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Abstract

In this invited paper1) we review 25 years of propagating formal specification in software engineering.

We will do so through outlining a paradigmatic approach to the practice of software engineering. For the sake

of contrasting argument we shall claim that this approach stands in sharp contrast to classical engineering

— and that there is little help to be obtained from classical engineering in securing the quality of the most

important facets of software engineering!

We shall be outlining a software engineering2) practice in which formal techniques are applied in

capturing the aplication domain void of any reference to requirements let alone software; and in then capturing

requirements: Domain requirements (projected, instantiated, possibly extended and usually initialised from

domain descriptions), interface requirements and machine requirements. The software engineering practice

then goes on to design the software: First the architecture, then the program structure, etc.

Throughout abstraction and modelling, hand-in-hand, are used in applicative (functional), imperative

and process oriented descriptions, from loose specifications towards concrete, instantiated descriptions, using

hierarchical as well as configurational modelling, denotational as well as computational modelling, and in

structuring even small scale descriptions using appropriate modularisation concepts: Schemes, classes and

objects.

All the concepts spelled in this font are software engineering “program” description notions that have

been honed over the years, starting in 1973 with VDM [Bekić et al. 1974; Bjørner and Jones 1978; Bjørner

and Jones 1982] and continuing with RAISE [Group 1992; Group 1995].

The current status of our approach to software engineering, based on extensive, but not exclusive use of

formal techniques, developed significantly during my years as UN Director of the UN University’s International

Institute for Software Technology (UNU/IIST) in Macau, 1992—1997. Many large scale software developments

based on the domain/requirements/software design paradigm outlined here were systematically applied to the

experimental development of software designs for the computing support of a number of diverse infrastructure

components3).

Special boxes, scattered throughout the text, highlight ‘pinnacle’ contribution by named computer and

computing scientists as well as by specific R&D projects.

1)This is a first version (New Year 1998/1999). During January 1999 it may be edited into a shorter version and

with fewer literature references.
2)The text high-lighted in ‘this font’ identifies important software development principles and techniques — the

main contribution and subject of this quarter century overview.
3)Railways [Bjørner et al. 1997; George 1995], financial service institutions [Bjørner 1997; Bjørner et al. 1998],

manufacturing [Bjørner 1996; Janowski 1996; Janowski and Acebedo 1996; Janowski and Atienza 1997], ministry

of finance [George et al. 1995; Dung et al. 1996], airlines [Anh and Moore 1996], air traffic [Bjørner 1995], etc.
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1 INTRODUCTION

Engineering “walks the bridge” between science and technology. Engineers create techno-

logical artefacts based on scientific insight; and engineers study ‘technological’ artefacts with a

view towards establishing their scientific content4). Mathematics is one of the standard tools of

engineering.

The engineering paradigm outlined in this paper is the result of 25 years5) of concerted

effort and builds around a “triptych” of phases: domain engineering, requirements engineering and

software design. Traditional software engineering focuses only on the second and third panel of this

triptych. Traditional engineering, building on the natural sciences — which software engineering

does not — relies on these sciences (physics (including mechanics, electricity, hydrodynamics,

thermodynamics, nuclear physics, etc.), chemistry, etc.) to provide the domain knowledge. Not

so in software engineering: As software is being sought for well-nigh any area of human activitity

somebody has to build the scientific foundations for those activities. Domain engineering, a

truly cross/inter/multi/ & trans-disciplinary effort, serves this rôle: To provide the possibility

of theoretical foundations for, ie. answers to such questions as: What are the functions and

components of railways, financial service infrastructure, manufacturing, public administration,

airlines, air traffic, etc.6) — questions which seek mathematical answers in order to claim proper

understanding.

Whereas traditional engineering, after some steps of development, makes a mental and phys-

ical leap into construction (building, manufacturing), software engineering provides for a rather

much more smooth sequence of document designs: domain descriptions, requirements descrip-

tions, software architecture descriptions, etc., until an “executable description” is arrived at! So,

whereas traditional engineering always have to relate to a physical world, outside the design engi-

neers’ office, to make sure that the designs are indeed models of that world, the software engineer

primarily has to relate to the world of meta-mathematics, ie. to computability.

A software engineer who does not, acutely understand this is not one I would hire!

In the practical, everyday, “hum-hum” world of engineering activities there may be many

facets that may lead us on to believe that much of what we, as software engineers, do, has some

4)Currently UML and Java are studied in this manner.
5)In 1999 it is 25 years since the IBM Science Laboratory in Vienna, Austria, issued [Bekić et al. 1974].
6)Railways [Bjørner et al. 1997; George 1995], financial service institutions [Bjørner 1997; Bjørner et al. 1998],

manufacturing [Bjørner 1996; Janowski 1996; Janowski and Acebedo 1996; Janowski and Atienza 1997], ministry

of finance [George et al. 1995; Dung et al. 1996], airlines [Anh and Moore 1996], air traffic [Bjørner 1995], etc.
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resemblance to other forms of engineering. But that may be misleading: the collaborative work:

OK; the interaction with clients and the recording of their wishes: Mostly this is ordinary human

and social interplay or outright petty bureaucratics. As we shall later see: The real results of

such interactions are, in the ordinary engineering world rather simply quantifiable, a few numbers

here and there — constrained, possibly, by subtle mathematical models. In the world of software

engineering, resulting requirements amount to full-fledged computable objects — artefacts of a

far more complex and deep nature than the characteristics of an electronic hearing aid, of a train

wheel gauge, of the orbit of a satellite, etc.

So, let us be prepared for an altogether different world of the engineering of software from

those of the worlds of the engineering of electronics, mechanics, chemical compounds or other.

We will return to the theme outlined above in the concluding section, Section 6.

This paper will go rather straight to its topic: That of outlining a tried-&-tested approach

to large scale software development using mathematics. It will do so on the basis of reference

to a long list of accomplished, including experimental (R&D) as well as commercial software

developments.

The R&D projects were undertaken in order to propagate the use of formal techniques in

software development and all had three objectives in mind: (i) to test the usefulness of and further

R&D first the VDM approach later the follow-on and greatly expanded RAISE approach [Group

1992; Group 1995]; (ii) to actually develop useful compilers (CHILL formal definition and full

CHILL compiler [Haff 1981; Haff and Olsen 1987], Ada formal definition and full Ada compiler

[Bjørner and Oest 1980b; Bjørner and Oest 1980a; Clemmensen and Oest 1984; Oest 1986]), and,

in later years, to the development of software support for large scale infrastructure components7);

and (iii) to study, revise and propose further formal techniques based development techniques and

tools.

1.1 Formal Specification and Design Calculi

A method is here taken to be a set of principles for analysing and selecting techniques and

tools in order efficiently to construct efficient software.

When we say formal method we basically mean formal specification and the use of design

calculi on such specifications.

7)Railways [Bjørner et al. 1997; George 1995], financial service institutions [Bjørner 1997; Bjørner et al. 1998],

manufacturing [Bjørner 1996; Janowski 1996; Janowski and Acebedo 1996; Janowski and Atienza 1997], ministry

of finance [George et al. 1995; Dung et al. 1996], airlines [Anh and Moore 1996], air traffic [Bjørner 1995], etc.
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Since “all we, as software engineers, do” is to create descriptions, from abstract domain

descriptions via requirements descriptions to software design descriptions, specification and pro-

gramming notations become our major tool. Formal descriptions are the prerogative of the soft-

ware (the domain, the requirements and the software design) engineer. Casual clients and even

procurers of software need not necessarily see the formal descriptions, but “sign off” on informal,

well-structured synopses, narratives and terminologies. The software engineer links these informal

descriptions to formal ones, and uses the development of formal descriptions to secure conciseness

and accuracy of informal documents.

In this paper we shall bring many examples of informal, narrative and formal specifications.

We shall not bring examples of calculations (verification and other) over such documents. This

may seem strange: after all, is formal specification not about ‘proving’ things ? Well, yes, but. It

is also about verification. We have found, however, over the last 25 years, that the biggest return

on investment, so clearly has been on formal specification. Much (more) could be said about

this. Suffice it here to observe that our own contribution has been in the area of principles and

techniques for formal specification, including its use in systematic to rigorous development.

1.2 Relevant Current Other Publications

We refer to three recent publications that cover “neigbouring ground” to that of the present

paper:

• [Bjørner and Cuéllar 1998] D. Bjørner and Jorge R. Cuéllar. Software Engineering Edu-

cation: Rôles of formal specifications and design calculi. Annals of Software Engineering,

Vol.6, 1998 (1999).

• [Bjørner 1997–1998] Dines Bjørner. Domains as a Prerequisite for Requirements and Soft-

ware — Domain Perspectives & Facets, Requirements Aspects and Software Views. Pro-

ceedings of a US ONR sponsored International Workshop, RTSE’97: Requirements Targeted

Software and Systems Engineering, Springer-Verlag Lecture Notes in Computer Science,

vol. 1526, pp 1–41, 12–14 October, 1997, Bernried am Staarnberger See, Germany. Ed.

Manfred Broy, 1998.

• [Bjørner 1999] Dines Bjørner. Where do Software Architectures come from ? Systematic

Development from Domains and Requirements. A Re-assessment of Software Engineering ?

South African Journal of Computer Science, January 1999.
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Figure 1: Compiler Software Development Graph
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These papers provide detailed discussion of some issues that may be covered from a different angle

in the present paper. The first two references above contain practically no examples. The last

paper above carries through one example to basically illustrate the domain/requirements/software

design paradigm otherwise assumed in the current paper. Given that paper we shall be brief in

Sections 5 and 5.2.

1.3 A Review of 1980’s Domain, Requirements and Software Design Work

The domain is what exists prior to any thought of requirements.

The domain for a compiler is the languages from and to which compiling is to take place.

1. Example: Systematic Compiler Development: — Ends on page 7

First at IBM’s Vienna Laboratory, in 1973–1974, a domain development project — which

led to VDM — and then from 1978, two major examples of domain-to-requirements-to-software-

-design projects took place, unfolding, respectively using formal techniques, albeit not formally,

but just systematically.

These were the PL/I, CHILL and Ada projects [Bekić et al. 1974], [Haff 1981; Haff and

Olsen 1987] respectively [Bjørner and Oest 1980b; Clemmensen and Oest 1984; Oest 1986].
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Now 20–25 years later we can review this work. In the CHILL and Ada cases development

proceeded using formal specifications systematically.

Figure 1 shows the software development graph of the phases, stages and steps of the

development of a compiler for languages of the CHILL and Ada kind, ie. typed, imperative,

modular and concurrent languages. The concept of software development graphs was outlined

in [Bjørner and Oest 1980a] and explored in [Bjørner and Nielsen 1985; Bjørner 1986a; Bjørner

1986b; Bjørner 1987].

The graph intends to show that proper, systematic to rigorous development of a compiler

for a language like CHILL or Ada can suitably proceed in three major phases: the domain engi-

neering phase of developing the denotational semantics of the source language and of the virtual

machine (ie. the target language) — the top three boxes and the box labelled virtual machine. As

shown here the requirements engineering phase is shown as successive refinements of the denota-

tional semantics into an operational (also sometimes called a mechanical) semantics — five of the

subsequent (from top of the figure down) boxes. The steps — within this (single stage) phase —

successively concretises what the compiler must do: The static semantics analysis of the so-called

front end and the code generation of the back end. Finally we show two stages of the software

design phase: In the first stage the multi-pass structure of the compiler is designed, and in the

last stage the many passes of the compiler front and back ends are coded.

The domain requirements is simply that the translation from source to target code is

correct. In this example we show that machine requirements refinement occurs in response to

externally stated desiderata — indicated by R’s, viz.: The compiler shall translate indefinitely

large source texts in a limited addressing space, and the generated code shall likewise execute in a

limited addressing space, are two major machine requirements. Interface requirements primarily

deal with compile and run-time diagnostics. We otherwise refer to [Haff 1981; Haff and Olsen

1987; Bjørner and Oest 1980b; Bjørner and Oest 1980a; Clemmensen and Oest 1984; Oest 1986]
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for details.

End of Systematic Compiler Development Example 1

Some SE Pinnacles: CHILL and Ada Compiler Development: The CHILL and Ada compilers developed

at Dansk Datamatik Center as from 1979 still seems to be the only compiler development that have followed

the systematic paradigm inherent in formal developments. DDC Intl. still develops and markets Ada compilers

according to this paradigm — and seems to be the only major provider of Ada compilers today! It also seems very

likely, barring information that is hard to obtain, that the DDC developments enjoyed the following properties:

well within forecasted budget and time, outstanding quality (eg. wrt. “bugs” and maintainability (resilience)). It

is still a wonder to this author why most, if not all other compiler development today follows, what we consider

rather antiquated development approaches.

What is the lesson learned from these compiler developments ?

In tackling the development of software support for large scale infrastructure components8)

the basic approach taken was to try capture as much of the semantics of the professional terms

of the stake-holder languages uttered in the domain: Not the semantics of sentences, just the

important nouns, verbs etc.

Some SE Pinnacles: Algol–W, Euler, Pascal, Modula & Oberon: Niklaus Wirth: Although functional

programming has its merits, so does imperative programming [Hoare and et al. 1987]. Beautiful, industrial-

strength imperative programming languages have been the prerogative, it seems of Niklaus Wirth. The immaturity

of our industry is, amongst others, illustrated by their lack of support for the languages mentioned in the header

of this box. Surely Wirth’s work must rank amongst the most important in the last 30 years of software

engineering [Wirth 1963; Wirth and Hoare 1966; Wirth and Weber 1966; Wirth 1971b; Wirth 1971a; Wirth

1973; Wirth 1976; Jensen and Wirth 1976; Wirth 1982; Wirth 1988a; Wirth 1988b; Wirth and Gutknecht 1989;

Reiser 1991; Wirth and Gutknecht 1992].

1.4 Structure of Paper

We shall therefore link the phases, stages and steps of our development paradigm, as it

is based on formal techniques, by a number of snapshot examples that together should show the

breadth and depth, possibilities and open research issues of our approach.

The structure of the paper follows the structure of proper software development as well as

8)Railways [Bjørner et al. 1997; George 1995], financial service institutions [Bjørner 1997; Bjørner et al. 1998],

manufacturing [Bjørner 1996; Janowski 1996; Janowski and Acebedo 1996; Janowski and Atienza 1997], ministry

of finance [George et al. 1995; Dung et al. 1996], airlines [Anh and Moore 1996], air traffic [Bjørner 1995], etc.
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of lecture notes for and a course in software engineering. In this paper we shall only cover the main

parts of that development cum course (lecture notes) and neither the crucial platform issues (such

as use of Java, CORBA, etc.), nor the ancillary issues of quality control, legal issues of software,

project & product management, etc.

First we cover the main issue of abstraction and modelling, Section 2. The subsequent

three sections, Section 3–5, therefore each cover their phase of development, and within these,

the various stages that might be considered and the more minute steps through which we then

actually conduct development. A reading of the contents listing should reveal which phases, stages

and some of the steps we are referring to.

The emphasis, therefore, of the next sections is, on one hand to exemplify these phases,

stages and steps, and, on the other hand to illustrate many of the abstraction and modelling

techniques mentioned in the abstract.

We sincerely and strongly believe in the power of examples, and we have selected some

rather “different” ones!

We also believe that many software engineering contributions could be greatly improved

by placing them in a larger context. Here we offer “a largest” context and show, we claim, how

formal techniques span the entire development process. It is quite a “tour de force”! The desire

for comprehensiveness thus has the cost of this being a rather long paper.

An SE Pinnacle: Lucas, Bekić [Bekić 1984], Jones et al.: The Vienna Development Method: VDM grew

out of an effort to develop, systematically and based on a domain engineered denotational (-like) semantics of

PL/I [Bekić et al. 1974], a compiler for that mid-1960’s programming language for a very high level computer

architecture then contemplated by IBM. VDM later showed itself strong as a development concept — with an

abstraction and modelling language then called Meta-IV and with a notion of data reification — to serve in many

diverse, non-compiler related development. VDM’s specification language VDM-SL has now been standardised

by ISO [Larsen et al. 1996]. Several monographs and text books have been published [Bjørner and Jones 1978;

Bjørner and Jones 1982; Jones 1980; Jones 1986; Fitzgerald and Larsen 1997]. VDM became the focus of a

number of rather successful industry & academia oriented practice & theory symposia [Bjørner et al. 1987a;

Bloomfield et al. 1988; Bjørner et al. 1990; Prehn and Toetenel 1991; Larsen 1993; Naftalin et al. 1994; Gaudel

and Woodcock 1996; Fitzgerald et al. 1997]. From early on (1990) these symposia went well beyond VDM as

the formal method, and the VDM Symposia were renamed into the FME, Formal Methods Europe, Symposia.
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2 ABSTRACTION AND MODELLING

[Dahl et al. 1972] probably is the monograph that has had most influence wrt. abstrac-

tion in programming. Tony Hoare’s essay [Hoare 1972] epitomises a (model-oriented) abstraction

concept. The first mathematics cum abstraction oriented notation, VDM, was — independently

— made available shortly after the publication of [Dahl et al. 1972]. Perhaps the set oriented

programming language SETL [Schwartz 1973] offered a suitable alternative. SETL,SETL1,

however, prioritised executability over abstract expressiveness, where the VDM notation (first

Meta-IV, now VDM–SL) focused more exclusively on abstract, albeit model-oriented expres-

sivness.

But a notation is not enough: Over the last 25 years a number of abstraction and modellling

principles and technques — only one of which will be illustrated as from Section 3 onwards —

have emerged. Among the principles and techniques we mention: applicative vs. imperative mod-

elling, ie. modelling without, respectively with assignable state variables; hierarchical (“top-down”,

decompositional) vs. configurational (“bottom-up”, compositional) abstraction, denotational vs.

computational modelling, etc.

2. Example: Abstract Syntax for Railway Nets: — Ends on page 13

This example illustrates several abstraction and modelling principles and techniques.

We divide the presentation into two parts: a hierarchical first part followed by a configu-

rational second part.

Hierarchical Presentation :

We focus on the railway net perspective of railway systems.

Pls. inspect figure 2 on the following page.

Our natural, professional railway language description proceeds as follows:9)

1. A railway net consists of lines and two or more stations.

2. A railway net consists of units.

3. A line is a linear sequence of one or more linear units.

4. The units of a line must be units of a net.

9)We enumerate the sentences for reference.
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Figure 2: A “Model” Railway Net!
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5. A station is a set of units.

6. The units of a station must be units of a net.

7. No two distinct lines and/or stations share units.

8. A station consists of one or more tracks.

9. A track is a linear sequence of one or more linear units.

10. No two distinct tracks share units.

11. The units of a track must be units of the station (of that track, and hence the net)

12. A unit is either a linear unit, or a switch point, or a simple crossover, or a switch-able

crossover, etc.10)

13. A unit has one or more connectors.

14. For every connector there are at most two units which have that connector in common.

15. Every line of a net is connected to exactly two, distinct stations.

A corresponding, representationally abstract formal specification is:

type

Net, Line, Station, Track, Uni, Connector

10)A linear unit has two distinct connectors, a switch point has three distinct connectors, crossovers have four

distinct connectors.
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value

1. obs Lines: Net → Line-set

1. obs Stations: Net → Station-set

2. obs Unis: Net → Uni-set

3. obs Unis: Line → Uni-set

5. obs Unis: Station → Uni-set

8. obs Tracks: Station → Track-set

12. is Linear: Uni → Bool

12. is Switch: Uni → Bool

12. is Simple Crossover: Uni → Bool

12. is Switchable Crossover: Uni → Bool

13. obs Connectors: Uni → Connector-set

axiom

forall n:Net, l,l′:Line, s,s′:Station, t,t′:Track, u:Uni, c:Connector •

1. card obs Stations(n) ≥ 2,

3. l ∈ obs Lines(n) ⇒ ∀ u:Uni • u ∈ obs Unis(l) ⇒ is Linear(u) ∧

7. l′ ∈ obs Lines(n) ∧ l 6=l′ ⇒ obs Unis(l) ∩ obs Unis(l′) = {},

7. l ∈ obs Lines(n) ∧ s ∈ obs Stations(n) ⇒ obs Unis(l) ∩ obs Unis(s) = {},

7. s′ ∈ obs Stations(n) ∧ s 6=s′ ⇒ obs Unis(s) ∩ obs Unis(s′) = {},

8. card obs Tracks(s) ≥ 1,

9. s ∈ obs Stations(n) ∧ t ∈ obs Tracks(s)

⇒ ∀ u:Uni • u ∈ obs Unis(t) ⇒ is Linear(u),

10. t′ ∈ obs Tracks(s′) ∧ t6=t′ ⇒ obs Unis(t) ∩ obs Unis(t′) = {},

14. card { u | u:Uni • c ∈ obs Connectors(u) } ≤ 2,

15. ∀ s:Station,∃ s′:Station,l:Line • s 6=s′ ⇒

let sus = obs Unis(s), sus′ = obs Unis(s′), lus = obs Unis(l) in

let u:U • u ∈ sus, u′:U • u′ ∈ sus′, u′′,u′′′:U • u′′ ∈ lus in

let scs = obs Connector(u), scs′ = obs Connector(u′),

lcs = obs Connector(u′′), lcs′ = obs Connector(u′′′) in

∃! c,c′ • c 6= c′ ∧ scs ∩ lcs = {c} ∧ scs′ ∩ lcs′ = {c′}

end end end
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Configurational Presentation :

16. A path, p:P, is a pair of connectors, (c,c′), of some unit. A path of a unit designate

that a train may move across the unit in the direction from c to c′. We say that the

unit is open in the direction of the path.

17. A state, σ : Σ, of a unit is the set of all open paths of that unit (at the time observed).

The state may be empty: the unit is closed.

18. A unit may, over its operational life, attain any of a (possibly small) number of different

states ω,Ω.

19. A route is a sequence of pairs of units and paths —

20. such that the path of a unit/path pair is a possible path of some state of the unit, and

such that “neighbouring” connectors are identical.

21. An open route is a route such that all its paths are open.

22. A train is modelled as an open route.

23. Train movement is modelled as a discrete function (map) from time to open routes

such that for any two adjacent times the two corresponding open routes differ by at

most one of the following: a unit path pair has been deleted from (one or another end)

of the open routes, or (similarly) added, or both, or no changes — a total of seven

possibilities.

type

16 P = C × C

17 Σ = P-set

18 Ω = Σ-set

19 R′ = (Uni × P)∗

20 R ={| r:R′
• wf R(r) |}

22 Trn = {| r:R • open R(r) |}

23 Mov = T →m Trn

value

17 obs Σ: Uni → Σ

18 obs Ω: Uni → Ω

20 wf R: R′ → Bool

wf R(r) ≡
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∀ i:Nat • i ∈ inds r let (u,(c,c′)) = r(i) in (c,c′) ∈
⋃

obs Ω(u) ∧

i+1 ∈ inds r ⇒ let ( ,(c′′, )) = r(i+1) in c′ = c′′ end end

21 open R: R → Bool

open R(r) ≡ ∀ (u,p):U×P • (u,p) ∈ elems r ∧ p ∈ obs Σ(u)

23 wf Mov: Mov → Bool

wf Mov(m) ≡

card dom m ≥ 2 ∧ ∀ t,t′:T • t,t′ ∈ dom m ∧ t < t′

∧ ∼∃ t′′:T • t′′ ∈ dom m ∧ t < t′′ < t′ ⇒

let (r,r′) = (m(t),m(t′)) in clauses (i) − (vii) end

End of Abstract Syntax for Railway Nets Example 2

The description is formalised in RSL.

An SE Pinnacle: RAISE: Rigorous Approach to Industrial Software Engineering: The above formalisation

is expressed in RSL, the RAISE Specification Language. RAISE [Group 1992; Group 1995] builds on VDM [Bekić

et al. 1974; Bjørner and Jones 1978; Bjørner and Jones 1982], OBJ [Goguen et al. 1975; Goguen et al. 1977;

Burstall and Goguen 1977; Goguen et al. 1978; Burstall and Goguen 1980; Futatsugi et al. 1985], Standard

ML [Milner et al. 1990] and CSP [Hoare 1978; Hoare 1985; Roscoe 1997]. RAISE, RSL and the RAISE Toolset

was researched, developed and industry-tested during the late 1980’s to early 1990’s by collaborative teamwork

notably between the Danish Dansk Datamatik Center, CRI Inc. and the British STL (later BNR).

The property as well as model-oriented rail net model just given illustrates just some type

concepts of a railway system.

Some SE Pinnacles: Type Theories: Per Martin-Löf, J.-Y. Girard and Luca Cardelli: Type theory is,

perhaps, the most important contribution that computer science has made to mathematics. From the ordinary

programming language type concepts (of for example the languages mentioned in the Algol-W to Oberon

“pinnacle” box [page 7]) to the full-fledged, computationally complete intuitionistic type theory of Per Martin-

-Löf [Nordström et al. 1990] via Jean-Yves Girard’s likewise proof-theoretic treatment [Girard et al. 1989] to

Cardelli’s more mundane, but no less exciting connection of type theory to modularity [Cardelli 1987; Cardelli and

Wegner 19; Abadi and Cardelli 1996] type theory has shown to be a core concept that must be well understood

by the practising software engineer.

VDM, and its follow-on RAISE, would not have been thinkable without the work by John

McCarthy, Peter Landin and others:
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Some SE Pinnacles: John McCarthy: Abstract Syntax and Computability: John McCarthy gave decisive

impetus also to practical software engineering through the contributions of LISP [McCarthy 1960; McCarthy 1962;

McCarthy and et al. 1962], Abstract Syntax [McCarthy 1963] and correctness of compiler development [McCarthy

and Painter 1966]. It is the current authors strong conviction that any software engineering professional must be

reasonably aware of McCarthy’s mathematical theory of computation including the concept of ‘abstract syntax’

and the operational semantics of LISP.

A main characteristum of VDM is that it offers an applicative (“functional programming”) style

of description. Functional programming, as we for example know it today through the notations

of Standard ML [Milner et al. 1990], would not have been thinkable without the work of Peter

Landin.

An SE Pinnacle: Peter Landin and Applicative Programming: Peter Landin’s work, at Queen Mary College

in London, is seminal in bringing classical meta-matematics to bear on modern computer science. Every software

engineer ought be well-versed in λ-Calculus — such as intriduced and studied by Landin [Landin 1964; Landin

1965; Landin 1966b; Landin 1966a]. Landin is also to be credited with elegant, albeit mechanical semantics

models of core ALGOL-like (hence Pascal, Modula, C and Java-like) programming languages.

From the 1980’s onward additional model-oriented specification notations emerged, notably Z

[Abrial 1980; Hayes 1987; Woodcock and Loomes 1988]. Variants of VDM likewise enmerged:

Viz., the so-called ‘Irish’ School of VDM [an Airchinnigh 1991], and the divergence between the

‘British’ School as propagated by Cliff Jones [Jones 1980; Jones 1986; Jones 1990] and the

European continental ‘schools’: “Dutch” [Middelburg 1988; Middelburg and de Lavalette 1991]

and “Danish” and “German [Schmidt and Völler 1985; Haß 1987; U.Schmidt and R.Völler 1987]”.

An SE Pinnacle: Jean-Raymond Abrial: Z and B: During his stay at Oxford — discussing, no doubt, with

Cliff Jones, one of the “fathers” of VDM, Abrial “finalised” thoughts on Z [Abrial 1980], an elegant set-oriented

description language. Citations in the paragraph prior to this frame attest to the growth of research into usage

of Z: Oxford, more than Lyngby and Manchester, proved to be the prime breeding ground for formal methods,

using Z rather than VDM — and, although there are great similarities between the seven year older VDM

and Z, the two schools continued in parallel. Abrial went on, later, to create B — again an utterly simple,

yet “powerfully” elegant and somewhat more concrete programming cum specification notation AMN (Abstract

Machine Notation) [Abrial 1996]. It appears that B is now mandated, in France, when development of new

software for certain safety critical applications is procured.
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3 DOMAIN ENGINEERING

Before we can design the software we must know its requirements. Before we can express

the requirements we must understand relevant parts of the domain.

A domain specification describes the application area (plus usually quite a bit more) as it

is — indicatively [Jackson 1995] — void of any reference to requirements, let alone the desired

software.

3.1 Intrinsics Modelling

The domain intrinsics are those properties of the domain that are (“more-or-less”) invariant

wrt. always changing (i) support technologies, changing (ii) rules & regulations, changing (iii) user

behaviour etc. What (i–ii–iii) refers to should be clear in subsequent sections.

The hierarchical part of the rail net example, Example 2 on page 9 of Section 2, illustrates

an intrinsics model.

3.1.1 Looseness / Abstraction

3. Example: Airline Time-table: — Ends on page 16

In the domain of airline time-tables (tt:TT) everything is possible. It is all too easy to over-

-specify, so we choose to under-specify. Queries inspect, but do not change time-tables. Queries

result in values (V). Updates alter time-tables (modelled applicatively, as the generation of new

time-tables). Updates, besides, result in responses (R).

type V, R

TT

Q = TT → V

U = TT → TT × R

Φ = Q | U

value

q, q′, ..., q′′:Q, u, u′, u′′:U

query: Q, query(tt) ≡ let c = q ⌈⌉ q′ ⌈⌉ ... ⌈⌉ q′′ in c(tt) end

updat: U, updat(tt) ≡ let c = u ⌈⌉ u′ ⌈⌉ ... ⌈⌉ u′′ in c(tt) end
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The above expresses that there is an indefinite number of ways, q, q′, ..., q′′, of querying,

respectively updating, u, u′, ..., u′′, a time-table, and that the general query (respectively update)

function non-deterministically selects and perform one.

That is as much as we can say! That may surprise you. But consider that a person

posssessing a (copy of a) time-table can do anything to it: count the number of pages, number of

characters listed, average first daily departure time from any airport anywhere, meantime between

arrivals, etc. There is no end to domain stake-holders’ ingenuity.

End of Airline Time-table Example 3

Some SE Pinnacles: Edsger Dijkstra: Non-determinism: Dijkstra has most forcefully advocated the concept

of expressing programs using non-deterministic concepts [Dijkstra 1975; Dijkstra 1976]. His techniques also

of weakest pre- and strongest post-condition in specification of algorithms are seminal. Together they form

indispensable principles and techniques for the practising software engineer.

Non-determinism, and the technique of leaving types of data further unspecified, has proven

to allow a very efficient software engineering development principle: Namely that of postponement

of design decisions. We find that epitomised in the concept of algebraic semantics.

Some SE Pinnacles: Lucas, Goguen, Futatsugi et al.: Algebraic Semantics: It seems that the first publi-

cation proposing algebraic semantics was [Lucas 1972]. The most cited first paper was [Liskov and Zilles 1974].

Systematic research into the algebraic approach was spearheaded by Joseph Goguen [Goguen et al. 1975; Goguen

et al. 1977; Burstall and Goguen 1977; Goguen et al. 1978; Burstall and Goguen 1980; Futatsugi et al. 1985].

Current algebraic semantics development centers around CafeOBJ [Nakagawa et al. ????; Futatsugi and Di-

aconescu ????; Nakagawa 1997] and CASL [on Semantics 1997; on Language Design 1997; Mosses 1997].

Standard monographs on algebraic semantics are [Guessarian 1981; Ehrig and Mahr 1985; Bergstra et al. 1989;

Ehrig and Mahr 1990; Horebeek and Lewi 1989; et al. (Eds.) 1991]. VDM offers a model-oriented approach to

software specification. OBJ, CafeOBJ and CASL — in contrast — offers an algebraic approach: One in which

types are abstracted into sorts, ie. not defined (albeit abstractly) as in VDM, and which emphasises looseness.

Proper software engineering needs both approaches. Any professional software engineer need be well-versed in

the spectrum as for example offered by RAISE [Group 1992; Group 1995].

3.1.2 Concreteness / Processes

4. Example: Fisheries Auction: — Ends on page 22
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This examples goes to the other extreme of the abstraction to concretisation spectrum as

compared to the previous example. It rather concretely models the “goings-on” at a fisheries

auction. We claim that since the behaviour we wish to capture is a rather operational one we

must model that behaviour likewise operationally. That is: Not much room for abstraction here!

Domain Synopsis The domain is that of a fisheries industry. We narrow our example down to

the activities surroundingthe auctioning of fish.

Domain Narrative: Flow of Material, Sorting and Auctioning. To the auctioning activities we

include first the tangible, physical events and actions:

• the return, after a fishing expedition, of fishing boats to a fishing harbour, ie. a harbour with

an auction house;

• the unloading of boxed and sometimes also iced fish from the boat by lift-trucks which

shuttles between the boat at quay side and an in-buffer area of the auction house, an area

where the boxes are temporarily stored;

• the move of the in-buffered boxes to a sorting area;

• the sorting of fish into categories, ie. the transfer of individual fish from one set of boxes to

another set of boxes;

• the in-buffering of fish boxes and sorting is grouped by fisher;

• the move of the sorted fish (in their boxes) to an auction area;

• the auctioning of the fish by batches of boxes of fish of same quality; and

• the move of the sold fish boxes to an out-buffer area.

Domain Stake-holders This example will illustrate the following seven stake-holder perspectives:

• Fishers Owners

We omit treatment of staff on the fishing boat.

• Lift-truck Drivers Workers

The lift-truck drivers usually work for the fishers co-operative of sorters.
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Figure 3: Fish Harbour Auction House — M: Movement
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• Sorters Workers

The sorters work for the fishers co-operative of sorters.

• Auctioneer Owner

The auctioneer owns or has a commission from the state or local authorities to run the

auction house.

• Auctioneer’s Assistants Workers

• Buyers Owners of Consultants

Buyers are either, or private consultants who act on behalf of fish whole-salers or fish pro-

cessing plants.

• Fisheries Inspectors Regulatory Agency

Domain Narrative: Flow of Information In addition to the obvious physical, “hard work” actions

of unloading, truck driving, sorting and auctioning, there are a number of less visible actions going

on in parallel:
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• Optional notification, by telephoning the auction masters office or the co-operative of sorters,

from the sea, en route to the harbour, of estimated catch to be landed.

• Usual placement of a telephone message of “tomorrow’s” estimated auction quantities by

fish type. Prospective buyers (incl. whole-sale dealers and fish processing plants) can then

make decisions as to which auctions to attend.

• Sorting also results in a list, by fisher, of weighed quantities and judged qualities; this list

goes to the fisher and to the auction masters office.

• Auctioning results either in certain boxes not being sold, either because they are withdrawn

by the fisher, or by the sorters on behalf of the fisher, or because they are judged sub-

standard, or because there is no bid; or in a price. For each sold or not-sold batch of boxes

of fish (still of the same quality, and still grouped by fisher) a fisher, price, quantity and

quality entry is made on an auction list; list goes to the auction masters office and to the

fishers’ sorting co-operative.

• The auction masters office pays cash the amount received for fish sold, to those fishers who

report to the office the day of the auction — or otherwise effects a bank-to-bank transfer.

• The auction masters office “same day faxes” detailed, per bid, invoices to all buyers who

bought fish that day. Buyers are given lee-way to pay within typically 30 days! Auction

master thus must pay fishers immediately but receive buyer payments only (much) later!

• The auction master electronically transfers a summary of fish sold, by fisher, type, quality

and quantity, to the ministry of fisheries the same morning of the auction.

• The fisheries inspectors monitor all sorted fish before auctioning and may disallow certain

sales, and may, in general, up- or down-grade sorters’ quality decisions. They also report to

the ministry of fisheries their fisher, fish type, quantity and quality findings.

Domain Analysis The domain is concrete.

It is characterised by agents: Fishers who are here seen as synonymos with their boats,

lift-truck drivers, who are here seen as synonymos with their lift-trucks, sorters, the auctioneer,

buyers with their states of what they have (so far, during an auction) bought, and fisheries inspectors

with their state of recorded catch qualities.

Since lift-truck drivers and sorters all belong to either of a number of cooperatives we model

lift-truck drivers and sorters of one cooperative as a cooperative agent.
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Some agents have states fishers’ boat state, lift-truck load state, auctioneer’s offering/-

close/next lot transition states, buyers’ acquisition state, etc.

Agents are modelled as processes (some with process states).

The domain is also characterised by state components.

There is the state of a boat in terms of its unique fishing boat identification and as a set

of fish boxes, these can, in the domain, be characterised by their box identification and content:

fish type, quantity, quality, date (of fishing), place (of fishing), etc. We can speak of all these

things — the fisher does. It may not be recorded, written down, marked on the box or otherwise

— although, of course, the fishing boats’ log book implies much. So we put this information into

the domain model although we may not be able, technologically or it may not be resource-wise

feasible, to actually project this information onto a requirements.11)

There is the state of the in-buffer temporary storage area, characterised in terms of its sets

of boxes, grouped by fisher.

There is the state of the sorting area characterised by pairs of sets of boxes, again grouped

by fisher: unsorted, respectively sorted.

There is the state of the auction area characterised by pairs of sets of boxes, again grouped

by fisher: so far unsold, respectively so far sold.

There is the state of the out-buffer temporary storage area, characterised in terms of its

sets of boxes, grouped by buyer.

And there is the state of the auction masters office as consisting of recorded report lists on

sorted fish (to help generate) report lists on catch statistics (to be sent to the fisheries ministry),

and report lists on sold fish, and, based on these latter, as also “building up” buyer invoice sets,

and fisher payment slips.

We model all these states as processes.

Domain Formalisation

type FIdx, CIdx, IIdx, BIdx, SAIdx, TIdx

Boats = FIdx →m Boat, FiCop = FIdx →m CIdx

Coops = CIdx →m Coop, Buyrs = BIdx →m Buyer

...

value

11)Note that we list any fisher both as an agent and the fishers boat as a component. Recall our decision to

aggregate the two, for each pair fisher and fishing boat, into one process!
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boats:Boats, coops:Coops, buyrs:Buyrs, ficop:FiCop

...

system: Unit → Unit

system() ≡

/∗ agents ∗/

‖ { fisher(fi)(ficop(fi))(boats(fi)) | fi:FIdx } ‖

‖ { cooperative(c)(coops(c)) | c:CIdx } ‖

‖ { inspector(i) | i:IIdx }

‖ auction master() ‖

‖ { buyer(b)(buyrs(b)) | b:BIdx }

/∗ components ∗/

‖ in buffer() ‖

‖ { sorting(sa) | sa:SAIdx } ‖

‖ auction()

‖ out buffer()

‖ ministry()

type

Boat = Box-set

Box = BoxId×FType×FQuant×FQual×FDate×FPlace×...

channel

ftco[ ]:{ready}, cotf[ fi ]:({ready}×TIdx)

ftlt[ li ]:Box-set, lttf[ li ]:

value

fisher: FIdx → CIdx → Boat → Unit

fisher(fi)(c)(boat) ≡

if boat 6={}

then

let bs:Boat • bs ⊆ boat in

ftco[ c ]!(ready,fi);

let (ready,t) = cotf[ c ]? in bs!ftlt[ t ] end

fisher(fi)(c)(boat \ bs) end

else skip end
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Only non-empty fishing boats need have lift-trucks collect boxes (bs). The fisher informs his

cooperative that fish boxes are ready for collection. The fishers’ cooperative, c, schedules which

truck, t, is dispatched to collect bs. The number of boxes collected is, in the domain, set arbitrarily

(ie. non-deterministically).

auction master() ≡ auctioneer() ‖ office()

coop: CIdx → Unit

cooperative(i) ≡ (‖ { lift truck(t) | t:TIdx }) ‖ (‖ { sort group(s) | s:SIdx })

We leave the declaration (naming and typing) of channels and the detailing of individual

processes as an exercise to the reader.

End of Fisheries Auction Example 4

The domain model of a fisheries auction (harbour) attempts to capture phenomena that

go well beyond those for which we may wish computing support. That is: Domain modelling

starts by casting the net wide, venturing well beyond what may be of immediate concern in

a subsequent requirements capture. The reason for doing so, systematically, is simple: “one

never knows”! Other requirements, hitherto unforeseen, may require domain analysis of other

phenomena, etc. The wider a domain model covers an application domain, the more chance there

is for any subsequent software to be more readily adaptable to such other, future software.

This point will be elaborated in Section 4.1.1.

Some SE Pinnacles: Hoare, Milner and Petri: CSP, ccs and Petri Nets: CSP: Communicating Sequential

Processes as a concept presents the essentials of parallel processing and does so in an elegant setting. The CSP

notation is frugal and its semantics obeys beautiful laws. The CSP concept is due to Tony Hoare [Hoare 1978;

Hoare 1985; Roscoe 1997]. ccs — a calculus of communication systems — presents another elegant, and perhaps

more foundational approach to concurrency: synchronisation and communication between processes. The ccs

concept is due to Robin Milner [Milner 1980; Milner 1989]. In our viewCSP and ccs — together with Carl Adam

Petri’s Petri Nets [Reisig 1998; Jensen 1985] — offer indispensable techniques for every professional software

engineer’s practice.

3.2 Stake-holder Modelling

Example 4 on page 16 hinted at stake-holders and their modelling, but the example was

mostly brought to illustrate “operationalism”: to contrast with Example 3 on page 15’s “loose”
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abstraction.

5. Example: Resource Management, three Perspectives:: — Ends on page 27

This example shows the ability of formal specification to capture the essential differences be-

tween an enterprise’s three levels of resource management. The strategic management of resources:

Their “down-sizing” (sell-off, divestment) or “upgrading” (acquisition, investment); the tactical

management of (physically relocatable [mobile]) resources: Their spatial allocation and schedul-

ing; and the operations management of resources: Their allocation to tasks and the scheduling of

these tasks. At the same time we are able to “put our finger on what distinguishes ‘algorithmic’

software from ‘decision support software’.

Resources: Common notions are: resources, r:R, locations l:L and time intervals ti:T×T.

Scheduled availability of resources (SAR) (in certain time intervals), and scheduled spatial

allocation (SSA) can be modelled as:

type R, L, T

SAR = T×T →m R-set

SSA = T×T →m (R →m L)

Production [or Servicing] Plans and Tasks: Production of goods or services follow certain acyclic,

graph-like production plans where nodes (N) designate actions (A, like machining or service ren-

dering) and where arcs (W) designate quantified (Nat) flow (also a kind of action, A) of typed

(RTyp) resources. Each kind (P) of product (or service) plan has its own production plan (PP).

External input (inputs) initiate production, external output (outputs) deliver results. At each

node there may be many next (NXT) nodes and a local repository of material resources (REP).

Figure 4: Production Plan 1
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Figure 4 shows a production plan.

type P, Pn

axiom P ⊂ R

type N, W

PPs = (Pn →m PP)

PP = inputs:NXT

× graph:(N →m (NXT × REP))

× outputs:NXT

× actions:((N|W) →m A)
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NXT = N →m (W →m (RTyp →m Nat))

REP = RTyp →m Nat

Production (or servicing) resources are needed in order to carry out actions (A). These are (to be)

task scheduled and allocated to nodes and edges (NWAS) for [each] product plan (ASPD[s]). The

dynamics of a task is now modelled as a pair: the (static) task scheduled and allocated plan and

a (the dynamic) trace. For each instance of time the trace records at which nodes and on which

edges the locus of control (of executon of the task) resides. A task thus records the past history

and planned progress of the production, or servicing of one order.

type

NWAS = (N|W) →m ((T×T) →m (R →m L))

ASPD = PP × NWAS

ASPDs = Pn →m ASPD

Task = ASPD × Trace

Trace = T
∼
→ (N|W)-set

Tasks = T
∼
→ (Pn →m Task-set)

The node and edge actions avail themselves of the node, respectively edge scheduled and allocated

task resources.

At any moment an enterprise is honouring, for each named product, zero, one or more

productions (servicings), ie. tasks.

Orders: Production (etc.) occur in response to, or expectation of customer (C, placed, placeable)

orders. An order (O) names a product (resp. service, Pn), the time interval (ti) in which the order

is to be delivered and a quantity (q). Each customer order receives a unique order name (On).

type C, On

O = Pn →m (ti:(T×T) →m q:Nat)

COs = C →m (On →m O)

Statistics and Estimates: A business objective (BO) records for suitable recources the number

required. The number may be negative! Statistics (S) and estimates (E) records for suitable time

intervals and locations the business objectives for that time interval and at that location.
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type

BO = R →m Int

S,E = (T×T) →m (L →m BO)

Statistics records past experience. Estimates record future expectations.

Strategic Management: We recall:

type

SAR = (T×T) →m R-set

SSA = (T×T) →m (R →m L)

which expresses either a desired or an actual state: in some (planned or actual) interval some

(planned or actual) resources are available (or occupied, or to be scheduled) (SAR), respectively

at some (planned or actual) locations (SSA).

• Planning:

Strategic planning is based on available resources, statistics and estimates, and yields, for

(future) time intervals plans for possibly downsized or upgraded resources. There may be

an infinity of “solutions” to strategic planning.

value sp: R-set × S × E
∼
→ (T×T)

∼
→ SAR-infset

We have assumed that this form of strategic planning toccurs in “isolation” from the market.

• Negotiation:

Out of such a possible infinity of choices (or zero, for that matter!) one has to be chosen, if

possible. Now negotation takes place in the context of the market. Each “player” (B) has

own, strategic resource plans.

type B

value ng: (B × SAR-infset) × (B →m SAR-infset)
∼
→ SAR

• Reconciliation:

Negotiation results, seen from each “player” in a possibly new resource schedule which may

have to be reconciled with those (sp) originally planned, resulting a yet a possibly other,

new resource schedule.
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value rec: E × sp:SAR-infset × new:SAR
∼
→ result:SAR

• Revision:

value res: E × SAR
∼
→ E

Finally strategic planning may revise original estimates.

– Interpretation: The “functions” sp, neg, rec and res are just given their signature.

A number of pre/post conditions can be expressed — typically after some thorough

knowledge-engineering acquisition — but not enough for us to be able to actually com-

pute definite, let alone all answers. Together with the signatures and the pre/post

conditions one can, however, formulate requirements to a (so-called “expert-system”-

like) decision software support system.

Tactical Management: Tactical resource management now allocates scheduled resources in the

context of estimates and actual (or expected, current) orders:

value tp: E × COs → SAR
∼
→ SSA

• Interpretation: Remarks similarly to those above for the strategic “functions” can be

attached to this tactical “function”, and again we should be in a position to knowledge-

engineer, ie. requirements capture a decision support sosftware system.

Operations Management: Operational management now takes current (and immediately ex-

pected future) orders and spatially allocated and scheduled resources and allocates them to pro-

duction (or servicing) tasks:

value op: COs × SSA
∼
→ ASPDs

• Interpretation: The “closer”, however, we get to operations, the more our planning func-

tions become algorithmically well-defined. Although one may not arrive at optimal algo-

rithms for the implementation of operations management (due to NP completeness), this

function is typically realisable using modern operations research analysis techniques.
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Operations: The production plans can now be executed:

value ops: APSDs
∼
→ Tasks

• Interpretation: The argument to this operations despatch, monitoring and control func-

tion, ops, and desired pre/post conditions, are such that this function is (almost trivially)

algorithmically computer supportable.

Discussion: This example shows: (i) that it is possible to make reasonably non-trivial statements

about strategic and tactical resource management and (ii) to relate these to operational manage-

ment, (iii) that we can model at least three stake-holder perspectives within a “smooth” spectrum

of models for: (1) strategic (owner and top-level executive) management, (2) tactical, divisional

level management, and (3) operations management, and (iv) that we can identify a spectrum of

software from knowledge based decision support software to operations research analysis based

task scheduling and production monitoring & control software.

End of Resource Management, three Perspectives: Example 5

3.3 Support Technology Modelling

By support technology we mean technology that support an activity of the domain but

where such a technology may change as new technologies replace old ones.

6. Example: Railway Point Machines: — Ends on page 27

The configurational part of the rail net example, Example 2 on page 9 of Section 2, can be

claimed to illustrate the intrinsics of a support technology model!

By a point machine we mean a rail junction, a rail switch, which allows routing trains along

switched paths through a rail net.

Railway point machine technology has changed: from being manually thrown by a rail-

way worker via being first remote mechanically switched (with levers and pullers), then electro-

mechanically, to now being part of a so-called solid state interlock (SSI) route planning system.

The behavioural facets are different in the three cases, but the intrinsic fact of switching

remains invariant.

End of Railway Point Machines Example 6
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• Note: The examples of this paper are all drawn from the authors own work. At this stage

examples would have to feature the work of others.

Descriptions of domain technologies inherently focus on time, on failure-to-operate, and

hence on safety. Various modal logics seem appropriate as modelling tools. In particular we

have advocated Duration Calculi.

Thus I would here, in my work use and in my lectures cover, the seminal work of Zhou

Chaochen on the Duration Calculi. Instead I refer to published papers:

– Gas Burner: [Chaochen et al. 1991]

– Steam Boiler: [Widjaja et al. 1994; JuAn and XiaoShan 1995a; JuAn and XiaoShan

1995b]

– Railways: [Chaochen and Huiqun 1994; et al 1994; Skakkebæk M.Sc. Thesis;

Skakkebæk et al. 1992]

– Chemical Plant: [Qiwen and Weidong 1995]

– Heating System: [Qiwen and Zengyu 1996]

– Lift: [Hansen 1992]

An SE Pinnacle: Zhou Chaochen: The Duration Calculi: The concept of the duration calculus was first

proposed during the ProCoS project [Bjørner 1989]. The main research into the family of duration calculi has

been and is being done by Zhou Chaochen [Chaochen et al. 1991; Hansen and Chaochen 1992; Chaochen 1993;

Zhiming et al. 1993; Ravn et al. 1993; Chaochen et al. 1993; Chaochen and Xiaoshan 1994; Chaochen et al.

1995]

3.4 Rules & Regulations + User Behaviour Modelling

When the systems — for which computing support is sought — are staffed by humans

and/or interface with human clients we find that rules & regulations have been set up to guide

staff and clients in how to perform certain activities of the domain.

7. Example: Public Administration &c.: — Ends on page 29
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Examples — which we shall not formalise — can be taken for example from a country’s

social welfare system, or from its taxation laws, or customs duty law, or from a fisheries infras-

tructure’s quota directives.

End of Public Administration &c. Example 7

8. Example: Banking: — Ends on page 29

With each demand/deposit and savings & loan account, to take two examples, there is

associated a number of contractual rules & regulations concerning the way the account client and

the bank will honour the contract.

With a repayment on a loan, for example, those rules & regulations may stipulate how the

bank will handle a loan installment: deduction of the principal part of the repayment from the

loan, and transfer of the interest on the loan since last instalment as well as any fees to appropriate

accounts of the bank. But bank tellers may make mistakes, and some, or the programmers who

wrote the software for supporting this kind of processing back in the 1960’s, are outright criminal

and divert round offs etc. to own accounts!

Thus there is really very little we can specify, for such a possibly erroneous, possibly mis-

chievious domain other than allowing the greatest degree of interpretation for each kind of rules

& regulation.

type

Bnk, Cli, Acc, Bal, ..., Res

Cmd == ... | mk Repay(n:Nat,c:Cli,a:Acc) | ...

value

M: Cmd
∼
→ Bnk

∼
→ Bnk × Res

End of Banking Example 8

We shall return to the issue of rules & regulations and user behaviour in the Requirements

Engineering section, Section 4.1.2 (Example 11 on page 34). Then any questions, even objections

that you might have to the above “looseness” should be answered, respectively satisfied. The

point being made here is either: If we define too much wrt. textdbrules & regulations and user

behaviour in the domain then we might already have entered the requirements engineering phase,

or we might be on our way not to describe the domain as it is, but as we might wish it to be, even

without computing. That is: we might be on our way to proper business process re-engineering.
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Some SE Pinnacles: Christopher Strachey and Dana Scott: Denotational Semantics: Christopher Stra-

chey’s search for and contributions to the fundamentals of programming — and hence software engineering —

was, alas, woefully short, but brillant [Strachey 1966; Strachey and Scott 1970; Scott and Strachey 1971; Stra-

chey 1973; Strachey 1974; Milne and Strachey 1976]. His collaboration with Dana Scott, and Dana’s independent

contributions led to the concept of denotational semantics [Scott 1970b; Scott 1970a; Scott 1972c; Scott 1972a;

Scott 1972b; Scott 1973; Scott 1975; Scott 1976; Scott 1981; Scott 1982a; Scott 1982b; Gunter and Scott

1990]. We consider their contributions of seminal importance and such that every professional software engineer

must be awares thereof!

3.5 Discussion

We have outlined some principles of domain modelling. Emphasis was here put on ab-

straction in describing stake-holder perspectives, intrinsics, support technology (which was not

illustrated), rules & regulations and user behaviour. Emphasis was also put on the necessity of

and interplay between informal and formal descriptions.

4 REQUIREMENTS ENGINEERING

A requirements specification describes expectations to a computing system, the ‘machine’

[Jackson 1995] as we would like it to be — ie. optatively [Jackson 1995] — void of any reference

to how the software might be designed,

An SE Pinnacle: Michael Jackson: Requirements “reside” in the Domain: Michael Jackson more than

anybody else has contributed to the clarification of the concept of requirements engineering [Jackson 1994;

Jackson 1995; Jackson 1997; Zave and Jackson 1997b]. Although we suggest a further refinement to Jackson’s

ideas we confess our dept and inspiration.

4.1 Domain Requirements

Domain requirements are those requirements which are borne directly out of the application

domain. Such requirements are expressed solely in terms of domain concepts — hence can be made

to stand in a formal relationship to our domain formalisation.
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4.1.1 Projection

Usually we describe far more of the domain than may, at any moment be necessary in order

to express specific requirements.

9. Example: Air Traffic: — Ends on page 32

The example domain includes that of airspace, with its airports, airdome (or controlled

zone) and air-corridors, that of time-tables and that of flights.

An Air Traffic Domain: We formalise, without much ado, ie. without much narrative, but

see [Bjørner 1995], the airspace (AS): airports (A), domes (D), corridors (C); the time-tables

(TT) and the flight traffic (FT) — and their relationships:

type

V, A, D, Cn, C, Fn, F, T, P

AS = oas: A-set /∗ outside V airports of origin ∗/

× V × (A →m (D × (A →m Cn →m C)))

× das:A-set /∗ outside V airports of destination ∗/

TT = A →m (arrivls:(A →m (Fn →m T))

× departs:(A →m (Fn →m T)))

FT = T → (aps:AS × (Fn →m P))

value

wf TT: TT → Bool

wf TT: AS → TT → Bool

wf FT: FT → Bool

wf FT: TT
∼
→ FT → Bool

wf FT: TT
∼
→ T

∼
→ FT → Bool

V, D, C and P are topological spaces. T is (real) time.

We only consider airport domes (D) and corridors (C) within V. To every airport (within

V) there corresponds an airport dome and zero, one or more named corridors to each of a

number of other airports.

The time-table concretely specifies arrival and departure flight times for each airport and

indication from where, respectively to where such flights (Fn) come, respectively go.
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Flights (FT) is a function from time into the positions (P), in V (or beyond) of flights Fn.

Time-tables may be internally well-formed: flights arrive appropriately before they depart,

no two or more flights land within small time-intervals of one another, etc. Time-tables may

be well-formed with respect to airspace: the table only lists existing airports, have flight times

between airports commensurate with their distance from one another, etc. Flights may be

internally well-formed: no mid-air crashes or near-misses, etc. Flights may be well-formed

wrt. airspace and timetable. That is: flights depart and (especially) arrive at designated

airports and within a maximum deviation of a few minites wrt. time-table specifications,

etc. And flights may (or may not) be well-formed at a given time wrt. airspace and time-

table. We do not define the various wf functions, but note that they are not invariants on

the domain since time-tables may be wrong, since flights unfortunately do crash, etc.

Air Traffic Requirements: Let us assume that requirements is about scheduling and reschedul-

ing of flights, respectively (too early or) delayed flights. And let us, for the sake of illustration,

assume that flights are only rescheduled after having arrived at airports.

Now we consider only:

type

AS′ = A →m (D × (A →m Cn →m C))

TT, FT /∗ as before ∗/

value

schedule: AS′ → TT → FT-infset

schedule(as)(tt) as fts

pre wf AS(as) ∧ wf TT(tt) ∧ wf TT(as)(tt) ∧ ...

post forall ft:FT • ft ∈ fts ⇒ wf FT(ft)(tt) ∧ ...

reschedule: TT → FT ⇒ T → TT × FT

reschedule(tt)(ft)(t) as (tt′,ft′)

pre wf TT(tt) ∧ wf TT(aps(ft(t)))(tt) ∧ ∼wf FT(ft)(tt)(t)

post wf TT(tt′) ∧ wf TT(aps(ft′(t)))(tt′) ∧ wf FT(ft′)(tt′)(t) ∧ ...

That is: we have projected AS onto AS′ and introduced — ie. instantiated, see next subsec-

tion — schedule and reschedule functions.

End of Air Traffic Example 9
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4.1.2 Instantiation

By instantiation we mean concretisation of previously loosely defined phenomena. Here we

show instantiation by “converting” abstract types (ie. sorts) into concrete types (ie. abstract data

structure types).

10. Example: Time-table: — Ends on page 34

We continue Example 3 on page 15 of Section 3.1.1 — where we essentially had:

type TT, V, R

Cmd == mk Query(...) | mk Update(...) | ...

value

M: Cmd
∼
→ TT

∼
→ (V | TT×R)

We now project all of the domain description onto this stage of domain requirements. And then

we instantiate time-tables, thereby extending also the “domain” with specifics on airports (A),

arrival and departure times (T) and flight numbers (Fn). The instantiation introduces a notion

of journey (J, two or more airport visits):

type A, T, Fn

TT = Fn →m A × J

J = (art:T × A × dpt:T)∗

We can now instantiate specific queries and updates:

type

Cmd == mk Journey(fn:Fn) | ... | mk Add(fn:Fn,j:J) | ...

R = J | TT | ...

value

M: Cmd → TT
∼
→ R

M(mk Journey(fn))(tt) ≡ tt(fn) pre: fn ∈ dom tt

...

M(mk Add(fn,j))(tt) as tt′

pre fn 6∈ dom tt

post wf TT(tt′) ∧ tt′ = tt ∪ [ fn 7→ j ]

...
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End of Time-table Example 10

11. Example: Bank Scripts: — Ends on page 35

We continue Example 8 on page 29. First we instantiate the types and then we define the

repay operation. We simplify the example considerably as compared to [Bjørner 1997; Bjørner

et al. 1998]:

• First Domain Requirements Model:

type

Bnk = Cli →m (Acc →m (Bal × ...))

value

M(mk Repay(p,c,a))(b) ≡

let (principal,interest,fee) = calc repay(p,c,a)(b) in

let (b′,r′) = subtract(principal,c,a)(b) in

let (b′′,r′′) = add interest(interest)(b′) in

let (b′′′,r′′′) = add fee(fee)(b′′) in

(b′′′,response(r′,r′′,r′′′)) end end end end

The . . . shall indicate that there is (much, much) more to a bank state than defined explicitly

in Bnk.

Given a payment, p, a client, c, the clients’ account number, a, and the bank, b, there is

enough information to calculate the partitioning of the payment into principal, the inetest

on the loan since last payment, and the fee. These three amounts now need be deducted

from the loan balance, added to a bank owned income account (for interests), respectively

added to a bank owned income account (for fees). Each operation results in partial response

reports, r′, r′′, and r′′′. These are composed and together with the resulting bank (state)

forms the result of the operation.

But: This is not the way we wish to express our domain requirements! (And hence

we did not bother to define the auxiliary subtract and add functions.) Instead we decide

to require that a special script (programming) language be defined, and that operations like

the repayment operation be specified as scripts (ie. as programs) in that language, and that

the procurers of the (in this case banking) software “sign off” on requirements specifications

expressed in the abstract, albeit executable script language!
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• Second Domain Requirements Model:

We now respecify the repay operaion in terms of such a script language. We may, eg.,

assume that any script procedure is executed in the context of the bank (state) and most

recent client and account numbers.

repay(payment) =

name p = principal(payment),

i = interest(payment),

f = fee(payment);

subtract p from balance,

add i to interest,

add f to fee;

print report(p,i,f)

We have sketched a possible script in a highly dedicated script language, one that is specially

“geared” to a specific banks’ account structure and the context of its operations.

We refrain from presenting the specific syntax and semantics of the illustrated script lan-

guage, but refer to an internal draft report [Bjørner et al. 1998].

End of Bank Scripts Example 11

A need for script languages to handle the requirements definition of domain aspects and to make

precise which user behaviours are acceptable, such a need arises in many contexts:

• Air Traffic Control: The civil aviation authorities (CAA, CAAC, FAA, etc.), under the

auspicies of the UN led CAO (Civil Aviation Organisation), have drawn up a great number of

rules & regulations concerning air traffic control: ie. protocol of communication, monitoring

and control necessary between aircraft pilots and ground air traffic control staff.

• Stock Trading: State and federal exchange commissions (FEC, etc.) have laid down rules

& regulations concerning the trade, brokerage and exchange of securities, ie. procedures to

be followed by buyers, sellers and floor traders of stocks etc.

• Train Despatch: Train despatch rules & regulations vary from province to province, from

state to state. In China, for example, a rule states that at any station, at most one train can

be received or depatched in any two minute interval. There are literally hundreds of more-

-or-less formalisable rescheduling rules, and also they vary from region to region, reflecting

hard-won experience wrt. special terrain and railnet conditions.
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• Fisheries Inspection: Rules & regulations concerning fisheries quota: allowable catch,

total allowable catch, etc. are also subject to script formulations: one set of rules determine,

for each sovereign state participating in a fisheries zone, its total allowable catch, and other

sets of rules, for each combination of fishing grounds and fishers (or firshers’ cooperatives)

their quotas.

• &c.

Common to all these rules & regulations is that they often change and that the human computer

interface via which they are presented likewise often change. Instead, therefore, of “hard wiring”

the handling of these rules & regulations into the base programs of the software system to be

developed, we embed a script interpreter in that system in order to allow for easy re-programming

of such rules & regulations.

4.1.3 Extension

By extension, as a domain requirement, we understand, really an extension of the domain,

but with properties that were infeasible without computing.

12. Example: Airflight Connections: — Ends on page 36

Given example 10 on page 33 we can for example suggest a query: ‘connection’, which

given two airport names, one of origin and one of destination, find all sequences of one or more

journies that lead from origin to destination.12) In the domain, without computing, finding all

such connections is not believable.

type

Query == ... | mk Conn(fa:A,ta:A) | ...

R = ... | (J∗)-set

value

M(mk Conn(fa,ta))(tt) ≡ ...

End of Airflight Connections Example 12

12)A precise definition of a connection between two airports might run as follows: A journey which encompasses

the two airports is a direct or a non-stop connection of length 1. Let a be the name of a third airport, distinct from

the origin and destination. If there is exists a connection of length m from origin to a, and a connection of length

n from a to destination, then the catenation of these two connections is a connection of length m + n from origin

to destination.
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4.1.4 Initialisation

13. Example: Railway Net: — Ends on page 37

Example 2 on page 9 illustrated the syntax of all railway nets. In practice delivered software

applies to particular, initialised nets. These must first be input to the computer. They will then

usually be kept as a database. A separate sub-system (ie. a program package) therefore has to

be developed, one which supports the initial input of such a database as well as its maintenance:

update, etc.

This amounts to a particular application. The domain of that application has been defined.

The requirements are different from those of the originally intended requirements for railway

system support (where these could have been: despatch of trains, or marshalling, or rolling stock

control, etc.).

End of Railway Net Example 13

An SE Pinnacle: Interpretation vs. Compilation: Modelling “all” versus executing “one”!: A semantics

for a programming language ascribes meaning to all well-formed programs of that language. When we capture

the meaning of professional terms of an application domain, an infrastructure component, we do likewise: ascribe

meaning to all instances of such terms. We treat the terms as names of syntactic categories. Interpretation

leaves us that degree of freedom: to define interpreter functions which apply to instances of a whole category.

An interpreter is allowed to inquire as to the type (ie. structure) of the data to which it is applied. A compiler is

a specialisation of an interpreter in that all such tests (inquieries) have been “compiled out”! The strength of the

domain modelling approach of this paper is exactly this: It assumes interpretation, hence it invites categorisation.

4.1.5 Discussion

We have outlined some principles and techniques of domain requirements modelling. Al-

though listed in a sequence they are not, as is usual in the creation of software artefacts, separable,

but intermingle.

4.2 Interface Requirements
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4.2.1 GUI & Multi–media Interface

14. Example: Airline Time-table: — Ends on page 39

We continue example 10 on page 33. The commands have to be input and the results

(values) displayed. There are two aspects to a command: its name and its arguments. Hence

we decide, for the sake of illustration, to let the so-called Human Computer [graphical, ie. visual

display (GUI)] Interface (HCI) consist of three parts:

type

HCI = CNm × prompt:Arg × result:RV

CNm == journey | connection | ... | add | ...

Arg == mk Fn(fn:Fn) | mk As(oa:A,da:A) | ... | mk FnJ(fn:Fn,j:J) | ...

RV == mk R(r:R) | mk V(v:V)

The above is intended to model that the HCI represent a visual display screen (window) with three

fields. The first field is here envisaged as an icon which, when depressed (ie. “clicked”), shows a

“roll-down curtain” with command name entries. At most one of these can be selected. When a

specific command name entry is selected then the argument portion of the display “lights up” and

“prompts” the user for appropriate argument(s). Once provided the result/value portion (RV ) of

the HCI will [eventually] provide a response (result, value):

value

Mhci: HCI
∼
→ TT

∼
→ HCI

Mhci(,,) ≡

let cnm = journey ⌈⌉ connection ⌈⌉ ... ⌈⌉ add ⌈⌉ ... in

cases cnm:

journey

→ let fn:Fn • ... in (journey,mk Fn(fn),M(mk Journey(fn))(tt)) end

...

add

→ let fn:Fn • fn 6∈ dom tt, j:J • ... in

(add,(mk FnJ(fn,j)),M(mk Update(fn,j))(tt)) end

... end end
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We have achieved, we believe, our aim: to hint at how to model HCI’s, albeit abstractly (Mhci),

and as a step of development from earlier requirements definitions (viz.: M).

The internal non-deterministic choice of command names and arguments shall model that

we do not know which commands and what arguments are selected by users.

End of Airline Time-table Example 14

4.2.2 User Dialogue

By a dialogue we understand a sequence of one or more HCI interactions.

15. Example: Banking: — Ends on page 39

We continue Example 8 on page 29. With respect to for example a demand deposit account

and ordinary client “undergoes”, ie. is subject to the following regular expression of transactions:

e ( d | w | s )∗ c

where e, d, w, s and c designate establish, deposit, withdraw, (request) statement, respectively

close transactions.

This is a much simplified picture. To capture more sophisticated dialogues and to capture

their context-dependency (viz.: withdrawals may not be possible if the account is [excessively]

negative, etc.) regular expressions may not suffice. Instead one may use CSP [Hoare 1978; Hoare

1985; Roscoe 1997], StateCharts [Harel 1987; Harel et al. 1987; Harel et al. 1990], or other

techniques and tools.

End of Banking Example 15

4.2.3 “User Friendliness”

Many properties of software may qualify for the predicate: “User Friendly”. Here we shall

just focus on one property (on one set of properties):

• A software system, a program package, is said to be “user friendly” if, besides possibly other

properties, it exhibits, reflects, the concepts of the domain in which it serves, only these,

and in an “isomorphic” manner.
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It is probably impossible to attain “100% user friendliness”! By the software exhibiting, reflecting

a domain concept we mean to say that the two-way human computer interface somehow prompts or

displays that domain concept in a texttual, visual or animated fashion and void of any “adornment”

with computing system concepts.

Our example may first be thought of as being far from the requirements notion of “friend-

liness”. First, the example is a domain description. And we are in the section on requirements !

16. Example: Stock Exchange: — Ends on page 45

We model core concepts of a domain of securities (stock and bond) trading.

Domain-wise we shall model a simple stock exchange. Technically we model the “grand”

state space as a sort,and name a few additional sorts whose values are observable in states. To

help your intution we “suggest” some concrete types for all sorts, but they are only suggestions.

The main (state) components of a stock exchange — reflecting, as it were ‘the market’ — are the

current state of stocks offered (ie. placed) for buying Buy, respectively selling Sll, and a summary

of those cleared (that is bought & sold) and those removed (because the broker who placed them

withdrew the offer or because the time interval of the validity of their offer elapsed).

Figure 5: A “Snapshot” Stock Exchange

Sell

Buy

.....

.....

many buy

few sell offers

many sell

few buy offers

The ... low - high ... price ranges

for several buy, resp. sell offers

of one particular stock

The placement of an offer of

a stock, s:S, results, r:R, in the of-

fer being marked by a unique offer

identification, o:O. The offer other-

wise is associated with information

about the time interval, (bt,et):T×T,

during which the offer is valid — an

offer that has not been cleared dur-

ing that time interval is to be removed

from buy or sell status, or it can be

withdrawn by the placing broker —

the quantity offered and the low to high price range of the offer. (There may be other information

(. . . ).)

type

SE, Buy, Sll, ClRm, S, O, Ofrs, Ofr, T, Q, P, R, Clrd, Rmvd

SE = (Buy × Sll) × ClRm
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Buy, Sll = S →m Ofrs

Ofrs = O →m Ofr !

Ofr = (T×T) →m (Q × (lo:P×hi:P) × ...)

ClRm = O →m Clrd | Rmvd

Clrd = S × P × T × Ofrs × Ofrs

Rmvd = S × T × O × Ofr

Market = T → SE

Observers — State Structure: Having defined abstract types (ie. sorts) we must now define a

number of observers. Which one we define we find out, successively, as we later sketch signatures

of functions as well as sketching their definition. As we do the latter we discover that it would

“come in handy” if one had “such and such an oberver”! Given the suggested concrete types for

the correspondingly named abbstract ones we can also postulate, any larger number of observers

— most of which it turns out we will (rather: up to this moment has) not had a need for!

value

obs Buy: SE → Buy, obs Sll: SE → Sll,

obs ClRm: SE → ClRm

obs Ss: (Buy|Sll) → S-set

obs Ofrs: S × (Buy|Sll)
∼
→ Ofrs

obs Q: Ofr → Q

obs Qs: Ofrs → Q

obs lohi: Ofr → P×P

obs TT: Ofr → T×T

obs O: R → O

obs OK: R → {ok|nok}

Main State Generator Signatures: The following three generators seems to be the major ones:

• place: expresses the placement of either a buy or a sell offer, by a broker for a quantity of

stocks to be bought or sold at some price suggested by some guding price interval (lo,hi),

such that the offer is valid in some time (bt,et) interval.13)

13)We shall [probably] understand the buy (lo,hi) interval as indicating: buy as low as possible, do not buy at a

pricer higher than hi, but you may buy when it is lo or as soon after it goes below lo. Similarly for sell (lo,hi): sell
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value

place: {buy|sell}×B×Q×S×(lo:P×hi:P)×(bt:T×et:T)×... → SE
∼
→ SE × R

• wthdrw: expresses the withdrawal of an offer o:O (by a broker who has the offer identifica-

tion).

• next: expresses a state transition — afforded just by inspecting the state and effecting either

of two kinds of state changes or none!

value

wthdrw: O × T → SE
∼
→ SE × R

next: T × SE → SE

A Next State Function At any time, but time is a “hidden state” component, the stock exchange

either clears (fclr) a batch of stocks — if some can be cleared (pclr) — or removes (frmv) elapsed

(prmv) offers, or does nothing!

value

next: T × SE → SE

next(t,se) ≡

if pclr(t,se) then fclr(t,se)

else if prmv(t,se) then frmv(t,se)

else se end end

pclr: T × SE → Bool

fclr: T > <SE → SE

prm: T × SE → Bool

frm: T × SE → SE

Next State Auxiliary Predicates: A batch (bs,ss) of (buy, sell) offered stocks of one specific kind(s)

can be cleared if a price (p) can be arrived at, one that satisfies the low to high interval buy,

as high as possible, do not sell at a pricer lower than lo, but you may sell when it is hi or as soon after it goes above

hi; the place action is expected to return a response which includes giving a unique offer identification o:O.
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respectively sell criterion — and such that the batch quantities of buy, resp. sell offers either are

equal or their difference is such that the stock exchange is itself willing to place a buy, respectively

a sell offer for the difference (in order to finally clear the offers).

value

pclr(t,se) ≡

∃ s:S,ss:Ofrs,bs:Ofrs,p:P •

aplcr(s,ss,bs,p)(t,se)

apclr: S×Ofrs×Ofrs×P → T×SE → Bool

apclr(s,bs,ss,p)(t,se) ≡

let buy = obs Buy(se), sll = obs Sll(se) in

s ∈ obs Ss(buy) ∩ obs Ss(sll)

∧ bs ⊆ obs Ofrs(s,buy) ∧ ss ⊆ obs Ofrs(s,sll)

∧ buysll(p,bs,ss)(t)

∧ let (bq,sq) = (obs Qs(bs),obs Qs(ss)) in

acceptable difference(bq,sq,s,se) end end

buysll: P×Ofrs×Ofrs → T → Bool

buysll(p,bs,ss)(t) ≡

∀ ofr:Ofr • ofr ∈ bs ⇒

let (lo,hi) = obs lohi(ofr) in p ≤ hi end

let (bt,et) = obs TT(ofr) in bt ≤ t ≤ et end

∧ ∀ ofr:Ofr • ofr ∈ ss ⇒

let (lo,hi) = obs lohi(ofr) in p ≥ lo end

let (bt,et) = obs TT(ofr) in bt ≤ t ≤ et end

Next State Auxiliary Function: We describe the result of a clearing of buy, respectively sell

offered stocks by the properties of the stock exchange before and after the clearing.

Before the clearing the stock exchange must have suitable batches of buy (bs), respectively

sell (ss) offered stocks (of identity s) for which a common price (p) can be negotiated (apclr).

After the clearing the stock exchange will “be in a different state”. We choose to characterise

here this “different state” buy first expressing that the cleared stocks must be removed as offers

(rm Ofrs). If the buy batch contained more stocks for offer than the sell batch then the stock
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exchange becomes a trader and places a new buy offer in order to make up for the difference.

Similarly if there were more sell stocks than buy stocks. At the same time the clearing is recorded

(updClRm).

fclr(t,se) as se′

pre pclr(t,se)

post

let s:S,bs:Ofrs,ss:Ofrs,p:P•apclr(s,ss,bs,p)(t,se) in

let (bq,sq) = (obs Qs(bs),obs Qs(ss)),

buy = obs Buy(se), sll = obs Sll(se) in

let buy′ = rm Ofrs(s,bs,buy), sll′ = rm Ofrs(s,ss,sll) in

obs Buy(se′) =

if bq > sq

then updbs(buy′,s,bq−sq,tt buy(s,bq−sq)(t,se))

else buy′ end ∧

obs Sll(se′) =

if bq < sq

then updss(sll′,s,sq−bq,tt sll(s,bq−sq)(t,se))

else sll′ end ∧

let clrm = obs ClRm(se) in

obs ClRm(se′) = updClRm(s,p,t,bs,ss,clrm) end end end end

Many comments can be attached to the above predicate for clearability, respectively the clearing

function:

• First we must recall that we are trying to model the domain. Thta is: we can not present

too concrete a model of stock exchanges, neither what concerns its components, nor what

concerns its actions.

The condition, ie. the predicate for clearable batches of buy and sell stocks must necessarily

be loosely defined — as many such batches can be found, and as the “final clinch”, ie.

the selection of exactly which batches are cleared and their (common) prices is a matter

for “negotiation on the floor”. We express this looseness in several ways: the batches are

any subsets of those which could be cleared such that any possible difference in their two

batch quantites is acceptable for the stock exchange itself to take the risk of obtaining

a now guaranteed price (and if not, to take the loss — or profit!); the batch price should
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satisfy the lower/upper bound (buysell) criterion, and it is again loosely specified; and finally:

Which stock (s) is selected, and that only exactly one stock is selected, again expresses

some looseness, but does not prevent another stock (s 6=s′) from being selected in a next

“transition”.

• There is no guarantee that the stock s buy and sell batches bs and ss and at the price p for

which the clearable condition pclr holds is also exactly the ones chosen — by apclr — for

clearing (fclr), but that only could be said to reflect the “fickleness” of the “market”!

• Time was not a parameter in the clearing part of the next function. It is assumed that

whatever the time is all stocks offered have valid time intervals that “surround” this time,

ie. the current time is in their intervals. We shall have more to say about time later.

• Then we must recall that we are modelling a number of stake-holder perspectives: buyers and

sellers of stocks, their brokers and traders, the stock exchange and the securities commission.

In the present model there is no clear expresion, for example in the form of distinct formulas

(distinct functions or lines) that reflect the concerns of precisely one subset of these stake-

-holders as contrasted with other formulas which then reflect the concerns of a therefrom

distinct other subset of stake-holders.

Now we have, at least, some overall “feel” for the domain of a stock exchange. We can now

rewrite the formulas so as to reflect distinct sets of stake-holder concerns. We presently leave

that as an exercise!

“User Friendliess”: Finally we can discuss the issue of “user friendliness”. What was presented

so far in this example was some facet of the domain of stock (and bond) trading.

With respect to “user friendly” interface requirements for computing support of these facets

we now, informally, state:

• . . . The software for the support of stock exchange actions shall be limited to visualising

the “state”, for each stock, of buy and sell offers, viz.: Figure 5 on page 40, and to display

exactly and only when buy and sell offers are input, withdrawn and effected . . .

Our elaborate domain model above thus explicates what can be illustrated, and what cannot: only

the concepts shown by this model: placement and withdraw commands, and the circumstances

surrounding the next function: the predicates pclr, apclr, prm and functions aclr, srm, including

the non-deterministic choices offered.

End of Stock Exchange Example 16
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4.2.4 Discussion

Domain and interface requirements find their solution, usually, in the first stage of software

design, the one we shall call software architecture design.

In contrast machine requirements, to be dealt with next, usually have their solution “post-

poned” till a stage after: the program organisation, also know as the program structuring stage.

4.3 Machine Requirements

Sometimes machine requirements are referred to as non-functional requirements. In order

to enable a clearer distinction, and to use meaningful terms, we have chosen the term ‘machine

requirements’.

Usually machine requirements are “of the same kind” — “from application to application”!

The next subsections list some while illustrating the dilemma: that oftentimes machine require-

ments cannot easily be formalised — and when so, it is often, as we shall see in Section 5.2, difficult

to “derive” from such a formalisation a suitable program organisation.

4.3.1 Performance

Performance is an issue that we can only relate to the machine. Usually performance

requirements are expressed, informally, in the form: response time to such-and-such a query, or

event, must be less than µ seconds . . .

4.3.2 Dependability

Dependability concerns the machine issues of accessability, availability, security, safety

etc. One should not confuse, for example the machine requirements issue of security with those

of a possible domain requirements issue of security. The latter exists in the domain, prior to

computing; the former arises as a consequence of introducing computing. Here we deal only with

the machine consequence.

We illustrate three aspects of machine dependability.

17. Example: Accessability: — Ends on page 47
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We continue Examples 8 on page 29 and 15 on page 39.

To present an example of accessability we first need express the platform (ie. system con-

figuration) requirements of, for example: “there is one bank, with a definite number of automatic

teller machines (ATM), but an indefinite number of clients. The computing system is to give the

appearance that it can simultaneously serve such a number of clients. Now accessability is the

issue of “simulataneous access”.

We may formalise this as follows.

There is a definite, “sufficiently large” number of ‘client ATM’ processes, and one ‘bank’

process:

value

system() ≡ (‖ { client(i) | i:CIdx }) ‖ bank()

channel

ctb[ i:CIdx ] Cmd, btc[ i:CIdx ] Res

In this case we could say that the above predicates a software architecture, see Section 5.1, which

we could visualise as shown in Figure 6 on page 51.

End of Accessability Example 17

18. Example: Availability: — Ends on page 47

In continuation of Example 17 on the facing page we state: availability ensures that failure

in bank processing is masked by replication of bank handling resources.

Figure 7 on page 52 of the ‘Program Organisation’ Section 5.2 indicates our design decisions

wrt. this machine requirements.

End of Availability Example 18

19. Example: Security: — Ends on page 47

In continuation of Example 18 we state: Only authorised clients are given access to the

bank ATMs.

Figure 8 on page 52 of the ‘Program Organisation’ Section 5.2 indicates our design decisions

wrt. this machine requirements.

End of Security Example 19
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4.3.3 Maintenance

Three forms of maintenance requirements can be isolated: adaptive — preparing the soft-

ware for future adaptations to other external equipment and other software, perfective —preparing

the software for future improvement wrt. performance, once resource “bottlenecks” can be identi-

fied, and corrective — preparing the software for future “debugging” should domain conception,

requirements elicitiation or software design mistakes be uncovered.

20. Example: Adaptive Maitenance: — Ends on page 48

In continuation of Example 19 on the preceding page we state: ATM and authorisation

technology changes from time to time. The software must be resilient to such support technology

changes.

Figure 9 on page 52 of the ‘Program Organisation’ Section 5.2 indicates our design decisions

wrt. this machine requirements.

End of Adaptive Maitenance Example 20

4.3.4 Platforms

Development as well as execution, including portability platforms must likewise be require-

ments targeted.

4.3.5 Discussion

We have briefly outlined issues and aspects of machine requirements. We refrained from

formalising these — as that will be amply illustrated during program organisation design. See

Section 5.2.

4.4 Discussion

We have shown how requirements “split” into several domain, interface and machine as-

pects. We have noted that domain and some interface requirements lend themselves to formalisa-

tion in terms of domain concepts.
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5 SOFTWARE DESIGN

Software specification describes the design of software as it is going to be — ie. impera-

tively [Jackson 1995].

Software design consists of several stages: software architecture design, program organisa-

tion design, one or more steps of concretisation designs (refinements), finally concluded by coding,

ie. implementaiton in terms of existing platforms (CORBA, Java etc.).

5.1 Software Architectures

A software architecture is defined as the set of concepts and facilities offered the user of

the software (humans, or other software). Software architecture design therefore addresses issues

of domain and interface requirements.

21. Example: A Distributed Process Architecture: — Ends on page 50

We continue Example 14 on page 38. The Mhci function of that example clearly stated

what was required. In order to express a requirement (stated somewhere!) that all query as well

as update users share the same time-table, we suggest in the software architecture to provide for

a(n in)definite number of user processes and one time-table process. Where the Mhci function had

TT in its signature, the user process has Unit in its signature. Where the Mhci function body

referred to tt (as in M(...)(tt)) an output from the user process is specified to the time table

process followed immediately by an input from that process. And vice-versa: the time table

process expects, amongst others, input from user processes, and reply with outputs.

type

Φ = TT → (TT×R | V)

channel

utt[ i|i:UIdx ] Φ

ttu[ i|i:UIdx ] (R|V)

value

system: Unit → Unit
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system() ≡ ‖ { user(i) | i:UIdx } ‖ time table(tt)

user: HCI → UIdx → out Φ in (R|V) Unit

user(,,)(i) ≡

let cnm = journey ⌈⌉ connection ⌈⌉ ... ⌈⌉ add ⌈⌉ ... in

cases cnm:

journey

→ let fn:Fn • ... in

(journey,mk Fn(fn),utt[ i ]!M(mk Journey(fn));ttu[ i ]?) end

add

→ let fn:Fn • fn 6∈ dom tt, j:J • ... in

(add,mk FnJ(fn,j),utt[ i ]!M(mk Update(fn,j));ttu[ i ]?) end end end

time table: TT → in Φ out RES Unit

time table(tt) ≡

let tt′′ =

...

⌈⌉⌊⌋ { let φ = utt[ i ]? in let (tt′,rv) = φ(tt) in ttu[ i ]!rv ; tt′ end end | i:UIdx }

... in

time table(tt′′) end

End of A Distributed Process Architecture Example 21

In the next example we do not show any formulae. Instead we show a process/channel diagram.

By changing box and arow labels from Client to user, Bank to time table, etc., we arrive at a

diagram which could as well fit the example just completed! And hence: vice-versa: It should now

be easy to write down the formulae for the enxt example!

This “proves” a point: That software architectures have “styles” that “cut across domain

specifics” [Abowd et al. 1993; Abowd et al. 1995; Garlan 1996].
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Figure 6: Banking System Software Architecture

Client

Client

Client

Bank

ctb[1]

btc[n]

An SE Pinnacle: David Garlan: Software Architecture: David Garlan and his colleagues (Gregory Abowd,

Robert Allen, Mary Shaw, et al.) [Allen and Garlan 1992; Abowd et al. 1993; Garlan and Shaw 1993; Allen

and Garlan 1994; Shekaran et al. 1994; Abowd et al. 1995; Garlan 1995; Allen and Garlan 1996; Garlan

1996] must be credited with bringing new insight to and delineating, as a separable study object that of software

architecture. Our definition of software architecture “narrows” that of Garlan’s. Together with our definition of

program organisation, see Section 5.2, we “equal” Garlan’s definition.

22. Example: Banking: — Ends on page 51

We continue Example 17 on page 46 and its predecessor.

All domain and interface requirements are, and one (machine) accessability requirements

is now consolidated into the picture of Figure 6 for which we do not show the synopsis, narrative,

terminology nor formalisation. Instead we refer to Example 21 on page 49 and the comments

made right after that example.

The CSP process definitions and channel declarations, with types, was given on page 47.

End of Banking Example 22

5.2 Program Organisation

Program Organisation design especially addresses issues of machine requirements.

A program organisation is therefore defined as the software architecture plus the set of

concepts and facilities offered at internal interfaces, ie. a program organisation includes the further

decomposition of software into internal, possibly replicated or distributed components (objects,

processes, data structures).

23. Example: Banking: — Ends on page 53
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Figure 7: Distributed Banking
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Bank

Figure 8: Secure Banking
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Mpx Auth.

Branch
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We continue Example 22 on the preceding page while now focusing on the machine require-

ments of Examples 18 on page 47, 19 on page 47 and 20 on page 48.

Availability : The availability machine requirements finds its resolution, as shown in Figure 7:

The bank has been replicated into a possibly distributed set of branches. A multiplexor (Mpx)

finds, for each client transaction an appropriate branch.

Security : The security machine requirements finds its resolution, as shown in Figure 8.

An additional authorisation “mechanism” “filters” transaction requests based on further

requirements specified (but here undefined) authorisation (say password etc.) notions.

Adaptability : The adaptive maintenance (ie. machine) requirements finds its resolution, as

shown in Figure 9: each of the specialised “boxes” (software components, processes, data struc-

tures) are connected to one abother through special connectors. These serve the purpose of “stan-

dardising” component interfaces. We refer to [Allen and Garlan 1994; Abowd et al. 1995; Garlan

1996] for more on the connector, glue, port etcetera issues of this aspect of program organisation.

Figure 9: Adaptive Banking Software
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We refrain from formalising the above into proper CSP specifications.

End of Banking Example 23

Some SE Pinnacles: Futamura, Ershov, Neil Jones and Cousot: Abstract Interpretation: The notions of

partial evalation, mixed computation [Bjørner et al. 1988] and abstract interpretation coincide. They all deal

with various forms of execution over mathematical structures. That is: one and the same structure may give

rise to a variety of interpretations. A program text is subjected to many forms of partial evaluation in the course

of being compiled into for example efficient code: lexical scanning, syntactical parsing, type analysis, data flow

analysis, control flow analysis, etc.

It was Y. Futamura [Futamura 1971; Futamura et al. 1991] who first expressed a hierarchy of laws concerning

partial evaluation. Independently Harald Andersson [Haraldsson 1977] discovered similar notions of partial evalu-

ation. Andrei P. Ershov started the Russian School (we mention but a few:) [Ershov 1977; Ershov et al. 1988],of

mixed computation.

Neil D. Jones gathered this and contributed significantly to the “clean-up” of notions (again we mention but a very

few:) [Jones et al. 1993].Patrick and Nadia Cousot re-interpreted the partial evaluation cum mixed computation

as abstract interpretation (we mention aain a few:) [Cousot and Cousot 1977; Cousot 1996; Cousot 1997b;

Cousot 1997a]. We find that the notion of abstract interpretation — as we prefer to label the entire area referred

to above — is in no way near being exploited; that there are many exciting applications of abstract interpretation

yet to be uncovered, and more to be applied!

5.3 Discussion

We have illustrated how software architectures “develops” into program organisations,

adopting increasingly more machine requirements. Complexity is mastered through separation

of concerns.

Figure 10: Algorithmic “vs.” Knowledge–based Programs
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An SE Pinnacle: Algorithmic vs. Knowledge-based Systems: This note is in continuation of the “pinnacle”

note on Interpretation vs. Compilation page 37 In [Bjørner and Nilsson 1992] we investigated the classical

Algorithmic approach to software design in contrast to the Knowledge-based approach. See Figure 10 on the

page before. In — the extreme — knowledge-based programs contain all the domain knowledge embedded in a,

the strucure of the information at hand in s and the particular data values in d. K — the inference machine —

is a rather general purpose program — in theory applicable across widely different domains! In — again in the

extreme — algorithmic interpreters the domain knowledge (a) is embedded in the interpreter J , retaining s and

d as arguments. And — again in the extreme — in compiled programs both the domain knowledge (a) and the

(type) structuring (s) is embedded in the program C. The relations between K, Js and Cs can be expressed in

terms of abstract interpreters (A), see “pinnacle” box on page 53. These are shown as Akj , respectively Ajc.

6 CONCLUSION

In the introductory section we contrasted, sharply, the world of software engineering to the

classical, traditional worlds of electronics, automotive, chemical, civil and other engineering.

In this concluding section we will now, on the background of the “evidence” conjured by

intervening sections, take up this thread.

In the introductory section we very briefly outlined a facet of the conceptual nature of

engineering and of engineers. We now continue: Engineers (including software engineers) produce

components — resorting to the occasional, or, as for software engineers, the systematic use of

mathematics. Technicians put such boxes together, essentially without a need for understanding

the mathematics of these. Technologists are usually former engineers. They direct the R&D of

new technologies. In their pursuit of this, technologists do not resort to the sciences, but rather

to the market: To economic, social and other non-natural science issues.

A computing scientist studies, explores and experiments with either domains or technologies

(recall: the engineer “walks the bridge between science & technology— both ways!”). The software

engineer in charge of, or deeply pursuing for example domain engineering, besides doing so in an

assumed tight collaboration with stake-holder professionals of that domain, is also expected, for

years to come, to be a computing scientist.

We have given a number of examples, stressing the domain point-of-view as we believe it is

the more novel. These example have necessarily been sketchy, but as the references show: There is

much work behind these brief examples. However brief they are, they cover substantial fields, but



Dines Bjørner, Pinnacles of Software Engineering: 25 Years of Formal Method 55

our comments, explications and observations must be brief. We expect the reader to study them

carefully and to draw the conclusion that domain modelling is a rich field, much more need be

done: Modelling principles, techniques and tools need be established and area-by-application-area

one need establish wide and deep such models.

From the outline, therefor,e of main software engineering tasks, as presented in Sections 2–5,

we conclude, rather crudely perhaps, the following:

• Universes of Material Quantity:

The worlds of traditional engineering, insofar as they practice the classical, ie. the non-IT

core of their profession, represent “universes of material quantity”: The engineering goals are

those of designing and providing the way for constructing artefacts that were either smaller,

or bigger, cheaper, faster, or other such measures.

• Universes of Intellectual Quality:

The worlds modern software engineering, insofar as they aim at the development of new

software for the computing support of new infrastructure component activities, represent

“universes of intellectual quality”: The engineering goals are those of designing, cum con-

structing software that is “better”, correct, fit (“hand-in-glove”) human activities (ie. the

domain), pleasing, etc.

The above view, we think, is a major characteritics of software engineering. Surely there

are others. But we think that our view is at the heart of the profession.

Other, complimentary and cohesive views are possible. Some will undoubtedly be presented

in the current issue of Annals of Software Engineering. Together the reader may find what such

readers like to find!

I have listed some pinnacles of software engineering in separate, framed boxes scattered

over the text.

Perhaps, in all modesty (!), some of the examples may point to other forms of pinnacles:

more down-to-earth, everyday ones, but of the kind that makes being a software engineer perhaps

the most exciting profession so far created by man.
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thesis, Linköping University, Sweden, Linköping Studies in Science and Technology Disserta-

tions 14.

Harel, D. (1987), “Statecharts: A Visual Formalism for Complex Systems,” Science of Computer

Programming .

Harel, D., H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring, and

M. Trakhtenbrot (1990), “STATEMATE: A Working Environment for the Development of

Complex Reactive Systems,” IEEE Trans. Software Eng. 16 , 4, 403–414.

Harel, D., A. Pnueli, J. Schmidt, and R. Sherman (1987), “On the Formal Semantic of Statecharts,”

In Proc. of IEEE Symp. on Logic in Computer Science.

Haß, M. (1987), “Development and Application of a Meta IV Compiler,” In [Bjørner et al. 1987a] ,

Springer-Verlag, pp. 118–140.

Hayes, I. J., Ed. (1987), Specification Case Studies , International Series in Computer Science,

Prentice Hall, Hemel Hempstead, Hertfordshire HP2 4RG, UK.

Hoare, C. (1972), “Notes on Data Structuring,” In [Dahl et al. 1972] , pp. 83–174.

Hoare, C. (1978), “Communicating Sequential Processes,” Communications of the ACM 21 , 8.

Hoare, C. (1985), Communicating Sequential Processes , Prentice-Hall International.

Hoare, C. and et al. (1987), “Laws of Programming,”Communications of the ACM 30 , 8, 672–686,

770.

Horebeek, I. and J. Lewi (1989), Algebraic specifications in software engineering An introduction,

Springer-Verlag, New York, N.Y.

Jackson, M. (1994), “Problems, methods and specialisation,” Software Engineering Journal , 249–

255.

Jackson, M. (1995), Software Requirements & Specifications: a lexicon of practice, principles

and prejudices , ACM Press, Addison-Wesley Publishing Company, Wokingham, nr. Reading,

England; E-mail: ipc@awpub.add-wes.co.uk, ISBN 0-201-87712-0; xiv + 228 pages.

Jackson, M. (1997), “The meaning of requirements,” Annals of Software Engineering 3 , 5–21.

Janowski, T. (1996), “Domain Analysis for Manufacturing: Formalization of the Market,” Re-

search Report 63, UNU/IIST, P.O.Box 3058, Macau.

Janowski, T. and C. Acebedo (1996), “Virtual Enterprise: On Refinement Towards an ODP

Architecture,” Research Report 69, UNU/IIST, P.O.Box 3058, Macau.

Janowski, T. and R. V. Atienza (1997), “A Formal Model For Competing Enterprises, Applied to

Marketing Decision-Making,” Research Report 92, UNU/IIST, P.O.Box 3058, Macau.

Jensen, K. (1985), Coloured Petri Nets , volume 1–2–3 of EATCS Monographs in Theoretical Com-



64 Dines Bjørner, Pinnacles of Software Engineering: 25 Years of Formal Method

puter Science, Springer–Verlag, Heidelberg.

Jensen, K. and N. Wirth (1976), Pascal User Manuala and Report , volume 18 of Lecture Notes in

Computer Science, Springer-Verlag.

Jones, C. (1980), Software Development: A Rigorous Approach, Prentice-Hall.

Jones, C. (1986), Systematic Software Development Using VDM , Prentice-Hall, Superceded by

[Jones 1990].

Jones, C. (1990), Systematic Software Development using VDM , Second Edition, Prentice Hall

International.

Jones, N. D., C. Gomard, and P. Sestoft (1993), Partial Evaluation and Automatic Program

Generation, C.A.R.Hoare Series in Computer Science, Prentice Hall International.

JuAn, W. and L. XiaoShan (1995a), “A Duration Calculus Approach to Specifying the Steam-

boiler Problem,” Technical Report 38, UNU/IIST, P.O.Box 3058, Macau.

JuAn, W. and L. XiaoShan (1995b), “Specifying Optimal Design of the Steam-boiler System,”

Technical Report 39, UNU/IIST, P.O.Box 3058, Macau.

Landin, P. (1964), “The Mechanical Evaluation of Expressions,” Computer Journal 6 , 4, 308–320.

Landin, P. (1965), “A Correspondence Between ALGOL 60 and Church’s Lambda-Notation, (in

2 parts),” Communications of the ACM 8 , 2-3, 89–101 and 158–165.

Landin, P. (1966a), “A Formal Description of ALGOL 60,” In [Steel 1966] , pp. 266–294.

Landin, P. (1966b), “A Lambda Calculus Approach,” In Advances in Programming and Non-

Numeric Computations , L. Fox, Ed., Pergamon Press, pp. 97–141.

Larsen, P. G., Ed. (1993), Formal Methods , volume LNCS ??? of Formal Methods Europe Sym-

posium, Odense, Denmark , Heidelberg - Berlin, Germany, Springer–Verlag.

Larsen, P. G., B. S. Hansen, H. B. N. Plat, H. Toetenel, D. J. Andrews, J. Dawes, G. Parkin, et al.

(1996), “Information technology — Programming languages, their environments and system

software interfaces — Vienna Development Method — Specification Language — Part 1: Base

language,” .

Liskov, B. and S. Zilles (1974), “Programming with Abstract Data Types,” ‘Very High Level

Languages’, SIGPLAN 9 , 4, 59–59.

Lucas, P. (1972), “On the Semantics of Programming Languages and Software Devices,” In Formal

Semantics of Programming Languages , Rustin, Ed., Prentice-Hall.

McCarthy, J. (1960), “Recursive Functions of Symbolic Expressions and their Computation by

Machines, Part I,” Communications of the ACM 3 , 4, 184–195.

McCarthy, J. (1962), “Towards a Mathematical Science of Computation,” In IFIP World Congress



Dines Bjørner, Pinnacles of Software Engineering: 25 Years of Formal Method 65

Proceedings , C. Popplewell, Ed., pp. 21–28.

McCarthy, J. (1963), “A Basis for a Mathematical Theory of Computation,” In Computer Pro-

gramming and Formal Systems , North-Holland Publ.Co., Amsterdam.

McCarthy, J. and et al. (1962), LISP 1.5, Programmer’s Manual , MIT Press, Cambridge, Mass.

McCarthy, J. and J. Painter (1966), “Correctness of a Compiler for Arithmetic Expressions,”

In [Schwartz 1967] , pp. 33–41, Dept. of Computer Science, Stanford University, California,

USA.

Middelburg, C. (1988), “The VIP VDM specification language,” In VDM ’88 VDM – The Way

Ahead , LNCS 328, Springer-Verlag, pp. 187–201.

Middelburg, K. and G. R. de Lavalette (1991), “LPF and MPLω – A Logical Comparison of

VDM SL and COLD-K,” In VDM ’91: Formal Software Development Methods , VDM-Europe,

Springer-Verlag, pp. 279–308.

Milne, R. and C. Strachey (1976), A Theory of Programming Language Semantics , Chapman and

Hall, London, Halsted Press/John Wiley, New York.

Milner, R. (1980), Calculus of Communication Systems , volume 94 of Lecture Notes in Computer

Science, Springer-Verlag.

Milner, R. (1989), Communication and Concurrency, C.A.R. Hoare Series in Computer Science,

Prentice Hall.

Milner, R., M. Tofte, and R. Harper (1990), The Definition of Standard ML, MIT Press, Cam-

bridge, Mass. and London, England.

Mosses, P. (1997), “COFI: The Common Framework Initiative for Algebraic Specification and

Development,” In TAPSOFT’97 , M. Bidoit and M. Dauchet, Eds., volume 1212 of LNCS ,

Springer–Verlag.

Naftalin, M., T. Denvir, and M. Bertran, Eds. (1994), FME’94: Industrial Benefit of Formal

Methods , Formal Methods Europe Symposium, Barcelona, Spain, Heidelberg - Berlin, Ger-

many, Springer–Verlag.

Nakagawa, A. T., T. Sawada, and K. Futatsugi (????), CafeOBJ manual (for system version 1.3),

142 pages.

Nakagawa, K. F. A. (1997), “An Overview of CAFE Specification Environment – An Algebraic

Approach for Creating, Verifying, and Maintaining Formal Specifications over Networks,” In

ICFEM’97: International Conference on Formal Engineering Methods , IEEE Computer Soci-

ety, IEEE CS Press.

Nordström, B., K. Petersson, and J. M. Smith (1990), Programming in Martin-Löf ’s Type The-



66 Dines Bjørner, Pinnacles of Software Engineering: 25 Years of Formal Method

ory An Introduction, volume 7 of International Series of Monographs on Computer Science,

Clarendon Press, Oxford University Press, Oxford, England,.

Oest, O. (1986), “VDM From Research to Practice,” In Information Processing ’86 , H.-J. Kugler,

Ed., IFIP World Congress Proceedings, North-Holland Publ.Co., Amsterdam, pp. 527–533.

on Language Design, C. T. G. (1997), “CASL — The Common Algebraic Specification Language

Summary,” Available at http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary/.

on Semantics, C. T. G. (1997), “CASL — The CoFI Algebraic Specification Language (version

0.97) Semantics,” Available at http://www.brics.dk/Projects/CoFI/Notes/S-4/.

Prehn, S. and W. Toetenel, Eds. (1991), VDM ??? , Fourth International Symposium of VDM

Europe, Noordwijkerhout, The Netherlands, October, 1991, Springer-Verlag, Lecture Notes in

Computer Science, Vol. 551.

Qiwen, X. and H. Weidong (1995), “Hierarchical Design of a Chemical Concentration Control

System,” Research Report 41, UNU/IIST, P.O.Box 3058, Macau.

Qiwen, X. and Y. Zengyu (1996), “Derivation of Control Programs: a Heating System,” Research

Report 73, UNU/IIST, P.O.Box 3058, Macau.

Ravn, A., H. Rischel, and K. Hansen (1993), “Specifying and Verifying Requirements of Real-Time

Systems,” IEEE Trans. Softw. Eng. 19 , 1, 41–55.

Reiser, M. (1991), The OBERON System, User Guide and Programmer’s Manual , ACM Press,

Addison-Wesley Publishing Company.

Reisig, W. (1998), Theory and Practice of Petri Nets , Springer–Verlag, Berlin Heidelberg.

Roscoe, A. (1997), Theory and Practice of Concurrency, Prentice–Hall.
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