to hook into process when we designed it this
way. Actually it would be possible to avoid this risk by modelling a bidirectional
coordination, to say that none of the elements can do the event alone, but that
is slightly more tricky than it sounds.

2.5.2 Summary and Advanced Concepts

We have just seen how ECNO allows us to model a behaviour of an application.
ECNO de�nes two layers of behaviour, global behaviour and local behaviour. A
global behaviour is expressed in a coordination diagram which looks very much
like UML class diagram. This diagram type de�nes event types and associate
them with classes (element types). In ECNO, classes are called element types,
to make it clear we're not talking about ordinary classes. When an event type is
de�ned in an element type, it means the element type may be able to participate
in an event of that type. Notice, we said �may be able to� because it depends
on local behaviour as well. For a graphical view of this, refer to Fig. 2.18.

Local behaviour can be expressed with ECNO nets, where transitions are ex-
tended with labels for attaching event bindings, condition bindings and action
bindings as shown in Fig. 2.19. Note that the font type indicates the kind of
the label. A condition binding is a boolean expression that restricts when the
transition can �re (we didn't use it for CreateActivity, only for ExecuteActivity).

We also learned that events can take parameters, where parameter values can

2.5 The Event Coordination Notation 29

Figure 2.18: Notatation for global behavoir.

Figure 2.19: Notatation for local behavoir.

be injected by at most one (ignoring collective parameters) element and used
by many other elements.

When all local and global conditions are met for an event, in a set of linked
elements, we have an interaction, which can be executed by the application via
an element event controller. In Chapter 5, we will explain the ECNO controller
framework in much more depth.

In the example, we only used ONE-coordinations, which states that one linked
element must to participate. There is another type, ALL-coordinations, which
states that all linked element must participate.

At last, we learned that it is important to be aware of the trigger element,
because coordinations per default are directed.

2.5.2.1 Advanced concepts

Synchronization: Events may be synchronised in the local behaviour of an el-
ement type. Syntactically, this is done in an event binding by including two
(or more) event types, separated by semicolons, where the order is insigni�cant.

30 Background

See the example below where parameters are omitted:

a = EventOne(); b = EventTwo(); ...

This prevents execution of any of them, until all listed events are enabled. And
when they do execute, they do so together. Note that, only one event needs to
be triggered and the others will be triggered automatically.

Element Inheritance: Element inheritance is modelled in coordination diagrams
on element types, using same graphical syntax as for class inheritance in classical
object oriented programming (an arrow with a hollow arrowhead). If co�ee
inherits from brewer, it will inherit the brewers global behaviour e.g. the ability
to engage in certain events and coordinate with certain partners, but not its
local behaviour. An element inheritance should always go along with a class
inheritance for the underlying classes.

Event Inheritance: Event inheritance is one of the latest additions to the ECNO
and is still ongoing work. The implementation, and also some concepts, have
changed in the duration this master thesis. Especially, the mechanisms related
to parameters. To explain the ideas we refer to Fig. 2.20, where we let Co�ee
inherit from Drink as an example. The e�ect is, that Co�ee can re-use the
behaviour of Drink, while adding some behaviour only used for co�ee. How
this plays out depends on how the local behaviour models of brewer and co�ee
elements refer to these two events. Since event inheritance is not applied in this
thesis (was not available early enough), the knowledge is not strictly required
follow this work, and we refer to the ECNO article [1] for further details.

Figure 2.20: Element and event inheritance.

2.6 Related Work 31

2.6 Related Work

In the previous sections the work that we build on was introduced. This section
is dedicated to describe a part of the earlier work, which inspired the authors
of ECNO and AMFIBIA.

2.6.1 Subject-Oriented Programming

The paper by Harrison and Ossher introducing subject-oriented programming
[4], makes the claim that traditional object-oriented programming is insu�cient
for �the construction of large and growing suites of applications manipulating
the objects�. They argue that, in more complex systems, objects are simply
too small to capture all functionality required in relation to the identity that
the object represents. They go further to say that a client application using
an object, may view this identity from a slightly di�erent perspective than the
author of the original class had anticipated. Quite often, it would not be an ideal
solution to encapsulate new methods in the original class, especially if they are
only relevant to one clients point of view. In turn, implementing the methods
in the client application goes against the principles of encapsulation.

That is why the authors propose to �de-localise the concept of object� and in-
stead apply perceptions - or subjects - when talking about an identity. The
technology must allow subjective views and �emphasize more the binding con-
cepts of identity to tie them together�. Each subject can de�ne its own data,
behaviour and state to �t a point of view. However, subjects that are �composed
in a universe� can interact by following composition rules. The authors discusses
possible composition rules, but leaves it open to further work to formulate other
implementations.

Subject-orientation uses object-orientation for realisation of subjects. It means
that the behaviour of a subject is simply implemented by class methods. A
subject activation �provides an executing instance of the subject�. The article
discusses that object creation and initialization within one subject, may also
concern other subjects, and requires proper classi�cation of the new object, in
all subjects that use it (refer to [4] for details).

The ideas and concepts in AMFIBIA are very close to subject oriented pro-
gramming (modelling) when AMFIBIA models aspects of core concepts inde-
pendently and synchronize them. We could say that AMFIBIA applies the
ideas of subject oriented programming while de�ning own composition rules
when they syncronize the aspects. Even though AMFIBIA uses the term aspect

32 Background

instead of subject, the relation to subject oriented programming is still rele-
vant, because AMFIBIA cannot claim to be following the principles of aspect
oriented programming. AMFIBIA's implementation techniques are di�erent.
Subject oriented programming is more open to interpretation and di�erent im-
plemetations of the ideas.

2.6.2 Aspect-Oriented Programming

Aspect-oriented programming was �rst introduced by Kiczales G., et al. [8].
We also use the book by Ian Sommerville [5] as a source on the topic. Aspect
orientation is somewhat close to subject orientation at the conceptual level but it
is more speci�c regarding implementation techniques. The starting point is also
slightly di�erent. Separation of concerns is acknowledged as good practise when
designing software systems. It helps to isolate code that implement a feature
to a smaller number of components. In the implementation phase, it becomes
easier to split and delegate the work. In the maintenance phase an error is
more easily tracked down to a few a�ected components. The problem is, that
some concerns a�ects many of the systems components and cannot be dealt
with in isolation. They are said to be cross-cutting concerns. In aspect-oriented
programming, aspects are an abstraction that captures (or encapsulates) cross-
cutting concerns and integrates them in the system.

As said, aspect-oriented programming is relatively speci�c about the implemen-
tation techniques and vocabulary. Very brie�y, the code that implements a
concern, and which is part of an aspect, is called an advice. In the executing
program there are places (program lines) called join points where advices could
be executed. Within an aspect, a pointcut then de�nes at which join points its
advice shall be executed.

The ECNO article [1], relates itself to aspect oriented programming (modelling)
by saying there is independence at the technical level, but �still, it was inspired
by aspect orientation and is close in spirit to aspect oriented modelling or sub-
ject orientation�. They argue too, that in a comparison ECNO events could be
viewed as a kind of join points, while ECNO interactions are a kind of point
cuts. However, they [1] emphasize that ECNO events are domain concepts (at
the behavioural level), while join points are implementation artefacts added to
the �nal program. They go further to say, that interactions are more symmet-
rical in nature than join points, since in ECNO, participating elements can add
parameters or even block an interaction.

2.6 Related Work 33

2.6.3 Process Algebra

The interactions in ECNO can be said to synchronize the processes of each par-
ticipating element while also providing a communication channel for information
exchange (event parameters). This is not a new idea at all. Communicating pro-
cesses have been studied for many years and were formalised in process algebra.
One of the best known contributions is presented in the book Communicating
Sequential Processes (CSP) of C. A. R. Hoare (1985) [9]. The introduction
to the concepts of processes contains the following quote: �Forget for a while
about computers and computer programming, and think instead about objects
in the world around us, which act and interact with us and with each other in
accordance with some characteristic pattern of behaviour. Think of clocks and
counters and telephones and board games and vending machines. To describe
their patterns of behaviour, �rst decide what kinds of event or action will be
of interest; and choose a di�erent name for each kind.� (P. 1). The relation
to the central idea of specifying behaviour at a high level of abstraction, and
more concretely to the events in ECNO, are quite obvious. CSP is a theory for
mathematical modelling of processes in concurrent systems. In CSP, a process
de�nes the behavioural pattern of an object, and is usually represented by a
capitalized word/letter. An event is usually represented by an uncapitalised
word/letter. The expression:

(x→ P)

says that, for an object, the event/action x leads to the process P. When x leads
to the parallel execution of two processes P and Q, this writes as:

(x→ (P ‖ Q))

Processes communicates via channels. The following expression describes a
process that outputs the message x on the channel c and then executes its
behaviour:

(c!x→ P)

Here, c!x is called a communication event. A process Q which receives x on c
and uses the value of x in its behaviour can be written as:

(c?x→ Q(x))

The two processes will wait for each other at the respective statements and make
the exchange on the channel (rendezvous). Leaving out x would just result
in a synchronization without information exchange. CSP limits the number
of processes, which can use the same channel to two: (�we shall observe the
convention that channels are used for communication in only one direction and
between only two processes.� p. 114).

34 Background

In contrast, ECNO coordinations work with any number of processes (de�ned in
in elements), and there can be many consumers and contributors of the param-
eter values. The fact that ECNO models are de�ned on top of class diagrams,
of which instances are allowed to update dynamically, gives us the freedom that
the set of communicating processes (participants in ENCO) may change over
time.

Chapter 3

Project Scoping

In this chapter, we detail the objectives of the work�ow engine development
project, and point out the limitations. First of all, we remind the reader, that
we are not attempting to compete with the real work�ow engines available today
(see the argument in Sect. 1.2).

What is expected is an implementation which clearly can be recognized as be-
ing a work�ow engine. This implies two modes: one mode for modelling of
processes, a modelling-environment, and one mode for executing processes, an
enactment-environment. Note that consequently, we have two di�erent user lev-
els. We shall call them modelling users and enactment users. Although we have
the limitation of not integrating a real database, the implementation shall still
emulate the presence of a database for storage of documents. We now de�ne
these components in the sections below. For each component, we discuss the
objective and the limitations.

3.1 Modelling-environment

The modelling-environment is the component that allows the modelling user to
de�ne the business process models.

36 Project Scoping

3.1.1 Objectives

It shall be possible to model the aspects of organisation, control and informa-
tion by using an editor - that re�ects AMFIBIA's lack of bias towards any
aspects. The aspect models shall each have a feature richness that allows build-
ing somewhat realistic business process models. Traditionally, process loops is
a challenge in BPM software, especially when they are data oriented. While we
aim to implement a control aspect it shall be possible to overcome this chal-
lenge and support loops. While the current ECNO tool package is made for
Eclipse, and while we can generate model editors from structural models using
the Eclipse Modelling Framework (EMF), it will be a time saver to realize the
modelling-environment EMF editor running within the Eclipse IDE, and so we
chose this option from the beginning.

3.1.2 Limitations

Model validation may be omitted. Graphical model editor are may be omit-
ted. A tree editor will be su�cient, since usability is not a main priority here.
Extensibility and maintainability of our software is way more important. Also,
conditional expressions written in textual form may be omitted, since this would
require parsing of the expressions into structured form. Instead, in can be re-
quired of the modelling user to input the structured form directly.

3.2 Enactment-environment

The enactment-environment is the part of the system, which executes the busi-
ness process models. It makes processes, cases, activities, and documents visible
in a GUI for the enactment user. The GUI also reacts on enactment user input.

3.2.1 Objectives

Any number of processes, if any kind, can be executed in parallel. It shall be
possible to run several instances of the enactment-environment at the same time
(several users logged in at the same time). Not only the active instance, but
also the other instances shall automatically update their content with minimal

3.3 Database integration (omitted) 37

delay 1. It shall be possible to save the state of the enactment-environment on
disk and restart it later. The enactment-environment shall have a presentable
GUI that is able to demonstrate all features that the engine supports, such that
any non-technical 3rd party would get an idea of what is happening. The GUI
shall follow the WfMC worklist pattern. Di�erent users shall be able log in and
out and get their personal view of tasks. It shall be possible to open tasks and
view and edit its documents.

3.2.2 Limitations

Invoking of external applications can be omitted. We shall not support dis-
tributed computing - e.g. every instance may run on the same machine. We
will not support automated tasks, e.g. the user (an agent) is required to start
and �nish all activities.

3.3 Database integration (omitted)

In a real work�ow engine, the database is where all data (incl. models) of the
application is persisted.

3.3.1 Objectives

For the purpose of proving the information aspect, data shall be managed in a
way that emulates the idea that documents are saved in a database. We also
want to be able to re-launch the enactment environment with date saved earlier,
which means, it shall be possible to save the state.

3.3.2 Limitations

To limit the scope in this thesis, we will not implement an interface to a con-
ventional database. It will be left to future work to implement an interface to a
relational database (or other type). The Hibernate 2 persistence framework for
Java might be well suited for that purpose.

1We have no concrete performance requirements, since ECNO is not optimized for perfor-
mance yet. The interesting part is which performance issues we face.

2http://www.hibernate.org

38 Project Scoping

Since we are then only emulating a database, we have to relax the requirements
to transactions, since getting that right without the help from existing technol-
ogy would be beyond the scope (and purpose) of this thesis. Reliable database
transactions must comply with the ACID properties:

A: Atomicity, C: Consistency, I: Isolation, D: Durability

It is beyond the scope to ful�l the durability property. That would for instance
require committed data (here, the result of a task execution) to be stored even
in the case of a power breakdown. That is not possible to guarantee, since we
allow that saving the state requires some kind of user action.

The other properties are in principle compatible with the nature of ECNO in-
teractions. The implementation of ECNO interactions (which could be seen as
transactions here) does comply with the atomicity, consistency and isolation
properties. But that does not necessary mean that execution of business pro-
cesses inherit those properties - e.g. as will be show later, a task execution is
not the same as a single interaction execution, if it was, then it would have been
easier. This topic will be picked up again when we evaluate the work�ow engine
in Sect. 8.

Chapter 4

Work�ow Engine

In this chapter we will present the conceptual contribution of this thesis. Based
on the concrete process model given in Example 1, as well as on AMFIBIA, we
will derive meta-models, to which we can add behaviour with ECNO.

Following the structure of AMFIBIA, our model for the core and each of the
aspects are separated in di�erent sub-models. The sub-models will be introduced
in separate sub-sections, and we will mention the parallels and the di�erences to
AMFIBIA in the text. We will as well separate formalism independent modelling
and formalism dependant modelling.

For presenting the concepts of our work�ow engine, we will use the same nota-
tion as in the ECNO introduction in the Chapter 2. This notation is an ad-hoc
diagram type combining structural models and global behaviour models. In the
real implementation (in Eclipse/ECNO modelling tools), these diagrams are sep-
arate e.g. ECNO diagrams are referencing conventional EMF Ecore diagrams.
But, our notation here is more compact and therefore useful for presentation
purposes. In Sect. 6.4.1 we show how the real models look.

40 Work�ow Engine

4.1 Patterns

This section explains the main patters applied when modelling. The purpose is
to prepare the reader for the following sections where the patterns are used, by
giving a high level introduction here.

4.1.1 The �instance-of� stereotype

In Sect. 2.4.2.1, we introduced AMFIBIA's meta-models and models for runtime
information. They made use of a relation named �instance-of�. Since a full
understanding of this concept is important for seeing the broader picture in our
models we will elaborate on it here. Please refer to Fig. 4.1. The �gure will be
explaied in the following paragraphs.

Figure 4.1: The �instance-of� relation.

Recall Example 1 (Sect. 2.3) de�ning a business process model for managing
errors. If that business process model were being executed in an enactment
environment, that would produce runtime data - or runtime information. The
idea above is captured in AMFIBIA's meta-model. Recall from Sect. 2.4.2.1 that
AMFIBIA de�nes a meta-model for business process models, but in addition to
that, it de�nes a model for the runtime information that may be created for
it. AMFIBIA use the �instance-of� stereotype to express that a concept in the
runtime information model conceptually is an instance of (has the type) of a
concept in the business process meta-model.

The �instance-of� relation is only conceptual and should not be mistaken for the
technical instantiations which also occurs at some point, where classes are in-
stantiated into objects. In this respect, the objects of the business process mod-

4.1 Patterns 41

els are technical instantiations of the classes in the business process meta-model.
Likewise, the objects of the runtime information created by the enactment en-
vironment are technical instantiations of the classes in the runtime information
model. Consequently, the objects of the runtime information are conceptually
instances of the objects of the business process models.

Figure 4.2: The �instance-of� relation with concrete BPM concepts added.

In Fig. 4.2 we have replaced the names of the content of each of the four
quadrants in Fig. 4.1 with some concrete classes and objects of our domain. As
can be seen, the business process meta-model includes the concepts of process
and task while the runtime information model includes the concepts of case and
activity. The business process models includes technical instantiations of process
and task, while the runtime information includes technical instantiations of case
and activity. Note that each of the four concepts mentioned have aspects too
but they are omitted in the �gure.

This chapter is concerned with modelling the concepts of business process mod-
els. These concepts are belonging in the upper half of the �gures. Terminology
wise, we may often use shorter names, referring to the left side as the static
model, and referring to the right side as the dynamic model. The pattern of
only referring in the direction from the runtime information model (dynamic
model) to the business process meta-model (static model), will be followed in
all our models, because it is consistent with AMFIBIA (actually, it would be
conceptually wrong if types referred to their instances). A vertical dotted line
will be used to separate the two sides.

42 Work�ow Engine

4.1.2 The �aspect-of� stereotype

Here we explain the aspect synchronization pattern we use throughout our mod-
els to realize the �aspect-of� stereotype presented in AMFIBIA. Recall from Ex-
ample 1 (Sect. 2.3), that aspect oriented modelling made it possible to model
the same business process from di�erent points of view. We made separate
models for the organisation, the control and the information aspects. Of course,
a system which executes according to such models shall be able to synchronise
the behaviour appropriately, and AMFIBIA proposed concepts for this. Refer
back to Sect. 2.4.3 to see how ABFIBIA used a composition for the structural
component of their �aspect-of� relation and synchronized their aspects using an
automata based technique. With ECNO, the latter part can be achieved in a
much simpler way with ECNO events and ALL-coordinations, as shown in Fig.
4.3.

Figure 4.3: The �aspect-of� relation with ECNO based synchronisation.

In the �gure, CoreElement is representing process, task, case or activity while
ElementAspect is representing aspects of any of these four core concepts. The
general pattern is, that we de�ne the same event type in the elements that should
be synchronised, and model with an ALL-coordination, that if the core element
is doing this event, then all its linked aspect elements must participate. Put in
other words, we achieve synchronisation with respect to an event type among
coordinated elements. When ECNO �nds an interaction formed by elements
that can participate, the elements will perform their actions together if that
interaction is executed. Later, in Fig. 4.7, we will see a concrete use of this
technique.

4.2 Architectural overview

The after this section we will go into details with the models realizing the work-
�ow engine. However, it makes sense to �rst give a high level overview of how
these models are going to work in the bigger picture. We've already placed our
main concepts in four di�erent quadrants as shown in Fig. 4.1.

4.3 Realizing the Core 43

Figure 4.4: Architectural overview.

In Fig. 4.4 we have grouped the meta-model for business processes, the runtime
information model and the ECNOmodels inside the component work�ow engine.
We have done this to make it explicit, that they realize the work�ow engine.
In addition, we indicate in the �gure, that the business process models and the
runtime information contains the data that our work�ow engine uses.

4.3 Realizing the Core

In this section, we will present the models of the core. It might be worthwhile to
refer back to AMFIBIA's core model in Fig. 2.5 and aspect integration model in
Fig. 2.6. It will then be more obvious, that our structure is conceptually close.
Recall from the section about AMFIBIA, that the overall purpose of the core is
to single out the concepts that are common to all aspects, and to be an anchor
point for the integration of aspects. In our presentation of the core models,
we will �rst present the structure of the static and dynamic part of the model,
which is practically a copy of AMFIBIA's core model. Then we will present the
global behaviour of the core, and �nish with the local behaviour of the core.

44 Work�ow Engine

4.3.1 Structure of the static model

In Fig. 4.5, the static core model captures the concepts of process and task,
where tasks are contained in processes. The model additionally captures the the
integration of process aspects and task aspects. We use compositions to model
the �aspect-of� relations. Process aspect and task aspect are interfaces, and they
are implemented by concrete aspect elements in concrete aspect models. This
construct is �exible since the system can always be extended with additional
aspect models (recall, there are more that three) by implementing process aspect
and task aspect in an extending model.

Figure 4.5: Core (static).

In Fig. 4.6, the interface process aspect is implemented by control process as-
pect, information process aspect and organisation process aspect. Notice the
convention of adding the capital letter �I�, �O� or �C� after the element name,
to indicate which kind of aspect package it belongs to. For tasks aspects the re-
alisations are control task aspect, information task aspect and organisation task
aspect. We have omitted that �gure while it identical to Fig. 4.6 except the
word �process� shall be replaced with �task�.

We will use the term identity to address a core element and its aspect elements
combined. Speci�cally, instances of Task (core) and its referred TaskO (organi-
sation), TaskC (control) and TaskI (information) instances together are referred
to as a task identity. The four elements are talking about the same tasks, just
from di�erent points of view.

4.3 Realizing the Core 45

Figure 4.6: Process aspect realizations. Task aspect, case aspect and activity
aspect have the same construct.

46 Work�ow Engine

4.3.2 Structure of the dynamic model

The dynamic model expresses a pattern, which symmetrical to that of the static
model, as is our comments. In Fig. 4.7 (ignore the behaviour for now), the dy-
namic core model captures the concepts of case and activity, where activities
are contained in cases. The model additionally captures the the integration
of case aspects and activity aspects. Again, we use compositions to model the
�aspect-of� relations. Case aspect and activity aspect are interfaces, and they
are implemented by concrete aspect elements in concrete aspect models. Again,
this construct is �exible since the system can always be extended with additional
aspect models by implementing process aspect and task aspect in an extending
model. In addition, case and activity have �instance-of� relations to their con-
ceptual types process and task. Refer again, if needed, to the design pattern
discussion earlier in this chapter.

Figure 4.7: Core (dynamic).

In our implementation, case aspect is implemented by control case aspect, infor-
mation case aspect and organisation case aspect. Activity aspect is implemented

4.3 Realizing the Core 47

by control activity aspect, information activity aspect and organisation activity
aspect. The constructs are similar to the �gure showing the implementations
of process aspects - Fig. 4.6 - except the word �process� shall be replaced with
�case� and �activity� respectively.

We will now come to the more interesting part, which is that of de�ning be-
haviour in the core.

4.3.3 Global behaviour

This section will present the global behaviour of the core. We will start with
an analysis before we present the models. Actually, the behaviour of the core
is the most important to get right, because it a�ects all the other models (the
aspects).

4.3.3.1 Analysis

ECNO does not come with a methodology for behaviour modelling (although
there are plans of making one), but in order to get started with the modelling
anyway, we could remember the words of C. A. R. Hoare in his introduction
to CSP [9]: ��rst decide what kinds of event or action will be of interest; and
choose a di�erent name for each kind.� This advice sounds like it could apply
here, and recall the similarities between ECNO and CSP mentioned in Sect.
2.6.3.

Fortunately, we know something about what kind of events or actions takes
place in a work�ow engine, for instance, from AMFIBIA and from WfMC. We
know that the core functionality of a work�ow engine is to execute cases based
on process models, and execute activities based on tasks in the models.

Still, we cannot de�ne ECNO events from the behaviours �execute case� and
�execute activity�. The reason is, that ECNO interactions must execute instan-
taneously (see discussion in 4.7.4). A case execution takes a certain amount of
time, and so does an activity execution. However, we could break down a case
execution and an activity execution into smaller pieces, which could be treated
as zero-duration events.

We break down the behaviour in �execute activity� into events named �start
activity� and ��nish activity�. For reasons that will be more clear later, we
capture the behaviour of �execute case� with the event named �create case�, plus

48 Work�ow Engine

some behaviour that we do not capture explicitly with events. In the models,
and in the rest of the text, we will use the notation StartActivity, FinishActivity
and CreateCase to refer to our event types.

Until this point, we have derived which event types we could use in the core.
However, we have not explained in which elements types they should triggered,
or with which other element types this trigger element type should coordinate
(refer to ECNO concepts in 2.5.2 if needed). We will come to that in the
following section, when we comment on the models.

Before we can do that, we have another concern to consider up front. In partic-
ular, that of when to instantiate 1 case and activity respectively. It turns out,
that the instantiation concern is not very trivial to explain. Therefore, we will
state our strategy for instantiation below, and discuss the arguments in Sect.
4.7.7 and Sect. 4.7.6, because the discussion would be a sidetrack right now.

We choose that activities are instantiated (or, created) in the same moment as
they are started by the user - e.g they do not exist before they are started. We
capture both aspects, creating them and starting them, in the event StartAc-
tivity.

With respect to cases we de�ne two states, initiated and active, we will see this
more clearly in the ECNO nets later. We choose that cases are instantiated
automatically, such that every process instance (business process model) known
to the system has exactly one case instance in initiated state. Cases are then
transitioning to active state the �rst time an activity is started in them. At this
point we will instantiate a new case, to maintain the invariant that every process
instance has a corresponding case instance in initiated state. We capture the
creation of cases with CreateCase.

4.3.3.2 Model

In Fig. 4.7 we had already added the global behaviour of the core and ignored it
at �rst, but here we can explain it. Note that the colours we use in the diagram,
are only for readability purposes. We will explain separately for each of the
three event types de�ned in the analysis.

First, however, we will say that StartActivity is triggered in case and FinishAc-

1The reader might ask if we mean technical or conceptual instantiation. Actually both.
The new elements in the runtime information are technical instances of element types in
the runtime information model, and conceptual instances of elements in the business process
model.

4.3 Realizing the Core 49

tivity in activity. This choice is partly explained by the instantiation concern
mentioned above. At least, that explains why StartAcitivity could not be trig-
gered in activity - e.g. the activity does not exist until StartActivity has exe-
cuted. We discuss alternatives for the choice of the trigger elements in the core
in Sect. 4.7.2.

So, StartActivity is triggered in case (by the GUI), and also represented in
case aspect, process and task. Case has an ALL-coordination for StartActiv-
ity towards case aspect. Recall, or refresh, from Sect. 4.1.2 that we use this
pattern to synchronize a core element with its element aspects. Further, case
has a ONE-coordination for StartActivity towards process, which again has a
ONE-coordination for StartActivity towards task. Here, we only really need the
participation of task, but we use process to navigate to task. We will explain
in the next section, why task is needed here. Finally, StartActivity takes three
parameters: a task, an agent and a case.

FinishActivity is triggered in activity (by the GUI), and also represented in
activity aspect. Activity has an ALL-coordination for FinishActivity towards
activity aspect. FinishActivity takes one parameter: an activity.

CreteCase is triggered in case (by synchronisation with StartActivity), and also
represented in process. Case has an ALL-coordination for CreateCase towards
process. CreateCase takes one parameter: a process.

4.3.4 Local behaviour

We here continue by de�ning the local behaviour of each of the element types,
starting with a short analysis of the life cycles of our core elements.

4.3.4.1 Analysis

With regards to the life cycles we are inspired by the WfMC Reference Model
(see [10] Fig. 7 and 8), but our models are simpli�ed for our purpose.

Recall that when an activity is created, it is also started. Therefore, we can say
that an activity can be only active or completed - in that order. The transition
from active to completed occurs when it participates in FinishActivity. A case
has the states initiated or active. The transition from initiated to active occurs
when it, for the �rst time, participates in StartActivity. Recall that we de�ned
an active case, as one having at least one started activity. In our design, process

50 Work�ow Engine

and task only have one state each, but we will anyway use ECNO nets to
characterise them.

4.3.4.2 Models

We now model the life cycles of the core elements with ECNO nets (refer to
2.5.1.6). Recall from Sect. 2.5.2 that ECNO nets makes it easy to create an
explicit life cycle model, and to bind events, conditions and actions to the (Petri
net)-transitions in the ECNO net.

In Fig. 4.8, we model that process can locally always do StartActivity. Actu-
ally, this is just used to accomplish that we can navigate to task via process
when looking for interactions. Process can do CreateCase when the supplied
parameter is equal to itself, and the bound action creates the case by calling a
code snippet.

In Fig. 4.9, cases are created in the state initiated in which they can participate
in StartActivity synchronized with CreateCase. The case itself is injected into
the case parameter for use in process (note: it might seam redundant to inform
process about the case, but it allows for another use case - that of creating
selected cases from the GUI). Recall, we wanted to create a new case of the
same type when the �rst activity starts. When cases have transitioned to active
state, they can always do StartActivity, but without starting new cases.

In Fig. 4.10, task can always do StartActivity and it will inject itself to the pa-
rameter task. The reason for injecting task here, is that ultimately we only want
to ECNO to compute interactions, which each involves a single task element,
we discuss this in more depth in Sect. 4.7.1.

In Fig. 4.11, activities are �rst active state, and they can one time participate in
FinishActivity requiring that the supplied activity parameter is equal to itself.
This pattern expects the GUI to inject the activity which the user wants to
�nish 2. The action binding just sets a local variable.

4.3.4.3 Evaluation

Notice in the action bindings of transitions that binds to StartActivity we're
calling a code snippet createAcivity(..). This method creates a new activity

2Note that, when we trigger FinishActivity in activity from the GUI, the equality check,
and hence the activity parameter, is a bit redundant, and it could be taken out of the design.

4.3 Realizing the Core 51

Figure 4.8: Local behaviour of process.

Figure 4.9: Local behaviour of case.

Figure 4.10: Local behaviour of task.

Figure 4.11: Local behaviour of activity.

52 Work�ow Engine

element in the core, but we're also forced to create activity elements on behalf
of the aspects. This violates the separation of concerns principle. ECNO does
not include a concept that allow elements that participates in an interaction to
cooperatively build a data structure when that structure includes new elements.
Ideally, to separate concerns, the case element of the information aspect (a
participant of the StartActivity interaction) would have created the activity
element which belongs to the information aspect and attached it to the activity
element of the core. However, we could not �nd a suitable way to make the
(information)-case aware of the newly created (core)-activity. Note that we did
not want to add the new activity to the parameter list for e�ciency reasons -
e.g. it would be created every time the interactions are evaluated.

4.4 Realizing the Control Aspect

We will now continue by introducing one of the three aspect models included in
this thesis. For the control aspect, we �rst present a model which is independent
of speci�c formalisms which could be used for modelling the control aspect. This
is followed by a Petri net implementation inspired by AMFIBIA and the article:
An ECNO semantics for Petri nets [11]. Note that, in this section we do not
consider our use of ECNO concepts to be a formalism for modelling control.
Like class diagrams, ECNO diagrams could be used to de�ne a multiple of
formalisms.

4.4.1 A formalism independent model

This section is based on the formalism independent control model in AMFIBIA,
and basically adds ECNO concepts on top of it. As before, we start with a short
analysis, before presenting this model.

4.4.1.1 Analysis

First of all, we want to include a formalism independent model in this thesis
because we want to make it easier to integrate other formalisms for the control
process than the one we have selected. Therefore we have to capture the concepts
that are common to all formalisms.

A central concept of the control aspect is that of activated tasks. An activated
task is one that may be started in a given state. AMFIBIA maintains an ex-

4.4 Realizing the Control Aspect 53

plicit reference from state to the activated tasks (see Fig. 2.7). Furthermore,
in the control model, AMFIBIA tasks have operations initialized and �nalize
taking a state as parameter and returning a new state. This implies that the
reference to the activated tasks are updated in the returned state according to
a control process model. In this section we aim to re-capture the basic elements
of the control aspect, and transfer above mentioned mechanism into ECNO like
behaviour.

4.4.1.2 Model

The model for a formalism independent control aspect is shown in Fig. 4.12.
Relative to the previously seen models, the only new element is that of state
contained in case, and this is not a surprise because we just follow AMFIBIA
there. A local event type StartActivityC is added and synchronised with Star-
tActivity in (control)-case. The reason is that we need an event type taking
also state as a parameter, but it should be known only in the control aspect
to maintain separation of concerns. Similarly, FinishActivityC is synchronised
with FinishActivity in activity (control aspect).

Figure 4.12: Control aspect - formalism independent model.

Regarding the notion of activated tasks, our model varies slightly from AB-
FIBIA. In our model state has a reference to the process which has a reference
to all tasks, not only the active ones like in AMFIBIA (in the �gure a derived
reference directly to task). Since we now use ECNO, the activated tasks are
instead given by the possible StartActivity interactions in a given state. As
in AMFIBIA, it is the responsibly of task to calculate if it is activated in a

54 Work�ow Engine

given state, therefore the element state injects itself into the parameter named
state, to make sure state is available in the task. In the formalism independent
model we don't specify how task uses state to conclude on this. It might be a
local behaviour, a local operation or it might involve coordinations with other
elements. When StartActivityC is executed, we expect the task to change the
state accordingly (like AMFIBIA's initialize operation in task). FinishActivityC
follows an identical pattern (and like AMFIBIA's �nalize operation in task), ex-
cept activities can always �nish. Still, state is put in the parameter since task
is expected to change the state when FinishActivityC executes.

4.4.2 An implementation

The objective of this section is to demonstrate how the formalism independent
model can be extended with an actual ECNO based implementation from which
we can generate executable code. For this thesis, Petri nets were selected as the
formalism of the implementation of the control aspect. We selected Petri nets
because they are based on simple yet powerful concepts for modelling �ow and
because they support concurrent execution.

4.4.2.1 Analysis

We want to integrate the concepts in the article by Kindler [11] into the design of
our work�ow engine. Basically, the article takes the Petri nets concepts of places,
arcs and transitions, as well as their relations, and de�nes the events Fire, Add
and Remove on top of them in a coordination diagram (global behaviour). The
event Fire is referring to the transition �ring concept of Petri nets, while Add
and Remove are referring to the actions of removing tokens at the input places
and adding tokens at the output places. In transition, Fire is then synchronised
with Add and Remove, since the �ring of a transition is exactly the combination
of these two actions.

In order to integrate these concepts into the work�ow engine, more speci�cally
into the control aspect, we have to de�ne how the Petri net concepts maps to the
BPM concepts. Actually, this topic is well covered in the literature, for instance
Work�ow Nets that are discussed in the book of Weske [12]. AMFIBIA discusses
the topic as well. What remains, is the work of combining the existing ideas
into a working executable ECNO based model for a work�ow engine.

In the book of Weske [12] as well as in AMFIBIA, tasks (activities) are mapped
to Petri net transitions. We will follow this principle. Weske discusses the issue,

4.4 Realizing the Control Aspect 55

that we also have, of the build-in contradiction in representing tasks with Petri
net transitions. In particular that the execution of tasks consume time while the
�ring of a transition per de�nition does not. In other words, if we allowed the
invocation (starting) of a task to map to a transition �ring, it would have the
consequence the the following tasks would enable to soon. They should not be
enabled until the invoked tasks �nishes. In our case, we can solve this problem
in a elegant way as will be show in Sect. 4.4.2.3.

4.4.2.2 Model: Structure

Please refer to Fig. 4.13 which shows the model. In the model, we let petrinet
e.g. Petri net implement the control aspect of process, and let transition imple-
ment the control aspect of task. Finally we let marking implement state.

We introduce the arcs and places contained in the Petri net and model that
transitions can have a multiple of input and output arcs, whereas arcs can have
one source or one target place. The marking contains a list of tokens which have
each a reference to the place they are located in.

Recall that the static model cannot refer to the dynamic model according to the
pattern we use. This is why we have to refer from token to place, and not the
other way which is more common.

4.4.2.3 Model: Global behaviour

Now we move on to the global behaviour. In the analysis above we mentioned the
error it would be to map StartActivity to transition �ring. To avoid this problem
we choose to ignore that Petri net transitions normally �re instantaneously. We
simply map StartActivity to Remove and we map FinishActivity to Add. It
has the nice e�ect that the following tasks do not enable until a tasks has been
�nished.

We assign the events Add and Remove to transition, arc and place. These
events are the two components of the �ring behaviour of Petri nets. Remove
refers to the consumption of exactly one token at every source place of a tran-
sition. Add refers to the production of exactly one token at every target place.
This behaviour is valid when Add and Remove are triggered in transition. In
the case of Remove, transition requires the participation of ALL ingoing arcs
which in turn requires the participation of their source place (which need to
be populated with at least one token, see local behaviour). In the case of Add,

56 Work�ow Engine

Figure 4.13: Control aspect - a Petri net implementation.

4.4 Realizing the Control Aspect 57

transition requires the participation of ALL outgoing arcs which in turn requires
the participation of their target place.

4.4.2.4 Model: Local behaviour

The local behaviour of marking, transition and place can be seen in the �gures
4.14, 4.15 and 4.16. Local behaviour in petrinet and arc just de�nes uncondi-
tional participation and are therefore omitted.

In marking, StartActivity and StartActivityC are synchronized, while marking
injects itself as parameter in StartActivityC - this follows the principle given in
the formalism independent model. In addition the task parameter is transferred
to StartActivityC.

Figure 4.14: Local behaviour of marking.

Figure 4.15: Local behaviour of transition.

Figure 4.16: Local behaviour of place.

In transition, StartActivityC is synchronized with Remove and FinishActivity
with Add, while passing on the state (marking) parameter. With this, our Petri
net model now governs when tasks can start and �nish. Notice also that in

58 Work�ow Engine

transition there is condition testing that the transition is a task aspect of the
task in the event parameter. Recall that in the core model, a task were required
to participate in StartActivity. Here we're checking that the control task (the
transition) belongs to the same task identity. Had we left out this check, we
would have allowed multiple task identities in the same interaction which would
not be correct.

In place, the Remove event can only enable the associated condition evaluates
to true. The condition uses state (marking) element in a code snippet which
checks that the place contains a token. The action takes care of removing the
token when an interaction including this place executes. The event binding to
Add has an associated action which adds token to this place. This can occur
unconditional because a place may legally contain more that a single token.

4.4.2.5 Model: Summary

The presentation of the models included a lot of details, so we will end this
section with an overall summary. Actually the control model is quite simple: It
includes only known Petri net concepts (arc, place, transition, marking, token).
They were connected structurally following known practise for Petri net meta-
models, except for token that we could not refer to in the static model. ECNO
coordinations were used to express adding and removal of tokens when transi-
tions �re. From transition to arc we used ALL coordinations on Remove and
Add. From arc to place we used ONE coordinations on Remove and Add. Since
we could not refer to token directly in the coordination diagram, we passed the
marking into Add and Remove as a parameter instead. We hooked the Petri
net into the work�ow engine by implementing PrecessC, TaskC and State of the
formalism independent model, and by synchronising StartActivity with Remove
and FinishActivity with Add.

4.5 Realizing the Information Aspect

In the information aspect we again start with a formalism independent model
and present an implementation thereafter.

4.5.1 A formalism independent model

We divide this section into an analysis and a model presentation respectively.

4.5 Realizing the Information Aspect 59

4.5.1.1 Analysis

AMFIBIA de�nes a model (Fig. 2.9) that we will build on here. Refer to Sect.
2.4.2.4 where we explain the AMFIBIA concepts for documents and in particular
document descriptors. Or, recall that document descriptors returns documents
of a task given a context.

As in the information aspect we mainly want to adapt the AMFIBIA model and
add support for ECNO behavioural modelling. For the formalism independent
model in particular, this mainly reduces to how we can link our StartActivity
and FinishActivity to document descriptors. Recall from the discussion in Sect.
2.3, that input documents of a task are required to start that task, while output
documents are required to �nish a task. Therefore is makes sense to connect
our StartActivity to the existence of input documents and FinishActivity to the
existence of output documents.

AMFIBIA's document descriptors have an operation that returns the document,
and the documents are being added (by the information aspect) to the corre-
sponding (information)-activity when the tasks instantiates into an activity.
Ideally our information aspect should also have been responsible for attaching
the found documents to an (information)-activity. However, recall from the
discussion in Sect. 4.3.4.3, that in our implementation the core creates the
(information)-activity during an execution of a StartActivity interaction.

This is why we will up-front allow ourselves to ignore the issue of separation
of concerns in this respect, and likewise attach the documents from within the
case in the core. Ideally the core should not have been aware of documents.

Finally, we want to ensure that document and document types are global con-
cepts e.g. not owned by a single process.

4.5.1.2 Model

In Fig. 4.17 we start by de�ning global containments for document types and
documents, before we use them in the process model. Document types are placed
in the container templates and documents in the container data. Actually, with
this trick, we're just emulating the use of a database, which is also a global
storage place. We leave it up to future work to implement an interface to a real
database.

In Fig. 4.18, the elements task, activity and case are present in their informa-

60 Work�ow Engine

Figure 4.17: Information aspect: Global concepts.

tion aspect versions. Task contains input- and output document descriptors, for
which realisations must �use� (refer to) document types. In the runtime model,
activities refers to their input and output documents, which refers to their indi-
vidual document type. In case StartActivityI is synchronized with StartActivity
and takes two parameters case and task. StartActivityI in case is coordinated
with StartActivityI in task. To perform this event, task requires the participa-
tion of all input document descriptors. From activity, a symmetrical pattern is
modelled for FinishActivity concerning the output document descriptors.

As can be seen, the event StartActivityI takes two parameters, task and case.
If an input document does not exist, a document descriptor shall block the
interaction (refuse to participate). While if an output document does not exist,
the interaction shall be valid because the user should have the option to create
them from within the task (refer to the discussion in the example). Exactly how
the GUI is made aware of non-existing output documents in our implementation
will be explained in the following section.

Note that we have omitted complex documents, and document relations known
from AMFIBIA for the sake of simpli�cation.

4.5.1.3 Evaluation

We did not achieve to copy the principle in AMFIBIA where document descrip-
tors returns documents. Normal ECNO parameters does not allow the multiple
document descriptors to contribute with a parameter value.

However, we could (and probably should) have used a feature in ECNO called
collective parameters which allows many interaction participants to contribute
to the same parameter, where the result would be an unordered list of values.

4.5 Realizing the Information Aspect 61

Figure 4.18: Information aspect: formalism independent model.

62 Work�ow Engine

An implementation, which use our model above, need to iterate through the
document descriptors again when the interaction executes, which is a slightly
redundant compared to just having the documents available in a collective pa-
rameter. Note that, here we are taking about documents that already exists,
so we would not have the e�ciency problem mentioned in the analysis - e.g
contributing a newly created activity to a parameter. We will leave it open to
future work to implement a parameter for documents.

4.5.2 An implementation

In the follow subsection we present our implementation of the information as-
pect. The implementation is divided into the concerns of implementing a process
document descriptor, a document type, and a feature for adding document con-
dition. We will limit this implementation to documents within a process - e.g.
process documents.

4.5.2.1 A process document descriptor: Analysis

Recall that we have earlier seen the concept of process document in Example
1 where, for instance, error_report was a process document. This is why the
simple document descriptor - which refers only to process document - is su�-
cient for creating a meta-model supporting Example 1, where all documents are
de�ned within the same process.

A realistic information model might also refer to documents of another process,
or documents that are not even part of a process, but just exists in the database
anyway. We have aimed that our meta-model can be extended with document
descriptors of this kind but we leave that to future work. It could be done by
extending or replacing the formalism for document descriptors that we introduce
here.

4.5.2.2 A process document descriptor: Model

Fig. 4.19 shows an example realisation of a document descriptor pattern. The
process document descriptor refers to a process document that is contained in
process. Process document documents are characterized by a quali�ed (in the
process) name and by a document type. We have also introduced a quali�ed

4.5 Realizing the Information Aspect 63

reference from case to document, which refers by name to process documents
that have been created in or loaded into a case at a given time.

Figure 4.19: Information aspect: implementation of a process document de-
scriptor.

In Fig. 4.20 the local behaviour of a process document descriptor implements
conditions for StartActivityI and FinishActivity that in both cases calls local
method getDocument(..). The method is very simple, it just performs a lookup
in the quali�ed map of documents attached to a case and returns the document,
if it can be found. As key in this lookup the method uses the name attribute in
the process document descriptor. Notice that StartActivity is only implemented
in input document descriptors, and FinishActivity only in output document
descriptors!

64 Work�ow Engine

Note also that, the GUI (Task Viewer) can create or import the non-existing
output documents and attach them.

Figure 4.20: Local behaviour of a process document descriptor.

4.5.2.3 Document types

Here we will present a simple implementation of document types which comes
with this work�ow engine. Note that we have seen document types before in
Example 1 where for instance ErrorReportDoc was a document type for the
process document error_report. Alternative terms for document types, could
be forms or schemas for information.

The implementation of document types can be seen in Fig. 4.21.We call this
speci�c implementation a default document type. It is limited to content - e.g it
is not possible to model layout. The model for default document type basically
consists of �elds and enumerated �elds. Enumerated �elds consists of literals
and a reference to the default value. The instance model consists of classes to
hold the values for each of the mentioned modelling classes. Refer to the image
to see the structure.

4.5.2.4 Conditions: Analysis

Recall from the example that we sometimes want the express in the information
model that additional conditions (besides the existence of a document) must be
met before a task can start or �nish. For instance, refer back to Example 1,
where the task Clarify cannot not start unless the �eld decision in the document
error_report is equal to �clf�. We could express this condition as:

Start Condition: error_report.decision == �clf�

We have chosen to separate the concept of conditions from the concept of doc-
ument descriptors. The main argument is, that a task could have start or �nish
conditions, which depends on values in more than one document. In such cases
there would be the question of which document descriptor to express this in.

4.5 Realizing the Information Aspect 65

Figure 4.21: Information aspect: implementation of document types.

66 Work�ow Engine

4.5.2.5 Conditions: Model

Refer to the model in Fig. 4.22. We integrate document conditions with two con-
tainment references from task: �nish and start. Then we use ALL-coordinations
to express that all start conditions have to participate in StartActivity and all
�nish conditions have to participate in FinishActivity.

Figure 4.22: Information aspect: implementation of conditions.

4.6 Realizing the Organisation Aspect 67

Figure 4.23: Local behaviour of default document condition.

The default model for document condition refers to an expression with a single
operation evaluate(). We create a model for our expressions with an abstract
syntax tree where we say that an expression can be an atom or an operator, and
an operator has two expressions as operands. This allows for some degree of
�exibility and nesting of the expression. In our implementation, atoms can be
constants, �elds, documents as included the �gure, but also enumeration �elds
or enumeration literals which were omitted in the �gure. Operations can be the
the dot for referring to a �eld in a documents, but also equal to, not equal to,
greater than and less than.

The evaluate method itself is coded manually without the use of ECNO. There
would be no good reason to chose ECNO over Java code for this kind of op-
eration. However, the evaluate method is invoked in the local behaviour of a
default document condition element as shown in Fig. 4.23. The focus of this
thesis is on how document conditions can be integrated with ECNO, we will
not go into detail with the exact implementation of the evaluate operation but
to say that we evaluate the abstract syntax tree recursively using an ad-hoc
algorithm with fairly weak typing.

4.6 Realizing the Organisation Aspect

The model for the organisation aspect is simpli�ed when compared to the previ-
ous aspect models. In addition we will present the implementing model directly
- skipping the formalism independent model. We leave that analysis to future
work.

4.6.1 Analysis

The AMFIBIA article does not present a model for the organisation aspect,
however they state that the main concept is a resource descriptor which can

68 Work�ow Engine

return assignments for a given task when it enables. We will here derive a
model that is mainly based on Example 1, and a part of it can be viewed a
simple implementation of a resource descriptor although that concept is not
explicit in the models.

We want to be able to express in the organisation aspect that a given task
requires a given role. For instance, in our example, Filter requires the role of
Manager. This means our organisation aspect has to refer to roles and every
task must have a reference to one or more roles which it can be assigned to.

Another concern we have to capture is that of task which follow up on other
tasks, and therefore must be assigned to the same agent. For instance, Clarify
follows up Submit in our example.

We will limit ourselves to modelling agents (no other resources), and we fol-
low the convention of placing them in the dynamic model (refer back to Sect.
2.4.2.5). Finally, the model should be able to capture that agents at any given
time are assigned to a number of activities, and that an agent at any given time
have taken one or more roles.

Finally, we don't want roles and agents to be owned by the processes. Refer to
the Work�ow Reference Model (WfMC) where in Roles are part of an organi-
sation model that is just referred to by the process de�nition. Likewise, agents
are people, they only temporarily enact in a given process.

4.6.2 Model: Structure

In Fig. 4.24, we will start by expressing the the ownership of roles and agents
in a global model, before we use these concepts in the process model. The
organisation model is here very simple and just consists of roles, a real model
would probably might have units and groups etc. We use a container called
people for the agents.

In Fig. 4.25, please ignore the behavioural part at �rst. We model that the
organisation aspect of processes are using certain roles and that individual tasks
requires on of these roles. In order to support tasks the follow up on other tasks
we use a simple reference follows up going from task and back to task. These
concepts represents a simple resource descriptor implementation.

The dynamic model of the organisation aspect contains activity and case as we
have seen before. Additionally it contains agents. Agents have a reference to the
roles they have taken at a given point in time, and a reference to the activities

4.6 Realizing the Organisation Aspect 69

Figure 4.24: Organisation aspect: Global concepts.

they actively work one (have started). The reference is of the type opposite
meaning that activities knows the agent they are assigned to. At last, cases
have a reference to the agents who are involved in that case.

Figure 4.25: Organisation aspect: an implementation

70 Work�ow Engine

4.6.3 Model: Global behaviour

Following the same pattern as in other aspects case StartActivity is coordinated
though the case aspect, here it must �nd an agent that can participate, and we
do that though the involved reference. FinishActivity is coordinated to agent
through activity, to �nd one agent who can participate. There are two new
events called Login and Logout, where Login takes user name and password
as parameters and Logout takes agent as parameter. We will see in the local
behaviour model of agent how this works out.

4.6.4 Model: Local behaviour

Please refer to the local behaviour of agent in Fig. 4.26. In the initial state an
agent is logged out, from where he can participate only in a Login event. The
parameters are expected to be contributed by the GUI controller. The event
condition matches the supplied user name and password with the corresponding
local attributes. After a successful login the state shifts to logged in. In this state
an agent potentially participate in StartActivity, FinishActivity and Logout.
FinishActivity does not have any further conditions. However, StartActivity has
several conditions. First of all a match is performed against the GUI supplied
agent parameter: the agent trying to start an activity must be the agent this
element represents. Next the role of the agent is matched against the required
role of the task parameter. Finally the follow up condition is evaluated in a
utility method. The method checks within the case, if the task follows up other
tasks, and if it does, it matches the agent that handled the other task against
this agent.Logout is possible when the supplied agent parameter by the GUI
matches a given agent element. A successful logout shifts the state back to
logged out.

4.7 Discussion

Here we will explain the reasoning behind some of our design choices and discuss
alternatives when appropriate.

4.7 Discussion 71

Figure 4.26: Local behaviour of agent.

4.7.1 Task identity

When looking at Fig. 4.7 a question may arise of why process and task par-
ticipates in StartActivity, and secondly why we're not doing the same for Fin-
ishActivity. The answer is related to task identity. When doing StartActicity,
task elements in the core will inject themselves as an event parameter, and task
elements in the aspects (task aspects) will have a condition saying they must
respectively be aspects of those core tasks. This prevents ECNO from comput-
ing interactions for StartActivity that involves more that a single task identity,
which would obviously be wrong in this situation. Actually, the same should be
guaranteed for FinishActivity (only one activity identity per interaction), but
identity similarity is not at risk here because the coordination is attached to the
reference from activity to its aspects. Still, there is an activity parameter, but
it has a slightly di�erent purpose, speci�cally it is a parameter that the GUI
can input to �ask� if a given activity can �nish (refer to Sect. 6 for detail).

4.7.2 Selection of trigger elements in the core

We trigger StartActivity in case and FinishActivity in activity. It has to due
with the fact, that we also synchronise the aspect models with the core via case
and activity. Some readers may wonder, if our implementation could have been
more simple if we had synchronised aspects though tasks, since we could have
avoided the task parameter mentioned above, in the discussion of �task identity�.
Perhaps it would have been simpler in some respects. But the choice we made

72 Work�ow Engine

was mainly based on a navigation restriction. We can easily navigate from the
dynamic model to the static model, but not so easily in the other direction.
Therefore, it is easier to start �coordination trees� from the dynamic side of
the model. Actually, we could navigate to case from task via not yet discussed
top-level element containers in the implementation (model registry and engine).
But, then we would have relied on elements that are not part our conceptual
domain, which we did not like.

4.7.3 Building data structures in actions

When we create a new activity identity, we create four elements and link them.
We could not �nd a way to distribute the �work� of creating a new activity
identity on several participants of a single StartActivity interaction. The prob-
lem was that the newly created (core)-activity could not be shared with the
aspects without injecting it into a parameter, which we preferred not to do - for
e�ciency reasons.

4.7.4 Duration of events

The main argument for splitting task execution into start and �nish events is
that events in ECNO, as in process algebra (CSP), must occur instantaneously
- an assumption made at the theoretical level. In BPM, a task execution does
have duration. Some work must be done and that takes a certain amount of
time. Start and �nish, however, can be treated as zero-duration events.

4.7.5 Agents as core concept

It is not ideal from a conceptual point of view that agents are known by the core,
since agents belongs to the organisation aspect. This choice is a consequence
of a need to input the identity of the agent who triggers StartActivity (used in
organisation aspect) combined with no obvious alternatives to triggering Star-
tActivity in the core. ECNO release 0.3.2 have the concept event extension
which makes it possible for an event to inherit from another event while adding
parameters. However, that concept does not appear to apply directly to this
problem, because we still need input the agent parameter in case in the core. It
is a potential topic for future work.

4.7 Discussion 73

4.7.6 Instantiation of activities

In the analysis for the core model we introduces the instantiation concern. We
selected to instantiate an activity only when is is started. We will explain the
reason here.

The conditions for starting and �nishing activities depends on complicated rules
in each of the aspect models, and every time an event is executed the possibili-
ties may change. Think of a process �ow (control) where one of two execution
paths can be taken. If one path is picked the other path is no longer enabled. Or
in other words, certain activities which at one point in time could be started can
no longer be started. It could also occur that a document needed for starting
an activity is existing an one point in time, but is deleted before anyone actu-
ally started the activity. Generally speaking, we cannot be sure that resources
needed to start activities will stay in the system after they have �rst arrived.

This leads to a problem that must be handled early on: When do we create new
activity elements (objects)? If we create them when we discover an activity can
be started, it could very well happen that we have to delete the object later
because it has been made obsolete by other events in the system. Keeping track
of which activities to keep and which activities to delete would be a non-trivial
problem. This is why we selected to create activity elements when an activity is
actually started. In other words, we de�ne an event StartActivity which includes
creating the activity element and includes starting it.

4.7.7 Instantiation of cases

Here we are turning the attention to cases, and more speci�cally to when we
intend to instantiate them. When discussion the creation of activities we just
assumed there already was a case to which new activities could be attached
(refer to the structural model, activities are owned by cases). Actually there
is, since we have selected to de�ne a system invariant saying that all processes
have exactly one counterpart case in initiated state. Cases can also be in active
state. The transition from initiated to started shall then occur the �rst time
an activity starts in them. At the same time, a new case shall be created to
maintain the system invariant. This approach has several advantages: The user
(agent) does not have worry about creating cases, it happens automatically. The
rules for starting cases follows the rules for starting activities. More speci�cally,
a case can only be started by starting the initial task of a process (in Example
1, this would be Submit). As a logical consequence, only the role who may start
the initial activity (in Example 1, this would be Customer) may start a case.

74 Work�ow Engine

We will now show how we achieve this in the models.

4.8 Summary

In summary, the behaviour modelling in this work�ow engine aimed at capturing
the events that takes place in a work�ow engine, identifying the participating
elements and the conditions for their participation. The life cycle of elements
could be modelled locally using ECNO nets. In the actions associated to events
we often make calls to external snippets of code, however, we used ECNO to inte-
grate them at the right place and time, reducing the job of the coded methods to
trivial factory operations or lookups in most cases. We used ALL-coordinations
from core elements to aspect elements for the purpose of realizing aspect- (or
subject-) synchronizations in relation to an event. This construct hides the
technical details that we would have to worry about had we implemented as-
pect synchronization in the style of aspect oriented programming or in the style
that ABFIBIA uses.

In the following chapter we will introduce the enactment GUI, and explain how
it interfaces with the work�ow engine realised by the models presented in this
chapter.

Chapter 5

Enactment GUI

The models presented in the previous section realizes the work�ow execution
engine, and hence includes the design- and implementation concerns. However,
the enactment GUI was not included in the models, therefore we will explain
it here. In order to explain this, we need to talk about some ECNO concepts,
which we only explained brie�y in our introduction to ECNO. Speci�cally, the
concepts which makes it possible to integrate a GUI.

5.1 ECNO's controller framework

ECNO makes it possible to de�ne enable a GUI attribute in element types
and event types in the coordination diagram. These are just con�gurations for
ECNOs build-in GUI which can be used to test the generated software. In
our case, the build-in GUI is not su�cient for making a convincing work�ow
enactment GUI for our work�ow engine. Therefore, we had to use ECNO's
controller API. We will now explain main features of this API.

76 Enactment GUI

5.1.1 Element Event Controllers

The purpose of ECNO's element event controllers is to allow applications (could
be in the GUI part) to get information about the possible interactions in ele-
ments, and to execute them. This can be used for updating the GUI accordingly.

An element event controller knows about an element and an event. For ex-
ample, an activity element and a FinishActivity event. When initialized, and
when updated, the element event controller automatically calculates the possi-
ble interactions for the event, in that element, and keeps the interactions in a
local interaction iterator. If there is at least one interaction in the iterator, the
element event controller is enabled. An enabled element event controller can
execute the next interaction in the iterator, when it is requested to. At last, an
element event controller registers an invalidation listener on all the interactions
it currently holds. It will receive a call-back if any of these are invalidated, and
perform an update. An interaction is invalidated if one or more of its partici-
pating elements are changed.

In the following section, we will explain how we can use an engine controller to
create the element event controllers dynamically.

5.1.2 Engine Controllers

The purposes of engine controllers is to allow applications to receive information
about, when elements are added or removed in the runtime information, and to
allow applications to create element event controllers for the added elements.

The ECNO engine sends an add element noti�cation to all registered engine con-
trollers when it becomes aware of a new element. This already implies, that an
element, which has been added to the runtime information is not automatically
added to the engine. Adding an element to the engine shall be done manually
by the applications by calling a method on the engine.

When engine controllers get noti�ed of a new element (for instance, an activity)
they can decide how to react to that. A GUI would normally check the type
of that element and then display some graphical representation, or it could just
ignore it. If the added element is relevant, an engine controller would typically
create an element event controllers for it.

Engine controller are registered with the ECNO engine. It can happen when
the application launches or at a later time.

5.2 Maintaining GUI lists of interactions 77

5.2 Maintaining GUI lists of interactions

The main features of the ECNO controller API have now been explained. How-
ever, we have an additional problem, which cannot be solved with element event
controllers. Recall from Sect. 4.3.3, that activities are created and started by
the same interaction. for example, if we want to present a list to the end user
showing the activities he can start at a given time, we have to list all the pos-
sible interactions of the type StartActivity. The reason, that we cannot use
element event controllers for this, is that it can only be used to execute the next
interaction in the internal iterator it keeps, not to maintain a list of interactions
in the GUI. This means, we have to manage the interactions manually, for this
purpose, instead of letting the element event controller manage them for us.

In order to accomplish this goal, we can call a dedicated method getInterac-
tions(..) on the engine, passing an element and an event as parameters. The
method will return an interaction iterator containing all possible interactions.
In the example, we have to pass the element case, and the event StartActivity.
We have to do this for all the cases we are interested in. Actually, the main
di�erence from using element event controllers is that we now have access to the
interaction iterator, which is private in element event controllers.

With this technique, we can list all the possible interactions in the GUI. We
can also execute any of them when the user wants to. This comes at a price
of added complexity, since we have to handle the invalidations manually too -
e.g. update the GUI when interaction are invalidated. We will elaborate on this
aspect in Sect.5.6.2.

5.3 ECNO Connectors

Here we will introduce a concept that we added in order to make GUI inte-
gration a bit more convenient. ECNO connectors are extensions of element
event controllers, which means they inherit all the features of element event
controllers. In addition, they have methods to add and get event parameters.
ECNO connectors know the GUI that created them, and after an update, they
will make a call-back to that GUI, to inform if they are enabled or not. Later
in this chapter, Fig. 5.4 will indicate how ECNO connectors are used.

78 Enactment GUI

5.4 The Enactment GUI

We will now continue by analysing what is required of the enactment GUI. The
main purpose of our GUI is to demonstrate that the work�ow engine is working
as it should, but it should also give us the feel of a work�ow engine when using
it. We aim to create a GUI that follows the patterns de�ned by WfMC (refer
to Fig. 2.1). This implies agents shall be able to log in and see a personalized
view of tasks (the worklist). We will combine login and worklist viwing in a
single GUI component, that we call the Worklist Viewer. When an agent wants
to perform the work of a task, he shall be able to open it, and view input
documents, and view, create or edit the output documents. We will call the
view of an open task the Task Viewer.

In this chapter, the focus will be on the Worklist Viewer, because this is the
interesting part from an ECNO point of view. The Task Viewer is really nothing
but a viewer and an editor for documents.

5.5 Worklist Viewer

In the Worklist Viewer we mainly want to maintain two lists. One list showing
the possible tasks that an agent can start (Inbox), and another showing the
started tasks (Work In Progress). We note, that the tasks an agent can start
are actually the same as the combination of all StartActivity interactions in case
when the speci�c agent is injected as a parameter. Likewise, we note that the
work in progress is the same as the activities that are linked to the agent in the
runtime information (refer to the runtime information model of the organisation
aspect in Fig. 4.25).

The ideas for the Worklist Viewer mentioned above can be seen in the form of
a principle drawing in Fig. 5.1. In the �gure, we can see the Inbox and the
Work In Progress list. The content (list items) is compatible with Example 1,
meaning that Jack, the Customer, is logged in, and we see his tasks.

5.5.1 The Inbox

We �rst explain how the list is populated, then we explain how it is used to
start an activity. In order to populate the Inbox, the GUI iterates over all cases
that Jack is involved in, and for each case it gets the StartActivity interactions

5.5 Worklist Viewer 79

Figure 5.1: Principle drawing of Worklist Viewer (login features omitted).

80 Enactment GUI

when the agent is injected as parameter, and adds them to the list. This is
the technique of maintaining interaction list in the GUI, that was explained
above. We can enable the Start button when any of the interactions in Inbox
is selected. The selected interaction can always be executed, or it would not
be an interaction, however we have to respond to invalidation noti�cations and
re-calculate the interaction to ensure this list is always valid. Finally when
the Start button is pressed, we can call execute() on the selected interaction.
We have included a diagram showing what happens dynamically when the user
selects an interaction and starts an activity, please refer to Fig. 5.2. As can be
seen, the steps are very simple. With the Inbox, the complexity lies in keeping
the list updated, and with a minimal performance loss. We discuss this issue
later in the chapter.

Figure 5.2: Starting an activity from the GUI.

5.5.2 The Work In Progress

We �rst explain how the list is populated, then we explain how it use used to
�nish an activity. The Work In Progress list is populated, at login, by �nding
all the activities in the runtime information which is assigned to Jack. Activities
which are created later, can be caught with the engine controller noti�cation sys-
tem (add element). For every activity, we register an element event controller
(ECNO connector) allowing us to hook into the status of its FinishActivity
event. When the user clicks on an activity, we update the corresponding ECNO
connector 1, which then makes a call-back to the GUI to inform about its en-
abledness status. The GUI will update the Finish button accordingly. When
the user clicks on an enabled Finish button, we call execute() on the ECNO

1The activity is injected as parameter �rst, because the local behaviour of activity requires
it - this is redundant now, and could be designed out.

5.6 Design and Implementation 81

connector (hence, element event controller) of the selected activity. We have
included a diagram showing what happens dynamically when the user selects
and �nishes an activity, please refer to Fig. 5.3.

The button Open enables whenever an activity is selected, and when pressed,
the Task Viewer is launched. We have implemented a Task Viewer GUI but we
omit a discussion in this report, because it is a secondary topic in relation to
ECNO.

Figure 5.3: Finishing an activity from the GUI.

5.6 Design and Implementation

We have explained the ECNO concepts for integrating a customized GUI, and
shown the principle of how we use them to integrate the Worklist Viewer GUI,
of which we have also seen the principle layout. The purpose of this section
is be more speci�c on how these di�erent constructs were realized, and we will
also discuss some performance related topics. This section combines design and
implementation concerns.

82 Enactment GUI

5.6.1 Design of Worklist Viewer

The remaining problem is, that the individual GUI components, such as lists,
list models, and buttons, need to be integrated with the ECNO components,
such as element event controllers and interactions, and with particular elements
of the runtime information displayed by the GUI. Here, we will present the
structure we use in the Worklist Viewer to solve this problem.

Please refer to the class diagram in Fig. 5.4. First notice colour usage to
categorize the classes and interfaces. The blue colour indicates ECNO classes
and interfaces. Green colour is used for Java Swing classes. Java Swing is the
name of the framework that we have used for creating the enactment GUI. Other
classes are the default yellow. We will now comment in the structure in more
detail.

Recall that the ECNO framework for controllers includes engine controllers and
element event controllers. In the �gure, these concepts are represented by the
interface IController and the class ElementEventController respectively. The
IController interface is implemented by our WorklistViewer class, which repre-
sents the Worklist Viewer introduced earlier. The WorklistViewer class extends
JFrame of the Java Swing framework which makes it a GUI component. Work-
listViewer owns the buttons start and �nish and two Jlist objects representing
the Inbox and the Work In Progress. The models of the JList objects contains
objects of the type ElementItem in the the case of the Work In Progress list,
and objects of the type InteractionItem in the case of the Inbox.

An ElementItem keeps a reference to the element (for instance, an activity)
and to the ElementEventController object which was created for that element.
Notice we use the extension of ElementEventController called ECNOConnector,
where we added some convenience methods for adding and getting parameters.
ECNOConnector is also able to make a call-back the the GIU that created it
when it enables or disables (being an ElementEventController, it can enable and
disable).

An InteractionItem just keeps a reference to an interaction. ElementItem and
InteractionItem overrides toString(), which returns the text we want in the list.
In the case of an InteractionItem, this text will be di�erent if the activity, which
can be started is the initial in a case. This will let the agent know, the action
will also start a new case (Fig. 5.1 shows an example of this).

The Start button is enabled whenever an InteractionItem is selected in the list,
and when the Start button is pressed the select interaction is executed. The
Finish button is enabled or disabled by the WorklistViewer according to call-

5.6 Design and Implementation 83

Figure 5.4: Class diagram: Worklist Viewer

84 Enactment GUI

backs (to eventDidEnable()) from the ECNOConnector objects. Recall that El-
ementEventControllers receives noti�cations (to setEnabled()) when their event
enables or disables.

5.6.2 Performance optimization

Here we discuss a performance optimization in the enactment GUI, focussing on
invalidation noti�cations for interactions, which were found to have a signi�cant
impact on the systems responsiveness, and was found to dominate other possible
e�ects for the moment.

5.6.2.1 The problem

Recall, from the discussion of working with interactions directly, that we men-
tioned a topic of interaction invalidation. It is that mechanism, we wish to
optimize for our application. When populating the Inbox with StartActivity in-
teractions, we request ECNO to calculate interactions in each case individually
with getInteractions(..). Interactions are returned by the ECNO engine in a col-
lection called an interaction iterator, and then the GUI registers on this iterator
as invalidation listener. An interaction iterator sends an invalidation noti�ca-
tion when any of the elements used in the calculation are changed. Whenever
this happens we need to update the Inbox. However, we cannot update the
entire Inbox, that would be too ine�cient: if we updated the entire list at every
noti�cation, the running time would be proportional to the number of cases, a
solution which would de�nitely not scale. Therefore, we only wish to update the
part of the list corresponding the the particular iterator (e.g. in one case) that
was invalidated. In the following we will explain how this was implemented.

5.6.2.2 The solution

When an iterator invalidates, the noti�er (the iterator) passes the iterator (itself)
that was invalidated to the listener (our GUI). However, in the current ECNO
release, the listener cannot get the case element the iterator was based on from
the iterator. Therefore, we maintain a map in the GUI, which takes an iterator
as key and returns iterator information as value. Iterator information contains
a reference to the case we calculated the iterator in, as well as references to all
the associated list items we placed in the Inbox model for that iterator. When
an invalidation noti�cation is received, we take the iterator, and use the map to

5.6 Design and Implementation 85

get the list items, which we then remove from the list. Then we use the map
again to get the case. Then we request the ECNO engine to re-calculate the
interactions, only in this case, and we add the result to the Inbox model.

5.6.2.3 Evaluation

This optimization had a huge impact on the performance. FinishActivity inter-
actions improved from linear to constant time complexity, in terms of number of
cases. StartActivity interactions improved from quadratic (assumed) to linear
time complexity. In both cases one factor, the number of cases, was taken out.
As we will show in the Evaluation chapter, a performance issue still remains for
StartActivity. Just brie�y, the GUI is getting excess invalidation noti�cation
from interaction iterators. It could not be solved with this version of ECNO
(v0.3.1), so new concepts are needed in ECNO for this purpose.

5.6.3 Summary

In this section we have explained how the Worklist Viewer was implemented
and discussed an important performance issue. Our enactment GUI includes
two other components, the Task Viewer and the Database Browser dialogue,
but they do not interface directly with ECNO. They are implemented with
standard GUI programming techniques and therefore we do not discuss their
realization in detail in this report, instead we refer to the provided source code.

We further refer the reader to the Chapter 7, which includes screen shots of all
three GUI components in action (Fig. 7.5, 7.6, 7.7 and 7.8).

86 Enactment GUI

Chapter 6

Implementation

This chapter is about the the more technical aspects of our project. What is
left, is to show the actual models we used to implement the work�ow engine,
to explain how we generated a simple tool for business process modelling (the
process de�nition tool), and to show how we integrated the runtime information.
When referring to business process models and runtime information, are still
using the terminology developed in Fig. 4.1.

6.1 Work�ow Engine - actual models

The purpose of this section is to show how we implemented the work�ow engine
using EMF Ecore models and ECNO models. We only show an example, which
demonstrates that the ad-hoc notation we used in Chapter 4, maps directly to
the actual models.

Please refer to Fig. 6.1 showing how the ad-hoc notation we use in Chapter
4 is in fact the combination of an Ecore diagram and an ECNO coordination
diagram, except we do not print the class attributes in the ad-hoc notation.
Note that, the ECNO nets we used in Chapter 4, were the actual diagrams.

88 Implementation

Figure 6.1: Ad-hoc notation vs. actual models.

6.2 Process De�nition Tool and Runtime Infor-
mation

The process de�nition tool can be used to create and edit the business process
models. This section explains how it was realized as an EMF editor, based on
our meta-model for business process models (the one presented in Chapter 4).
First, we will explain what an EMF editor is, since some readers might not be
aware of that, and then we will explain how we used the technology to create
the process de�nition tool, after some initial concerns were dealt with.

6.2.1 EMF editors

The Eclipse Modelling Framework (EMF) comes with a code generator, which
can generate a simple tree editor based on an Ecore meta-model. An Ecore
model can be described as EMF's version of a UML class diagram. By default,
the an EMF runs in the Eclipse runtime-workspace as a plug-in project. Using
this editor, the user can create models that conform to the meta-model, and
exists as resources in the Eclipse runtime-workspace.

6.2 Process De�nition Tool and Runtime Information 89

6.2.2 The goal

We will now present, what we wanted to achieve (the result), and in the following
section we will explain how we achieved it. In Fig. 6.2, an example of the
resulting project folder in the runtime-workspace is shown, with example of a
resource opened with the EMF editor (the process de�nition tool).

Notice there are many separate resources in the leftmost part. All business
processes are placed in their own resource. We see a model registry, where we
can register (refer to) the processes. There is a resources named engine, which
contains all the runtime information. Runtime information can can refer to the
process models. The engine and the model registry both refer to each other. We
have resources containing the concepts that are not owned by processes, namely
global resources containing roles, agents, document types and documents. The
business process models, can refer to roles and document types. The runtime
information can refer to all global resources.

The rightmost part is showing an open resource, actually what you see is a
resource set containing the resource that was opened, but also the resources
that are imported (referred to) in that resource. In the example, we can see that
when opening the resource containing the Error Management Process (Example
1), the displayed resource set includes the resources the opened process model
refers to. In particular the referred resources contains the externals organisation
model, the book store organisation model, a document type model and the model
registry. Within the process model itself, the core model and the individual
aspect models conforms to the meta-models presented in Chapter 4. Note that
these meta-models were presented with our ad-hoc notation, which included
ECNO behaviour, but technically, they all have Ecore diagrams underneath.

Figure 6.2: Process De�nition Tool (EMF editor).

90 Implementation

6.2.3 The problems

The above approach sounds quite easy, and seemingly we could just generate an
editor based on our meta-model for business processes using the EMF generator,
but we had have a few problems for our process de�nition tool which we needed
to take special care of.

Problem 1) Every part of our business process meta-model (and runtime in-
formation model) that we want to create (technical) instances of in a separate
resource in the runtime-workspace must have a suitable container for that part
of the model. Hence, we need a container for business process models, we need
a container for runtime information and we need a container for each individual
process. In general, a suitable container class may or may not be in the meta-
model. In our case, we found that we had to add container classes just for this
purpose to get the result we wanted. We will show which ones in the following
section.

Problem 2) Another concern, which follows from this, comes from the fact that
EMF does not handle cross resources containments very well (for technical rea-
sons). We should therefore make sure, that in our meta-models, we avoid con-
tainment of classes where instances shall be placed in di�erent resources. In the
following section we show the solution we have made.

6.2.4 The solution

Here, we will present an Ecore mata-model adapted to above mentioned prob-
lems. From this model, EMF can generate a process de�nition tool (an editor)
that operates on business process models in separate resources. However, the
same Ecore meta-model can still be used underneath our ECNO models, when
generating the work�ow engine (the enactment environment).

As can be seen in Fig. 6.3, we added engine as container for the runtime
information. Core model is a container for a single business process model (with
aspects), while model registry is a container for core models. At last, we added
the interfaces global aspect and global runtime aspect. These interfaces can be
implemented by aspect concepts that are not part of processes. In particular
they are implemented (in other Ecore diagrams) by containers for documents,
document types, agents and roles.

Notice that certain places where containments would have been expected we are
using bidirectional references, to avoid the problem of cross resource contain-

6.2 Process De�nition Tool and Runtime Information 91

Figure 6.3: Technical model layers added on top of conceptual model. This
�gure has the lower layer in common with Fig. 4.5 and Fig. 4.7.

92 Implementation

ments. The classes that are not contained anywhere (engine, model registry,
core model, global aspect, runtime global aspect) will be owned (contained) by
resources in the runtime-workspace when the user creates the models.

With the bidirectional reference between the model registry and the engine,
it would seem we have introduced an exception to the rule that we only refer
from runtime information to process models. However, conceptually the engine
is not a part of the runtime information, it just contains it. The reference
is needed for navigation when the enactment environment creates the runtime
information based on the models. We will elaborate on how this works in the
following section.

6.3 The behaviour-state resource

We still have a couple of concerns that have not been covered yet. In particular,
how we launch the enactment environment and how we persist our runtime in-
formation. Additionally, the local behaviour models were modelled with ECNO
nets, which in general de�nes di�erent states for an element. These states are
not a part of the runtime information as we have de�ned it, so we need to ex-
plain where the runtime states are kept. The build-in ECNO features, that we
will explain in this section, are addressing the above mentioned problems.

Notice in Fig. 6.2, that the runtime-workspace contains a resource of a di�erent
type that the rest - e.g loader.behaviourstates. A behavior-state resources con-
tains concepts de�ned in ECNO, and the �le is maintained by the ECNO engine,
except we have to set up the initial version at �rst. The resource imports the
runtime information resource (and hence the resources the runtime information
imported), and contains references to all elements the engine is aware of at a
given time (recall, element are added to the engine by calling add element on
it). For each added element, the state of the local behaviour is kept.

ECNO plugs in an action in the Eclipse IDE named �Launch ECNO Engine�.
This action can be started by the user from behaviour-state resources. When the
action is executed, the ECNO engine launches, and then it will run a method
in an application class, referred to in the behaviour-state resource. In this
application class we launch our GUI instances (Worklist Viewers) and register
them with the ECNO engine as engine controllers. The ECNO engine will then
send an add element noti�cation to the engine controllers. This realizes loading
of elements and their states at start-up.

The last topic is that of persisting the runtime information (and the states).

6.4 Development workspace 93

Actually this is easy because everything is contained in Eclipse resources, which
are supporting serialization. We let another ECNO tool (ECNO: Engine Reg-
istry), which is also plugged into the Eclipse IDE by ENCO, handle this part.
The tool is realized as an Eclipse View and contains a list of started ECNO en-
gines and a button which looks like a �oppy disk. When this button is pressed,
the tool saves the content of the behaviour-state resource and the contents of
the referred resources.

6.4 Development workspace

In this section we will show how our project was structured in the Eclipse
development-workspace, and we will also show how the actual global behaviour
models looks like since we have used an ad-hoc notation earlier in this report.

6.4.1 Project Structure

Please refer to Fig. 6.4 showing our development-workspace for the work�ow
engine Eclipse project. As can be seen, the models folder includes a number
of Ecore diagrams, of which we have seen Work�owInfrastructure.Ecorediag in
Fig. 6.3. The other three are the models of the individual BPM aspects we
support. The diagram in Work�ow.ecno_diagram contains all global behaviour
- ECNO release 0.3.1 did not allow us to split that diagram into aspects. The
�le Work�ow.pnml contains the local behaviour models. In the folder scr we
have the generated classes (emitted by EMF and ECNO generators). In the
folder coded we have the classes that are coded manually. In particular the GUI
and the code snippets. The seperate packages in the lower part of the �gure
contains the generated EMF editor code.

We have aimed to avoid modifying generated code and the was actually achieved.
Regarding ECNO generated code, we never had a situation when we needed
to modify the code. With the EMF generated code it was di�erent. In the
EMF code, we had to omit constraints on which child elements can be created
in the static instance models. As a consequence, the editor allows creating
child elements under the control aspect model that belong to the organisation
aspect model. Since we're not building a system for real users, but rather a test
platform, we did not implement the child element constraints, but did leave an
example in the project tree showing how to do it.

Above mentioned compromises have so far proven to be a good choice. We have

94 Implementation

Figure 6.4: Development workbench.

6.5 Summary 95

made several improvements to models (even at a very late stage in the project)
by deleting all generated code, updating the models and re-generating the code.
These improvements would not have been feasible (time-wise) to implement if
we had customized the generated code. While maintainability is an important
quality attribute of a work�ow engine we would stress that avoiding to customize
in generated code is a very good principle.

6.5 Summary

In this chapter, we have discussed the technical aspect of our project. In the
following chapter, we will carry out acceptance testing to prove that the system
is working according to expectations.

96 Implementation

Chapter 7

Acceptance Testing

In this chapter, we have the intent show that the work�ow engine implementa-
tion works as expected. Since this is a scienti�c project we have taken a light
weight approach to de�ning the requirements and we will limit the testing to
acceptance testing. Acceptance testing means that we test from the user per-
spective, we don't test all individual features in details. The use cases for the
acceptance test cases have been derived from the chapter Project Scoping.

We have also carried out initial performance testing but we present these tests
in the the chapter Evaluation, because we do not test against pre-de�ned per-
formance criteria (that was not the intention with this thesis) and because we
want to present the results and the evaluation in one place.

The process de�nition tool is a simple tree editor generated with EMF, so we
will not test it independently. It is tested indirectly by acceptance testing based
on Example 2.

Our test strategy is that we will create a new example (Example 2) to use in the
acceptance testing. With this approach we avoid the risk of undetected errors
as a result of using the same example in the testing as was in development.

98 Acceptance Testing

7.1 Example 2: An Online Book Purchase Pro-
cess

Here we will explain the example process of a book purchase scenario, but in
a little less detail than the explanation given for the previous example process.
At this point the reader will probably be familiar with the notation in Fig.7.1
and Fig. 7.2 with which we de�ne the process, if not refer back to the walk
through of Example 1 in Sect. 2.3, where also the concept of input and output
documents is explained in detail. Recall that, the dotted lines are just an ad-
hoc notation to indicate that a task has a start and/or a �nish condition (see
also how this was realized in Sect. 4.5.2.4) referring to �elds in a particular
document. If the arrow is going from a document to a task, the document is an
input document to that task. If the line is dotted, there is one or more start
condition(s), where the conditions are written next to the line. If the arrow is
going from the task to a document, the document is an output document. If
the line is dotted, there are one or more �nish condition(s).

Just brie�y, the process de�nes that a Customer can place a book order, which
a Librarian will then take. The Librarian will then check if the credit card
information given in the payment is valid and if the selected book is on stock.
The Librarian will create a status document, which contains the information
about whether a book was on stock or not in stock, and if the credit card was
accepted or rejected. If the payment is rejected the order will be rejected by
the Accountant. If the book is not in stock the order will go into Back Order
where a Buyer will get the book from the supplier. When the book is on stock
the Shipping Agent will ship the book to the Customer and produce a receipt
with the shipping information which the Customer can view. At any time after
the Librarian has processed the order, the Customer can Track the status of the
order.

A few details have been omitted in the Fig. 7.2 for the sake of presentation. For
example, Track and Check Receipt have follow-up relations to Place New Order
- e.g. only the same Customer can take the respective tasks.

The control process (Fig.7.1) of Example 2 has a feature that Example 1 did
not have. The process branches out after the Take Order task. Our Petri net
notation expresses this easily, and since the controls aspect of our work�ow
engine is implemented using Petri net semantics it should be a problem to
execute it.

When looking only at the control process, the task Back Order might look a bit
dangerous because the process could get stuck here if the task is started every

7.1 Example 2: An Online Book Purchase Process 99

time it can be started. To see how we resolve this in the information model
refer to Fig. 7.2: The Back Order task can only start if the book was not in
stock, as expressed with the condition. And the Back Order task can only �nish
when the book is back in stock, and then it cannot start again, the process will
continue with the task Ship.

Apparantly a case will never end, becuase the token in the input place of Track
will always be placed back when Track is �nished. To overcome this, we are per
de�nition always �nishing a case when a token reaches the place named �nish.

Figure 7.1: Example 2: Control aspect of an online book purchase process.

Figure 7.2: Example 2: Information (and Organisation) aspect of an online
book purchase process.

100 Acceptance Testing

7.2 Building the model

The models that we have just seen were created by the process de�nition tool.
While the tool is just a generated EMF tree editor, which conforms to the
structural meta-model of our work�ow engine, there is no need to show the
whole tree in this report. Figure 7.3 should be enough to give the reader the
basic idea of how this looks. The full example model is included with this thesis
hand-in.

Figure 7.3: Example top level view in process de�nition tool.

The user interface is not that user friendly. It does not matter at all for the
purpose of this project, because it has no importance in relation to the con-
cepts that we try to demonstrate, but it would be a nice continuation to create
graphical editors with model validation support. We leave that topic to future
work.

7.3 Scenario testing

We will here explain the execution scenarios which have been tested. The text
includes references to screen shots taken during the actual test. First we will
present the agents that have been created for the purpose. The agents are listed
in Fig. 7.4 with their role. Each role is de�ned in an organisation model, so we
list also the organisation the role is de�ned in. Notice that Customer is de�ned
in the Externals organisation. Example 2 as well as Example 1 involves this
role. As a consequence, Jack, who is a Customer can engage in both processes.

7.3.1 Scenario 1 (case 1): Purchase which goes through

Jack logs in and starts a new purchase process. He opens Place New Order
and selects a book from a list of pre-existing book documents (Fig. 7.5) and
enters his credit card information (with New Document). Jack �nishes the task.
Ellen, the Librarian, is already logged in and receives the task Take Order in

7.3 Scenario testing 101

Figure 7.4: Agents.

her inbox. She starts it, and opens the task, where she creates a new status
document. She sets the �eld Availability to the value In Stock, and she sets the
�eld Payment to the value Accepted (Fig. 7.6). Jack receives the task Track in
his inbox. The Shipping agent, Max, who is already logged in receives the task
Ship which he starts and opens (Fig. 7.7). He creates a new receipt document
and �nishes the task. Jack receives a Check Receipt task. When Jack �nishes
Check Receipt the case ends.

7.3.2 Scenario 2 (case 2): Book is unavailable

Starts just like scenario 1, but Ellen sets the �eld Availability to the value Not
in Stock (and accepts the credit card again) before �nishing the task. Bob who
is already logged in receives the task Back Order, he opens it, and cannot �nish
the task until he sets the �eld Availability to the value In Stock (Fig. 7.8). Now,
Max can ship the order just like in scenario one.

7.3.3 Scenario 3 (case 3): Credit card is rejected

Starts just like scenario 1, but Ellen sets the �eld Payment to the value Rejected.
Now, only Anton received the task Reject where he can create a receipt saying
that the order was cancelled. The scenario ends like scenario 1.

102 Acceptance Testing

7.3.4 Conclusion

All the above scenarios have passed according to the behaviour expected from
the process de�nitions. Note that even though this was not a speci�c scenario,
the work�ow engine has also been proven to work with with several processes
(of di�erent kinds) at once. Notice also from the screen shots that Jack is the
only �agent� who (since he is a Customer) is involved in cases of the type �Error
Management Process� which was the same as Example one. We have as well
tested with other agents in Customer roles, and checked that they cannot follow
up on tasks handler by other Customers.

Note: The following pages will show the screen shoot we referred to, and after
these �gures we discuss the GUI test cases.

Figure 7.5: Scenario 1: Jack (Customer) selects a book to order.

7.3 Scenario testing 103

Figure 7.6: Scenario 1: Ellen (Librarian) takes the order.

104 Acceptance Testing

Figure 7.7: Scenario 1: Max (Shipping Agent) ships the order.

7.3 Scenario testing 105

Figure 7.8: Scenario 2: Tom (Buyer) handles an book whish is not in stock.

106 Acceptance Testing

7.4 GUI testing

The scenario testing on the previous pages showed that the overall functionally
was according to the expectations. We will end this chapter with test cases which
address speci�c features of the GUI. The testing has been split into di�erent
categories and summarized in three tables.

7.4.1 Test results

Please refer to the Fig. 7.9 containing login and logout related tests, Fig. 7.10
containing tests in the Worklist Viewer and Fig. 7.11 where the Task viewer is
tested. Note that these test cases do not refer to speci�c scenarios like before,
but rather de�nes how the GUI should respond in typical situations - e.g. proper
and timely updating. However, we did use Example 2 when performing these
tests.

7.4.2 Conclusion

The GUI responds correctly to all the kinds of situations we could think of. The
most part of the situations are covered by the test cases in the tables. However
there are minor GUI features that are not having test cases. For example, an
activity cannot be opened twice, instead the already opened Task Viewer is
getting the focus. Another detail is that frames keep focus when they should -
for instance, when other frames need to update in the background in response
to an action.

7.4 GUI testing 107

Figure 7.9: Acceptance test: Using Login and Logout.

Figure 7.10: Acceptance test: Using the Worklist Viewer.

108 Acceptance Testing

Figure 7.11: Acceptance test: Using the Task Viewer.

Chapter 8

Evaluation

In this section, we will evaluate the results of our case study - the work�ow
engine. On that basis, we evaluate ECNO in its current state. We assess the
results in relation to the goals of the thesis and suggest topics for future work.
At times, we will mention when topics from our evaluation could be relevant
input to the development of a methodology for ECNO. The section will end
with a performance evaluation.

8.1 Evaluation of Work�ow Engine

A goal - and a method - of this thesis was to implement an almost realistic work-
�ow engine in ECNO, to gain experience on the process of making applications
in ECNO and hereby provide input for the development of ECNO.

What was delivered is a complete and fully functional work�ow engine with a
presentable a convincing enactment GUI, and with a working process de�nition
tool which integrates seamlessly with the engine. Speci�cally:

• The solution has reached a high level of completeness in that it covers all
three main aspects of business process modelling.

110 Evaluation

• The architecture maintains the objective of AMFIBIA that aspects can
be modelled independently with no bias towards any aspect.

• The architecture also makes it easy to extend the system with new aspects,
or to add features to existing aspects.

• For the most part, the solution is implemented in the style that exploits
ECNO. For instance, buttons are enabled when corresponding events are
enabled, lists displays items representing elements or interactions, and all
major functionality in the system is governed by the ECNO engine.

• This thesis, includes two example business processes, where one have been
used to develop the work�ow engine an the other to test it. The engine
can execute multiple process instances in parallel of any type, and the
same agents can engage in multiple case at the time.

• The engine can execute relatively complex process model constructs such
as concurrent �ow, conditional �ow (based on data) and execution of con-
trol loops.

• The GUI allows agents to log in and out of a Worklist Viewer, even with
multiple sessions/users in parallel, to see the task which concerns them.
The GUIs update automatically when other users change the state of the
process execution. A Task Viewer, which presents the custom de�ned
documents of a task, allows the user to view and edit the documents.

• Acceptance testing has shown that the system executes processes correctly.

• The performance of critical parts of the system have been analysed and
optimized (to the extend ECNO version 0.3.1 allows).

As a whole, it meets, if not supersedes, our own expectations of creating an
almost realistic work�ow engine. In that process, many observations related
to ECNO, at the conceptual and technical levels, have been made. We will
summarize the observations about ECNO in the following section.

We cannot claim on the basis of this thesis, that a real work�ow engine can be
made with ECNO in the future but since we came quite far with this attempt,
we have added signi�cantly to the evidence, that it might be possible when
ECNO has matured further. Further, we have contributed with concrete input
to how ECNO can be used in a large application and provided a test platform
where future ECNO improvements can be tested and evaluated in an application
setting.

To �t this project within the workload of 35 ECTS points a number of compro-
mises were made. Some compromises were due to lack of features (at the right

8.1 Evaluation of Work�ow Engine 111

time) in the ECNO prototype engine. The main limitations of this work�ow
engine are:

• We create new output documents from the Task Viewer GUI. There is
currently no explicit ECNO event which captures this behaviour. It would
have been a better design, if we had made an event type CreateDocument
in activities. The main reason is, that the creation of documents is what
we could call a domain concept (behaviour) of a work�ow engine, and
therefore it should be made visible in the models.

• Lack of a �ltering option in the Inbox and Work In Progress. In a realistic
deployment there will be a huge amount of case data in the system, and
only the wanted data should be shown in the GUI.

• In the information models, we can only refer to documents that are local
to a given process. External documents cannot be referred to. However,
at runtime, the user can manually �nd external documents and use them,
although the searching options are very limited. Our information aspect
is prepared to be extended with document descriptors, which can refer to
external documents.

• The ECNO concepts of event inheritance and event extension have not
been used (not available soon enough).

• An interface to a real database is missing. We do support persistency but
this solution is based on serializing the EMF resources, which contains our
runtime models when the user requests it. Therefore, we cannot guarantee
durability (in a ACID sense), because transactions (interactions) can exe-
cute, but the new state is not saved until the user requests it speci�cally.

• Tasks are not executing instantaneously from the point of view of other
users. The reason is we allow document objects to be edited directly. This
is only a problem if two or more tasks are can use the same document at the
same time. In the ACID sense, this violates the isolation property because
the concurrent execution of another task writing the the same documents
could change the outcome of a task. If business process models do not give
write access in two tasks which could execute concurrently the problem is
reduced.

• An interface to invoke external applications is missing. Please refer to the
WfMC model in Fig. 2.1.

• In the process de�nition tool, aspect models cannot be placed in separate
�les.

112 Evaluation

• The GUI of the process de�nition tool is quite rough and lacks model
validation.

• The organisation aspect has limited support for modelling of what agents
could be assigned to tasks at runtime. AMFIBIA suggests a resource
descriptor, we have only implemented a very simple version of it (see Sect.
4.6). In the future, this could be replaced by a DSL where more complex
rules for assignment could be de�ned.

• ECNO had limited support for splitting the project into packages and
resources in the version we used (ECNO 0.3.1) . With ECNO 0.3.2 (focus
on integration) it will be possible to separate parts of the system into
packages (for example the aspect meta-models)

None of these limitations are of importance in relation to the objectives of this
thesis, and for the most part they are perfectly in line with the expectations to
this project that was set from the beginning (see Sect. 1.2).

8.1.0.1 Suggestions for future work

It would be possible to continue with the evaluation of ECNO, still using the
case study as method, by creating the next iteration of the work�ow engine.
This time, the goal could be to get closer to industrial quality. The solution
could bene�t from the work of this thesis, and from an improved (partly with
help of this thesis) ECNO release.

Smaller improvement projects might consider implementing the CreateDocu-
ment (and maybe FindDocument too) event type as discussed above. Interac-
tions of this type could be triggered in activities from the Task Viewer. We will
leave the analysis of which element types to coordinate with open. However, we
could mention that in some tasks the information model might say that docu-
ment are not allowed to be created at all, only imported from the database. For
instance, in our book purchase process the customer should perhaps only have
the right pick an existing book and add it as output documents, not to create
new books that the store does not have in their inventory.

Another project proposal would be to split the meta-model into di�erent pack-
ages in the development workspace to allow several developers to work inde-
pendently on (and extend) the aspect meta-models and the core meta-model.
This would go well together with implementing a more �exible mechanism for
plugging the aspect meta-models into the core model. This proposal should not
be confused with another option, that of adding support for placing aspects of

8.2 Evaluation of ECNO 113

business process models (in the runtime-workspace) in di�erent resources, the
latter would mainly require additional container classes in the meta-model as
well as consideration of the topic of cross resource containments.

Larger projects could look at adding database integration, interfaces to external
applications and support for distributed deployment.

Another interesting continuation would be to perform a case study for a com-
pletely di�erent kind of application.

8.2 Evaluation of ECNO

There are many implicit ECNO evaluation points in this theses. In this section
we will make the main ones more explicit. Distinctions will be made between
issues that are conceptional, technical and usability related. These are grouped
in individual subsections, even there can be overlap at times. Another important
distinction is that of engine issues vs. Eclipse tool issues, but it should be obvious
in most cases which category a comment refers to.

8.2.0.2 Overall impression

The overall impression is positive because because the basic concepts of ECNO
covered most of the needs for implementing the work�ow engine and seemed
to apply quite naturally in most cases. Actually we achieved very simple and
elegant modelled solutions to complex problems (for instance, integration of
aspects and realization of the control aspect with modelled Petri net semantics).

One of the purposes of ECNO is to reduce the distance from analysis to imple-
mentation, and this appears to be very achievable with ECNO. Having a clear
domain model which includes the right events and coordinations is was de�-
nitely most of the work (ignoring here the lack of an interactions debugger) on
this particular work�ow engine implementation, and the models never became
obsolete, as they became the source. The code snippets that we used were also
part of the source, but they were very trivial to program.

The fact that code snippets written in the underlying programming language (in
this case Java) are easily integrated with the models, means that as a developer
you are never stuck due to a �missing� ECNO modelling feature, and are never
forced to model behaviour that really should be coded (for example algorithms).

114 Evaluation

There is another side to this coin. It also means that ECNO gives the developer
the freedom to de�ne events for functionality, or to just program it from an
integrated code snippet. We spent a great deal of time considering when events
should be de�ned, and for what kind of behaviour, and when they would be
overkill, or just not appropriate. We expect other newcomers to ECNO would
face the same issues. We could probably relate this to the fact that no books or
papers have been written about methodologies in ECNO development (actually
a methodology report is planned by Kindler). For the behaviours that are cross
cutting, the choice is easy, here events are obviously appropriate. For simple
value getters, lookups and factory operations, it's usually an easy choice not to
de�ne events. In the space between these examples the choice is often less easy.

8.2.0.3 Conceptual issues

In the early phase of this thesis it was found that when using event inheritance,
where one event inherits the behaviour of another event, the event parameters
de�ned in the parent event were not available in the derived event. This issue
was �xed in ECNO in parallel with this thesis, but we have not used the new
feature.

Later on, the need for using additional parameters within speci�c aspects for
certain event types was identi�ed. The best example is the parameter state in
the control aspect in StartActivity, which lead to the introduction of StartAc-
tivityC as a workaround. Recall, that we didn't want the parameter state to
be known in the core or in other aspects (separation of concerns). ECNO has
now been updated to support event extension, a feature which allows derived
events to add parameters to the events, but we did not have time to update our
models.

Debugging interactions is very di�cult with ECNO right now (version 0.3.1),
and probably the most time consuming part of developing with ECNO. In par-
ticular, when interactions which you expect to be found (calculated) by the
engine are not found. There is no easy way to extract from the engine which
part of the model prevents the interactions. We have tried in this thesis to add
a logging feature to the interaction algorithm but without much luck - e.g. the
logging worked but the reason for the error was not identi�ed. This issue is
conceptual since it it not trivial to de�ne how a debugger should work. How do
you inform the debugger what you expected (and when), and in which format
does it report back what really happened? We found an e�ective but still time
consuming debugging method for debugging interactions without a debugger:
The typical situation is that an interaction is missing at some stage in the ex-
ecution (the developer expected it was there). Let's say that 5 to 10 elements

8.2 Evaluation of ECNO 115

are linked with coordinations for this event type and they each have local con-
ditions. ECNO o�ers no indication of which elements is preventing a possible
interaction and identifying that or those elements can be like �nding a needle
in the hay. A systematic approach to debug this, is to �rst remove all coordi-
nations from the global behaviour model and regenerate the software. If there
is still no interaction, we known the trigger element is responsible. From this
point on, coordinations can be added one at a time until the blocking element is
found. Perhaps our debugging trick can be a supported feature (among more)
of a future debugger. This point is as well related to methodology.

We had a problem when we wanted several participants of an interaction to
cooperatively build a data structure with one or more new element(s) in them,
in particular, building structures of activities referring their activity aspects.
During execution of the respective actions of the participants, information can-
not be shared. Refer to the discussion in Sect. 4.7.3. Kindler suggested that
perhaps actions could be divided into stages in a future ECNO release, such
that new object could be created in the �rst stage, and then shared before the
second stages would execute (note, this was just an initial thought).

When an element is added to the engine, all registered controllers are noti�ed.
It is not possible to for a controller to specify which element types it cares about,
or don't care about.

8.2.0.4 Usability (for developers)

The modelling tools and the code generator are all reliable. The code generator
is easy to use but the modelling tools lacks some features, especially model and
syntax validation, and their usability could generally be improved.

Navigating to the local behaviour of element types, requires that you open
another �le then locate the element type on a long list, and then open the
behaviour diagram (which by the way does not show the element type name
when opened). It would save a great deal of time if you could navigate open a
local behaviour diagram by double clicking (or similar) on an element type in
the global behaviour diagram.

As it is, the Ecore model and the ECNO global behaviour diagrams are edited in
two di�erent tools (the ECNO model is referring to the Ecore model). Although
the two modes would have to exist as separate resources, it would be nice to
have a combined editor. This point relates to methodology.

116 Evaluation

8.2.0.5 Technical issues

This is a list of technical issues that were identi�ed while working on this thesis:
We also list issues which were resolved in ECNO (by Ekkart Kindler) during
this thesis. Some readers might prefer to skip this section.

• The global behaviour editor allowed links between elements which did not
have references between them in the Ecore model. It had the consequence
that all references had to have unique names in the Ecore model to be able
to locate the right one in the ECNO mode (status: Resolved in version
0.3.2).

• ECNO projects were limited to a single Ecore package (status: Resolved).

• Adding and getting event parameters from controllers were quite compli-
cated (status: Partly Resolved). A small modi�cation in ECNO combined
with ECNO Connectors (see Sect. 6) this problem is now more manage-
able.

• In local behaviour diagrams event parameters are referred to by position in
the event parameter list, see any local behaviour diagram in this report.
It can lead to errors - and has done so in this project. (status: Partly
Resolved). With the latests ECNO release, parameters are referred by
name.

• ECNO global behaviour diagram gets corrupted when creating a reference
before de�ning the type of target element (status: Unknown).

• Element with coordination link to �null� appears to cause an unrecoverable
exception (status: Identi�ed).

• A syntax error in action label of transitions in local behaviour has the
e�ect that no code is generated. Therefore the error does not show itself
in the generated code (status: Resolved in version 0.3.2).

8.3 Performance evaluation

In the previous work on ECNO itself, performance has not yet been a priority
yet while the focus has been on the concepts so far, hence it has not been a
priority in this thesis. Actually, if the an objective of this work�ow engine
had been great performance, we would probably have made some other design
choices along the way. However, for the future, performance is an important

8.3 Performance evaluation 117

topic in ENCO. Therefore, an initial performance analysis with the work�ow
engine was made to provide concrete information for future work to build on.
The �ndings are presented here.

Figure 8.1: Debug panel.

We added a debug panel to the Worklist Viewer (Fig. 8.1). For now, it displays
the execution time of the latest executed interaction as well as the number of
invalidation noti�cations received by the GUI instance. The debug panel has
the limitation that noti�cations sent to other GUI instances are not counted,
even they can block the current GUI instance too.

8.3.1 Performance of Start and Finish vs. number of cases

The performance was tested vs. the total number of created cases. This was
done with a single user session - only one agent is logged in. We focussed on
the events for starting and �nishing activities. Please refer to the test results in
Fig. 8.2.

The curves shows that the execution time for start is proportional to the number
of cases, while the execution time for �nish is independent on the number of

118 Evaluation

cases. Recall that in the performance discussion in the Sect. 5.6.2 the aim was
to only update the inbox list with respect to interactions in a�ected cases. It
appears from the graph that this idea is working for �nish but not for start.

Looking more carefully at this, it was found the GUI is working correctly, but
when an activity is started the interactions iterators, that we registered the GUI
with, are sending invalidation noti�cations (for all cases). In contrast, when an
activity is �nished, the GUI receives only one noti�cation, corresponding the
particular case we �nish the activity in. So, why does this happen?

When starting an activity, we modify the agent element (by adding a reference
to the activity). Since the agent was involved when ECNO calculated the in-
teractions in each of the cases, ECNO is forced to invalidate them, because the
engine does not know what we know. In particular, that in our design, starting
a new activity, and referencing it from an agent, cannot a�ect which interactions
are possible in other cases. We can conclude everything is working at it should,
but there is still a critical performance issue when starting activities.

One way to avoid this problem in the application, would be to avoid setting the
reference from agent to activity. However, the reference is there for a reason,
so that would be a bad idea creating other problems. Most likely this issue
should be solved by adding additional functionality to ECNO. For example,
one could imagine the application to con�gure that certain references should
not trigger invalidations. It is outside the scope of this thesis to analyse the
problem further, however the work�ow engine we implementation should be a
good validation platform for related features in ECNO in the future.

Figure 8.2: Start and Finish - as function of the number of cases (one session).

8.3 Performance evaluation 119

8.3.2 Performance of Finish vs. number of sessions

The performance of �nish was tested vs. the number of users logged into the
system. We omitted start because we identi�ed another problem already which
make it harder to conclude on the e�ect of the sessions. The number of cases
was kept constant (10). Please refer to the rest results in Fig. 8.3.

The curve looks polynomial to begin with but tends to be linear over the last
four measurements. We would expect a linear curve here, because we're letting
the same CPU handle updates (of the interaction in a single case) in all sessions
synchronously. In a real distributed work�ow engine deployment the expectation
would be much di�erent. We will not analyse this aspect here, nor the exact
reason for the polynomial beginning of the curve.

Figure 8.3: Finish - as function of the number of user sessions.

8.3.3 Performance of Login vs. number of sessions

The performance of login was tested vs. the number of other users logged in
at the time. The number of cases was kept constant (10). Please refer to Fig.
8.4 to see the test result. The curve shows a polynomial relationship. We had
hoped the login time would be una�ected by the number of other sessions.

We found a major part of the explanation is due to the same kind of prob-
lem as was identi�ed earlier. When an agent logs in, all other session receive
invalidation noti�cations, beucase they listen to interactions calculated in the
same cases, the cases refers to all involved agents, and one agent has changed
by logging in. There is no need to update, logically speaking, since the result-
ing interactions are the same - however, ECNO cannot know this. This would
explain at a linear curve, but why is it polynomial?

120 Evaluation

Figure 8.4: Login - as function of the number of user sessions (10 cases).

Actually, there is another factor (besides the number sessions to update) which
increases to, when an agent logs in. As �gure shown in Fig. 8.5, the time it
takes to update one session in the background is increasing. Notice the time
spent to update Ellen's view (when Jack logs in) is increasing as a function of
sessions.

So, based on where we have inserted the timer in the code, we can conclude that
ECNO is spending increasing time to evaluate an interaction �for Ellen�, when
additional agents are logged in. The likely explanation is, that the possibilities,
which ECNO must evaluate, increases, becuase logged in agents can do more
than logged out agents. Refer to the local behavior of an agent in Fig. 4.26.

Figure 8.5: Login - update time for session in the background (1 case).

8.4 Summary

In this section we evaluated our work�ow engine and then ECNO. We also per-
formance an initial performance analysis. In the following section we conclude
on this thesis.

Chapter 9

Conclusion

The goal of this thesis was to realize a work�ow engine using the Event Co-
ordination Notation (ECNO). The work�ow engine was to follow the ideas in
the meta-model for business processes known as AMFIBIA. We have achieved
a working work�ow engine, which has, at least, the level of realism, which was
expected from a thesis of this size. We allowed from the beginning to omit
certain features, since the main purpose of realising a work�ow engine was to
evaluate the ECNO, e.g. not to create a work�ow engine for end users.

We have realized a fully working work�ow engine with ECNO, in the spirit of
AMFIBA. The work�ow engine comes with an enactment GUI to demonstrate
that it works. The created software is able to log in several enactment users
at the same time, and execute multiple business processes in parallel. The
processes, which the work�ow engine can execute, include the main aspects of
business processes: organisation, information and control. We also developed
a simple process de�nition tool based on EMF. This tool integrates seamlessly
with the work�ow engine.

This report includes a presentation our our work (the work�ow engine), an
evaluation of this work and then of ECNO. Conceptual and technical feedback
has been noted and documented in this report. We have additionally provided
input for a methodology for ECNO, as well as input for performance topics.

122 Conclusion

Regarding the strengths of ECNO, we will mention the main ones here. We
found that the integration with UML domain models works well, and also in
practise ECNO lives up to the intention of narrowing the gap between domain
models and implementation models. We saw that the ECNO concepts, and the
current tools, were now mature enough for generating a fully working appli-
cation. In addition, ECNO allows separating generated code from other code
(manually coded), which makes applications quite easy to maintain - e.g. it is
not a big issue to update the models and re-generate the code (see Sect. 6.4.1).

With regards to the main limitations, we demonstrated that ECNO's noti�ca-
tion system for invalidation of interactions (possible behaviour at a given time)
still needs some additional concepts that will allow application developers to op-
timize the performance. Our application was slowed down signi�cantly by too
many redundant updates that we could not prevent. Another limitation is that
ECNO does not come with a debugger for interactions, making it quite painful
to �nd interaction related errors. We found a systematic, but slow, method for
debugging interactions, which could possibly be supported (made easier) by a
future debugger (see Sect. 8.2.0.3).

Finally, we will conclude, that the results of this project have added to the
evidence that with continued improvements, ECNO might be able to support
the development of industrial quality applications in the future.

Bibliography

[1] Kindler, E. Integrating behavior in software models: And event coordina-
tion notation - concepts and prototype. In: Third Workshop on Behavioural
Modelling - Foundations and Applications (BM-2011), Proceedings. (2011)

[2] Axenath, B., Kindler, E., Rubin, V. AMFIBIA: A Meta-Model for the Inte-
gration of Business Process Modelling Aspects. (2005)

[3] Axenath, B., Kindler, E., Rubin, V The Aspects of Business Processes: An
Open and Formalism Independent Ontology (2005)

[4] Harrison W, Ossher H. Subject-Oriented Programming (A Critique of Pure
Objects)

[5] Sommerville, I. Software Engineering rev. 9.

[6] Van der Aalst, W., Van Hee, K. Work�ow Management � Models, Methods
and Systems (2000).

[7] Leymann, F., Roller D. Production Work�ow: Concepts and Techniques
(1999).

[8] Kiczales G., et al. Aspect-Oriented Programming (1997).

[9] C. A. R., Hoare Communicating Sequential Processes (CSP) (1985).

[10] Hollingsworth Work�ow Management Coalition, The Work�ow Reference
Model Issue 1.1 (1995)

[11] Kindler, E. An ECNO semantics for Petri nets (2012)

[12] Mathias, W. Business Process Modelling (2007)

124 BIBLIOGRAPHY

[13] Kindler, E. Coordinating Interactions: The Event Coordination Notation
(2013) Uno�cial Draft Version of a tehnical report on ECNO

[14] Kindler, E. Model-based software engineering: the challenges of modelling
behaviour (2010)

[15] Selic, B. The Pragmatics of Model-Driven Development IEEE Xplore (2008)

[16] France, R., Rumpe, B. Model-driven Development of Complex Software: A
Research Roadmap (2007)

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Thesis Objectives
	1.3 Overview of Thesis

	2 Background
	2.1 Business Process Management
	2.2 The aspects of Business Processes Modelling
	2.3 Example 1: An Error Management Process
	2.3.1 Background story
	2.3.2 Identification of tasks
	2.3.3 Control Aspect
	2.3.4 Organisation Aspect
	2.3.5 Information Aspect
	2.3.6 Discussion

	2.4 AMFIBIA
	2.4.1 Motivation and Objectives
	2.4.2 AMFIBIA Meta-Model
	2.4.3 Aspect synchronisation

	2.5 The Event Coordination Notation
	2.5.1 A Simple Execution Engine
	2.5.2 Summary and Advanced Concepts

	2.6 Related Work
	2.6.1 Subject-Oriented Programming
	2.6.2 Aspect-Oriented Programming
	2.6.3 Process Algebra

	3 Project Scoping
	3.1 Modelling-environment
	3.1.1 Objectives
	3.1.2 Limitations

	3.2 Enactment-environment
	3.2.1 Objectives
	3.2.2 Limitations

	3.3 Database integration (omitted)
	3.3.1 Objectives
	3.3.2 Limitations

	4 Workflow Engine
	4.1 Patterns
	4.1.1 The ``instance-of'' stereotype
	4.1.2 The ``aspect-of'' stereotype

	4.2 Architectural overview
	4.3 Realizing the Core
	4.3.1 Structure of the static model
	4.3.2 Structure of the dynamic model
	4.3.3 Global behaviour
	4.3.4 Local behaviour

	4.4 Realizing the Control Aspect
	4.4.1 A formalism independent model
	4.4.2 An implementation

	4.5 Realizing the Information Aspect
	4.5.1 A formalism independent model
	4.5.2 An implementation

	4.6 Realizing the Organisation Aspect
	4.6.1 Analysis
	4.6.2 Model: Structure
	4.6.3 Model: Global behaviour
	4.6.4 Model: Local behaviour

	4.7 Discussion
	4.7.1 Task identity
	4.7.2 Selection of trigger elements in the core
	4.7.3 Building data structures in actions
	4.7.4 Duration of events
	4.7.5 Agents as core concept
	4.7.6 Instantiation of activities
	4.7.7 Instantiation of cases

	4.8 Summary

	5 Enactment GUI
	5.1 ECNO's controller framework
	5.1.1 Element Event Controllers
	5.1.2 Engine Controllers

	5.2 Maintaining GUI lists of interactions
	5.3 ECNO Connectors
	5.4 The Enactment GUI
	5.5 Worklist Viewer
	5.5.1 The Inbox
	5.5.2 The Work In Progress

	5.6 Design and Implementation
	5.6.1 Design of Worklist Viewer
	5.6.2 Performance optimization
	5.6.3 Summary

	6 Implementation
	6.1 Workflow Engine - actual models
	6.2 Process Definition Tool and Runtime Information
	6.2.1 EMF editors
	6.2.2 The goal
	6.2.3 The problems
	6.2.4 The solution

	6.3 The behaviour-state resource
	6.4 Development workspace
	6.4.1 Project Structure

	6.5 Summary

	7 Acceptance Testing
	7.1 Example 2: An Online Book Purchase Process
	7.2 Building the model
	7.3 Scenario testing
	7.3.1 Scenario 1 (case 1): Purchase which goes through
	7.3.2 Scenario 2 (case 2): Book is unavailable
	7.3.3 Scenario 3 (case 3): Credit card is rejected
	7.3.4 Conclusion

	7.4 GUI testing
	7.4.1 Test results
	7.4.2 Conclusion

	8 Evaluation
	8.1 Evaluation of Workflow Engine
	8.2 Evaluation of ECNO
	8.3 Performance evaluation
	8.3.1 Performance of Start and Finish vs. number of cases
	8.3.2 Performance of Finish vs. number of sessions
	8.3.3 Performance of Login vs. number of sessions

	8.4 Summary

	9 Conclusion

