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Preface The Triptych Dogma

In order to specify software,
we must understand its requirements.

In order to prescribe requirements
we must understand the domain.

So we must study, analyse and describe domains.

General

The claim of this monograph is twofold:

• that domain engineering is a viable,

yes, we would claim, necessary initial phase of software development1; and

• that domain science &2 engineering is a worthwhile topic of research3.

I mean this rather seriously:

• How can one think of implementing software,

• preferably satisfying some requirements,

• without demonstrating that one understands the domain ?

So in this monograph I shall

• explain what domain engineering is,

• some of the science that goes with it, and

• how one can “derive” requirements prescriptions

⋄⋄ (for computing systems)

⋄⋄ from domain descriptions.

But there is an altogether different reason, also, for presenting these papers in monograph form:

• Software houses may not take up the challenge to develop software

⋄⋄ that satisfies customers expectations, that is, reflects the domain such as these customers know it,

⋄⋄ and software that is correct with respect to requirements, with proofs of correctness often having to

refer to the domain.

• But computing scientists are shown, in these papers, that domain science and engineering is a field full

of interesting problems to be researched.

• We consider domain descriptions, requirements prescriptions and software design specifications to be

mathematical quantities.

Application Areas

Computers are man-made, they are artefacts. Physicists and engineers compute over domains of physics,

including chemistry, and engineering designs, and their computations range mostly over phenomena of
physics. Manufacturing, logistics and transport firms as well as goods importers/exporters, wholesalers and

retail firms use computers significantly. Their domain is mostly operations research. With domain

1 cf. ‘Engineering’ in the main title and the second subtitle of this monograph
2 We use the ampersand ‘&’ to emphasize that domain science & engineering is one topic, not two.
3 cf. ‘Science’ in the main title and the first subtitle of this monograph
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science & engineering the domain (of possible software applications) is now definable in terms of

what the method of this monograph is capable of handling. Briefly, but by far not exhaustively, that domain

includes such which focus on man-made objects, i.e., on artefacts, and the interaction of humans with these.

In that respect the domain science & engineering, when used for the purposes of software development,

straddles the aforementioned application areas but now, we claim, with some firm direction.

Work in Progress

The state of this monograph reflects that it is ‘work in progress’. The first publication directing the method

in the direction of what is presented here were [53, 57, Summer 2010]. Since then there has been several

publications in peer reviewed journals [70, 76, 74, 78, Years 2017–2019]. In the period of submission of the

most recent of these [78, Spring 2018], and during the writing of this monograph, up to this very moment

this Preface is being written, new research discoveries are made. The way that these new research ideas

fits well within the framework, also in its detailed aspects, makes me think that the body of work presented

here is stable and durable. I have therefore decided to release the monograph now in the hope that it might

inspire others to continue the research.

The Monograph as a Textbook

Many universities appears to teach their science students, whether BSc or MSc, only such material for

which there exists generally accepted and stable theories. I have over the years, since 1976, when I first

joined a university staff — then as a full professor — mostly not adhered to this limitation, but taught, to

BSc/MSc students, such material that yet had to reach the maturity of a scientific theory. So, go ahead, use

this monograph in teaching !

Specific

This monograph is intended at the following mathematics–minded audiences:

• primarily researchers, lecturers and PhD students in the sciences of computers and computing – con-

ventionally speaking: those who have few preconceived objections to the use of discrete mathematics;

• hopefully also their similarly oriented curious and serious MSc students;

• and finally, recent, and not so recent, practicing software engineers and programmers – again open-

minded with respect to new foundations for programming and formalisms.

At the end of most chapters’ ‘Problem Exercise’ sections, we suggest a number of anywhere from engineer-

ing to science challenges: project-oriented domain analysis & description class-project exercises as well

as more individual research problems of more-or-less “standard” degree of difficulty to plain challenging

studies. The class-project exercises amount to rather “full-scale” 4–6 student term projects.

Sources

This is a monograph of 11 chapters. Except for three (Chapters 0, 2 and 10), these chapters build on the

following publications:

• Chapter 1: Philosophy [77] 11–16
• Chapter 3: External Qualities [78, Sects. 2–3]4 39–84
• Chapter 4: Internal Qualities [78, Sect. 4] 85–123
• Chapter 5: Transcendental Deduction [78, Sects. 5–6] and [77] 125–126

4 [70] is a precursor for [78]

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41
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• Chapter 6: Perdurants [78, Sect. 7] 127–163
• Chapter 7: Domain Facets [75, 52] 165–195
• Chapter 8: Requirements [66, 44] 199–244
• Chapter 9: Demos, Simulators, Monitors and Controllers [58] 247–255

Chapters 0–2 paves the way. They introduce the reader to a vocabulary of concepts specific to

computing science; to some fundamental ideas of philosophy – a new to any treatise of our field; and

to prerequisite concepts of discrete mathematics, of space, time and matter, and of unique
identification and mereology – also new to any treatise of our field.

Chapters 3–6 form the real core of this monograph. It is here we develop what we shall,

unashamedly, refer to as both a science and an engineering, i.e., a methodology for understanding the

concept of ‘domains’ such as we shall define it. These chapters study and develop calculi for the analy-
sis of domains and for their description. At the same time as presenting this study these chapters

also present a method for actually developing domain descriptions. This duality, the beginnings of a sci-
entific, theoretical foundation for domain analyser & describer, and the beginnings of a method for actual

engineering development, may seem confusing if the twin aspects are not kept clear from one another. We

have endeavoured to present the two aspects reasonable separated.

Chapters 7–9 are “bonus” chapters ! They contain some quite original concepts: domain facets
(Chapter 7) such as intrinsics, support technology, rules & regulations, scripts, license languages, man-
agement & organisation and human behaviour; requirements engineering (Chapter 8) concepts such

as the distinction into domain requirements, interfaces requirements and machine requirements, projection,
instantiation, determination, extension and fitting, and more – not quite the way conventional requirements

engineering textbooks treat the field; and demos, simulators, monitors and controllers (Chapter 9)

are all concepts that, we claim, can be interestingly understood in light of domain descriptions being de-

veloped into requirements prescriptions and these into software designs and software. These chapters may,

for better or worse, not be of interest to some computer scientists, but should be of interest to software

engineering practitioners and people who do study the more mundane aspects of software engineering.

Some Caveats

This monograph uses the RAISE Specification Language, RSL [179, 176] for its formal presentations

and for its mixed mathematical notation and RSL informal explanations. We refer to Appendix C for a

résumé of RSL. [177, 168, 172] provide short, concise introductions to the RAISE Method and to RSL.

Equally relevant other specification languages could be VDM SL [88, 89, 154], Z [374], the B Method
notation [1], Alloy [251], and others. Also algebraic approaches are possible, for example: CafeOBJ
[157], CASL [128] or Maude [283, 126]. Lecturer and students, readers in general, perhaps more familiar

with some of the above languages than with RSL, should be able to follow our presentations, but perform

their exercise/term project work in the language of their choice.

This monograph is the first in which domain science & engineering is presented in a coherent form,

ready for scientific study as well as for university classes. But it is far from a polished textbook: Not all

“corners” of describable, manifest and artefactual domains are here given “all the necessary” principles,
techniques and [language] tools necessary for “run-of-the-mill” software development. We have given suf-

ficiently many university courses, over previous texts, and these have shown, we claim, that most students

can be expected, under guidance of professionals experienced in formal specifications, to contribute mean-

ingfully to professional domain analysis & description projects.

We have left out of this monograph potential chapters on for example: possible Semantic Models
of the domain analysis & description calculi [62]. We invite the reader to study this reference as well as

to contribute to domain science. Examples of the latter could, for example, entail: A Study of Analy-
sis & Description Calculi: on the order of analysis & description prompts; on the top-down analysis
& description, as suitable, for artefactual domains versus bottom-down analyses & descriptions, as per-
haps more suitable, for natural and living specific domains, including humans; a deeper understanding of
Intentional Pull, et cetera.

August 16, 2020, 11:41, A Foundation for Software Development © Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark
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Part I

SETTING THE SCOPE

• The first three chapters: 0, 1 and 2, provide a personal, intellectual introduction to the field of software

engineering.

• In Chapter 0 I introduce “my” Concepts. These are briefly characterised. These characterisations can

be found in ordinary dictionaries and on Wikipedia. It is their juxtaposition, here in the beginning of

this monograph, that, to me is significant and personal. They have formed and form a terminological

foundation upon which I have built in the last 40 or more years.

• In Chapter 1 I summarize essential aspects of Kai Sørlanders Philosophy5. Kai Sørlanders Philos-

ophy, such as I use it, is covered in four of his monographs: [345, 346, 347, 348]. It is thought that this

introduction of a philosophical basis for the computer & computing sciences is novel !

• In Chapter 2 we bring three fundamental concepts: Space, Time and Matter together. They are all

inherent in Kai Sørlander’s Philosophy. I then explore aspects of Identity and Mereology – and refer

to the published [76].

• Chapter 0 is basically “armchair reading” ! Chapters 1 and 2 require a rather more serious study !

5 I spell that with a capital P in order to name a specific philosophy





0

CONCEPTS

This monograph introduces a rather large number of new concepts. In a conventional software
engineering setting, and, as in this case, in a technical/scientific monograph, such an introduction
is unusual. I present this chapter because of the large number of new concepts. In order for the
reader to find the way around, that reader must be made aware of the background concepts that
underlie my treatment of a new branch of software engineering, the domain science and
engineering.

0.1 A General Vocabulary

1 Abstraction:

Conception, my boy, fundamental brain-work,

is what makes the difference in all art

D.G. Rossetti1: letter to H. Caine2

Abstraction is a tool, used by the human mind, and to be applied in the process of describing (under-
standing) complex phenomena.

Abstraction is the most powerful such tool available to the human intellect.
Science proceeds by simplifying reality. The first step in simplification is abstraction. Abstraction (in

the context of science) means leaving out of account all those empirical data which do not fit the particular,
conceptual framework within which science at the moment happens to be working.

Abstraction (in the process of specification) arises from a conscious decision to advocate certain de-
sired objects, situations and processes as being fundamental; by exposing, in a first, or higher, level of
description, their similarities and — at that level — ignoring possible differences.

[From the opening paragraphs of [236, C.A.R. Hoare Notes on Data Structuring]]3

2 Computer: A computer is a collection of hardware and software, that is, is a machine that can

be instructed to carry out sequences of arithmetic or logical operations automatically via computer

programming [Wikipedia].

3 Computer Science: is the study and knowledge of the abstract phenomena that “occur” within

computers [DB].

As such computer science includes theory of computation, automata theory, formal language theory,
algorithmic complexity theory, probabilistic computation, quantum computation, cryptography, ma-
chine learning and computational biology..

1 Dante Gabrielli Rosetti, 1828–1882, English poet, illustrator, painter and translator
2 T. Hall Caine, 1853–1931, British novelist, dramatist, short story writer, poet and critic.
3 We shall bring another quote of Tony Hoare as the last proper text of this monograph, see Sect. 10.8 on Page 261.
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4 Computing Science: is the study and knowledge of how to construct “those things” that “occur”

within computers [DB].

As such computing science embodies algorithm and data structure design, functional-, logic-, imperative-
and parallel programming; code testing, model checking and specification proofs. Much of this can

be pursued using formal methods (see Item 9).

5 Domain Engineering: is the engineering of domain descriptions based on the engineering of do-
main analyses [DB].

Chapters 3–7 covers domain engineering.

We shall later, in Chapter 10, summarise the “benefits” of domain engineering. Suffice it here to say that

basing software development on domain analysis & description shall help secure that the eventually

emerging software meets customer expectations.

6 Domain Requirements: are those requirements which can be expressed sôlely in terms of domain

concepts.

7 Engineering: is the use of scientific principles to design and build machines, structures, and other

items, including bridges, tunnels, roads, vehicles, and buildings [Wikipedia].

The engineer walks the bridge between science and technology: analysing man-made devices for their

possible scientific properties and constructing technology based on scientific insight.

We refer to [[ι 5,π 4]], [[ι 27,π 5]], [[ι 35,π 6]].

8 Epistemology: is the branch of philosophy concerned with the theory of knowledge – and is the

study of the nature of knowledge, justification, and the rationality of belief [Wikipedia].

9 Formal Method: By a formal method we shall here understand a method whose techniques and

tools can be understood mathematically.

For formal domain, requirements or software engineering methods formality means the following:

• There is a set, one or more, specification languages – say for domain descriptions, require-

ments prescriptions, software specifications, and software coding, i.e., programming languages.4

• These are all to be formal, that is, to have a formal syntax, a formal semantics, and a formal,

typically Mathematical Logic proof system.

• Some of the techniques and tools must be supported by a mathematical understanding.

10 Hardware: The physical components of a computer: electronics, mechanics, etc. [Wikipedia].

11 Interface Requirements: are those requirements which can be expressed in a combination of both

domain and machine concepts. They do so because certain entities, whither endurants or perdurants,

are shared between the domain and the machine.

12 Language: By language we shall, with [Wikipedia], mean a structured system of communication.

Language, in a broader sense, is the method of communication that involves the use of – particularly

human– languages. The ‘structured system’ that we refer to has come to be known as Syntax, Semantics
and Pragmatics. We refer to [[ι 37,π 7]]5, [[ι 31,π 6]], and [[ι 25,π 5]].

13 Linguistics: By linguistics we shall mean the scientific study of language.

14 Machine: By a machine we shall understand a combination of software and hardware.

15 Machine Requirements: are those requirements which can be expressed sôlely in terms of machine

concepts.

16 Mathematics: By mathematics we shall here understand a such human endeavours that makes pre-

cise certain facets of language, [[ι 12,π 4]] whether natural or ‘constructed’ (as for mathematical nota-

tion), and out of those endeavours, i.e., mathematical constructions, also called theories, build further

abstractions. We refer to Sects. 2.2 on Page 17– 2.3 on Page 17.

4 Most formal specification languages are textual, but graphical languages like Petri nets [333], Message

Sequence Charts[249], Statecharts [199], Live Sequence Charts [200], etc., are also formal.
5 By [[ι 37,π 7]] we mean to refer to ι tem 37 πage 7
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17 Metaphysics: is the branch of philosophy that examines the fundamental nature of reality, including

the relationship between mind and matter, between substance and attribute, and between potentiality

and actuality [269] [Wikipedia].

In this monograph we stay clear of metaphysics.

18 Mereology: is the theory of parthood relations: of the relations of part to whole and the relations of

part to part within a whole [358, 344, 115].

The term ‘mereology’ is accredited to the Polish mathematician, philosopher and logician Stanisław

Leśniewski (1886–1939).

19 Method: By a method we shall understand a set of principles for selecting and applying a set of
techniques using a set of tools in order to construct an artefact [DB].

We shall in this primer focus on a method for pursuing domain analysis and for constructing domain
descriptions. Key chapters will summarise some methodological aspects of their content.

20 Methodology: is the comparative study and knowledge of methods [DB].

[The two terms: ’method’ and ’methodology’ are often confused, including used interchangeably.]

21 Model: A mathematical model is a description of a system using mathematical concepts and language.

We shall include descriptions6, prescriptions7 and specifications8 using formal languages as presenting

models.

22 Modelling: Modelling is the act of creating models, which include discrete mathematical structures

(sets, Cartesians, lists, maps, etc.), and are logical theories represented as algebras. That is, any given

RSL text denotes a set of models, and each model is an algebra, i.e., a set of named values and a set

of named operations on these. Modelling is the engineering activity of establishing, analysing and

using such structures and theories. Our models are established with the intention that they “model”

“something else” other than just being the mathematical structure or theory itself. That “something

else” is, in our case, some part of a reality9, or of a construed such reality, or of requirements to the, or

a reality10, or of actual software11.

23 Ontology: is the branch of metaphysics dealing with the nature of being; a set of concepts and cate-

gories in a subject area or domain that shows their properties and the relations between them [108, 109]

[Wikipedia].

In this monograph we shall, indeed, focus much on the ontology of domains. See, f.ex., Chapter 4.

24 Philosophy: is the study of general and fundamental questions about existence, knowledge, values,

reason, mind, and language. Such questions are often posed as problems to be studied or resolved

[Wikipedia].

25 Pragmatics: studies the ways in which context contributes to meaning. Pragmatics encompasses

speech act theory, conversational implicature, talk in interaction and other approaches to language

behavior in philosophy, sociology, linguistics and anthropology [304, 288] [Wikipedia].

26 Requirements: By a requirements we understand (cf., [245, IEEE Standard 610.12]): “A condition
or capability needed by a user to solve a problem or achieve an objective”
In software development the requirements explain what properties the desired software should have,

not how these properties might be attained. In our, the triptych approach, requirements are to be “de-

rived” from domain descriptions.

27 Requirements Engineering: is the engineering of constructing requirements [DB].

6 as for domains
7 as for requirements
8 as for software
9 — as in domain modelling

10 — as in requirements modelling
11 — as in software design
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The aim of requirements engineering is to design the machine. Chapter 8 covers requirements en-

gineering.

28 Requirements Prescription: By a requirements prescription we mean a document which outlines

the requirements that some software is expected to fulfill.

29 Requirements Specification: By a requirements specification we mean the sames as a require-

ments prescription.

30 Science: is a systematic enterprise that builds and organizes knowledge in the form of testable expla-

nations and predictions about the universe [Wikipedia].

Science is the intellectual and practical activity encompassing the systematic study of the structure and

behaviour of the physical and natural world through observation and experiment.

31 Semantics: is the linguistic and philosophical study of meaning in language, programming lan-

guages, formal logics, and semiotics. It is concerned with the relationship between signifiers —

like words, phrases, signs, and symbols — and what they stand for in reality, their denotation [112]

[Wikipedia].

The languages that we shall be concerned with is, on one hand, the language[s] in which we describe

domains [as here a variant of RSL, the RAISE Specification Language, extended, as we shall see

in Chapters 3–6,] and, on the other hand, the language that emerges as the result of our domain analysis

& description: a domain specific language.

There are basically three kinds of semantics, expressed somewhat simplistically:

• Denotational Semantics model-theoretically assigns a meaning, a denotation, to each

phrase structure, i.e., syntactic category.

• Axiomatic Semantics or Mathematical Logic Proof Systems is an approach

based on mathematical logic for proving the correctness of specifications.

• Algebraic Semantics is a form of axiomatic semantics based on algebraic laws for

describing and reasoning about program semantics in a formal manner.

32 Semiotics: is the study and knowledge of sign process (semiosis), which is any form of activity,

conduct, or any process that involves signs, including the production of meaning [Wikipedia].A sign

is anything that communicates a meaning, that is not the sign itself, to the interpreter of the sign. The

meaning can be intentional such as a word uttered with a specific meaning, or unintentional, such as

a symptom being a sign of a particular medical condition. Signs can communicate through any of the

senses, visual, auditory, tactile, olfactory, or gustatory [Wikipedia].

The study and knowledge of semiotics is often “broken down” into the studies, etc., of syntax, seman-
tics and pragmatics.

33 Software: is the is the set of all the documents that have resulted from a completed software de-
velopment: domain analysis & description, requirements analysis & prescription, software: software
code, software installation manuals, software maintenance manuals, software users guides, develop-
ment project plans, budget, etc.

34 Software Design: is the engineering of constructing software [DB].

Whereas software requirements engineering focus on the logical properties that desired software should

attain, software design, besides focusing on achieving these properties correctly, also focus on the

properties being achieved efficiently.

35 Software Engineering: to us, is then the combination of domain and requirements engineering with

software design [DB].

This is my characterisation of software engineering. It is at the basis of this monograph as well as

[39, 40, 41].

36 Software Development: is then the combination of the development of domain description, require-

ments prescription and software design [DB].

This is my characterisation of software engineering. It is at the basis of this monograph as well as

[39, 40, 41].
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37 Syntax: is the set of rules, principles, and processes that govern the structure of sentences (sentence

structure) in a given language, usually including word order [Wikipedia].

We assume, as an absolute minimum of knowledge, that the reader of this primer is well aware of the

concepts of BNF (Backus Normal Form) Grammars and CFGs (Context Free Grammars).

38 Syntax, Semantics and Pragmatics: With the advent of computing and their attendant program-

ming languages these concepts of semiotics has taken on a somewhat additional meaning. When, in

computer & computing science and in software engineering we speak of syntax we mean a quite defi-

nite and (mathematically) precise thing. With the advent our ability to mathematically precise describe

the semantics of [certain] programming languages, we similarly mean quite definite and (mathemati-

cally) precise things. For natural, i.e., human languages, this is not so. As for pragmatics there is this

to say. Computers have not pragmatics. Humans have. When, in this monograph we bring the term

‘pragmatics’ into play we are referring not to the computer “being pragmatic”, but to our pragmatics,

as scientists, as engineers.

39 Taxonomy: is the practice and science of classification of things or concepts, including the principles

that underlie such classification [Wikipedia].

We shall be basing our domain analysis initially on taxonomy ideas, cf. Chapter 3.

40 Technology: is the sum of techniques, skills, methods, and processes used in the production of goods

or services or in the accomplishment of objectives, such as scientific investigation [Wikipedia].

Technology can be the knowledge of techniques, processes, and the like, or it can be embedded in

machines to allow for operation without detailed knowledge of their workings. Systems (e.g. machines)

applying technology by taking an input, changing it according to the system’s use, and then producing

an outcome are referred to as technology systems or technological systems [Wikipedia].

41 Triptych: The triptych [of software development] centers on the three ‘engineerings’: domain, re-

quirements and software [DB]. We refer to The Triptych Dogma of Page V.

0.2 More on Method

We elaborate on issues arising from the concept of ‘method’. These are brought here in some, hopefully

meaningful, but not alphabetic order !

42 Method: By a method we shall understand a set of principles for selecting and applying a set of
techniques using a set of tools in order to construct an artefact [DB].

43 Principle: By a principle we shall, loosely, understand (i) elemental aspect of a craft or discipline, (ii)
foundation, (iii) general law of nature, etc [www.etymonline.com].

44 Technique: By a technique we shall, loosely, understand (i) formal practical details in artistic, etc.,
expression, (ii) art, skill, craft in work” [www.etymonline.com]. Classical technique are that of estab-

lishing invariants and expressing intentional pull. See Item 50 on the following page and Item 49

on the next page.

45 Tool: By a tool we shall, loosely, understand (i) instrument, implement used by a craftsman or laborer,
weapon, (ii) that with which one prepares something, etc. [www.etymonline.com].

We shall, at the end of several chapters12 summarise the principles, techniques and tools covered by

these chapters.

Among basic principles, to be applied across all phases of software development, and hence in all phased

of software engineering are those of:

46 Abstraction: We refer to Item 1 on Page 3.

47 Conservative Extension: An extension of a logical theory is conservative, i.e., conserves,

if every theorem expressible in the original theory is also derivable within the original theory

[en.wiktionary.org/wiki/conservative extension].

12 See Sects. 3.21.3 on Page 79, 4.10.3 on Page 120, 6.13.1 on Page 160, 7.9.1 on Page 192, 8.7.1 on Page 240
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48 Divide and Conquer: In computer science, divide and conquer is an algorithm design

paradigm based on multi-branched recursion. A divide-and-conquer algorithm works by re-

cursively breaking down a problem into two or more sub-problems of the same or related

type, until these become simple enough to be solved directly [Wikipedia].

But this monograph is not about the exciting field of algorithm design.

Yet, the principle of divide and conquer is also very strongly at play here: In the top-down

analysis of a domain into what can be described and what is indescribable, of describable
entities into endurants and perdurants, of endurants into discrete, conjoins and materials,
of discrete into physical parts, structures and living species, and so forth [cf. Fig. 3.1 on

Page 44].

49 Intentional Pull: The concept of intentional pull is a wider notion than that of invariant.

Here we are not concerned with pre-/post-conditions on operations. Intentional pull is exerted

between two or more phenomena of a domain when their relation can be asserted to always
hold.

50 Invariants: The concept of invariants in the context of computing science is most clearly

illustrated in connection with the well-formedness of data structures. Invariants then express

properties that must hold, i.e., as a pre-condition, before any application of an operation

to those data structures and shall hold, i.e. as a post-condition after any application of an

operation to those data structures.

51 Narration & Formalisation: To communicate what a domain “is”, one must be able to

narrate of what it consists. To understand a domain one must give a formal description of that

domain. When we put an ampersand, &, between the two terms we mean to say that they

form a whole: not one without the other, either way around ! In our domain descriptions we

enumerate narrative sentences and ascribe this enumeration to formal expressions.

52 Nondeterminism: Non-determinism is a fundamental concept in computer science. It ap-

pears in various contexts such as automata theory, algorithms and concurrent computation.

. . . The concept was developed from its inception by Rabin & Scott, Floyd and Dijkstra; as

was the interplay between non-determinism and concurrency [Michal Armoni and Mordechai

Ben-Ari].

53 Operational Abstraction abstract the way in which we express operations on usually repre-

sentationally abstracted values. In conventional programming we refer to operational abstract

as procedure abstraction.

54 Refinement is a verifiable transformation of an abstract (i.e., high-level) formal specifica-

tion into a less abstract, we say more concrete (i.e., low-level) specification or an executable

program. Step-wise refinement allows the refinement of a program, from a specification, to be

done in stages [www.igi-global.com/dictionary].

55 Representational Abstraction abstracts the representation of type values, say in the form

of just plain sorts, or, when concrete types, then in, for example the form of mathematical

sets, or maps (i.e., discrete functions, usually from finite definition sets into likewise represen-

tationally abstracted ranges), or Cartesians (i.e., groupings of likewise abstracted elements),

etc. In conventional programming we refer to representational abstract as data abstraction.

56 Syntax and Semantics: When we write:

let a:A in B(a) end

We mean that the [free] a in the B(a) clause is bound to the value a of type A in let a:A.

57 Syntax Names: To express that we refer to the syntactic name of a sort or type, A, we write:

❝ A ❞

That is, ❝ ... ❞ is a special, meta-linguistic distributed-fix quote [unquote] operator. It is explained in

Sect. 2.3.5.2 Page 22.
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0.3 Some More Personal Observations 9

0.3 Some More Personal Observations

• Informatics: We understand informatics as a confluence of mathematics, of the computer and com-

puting sciences, of the domain science and engineering as espoused in this monograph, requirements

engineering and software design.

• IT – Information Technology: We understand information technology as the confluence of nano

physics, electronics, computers and communication (hardware), sensors, actuators, etc.

• Two Universes: Two diverse universes appear to emerge:

Information Technology is, to this author, a universe of both material quality and quantity. It is

primarily materially characterised, such as I see it, by such terms as bigger, smaller; faster, slower;
costly, inexpensive, and environment “friendly”

Informatics is, to this author, a universe of intellectual quality. As such it is primarily characterised,

such as I see it, by such terms as better, more fit for purpose, appropriate, logically correct and meets
user expectations.
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PHILOSOPHY

In this chapter we cover notions of philosophy that we claim are fundamental to our understanding
of domain science and engineering.

We shall base some of our domain analysis decisions on Kai Sørlander’s Philosophy [345, 346, 347, 348].

A main contribution of Kai Sørlander is, on the philosophical basis of the possibility of truth (in contrast

to Kant’s possibility of self-awareness), to rationally and transcendentally deduce the absolutely necessary
conditions for describing any world. These conditions presume a principle of contradiction and lead to the

ability to reason using logical connectives and to handle asymmetry, symmetry and transitivity. Transcen-
dental deductions then lead to space and time, not as priory assumptions, as with Kant, but derived facts of

any world. From this basis Kai Sørlander then, by further transcendental deductions, arrive at kinematics,

dynamics and the bases for Newton’s Laws.

We build on Sørlander’s basis to argue that the domain analysis & description calculi are necessary

and sufficient for the analysis & description of domains and that a number of relations between domain

entities can be understood transcendentally and as “variants” of laws of physics, biology, etc. !

1.1 Some Issues of Philosophy

The question is: “what, if anything, is of such necessity, that it could under no circumstances be otherwise ?”
or “which are the necessary characteristics of any possible world ?”. We take it that the necessary charac-

teristics of any domain is equivalent with the conceptual, logical conditions for any possible description of

that domain. Sørlander puts forward the thesis of the possibility of truth and then, basing transcendental
deductions on indisputable logical relations, arrives at the conceptual, logical conditions for any possible

description of any domain.

The starting point, now, in a series of deductions, is that of logic and that we can assert a property, P ,

and its negation¬P . These two assertions cannot both be true, that is, that P∧¬P cannot be true. So the

possibility of truth is a universally valid condition. When we claim that, we also claim the contradiction
principle. The implicit meaning theory is this: “in assertions there are mutual dependencies between the
meaning of designations and consistency relation between assertions”. When we claim that a philosophy

basis is that of the possibility of truth, then we assume that this basis include the contradiction principle

and the implicit meaning theory. We shall also refer to the implicit meaning theory as the inescapable
meaning assignment.

As an example of what “goes into” the inescapable meaning assignment, we bring, albeit from the

world of computer science, that of the description of the stack data type (its endurants and operations).

Inescapable Meaning Assignment, Narrative

Example 1 The meaning of designations:

58 Stacks, s:S, have elements, e:E;

59 the empty S operation takes no arguments and yields a result stack;

60 the is empty S operation takes an argument stack and yields a Boolean value result.

61 the stack operation takes two arguments: an element and a stack and yields a result stack.

62 the unstack operation takes an non-empty argument stack and yields a stack result.

63 the top operation takes an non-empty argument stack and yields an element result.
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The consistency relations:

64 an empty S stack is empty, and a stack with at least one element is not;

65 unstacking an argument stack, stack(e,s), results in the stack s; and

66 inquiring the top of a non-empty argument stack, stack(e,s), yields e.

Inescapable Meaning Assignment, Formalisation

Example 2

The meaning of designations:

type

1. E, S

value

2. empty S: Unit→ S

3. is empty S: S→ Bool

4. stack: E × S→ S

5. unstack: S
∼
→ S

6. top: S
∼
→ E

The consistency relations:

7. is empty(empty S()) = true

7. is empty(stack(e,s)) = false

8. unstack(stack(e,s)) = s

9. top(stack(e,s)) = e

1.2 Transcendence

Definition: 1 Transcendental, I: By transcendental we shall understand the philosophical notion:
the a priori or intuitive basis of knowledge, independent of experience

Definition: 2 Transcendental Deduction, I: By a transcendental deduction we shall understand
the philosophical notion: a transcendental ‘conversion’ of one kind of knowledge into a seemingly different
kind of knowledge

Transcendental philosophy, with Kant and Sørlander, seeks to find the necessary conditions for experience,

recognition and understanding. Transcendental deduction is then the “process”, based on the principle of

contradiction and the implicit meaning theory, by means of which – through successive concept definitions

– one can deduce a system of base concepts which must be assumed in any possible description of the

world. The subsequent developments of the logical connectives, modalities, existence, identity, difference,

relations, numbers, space, time and causality, are all transcendental deductions.

We shall return to the notions of transcendence in Chapter 5.

1.3 Overview of The Sørlander Philosophy

In this section we shall give a very terse summary of main elements of Kai Sørlander’s philosophy. We shall

primarily base this overview on [348]. It is necessarily a terse summary. What we overview is developed

in [348] over some 50 pages. Sørlander’s books [345, 346, 347, 348], relevant to this overview, are all in

Danish. Hence the need for this section.

1.3.1 Logical Connectives

1.3.1.1 Negation: ¬:

The logical connective, negation (¬), is defined as follows: if assertion P holds then assertion ¬P does

not hold. That is, the contradiction principle understood as a definition of the concept of negation.
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1.3.1.2 Conjunction and Disjunction: ∧ and ∨

Assertion P ∧Q holds, i.e., is true, if both P and Q holds. Assertion P ∨Q holds, i.e., is true, if either
P or Q or both P and Q holds.

1.3.1.3 Implication:⇒

Assertion P ⇒Q holds, i.e., is true, if the first assertion, P , holds, t, and the second assertion, Q, is

not false, ¬ f .[(P ,Q),P ⇒Q]: [(t,t),t], [(t, f ), f ], [( f ,t),t], and [( f , f ),t]. ⇒ used in logic is also called

material implication.

1.3.2 Towards a Philosophy–basis for Physics and Biology

In a somewhat long series of deductions we shall, based on Sørlander’s Philosophy, motivate the laws of

Newton and more, not on the basis of empirical observations, but on the basis of transcendental deductions

and rational reasoning.

1.3.2.1 Possibility and Necessity

Based on logical implication we can transcendentally define the two modal operators: necessity and

possibility.

Definition: 3 Necessarily True Assertions: An assertion is necessarily true if its truth follows

from the definition of the designations by means of which it is expressed

Definition: 4 Possibly True Assertions: An assertion is possibly true if its negation is not neces-

sary

1.3.2.2 Empirical Assertions

There can be assertions whose truth value does not only depend on the definition of the designations by

means of which they are expressed. Those are assertions whose truth value depend also on the assertions

referring to something that exists independently of the designations by means of which they are expressed.

We shall call such assertions empirical.

1.3.2.3 Existence of Entities

With Sørlander we shall now argue that there exist many entities in any world: [348, pp 145] “En-

tities, in a first step of reasoning, that can be referred to in empirical assertions, do not necessarily exist. It

is, however, an empirical fact that they do exist; hence there is a logical necessity that they do not exist1.

In a second step of reasoning, these entities must exist as a necessary condition for their actually being

ascribed the predicates which they must necessarily befit in their capacity of of being entities referred to in

empirical assertions.”

1 Here we need to emphasize that the above quote from Sørlander is one between the type and a value of that type.

So the empirical assertions motivate that we speak of the type of an entity. Empirical facts then states that some

specific value of that type need not exist. In fact, there is, most likely, an indefinite number of values of the asserted

type that do not exist.
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1.3.2.4 Identity, Difference and Relations

[348, pp 146] “An entity, referred to by A, is identical to an entity, referred to by B, if A cannot be ascribed

a predicate in-commensurable with a predicate ascribed to B.” That is, if A and B cannot be ascribed in-

commensurable predicates. [348, pp 146] “Entities A and B are different if they can be ascribed in-

commensurable predicates.” [348, pp 147] “Identity and difference are thus transcendentally derived

through these formal definitions and must therefore be presupposed in any description of any domain

and must be expressible in any language.” Identity and difference are relations. [348, pp 147] “As a

consequence identity and difference imply relations. Symmetry and asymmetry are also relations: A

identical to B is the same as B identical to A. And A different from B is the same as B different from A.

Finally transitivity follows from A identical to B and B identical to C implies A identical to C.”

1.3.2.5 Sets

We can, as a consequence of two or more different entities satisfying a same predicate, say P , define
the notion of the set of all those entities satisfying P . And, as a consequence of two or more entities,

ei, ...,e j, all being distinct, therefore implying in-commensurable predicates, Qi, ...,Q j, but still satisfying

a common predicate, P , we can claim that they all belong to a same set. The predicate P can be said

to type that set. And so forth: following this line of reasoning we can introduce notions of cardinality

of sets, finite and infinite sets, existential (∃) and universal (∀) quantifiers, etc.; and we can in this way

transcendentally deduce the concept of (positive) numbers, their addition and multiplication; and that such

are an indispensable aspect of any domain. We leave it then to mathematics to study number theory.

1.3.2.6 Space and Geometry

Definition: 5 Space: [348, pp 154] “The two relations asymmetric and symmetric, by a transcen-
dental deduction, can be given an interpretation: the relation (spatial) direction is asymmetric; and the
relation (spatial) distance is symmetric. Direction and distance can be understood as spatial relations.
From these relations are derived the relation in-between. Hence we must conclude that primary entities
exist in space. Space is therefore an unavoidable characteristic of any possible world”

[348, pp 155] “Entities, to which reference can be made in simple, empirical assertions, must exist in

space; they must be spatial, i.e., have a certain extension in all directions; they must therefore “fill up some

space”, have surface and form.” From this, by further reasoning one can develop notions of points, line,

surface, etc., i.e., Euclidean as well as non-Euclidean geometry. We refer to Sects. 2.4 on Page 22

and 2.4.4 on Page 23 for more on space.

1.3.2.7 States

We introduce a notion of state. [348, pp 158–159] “Entities may be ascribed predicates which it is not

logically necessary that they are ascribed. How can that be possible ? Only if we accept that entities may

be ascribed predicates which are in-commensurable with predicates that they are actually ascribed.” That is

possible, we must conclude, if entities can exist in distinct states. We shall let this notion of state further

undefined – till Sect. 3.18.

1.3.2.8 Time and Causality

Definition: 6 Time: [348, pp 159] “Two different states must necessarily be ascribed different incompat-
ible predicates. But how can we ensure so ? Only if states stand in an asymmetric relation to one another.
This state relation is also transitive. So that is an indispensable property of any world. By a transcendental
deduction we say that primary entities exist in time. So every possible world must exist in time”
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We refer to Sect. 2.5 on Page 24 for more on time.

So space and time are not phenomena, i.e., are not entities. They are, by transcendental reasoning,

aspects of any possible world, hence, of any description of any domain. In a concentrated series [348,

160-163] of logical reasoning and transcendental deductions, Sørlander, introduce the concepts of the

empirical circumstances under which entities exist, implying non-logical implication between one-and-

the-same entity at distinct times, leading to the notions of causal effect and causal implication –

all deduced transcendentally. Whereas Kant’s causal implication is transcendentally deduced as necessary

for the possibility of self-awareness. Sørlander’s causal implication does not assume possibility of self-
awareness. The principle of causality is a necessary condition for assertions being about the same entity

at different times.

1.3.2.9 Kinematics

[348, pp 164] “Entities are in both space and time; therefore it must be assumed that they can change their

spatial properties; that is, are subject to movement. An entity which changes location is said to move. An

entity which does not change location is said to be at rest.” In this way [348] transcendentally introduces

the notions of velocity and acceleration, hence kinematics.

1.3.2.10 Dynamics

[348, pp 166] “When combining the causality principle with dynamics we deduce that when an entity

changes its state of movement then there must be a cause, and we call that cause a force.” [348, pp 166]

“The change of state of entity movement must be proportional to the applied force; an entity not subject

to an external force will remain in its state of movement : This is Newton’s 1st Law.”
[348, pp 166] “But to change an entity’s state of movement, by some force, must imply that the entity

exerts a certain resistance to that change; the entity must have a mass. Changes in an entity’s state of

movement besides being proportional to the external force, must be inverse proportional to its mass. This

is Newton’s 2nd Law.”
[348, pp 166-167] “The forces that act upon entities must have as source other entities: entities may

collide; and when they collide the forces they exert on each other must be the same but with opposite

directions. This is Newton’s 3rd Law.”
[348, pp 167-168] “How can entities be the source of forces ? How can they have a mass ? Transcen-

dentally it must follow from what we shall refer to as gravitational pull. Across all entities of mass, there

is a mutual attraction, Universal Gravitation.” [348, pp 168-169] “Gravitation must, since it has its

origin in the individual entities, propagate with a definite velocity; and that velocity must have a limit, a

constant of nature, the universal speed limit.”

1.4 From Philosophy to Physics and Biology

Based on logical reasoning and transcendental deductions one can thus derive major aspects of that which

must be (assumed to be) in any description of any world, i.e., domain. In our domain description ontology

we shall let the notions of discrete endurants (parts) and continuous endurants (non-solids)

cover what we have covered so far: they are those entities which satisfy the laws of physics, hence are

in space and time. In the next sections we shall make further use of Sørlander’s Philosophy to logically

and transcendentally justify the inevitability of living species: plants and animals including, notably,

humans, in any description of any domain.

1.4.0.1 Purpose, Life and Evolution

[348, pp 174] “For language and meaning to be possible there must exist entities that are not constrained

to just the laws of physics. This is possible if such entities are further subject to a “purpose-causality”
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directed at the future. These entities must strive to maintain their own existence.” We shall call such en-

tities living species. Living species must maintain and also further develop their form and do so by an

exchange of materials with the surroundings, i.e., metabolism, with one kind of living species subject

only to development, form and metabolism, while another kind additionally move purposefully, The

first we call plants, the second animals. Animals, consistent with the principle of causality, must pos-

sess sensory organs, a motion apparatus, and instincts, feelings, promptings so that what has

been sensed, may be responded to [through motion]. The purpose-directness of animals must be built

into the animals. Biology shows that that is the case. The animal genomes appear to serve the purpose-
directness of animals. [348, pp 178] “Biology shows that it is so; transcendental deduction that it must

be so.”

1.4.0.2 Awareness, Learning and Language

[348, pp 180] “Animals, to learn from experience, must be able to feel inclination and disinclina-
tion, and must be able to remember that it has acted in some way leading to either the feeling of inclination

or disinclination. As a consequence, an animal, if when acting in response to sense impression, ι , experi-

ences the positive feeling of inclination (desire), then it will respond likewise when again receiving sense

impression ι , until it is no longer so inclined. If, in contrast, the animal feels the negative feeling of dis-

inclination (dislike), upon sense impression ι , then it will avoid responding in this manner when receiving

sense impression ι .” [348, pp 181] “Awareness is built up from the sense impressions and feelings on the

basis of, i.e., from what the individual animal has learned. Different animals can be expected to have dif-

ferent levels of consciousness; and different levels of consciousness assume different biological bases for

learning. This is possible, biology tells us, because of there being a central nervous system with building

blocks, the neurons, having an inner determination for learning and consciousness.” [348, pp 181–182] “In

the mutual interaction between animals of a higher order of consciousness these animals learn to use signs
developing increasingly complex sign systems, eventually “arriving” at languages.” It is thus we single

out humans. [348, pp 183] “Any human language which can describe reality, must assume the full set of

concepts that are prerequisites for any world description.”

1.5 Philosophy, Science and the Arts

We quote extensively from [346, Kai Sørlander, 1997].

[346, pp 178] “Philosophy, science and the arts are products of the human mind.”

[346, pp 179] “Philosophy, science and the arts each have their own goals.

• Philosophers seek to find the inescapable characteristics of any world.

• Scientists seek to determine how the world actually, really is, and our situation in that world.

• Artists seek to create objects for experience.

We shall elaborate.” [346, pp 180] “Simplifying, but not without an element of truth, we can relate the

three concepts by the modalities:

• philosophy is the necessary,

• science is the real, and

• art is the possible.

. . . Here we have, then, a distinction between philosophy and science. . . . From [345] we can conclude the

following about the results of philosophy and science. These results must be consistent [with one another].

This is a necessary condition for their being correct. . . . . . . The real must be a concrete realisation of the

necessary.”
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Logic and Mathematics

SPACE, TIME and MATTER

Identity and Mereology
From Kai Sørlander’s Philosophy we can, by logical reasoning, infer space and time as facts.
We do not have to presume them, as did Immanuel Kant. In this chapter we shall examine the
concepts of space and time, as already introduced in the previous chapter, and introduce the concept
of matter as more-or-less ex/implicitly referred to also in Kai Sørlander’s Philosophy.

2.1 Prologue

There are three main elements of this chapter. They are (i) An introduction to notions of language, logic
and mathematics. (ii) The main elements on space, time and matter. They were already introduced

in Chapter 1. In the first two of these we shall make use of notions of mathematical logic introduced

earlier. (iii) Finally a cursory, i.e., an initial view of the notions of identity and mereology – also already

introduced in that chapter, Chapter 1. Identity and mereology will be core internal qualities of endurants –

and dealt with in Sects. 4.2 and 4.3. Mereology will be further treated in Appendix B.

Space can be logically reasoned to exist. So can time. Matter is implicit in Kai Sørlander’s Philosophy

– in that the properties that can be expressed about entities include properties that, by transcendental de-

duction, entail matter: that which one can see and touch and those which can be [otherwise] “measured”,

that is, that exist in space and satisfy laws of nature.

2.2 Logic

Definition: 7 Logic: By logic we shall here mean: the kind of reasoning that was shown in Chapter 1.

It was based on the possibility of truth, and hence on the necessity of negation, from which was derived

the logic operators conjunction and disjunction and, subsequently, as a result of the necessity of existence,

identity and multiplicity of entities, the equality operator.

In this monograph we are indeed very much concerned with the logic of domains.

Philosophical logic is the branch of study that concerns questions about reference, predication, identity,

truth, quantification, existence, entailment, modality, and necessity. Philosophical logic is includes the

application of formal logical techniques to philosophical problems.

2.3 Mathematics

Mathematics has no generally accepted definition1.

By mathematics we shall here, operationally2 mean the study and knowledge of algebra, calculus,

combinatorics, geometry, graph theory, logic, whence mathematical logic, number theory, probability,

set theory, statistics et cetera. – alphabetically listed !

1 Mathematics is what mathematicians do !
2 – that is, in terms of the names of fields of mathematics
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2.3.1 Mathematical Logic

Definition: 8 Mathematical Logic: By mathematical logic we shall here mean: the study and

knowledge of set theory, propositions, predicates, first-order logic, definability, model theory, proof theory

and recursion theory. – more-or-less arbitrarily listed !

Some basic notions of mathematical logic are: truth values: true, false, chaos3, ∼true, ∼false,
true∧false, ∼true∧false, ...: ground terms: ∼a, a∧b, a∨b, a⇒b, a=b, a,b, a≡b (variables a, b,
... to range over truth values), propositions: true, false, ∼true, ∼false, true∧false, ∼true∧false, ...,
a, b, ..., a∧true, a∧b, ...; and predicates: true, false, ∼true, ∼false, true∧false, ∼true∧false, ..., a,
b, ..., a∧true, a∧b, ..., ∀x:X•true, ∀x:X•x∧..., ∃x:X•x∧ ...

Three cornerstones of mathematical logic are: inference rules, axiom systems and proofs.

Definition: 9 Inference Rules: An inference rule consists of a list of one or more premises (predi-

cates) and a conclusion (also a logical term):

p1, p2, ..., pn ⊢ c.

This expression states that whenever in the course of some logical derivation the given premises,

(p1, p2, ..., pn), have been obtained, the specified conclusion, c, can be taken for granted as well

Definition: 10 Axioms and Axiom System: An axiom (or a postulate) is a statement that is taken to

be true, to serve as a premise or starting point for further reasoning and arguments

An axiom system is a set of one or more axioms

We illustrate some axiom systems. Metric Space, Axiom System 1 on Page 24; J. van Benthem’s A Con-
tinuum Theory of Time, Axiom System 2 on Page 27; and Wayne D. Blizard’s A Theory of Time-Space,

Axiom System 3 on Page 27. These are brought, not because we shall actually ‘use’ them, but to illustrate

what axiom systems are.

Definition: 11 Proof: Proof, in logic, is an argument that establishes the validity of a proposition, p. The

argument usually requires a sequence of proof steps, i, each, usually, refers to the steps in the argument

that represents the premises, a proof rule, and the conclusion, c, which becomes a new step

Some related concepts of mathematical logic in software engineering are: interpretation, satisfiability, va-
lidity and model.

Definition: 12 Interpretation: By an interpretation of a predicate we mean an assignment of a truth

value to a predicate where the assignment may entail an assignment of values, in general, to the terms of

the predicate

Definition: 13 Satisfiability: By the satisfiability of a predicate we mean that the predicate is true for

some interpretation

Definition: 14 Validity: By the validity of a predicate we mean that the predicate is true for all inter-

pretations

Definition: 15 Model: By a model of a predicate (an axiom system) we mean an interpretation for

which the predicate (of the axiom system) holds

3 Yes, our notations, both the mathematical and RSL, have a three-valued logic where evaluation of a Boolean expres-

sion involving chaos leads to everything being undefined !
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2.3.2 Sets

Set theory is a branch of mathematical logic that studies sets, which informally are collections of objects.

Although any type of object can be collected into a set, set theory is applied most often to objects that

are relevant to mathematics [Wikipedia]. We shall make extensive use of the Zermelo-Fraenkel [155]

version (1908, 1921) of set theory4. We refer to Appendix Sect. D.1.1 on Page 311 item [7] and Item 7

on Page 312, Sect. D.3.2 on Page 314, and Sect. D.3.6 on Page 316.

2.3.3 Types

Definition: 16 Type: By a type [as a noun] we shall mean a possibly infinite set of valuesa of some

kind.

a We shall take a classical set-theoretic, i.e., Zermelo-Fraenkel [155], view of types and sort in this monograph.

The ‘kind’ is what determines the type. The type of natural numbers, including the number 0, we give the

name Nat; the integer type is named Intg; the type of real numbers is named Real. The type of truth values,

Booleans, is named Bool.

When defining types, which we shall very often need to do, we shall make use of the RAISE

Specification Language (RSL)’s type definition concept. We refer to Appendix Sect. D.1 on Page 311.

We shall often use the term ‘type’ in the specific sense of there being a model for values of the type in the

form of either the basic, atomic types given above, or in the form of

• mathematical sets, A-set, A-infset5,

• Cartesian products, A×B×·· ·×C6,

• sequences, A∗, Aω 7,

• maps, A→m B8, and

• functions, A→B or A
∼
→B9,

over basic or mathematical values, i.e., types A,B,C, etc.

We use the RSL type definition approach. T stands for types. S stands for sorts. Q stands for further

undefined atomic values. Recursively defined map and function types are not allowed.

T ::= Bool | Nat | Intg | Real | Q | S
| T-set | T-infset [finite, respectively possibly infinite sets]
| T × T × ... × T [Cartesians]
| T∗ | Tω [finite, respectively possibly infinite lists]
| T →m T | T ←m→T [maps, respectively bijective maps]

| T→ T | T
∼
→ T [total, respectively partial functions]

Definition: 17 Sort: We shall use the term ‘sort’ to designate a possibly infinite set of values of some

further undefined kind.

The term ‘sort’ is commonly used in algebraic semantics [338].

4 en.wikipedia.org/wiki/Zermelo-Fraenkel set theory
5 finite sets can be enumerated: {a1,a2,...,an}. Operators are ∈, ∪, ∩, ⊆, ⊂, <, cardinality, etc.
6 Cartesians are expressed as (a,b, ...,c).
7 finite sequences can be enumerated: 〈a1,a2,...,an〉. Operators are hd (head), tl (tail), length, ,̂ [ i ], elems, etc.
8 finite maps can be enumerated: [a1 7→b1,a2 7→b2,...,an 7→bn ]. Operators are: · (m(a)), domain, rng (range), etc.
9 Functions are defined: λx•E (x), see Example 3 on the following page.
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2.3.4 Functions

Definition: 18 Function: By a function we shall understand ‘something’, which when applied to an

argument value of some type, say A, yields a result value of some type, say B (where A and B may be the

same type).

Definition: 19 Signature: By the signature of a function we mean a quadruple: (i) the, or a, name of

the function, (ii) either the total function designator,→, or the partial function designator,
∼
→, (iii) the type

of its argument value(s), and (iv) the type of its result value.

Let the name of (i, iii, iv) be f , A and B, respectively, then we present the signature of the total and the

partial functions f as follows:

value f: A→ B value f: A
∼
→ B

Example 3 A Classical Function Definition A classical function is the factorial function. It can, for ex-

ample, be defined as follows:

value f: Nat→ Nat, f(n) ≡ if n ≡ 0 then 1 else n×f(n−1) end

2.3.4.1 Total and Partial Functions

Definition: 20 Total Function: By a total function we mean a function which is defined for all argu-

ments of its argument type.

Definition: 21 Partial Function: By a partial function we mean a function which is not defined for all

the values of its argument type.

2.3.4.2 Predicate Functions

Definition: 22 Predicate: By a predicate we mean a function whose result type is Boolean, i.e., Bool.

Predicates are, by necessity, total functions.

• • •

We have listed a number of concepts of mathematical logic. Several of these have related to the possibility

of proofs. But a las ! In this monograph we shall use the notation of mathematical logic extensively. But not

for proofs of properties neither of our descriptions nor of domains. We shall leave the ultimately desirable

goal of formulating such properties: invariants and laws, and of their proofs to follow on the heals of this

monograph. Before we can run we must learn to walk.

2.3.5 Mathematical Notation versus Formal Specification Languages

2.3.5.1 Mathematics as a Notation – in General

We shall primarily make use of mathematics as a precise notation in which to express ideas about and the

prompt calculi — including some, usually not computable, functions. That is: we shall not use mathematics

to develop a proper theory of domain analysis & description. For that we refer to [62, Domain Analysis:
Endurants – An Analysis & Description Process Model, 2014 ]. We have indicated issues of axiom systems,

and we shall illustrate three axiom systems in this chapter: an Axiom System for Metric Spaces, Sect. 2.4.5

on Page 23; J. van Benthem’s A Continuum Theory of Time, Sect. 2.5.4 on Page 26; and Wayne D.

Blizard’s A Theory of Time Space, Sect. 2.5.5 on Page 27.
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2.3 Mathematics 21

2.3.5.2 Mathematics as a Notation – in Specific

In many of the more than 100 examples, cf. appendix Sect. E.2 on Page 332 [an index of all examples],

those that illustrate formalisation of domains, we use RSL [176], the RAISE Specification Language [179].

But almost elsewhere in the text, in particular in Chapters 3–6, we use a mathematical notation. We com-

ment here on that notation.

Mathematics “as our notation” reflects that the mathematics we rely upon is what is often referred to

as discrete mathematics [349, 138, 316, 248, 247, 137, 310, 7]. By discrete mathematics we mean such

mathematics, whose disciplines rests set theory and mathematical logic, entails important constructive

mathematical structures as

• [i] sets, i.e., definite or indefinite collections of mathematical values, {a,b,...,c}, respectively {a,b,...}
(where the . . . , see below, indicates “and so forth, possibly “ad infinitum”);

• [ii] Cartesians, i.e., definite groupings of mathematical values, (a,b,...c), of mathematical values;

• [iii] lists, i.e., definite or indefinite sequences of mathematical values, 〈a,b,...,c〉, respectively 〈a,b,...〉;
• [iv] maps, e.g., m, i.e., explicitly enumerated functions, [a17→b1,a27→b2,...,an7→bn ], from finite

definition sets, dom m = {a1,a2,...,an}, to finite range, or co-domain sets, rng m = {b1,b2,...,bn}, of

mathematical values; and

• [v] functions, i.e., lambda-definable [125, 102, 15, 16, 17] function values: λ x.E (x) where x is an

arbitrary free identifier and E (x) is an arbitrary expression in which x occurs, usually free – the expres-

sions E (x) otherwise over the kind of values listed above and including respective operators.

The mathematical values include ground values of

• Booleans, false, true, chaos : Bool;
• natural numbers, 0, 1, 2, . . . : Nat;
• integers, ..., -2 -1, 0, 1, 2, . . . : Intg; and

• reals, ..., -3.14159265359..., -0.5, ..., 0 ..., 1, +2.71828182846..., . . . : Real.

The mathematical values finally include such which are defined through a type definition system “in-

herited” from RSL. In general our mathematical notation includes many of the clause structures of RSL,

structures also found in VDM SL [30, 153, 154], its predecessor, as well as in many programming languages

since Algol 60 [257]10 We refer to Appendix Sect. D for details. Example clause structures are:

• var := clause,

• if b then c else a end,

• case p of e1→c1, ..., en→cn end,

• (p1→c1, ..., pn→cn) or (p1→c1, ..., →cn),
• for ∀ e:E • e ∈ set do c(e) end,

• while e do c end,

• do c while e end,

• c1; ..., cn and

• skip.

That is commensurate with the fact the the formal specification languages, VDM SL [88, 89, 154] and

RSL [176], (whose development and initial use, this author has been and is actively involved in since their

inception) deeply reflects a discrete mathematics

2.3.5.2.1 The Dot-dot-dot Notation

It is very common, also in strict, “formalistic” mathematics papers to use an inductive form of dot notation:

. . . . Our mathematics notation deploys that good practice. As an interesting paper we refer to [5, Deductive
Synthesis of Dot Expressions].

10 Algol W [368], CPL [18], PL/1 [278], Algol 68 [29, 106, 21], Pascal [255, 369], Modula [370, 295], Oberon

[371, 372, 373], Ada [31], CHILL [116, 107, 194, 8], Java [184, 342], C # [234], etc.
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22 2 Logic and Mathematics SPACE, TIME and MATTER Identity and Mereology

2.3.5.2.2 The Quote Notation

Here comes an interesting “twist” to our mathematical notation. We refer to the use of quotes By quoting
an expression, say the expression if b then c else a end, that is, by writing ❝ if b then c else a
end ❞ we mean, not the valuation of the unquoted expression, but the text between the quotes; that is, we use the

“bracketing” symbols ❝ ... ❞ to indicate what, ..., is quoted.

Our need for quoting is motivated as follows: The whole purpose of domain analysis & description is to be able to

(i) logically analyse a domain and (ii) produce a textual description of that domain. It is with respect to the description

procedures that there is a need for mathematically formally specify that a textual description be yielded. Hence the

quotes.

So keep your mind straight when, in Chapters 3–6 we “switch” between mathematical notation’s use of quotes

with RSL-like expressions and “clean” RSL with no [need for] quotes.

Historically the use of quoting can be attributed to John McCarthy [279, 280, 281, 1960s]11 and is manifest in

Lisp [282]. Lisp’s use of quotes is explained and discussed by Miles Bain in milesmcbain.xyz/the-roots-of--

quotation, in en.m.wikipedia.org/wiki/M-expression [Wikipedia], stackoverflow.com/questions/-

134887/when-to-use-or-quote-in-lisp and gnu.org/software/emacs/manual/html node/elisp/Quot-

ing.html.

2.3.5.3 An Interplay between Mathematical Notation and Specification Languages

Thus this monograph illustrates a common phenomenon: that research–in–progress, into computing science, some-

times, as here, starts with, as here, domain analysis & description ideas, proceeds with these, making use of mathe-

matical notation, gradually introducing more formal specification language-like notation, while eventually, and thus,

as here, implicitly, evolving what looks like a full, formal specification language. We have not found the need, here,

to design such a proper domain analyser & describer language. Mathematical notation has no formal syntax and no

formal semantics. So, for the time being, "RSL", and as we shall later introduce, RSL+, has no formal syntax and no

formal semantics. We leave that to interested readers !

2.4 Space

Mathematicians and physicists model space in, for example, the form of Hausdorf (or topological) space12; or a

metric space which is a set for which distances between all members of the set are defined; Those distances, taken

together, are called a metric on the set; a metric on a space induces topological properties like open and closed sets,

which lead to the study of more abstract topological spaces; or Euclidean space, due to Euclid of Alexandria .

2.4.1 Space Motivated Philosophically

Definition: 23 Indefinite Space: We motivate the concept of indefinite space as follows: [348, pp 154] “The
two relations asymmetric and symmetric, by a transcendental deduction, can be given an interpretation:
The relation (spatial) direction is asymmetric; and the relation (spatial) distance is symmetric.
Direction and distance can be understood as spatial relations. From these relations are derived
the relation in-between. Hence we must conclude that primary entities exist in space. Space is therefore
an unavoidable characteristic of any possible world”

From the direction and distance relations one can derive Euclidean Geometry .

Definition: 24 Definite Space: By a definite space we shall understand a space with a definite metric

There is but just one space. It is all around us, from the inner earth to the farthest galaxy. It is not manifest. We can not

observe it as we observe a road or a human.

11 John McCarthy: www-formal.stanford.edu/jmc/recursive.pdf

Paul Graham: www.paulgraham.com/rootsoflisp.html

Paul Graham: sep.yimg.com/ty/cdn/paulgraham/jmc.ps?t=1564708198&
12 Armstrong, M. A. (1983) [1979]. Basic Topology. Undergraduate Texts in Mathematics. Springer. ISBN 0-387-

90839-0.
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2.4 Space 23

2.4.2 The Spatial Value

67 There is an abstract notion of (definite) SPACE(s) of further unanalysable points; and

68 there is a notion of POINT in SPACE.

type

67 SPACE

68 POINT

Space is not an attribute of endurants. Space is just there. So we do not define an observer, observe space. For us,

bound to model mostly artifactual worlds on this earth there is but one space. Although SPACE, as a type, could be

thought of as defining more than one space we shall consider these isomorphic !

2.4.3 Spatial Observers

69 A point observer, observe POINT, is a function which applies to physical endurants, e, and yield a point,

ℓ : POINT.

value

69 observe POINT: E→ POINT

2.4.4 Spatial Attributes

We suggest, besides POINTs, the following spatial attribute possibilities:

70 EXTENT as a dense set of POINTs;

71 Volume, of concrete type, for example, m3, as the “volume” of an EXTENT such that

72 SURFACEs as dense sets of POINTs have no volume, but an

73 Area, of concrete type, for example, m2, as the “area” of a dense set of POINTs;

74 LINE as dense set of POINTs with no volume and no area, but

75 Length, of concrete type, for example, m.

For these we have that

76 the intersection,
⋂

, of two EXTENTs is an EXTENT of possibly nil Volume,

77 the intersection,
⋂

, of two SURFACEs may be either a possibly nil SURFACE or a possibly nil LINE, or a

combination of these.

78 the intersection,
⋂

, of two LINEs may be either a possibly nil LINE or a POINT.

Similarly we can define

79 the union,
⋃

, of two not-disjoint EXTENTs,

80 the union,
⋃

, of two not-disjoint SURFACEs,

81 the union,
⋃

, and of two not-disjoint LINEs.

and:

82 the [in]equality, ,,=, of pairs of EXTENT, pairs of SURFACEs, and pairs of LINEs.

We invite the reader to first first express the signatures for these operations, then their pre-conditions, and finally, being

courageous, appropriate fragments of axiom systems.

2.4.5 Mathematical Models of Space

Figure 2.1 on the next page diagrams some mathematical models of space. We shall hint a just one of these spaces.
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24 2 Logic and Mathematics SPACE, TIME and MATTER Identity and Mereology

Fig. 2.1. Variety of Abstract Spaces An arrow from space A to space B implies that A is also a kind of B.

2.4.5.1 Metric Spaces

Metric Space

Axiom System 1

A metric space is an ordered pair (M,d) where M is a set and d is a metric on M, i.e., a function:

d : M×M→ Real

such that for any x,y,z ∈M, the following holds:

d(x,y) = 0≡ x = y identity of indiscernibles (2.1)

d(x,y) = d(y,x) symmetry (2.2)

d(x,z)≤ d(x,y)+d(y,z) sub-additivity or triangle inequality (2.3)

Given the above three axioms, we also have that d(x,y) ≥ 0 for any x,y ∈M. This is deduced as follows:

d(x,y)+d(y,x) ≥ d(x,x) triangle inequality (2.4)

d(x,y)+d(y,x) ≥ d(x,x) by symmetry (2.5)

2d(x,y)≥ 0 identity of indiscernibles (2.6)

d(x,y)≥ 0 non-negativity (2.7)

The function d is also called distance function or simply distance. Often, d is omitted and one just writes M for a

metric space if it is clear from the context what metric is used.

2.5 Time

a moving image of eternity;

the number of the movement in respect of the before and the after;

the life of the soul in movement as it passes

from one stage of act or experience to another;

a present of things past: memory,

a present of things present: sight,

and a present of things future: expectations13

13 Quoted from [12, Cambridge Dictionary of Philosophy]
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2.5 Time 25

This thing all things devours:

Birds, beasts, trees, flowers;

Gnaws iron, bites steel,

Grinds hard stones to meal;

Slays king, ruins town,

And beats high mountain down.14

Concepts of time continue to fascinate philosophers and scientists [353, 152, 284, 318, 319, 320, 321, 322,

323, 324, 335] and [156].

2.5.1 Time Motivated Philosophically

Definition: 25 Indefinite Time: We motivate the abstract notion of time as follows. [348, pp 159] “Two

different states must necessarily be ascribed different incompatible predicates. But how can we ensure so ?

Only if states stand in an asymmetric relation to one another. This state relation is also transitive. So that is

an indispensable property of any world. By a transcendental deduction we say that primary entities exist
in time. So every possible world must exist in time”

Definition: 26 Definite Time: By a definite time we shall understand an abstract representation of

time such as for example year, month, day, hour, minute, second, et cetera

Temporal Notions of Endurants

Example 4 By temporal notions of endurants we mean time properties of endurants, usually modelled
as attributes. Examples are: (i) the time stamped link traffic, cf. Item 191 on Page 100 and (ii) the time
stamped hub traffic, cf. Item 187 on Page 99.

2.5.2 Time Values

We shall not be concerned with any representation of time. That is, we leave it to the domain analyser cum

describer to choose an own representation [156]. Similarly we shall not be concerned with any representa-

tion of time intervals.15

83 So there is an abstract type Time,

84 and an abstract type TI: TimeInterval.

85 There is no Time origin, but there is a “zero” TIme interval.

86 One can add (subtract) a time interval to (from) a time and obtain a time.

87 One can add and subtract two time intervals and obtain a time interval – with subtraction respecting

that the subtrahend is smaller than or equal to the minuend.

88 One can subtract a time from another time obtaining a time interval respecting that the subtrahend is

smaller than or equal to the minuend.

89 One can multiply a time interval with a real and obtain a time interval.

90 One can compare two times and two time intervals.

14 J.R.R. Tolkien, The Hobbit
15 – but point out, that although a definite time interval may be referred to by number of years, number of days (less

than 365), number of hours (less than 24), number of minutes (less than 60)number of seconds (less than 60), et

cetera, this is not a time, but a time interval.
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26 2 Logic and Mathematics SPACE, TIME and MATTER Identity and Mereology

type

83 T

84 TI

value

85 0:TI
86 +,−: T × TI→ T

87 +,−: TI × TI
∼
→ TI

88 −: T × T→ TI
89 ∗: TI × Real→ TI
90 <,≤,=,,,≥,>: T × T→ Bool

90 <,≤,=,,,≥,>: TI × TI→ Bool

axiom

86 ∀ t:T • t+0 = t

2.5.3 Temporal Observers

91 We define the signature of the meta-physical time observer.

type

91 T
value

91 record TIME(): Unit→ T

The time recorder applies to nothing and yields a time. record TIME() can only occur in action, event

and behavioural descriptions.

• • •

Caveat: You may wish to skip the rest of this chapter’s many sections, i.e., Sects. 2.5.4–2.5.10, on time.

That may come as a surprise to you. But in our domain modelling we shall refrain from modelling temporal

aspects of domains ! So why bring all this material ? We bring (“all”) this material so that you will know

what you are missing ! That is, what should also be considered in domain modelling. We therefore leave it

to others16 to redress this omission. Besides, most of the present work on applying temporal logics in our

field has been to software design (requirements).

• • •

Modern models of time, by mathematicians and physicists evolve around spacetime17 We shall not be

concerned with this notion of time.

Models of time related to computing differs from those of mathematicians and physicists in focusing

on divergence and convergence, zero (Zenon) time and interleaving time [377] are relevant in studies of

real-time, typically distributed computing systems. We shall also not be concerned with this notion of time.

2.5.4 J. van Benthem

The following is taken from Johan van Benthem [353]: Let P be a point structure (for example, a set).

Think of time as a continuum; the following axioms characterise ordering (<, =, >) relations between

(i.e., aspects of) time points. The axioms listed below are not thought of as an axiom system, that is, as

a set of independent axioms all claimed to hold for the time concept, which we are encircling. Instead

van Benthem offers the individual axioms as possible “blocks” from which we can then “build” our own

time system — one that suits the application at hand, while also fitting our intuition. Time is transitive:

If p<p′ and p′<p′′ then p<p′′. Time may not loop, that is, is not reflexive: p ≮ p. Linear time can be

defined: Either one time comes before, or is equal to, or comes after another time. Time can be left-linear,

i.e., linear “to the left” of a given time. One could designate a time axis as beginning at some time, that is,

having no predecessor times. And one can designate a time axis as ending at some time, that is, having no

successor times. General, past and future successors (predecessors, respectively successors in daily talk)

16 – that is: other researchers, lecturers, textbooks
17 The concept of Spacetime was first “announced” by Hermann Minkowski, 1907–08 – based on work

by Henri Poincaré, 1905–06, https://en.wikisource.org/wiki/Translation: The Fundamental Equa-

tions for Electromagnetic Processes in Moving Bodies
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can be defined. Time can be dense: Given any two times one can always find a time between them. Discrete

time can be defined.
A Continuum Theory of Time

Axiom System 2

[ TRANS: Transitivity ] ∀ p,p
′
,p
′′
:P • p < p

′
< p

′′
⇒ p < p

′′

[ IRREF: Irreflexitivity ] ∀ p:P • p ≮ p
[ LIN: Linearity ] ∀ p,p

′
:P • (p=p

′
∨ p<p

′
∨ p>p

′
)

[ L−LIN: Left Linearity ]
∀ p,p

′
,p
′′
:P • (p

′
<p ∧ p

′′
<p)⇒ (p

′
<p
′′
∨ p

′
=p
′′
∨ p

′′
<p
′
)

[ BEG: Beginning ] ∃ p:P • ∼∃ p
′
:P • p

′
<p

[ END: Ending ] ∃ p:P • ∼∃ p
′
:P • p<p

′

[ SUCC: Successor ]
[ PAST: Predecessors ] ∀ p:P,∃ p

′
:P • p

′
<p

[ FUTURE: Successor ] ∀ p:P,∃ p
′
:P • p<p

′

[ DENS: Dense ] ∀ p,p
′
:P (p<p

′
⇒ ∃ p

′′
:P • p<p

′′
<p
′
)

[ CDENS: Converse Dense ] ≡ [ TRANS: Transitivity ]
∀ p,p

′
:P (∃ p

′′
:P • p<p

′′
<p
′
⇒ p<p

′
)

[ DISC: Discrete ]
∀ p,p

′
:P • (p<p

′
⇒ ∃ p

′′
:P • (p<p

′′
∧ ∼∃ p

′′′
:P • (p<p

′′′
<p
′′
))) ∧

∀ p,p
′
:P • (p<p

′
⇒ ∃ p

′′
:P • (p

′′
<p
′
∧ ∼∃ p

′′′
:P • (p

′′
<p
′′′
<p
′
)))

A strict partial order, SPO, is a point structure satisfying TRANS and IRREF. TRANS, IRREF and SUCC

imply infinite models. TRANS and SUCC may have finite, “looping time” models.

2.5.5 Wayne D. Blizard: A Theory of Time–Space

We shall present an axiom system [101, Wayne D. Blizard, 1980] which relate abstracted entities to spatial

points and time. Let A,B, . . . stand for entitites, p,q, . . . for spatial points, and t,τ for times. 0 designates

a first, a begin time. Let t ′ stand for the discrete time successor of time t. Let N(p,q) express that p and

q are spatial neighbours. Let = be an overloaded equality operator applicable, pairwise to entities, spatial

locations and times, respectively. At
p expresses that entity A is at location p at time t. The axioms — where

we omit (obvious) typings (of A, B, P, Q, and T): ′ designates the time successsor function: t ′.

A Theory of Time–Space

Axiom System 3
(I) ∀A∀t∃p : At

p

(II) (At
p∧At

q) ⊃ p = q

(III) (At
p ∧Bt

p) ⊃ A = B

(IV )(?) (At
p ∧At ′

p) ⊃ t = t ′

(V i) ∀p,q : N(p,q)⊃ p , q Irreflexivity

(V ii) ∀p,q : N(p,q) = N(q, p) Symmetry

(V iii) ∀p∃q,r : N(p,q)∧N(p,r)∧q , r No isolated locations

(V I i) ∀t : t , t ′

(V I ii) ∀t : t ′ , 0

(V I iii) ∀t : t , 0⊃ ∃τ : t = τ ′

(V I iv) ∀t,τ : τ ′ = t ′ ⊃ τ = t

(V II) At
p ∧At ′

q ⊃ N(p,q)

(V III) At
p ∧Bt

q∧N(p,q) ⊃ ∼ (At ′

q ∧Bt ′

p)

(II–IV,VII–VIII): The axioms are universally ‘closed’; that is: We have omitted the usual ∀A,B, p,q, ts.
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(I): For every entity, A, and every time, t, there is a location, p, at which A is located at time t.

(II): An entity cannot be in two locations at the same time.

(III): Two distinct entities cannot be at the same location at the same time.

(IV): Entities always move: An entity cannot be at the same location at different times. This is more like a
conjecture: Could be questioned.
(V): These three axioms define N.

(V i): Same as ∀p :∼ N(p, p). “Being a neighbour of”, is the same as “being distinct from”.

(V ii): If p is a neighbour of q, then q is a neighbour of p.

(V iii): Every location has at least two distinct neighbours.

(VI): The next four axioms determine the time successor function ′.
(VI i): A time is always distinct from its successor: time cannot rest. There are no time fix points.

(VI ii): Any time successor is distinct from the begin time. Time 0 has no predecessor.

(VI iii): Every non–begin time has an immediate predecessor.

(VI iv): The time successor function ′ is a one–to–one (i.e., a bijection) function.

(VII): The continuous path axiom: If entity A is at location p at time t, and it is at location q in the

immediate next time (t ′), then p and q are neighbours.

(VIII): No “switching”: If entities A and B occupy neighbouring locations at time t them it is not possible

for A and B to have switched locations at the next time (t ′).

Except for Axiom (IV) the system applies both to systems of entities that “sometimes” rests, i.e., do not

move. These entities are spatial and occupy at least a point in space. If some entities “occupy more” space

volume than others, then we interpret, in a suitable manner, the notion of the point space P (etc.). We do

not show so here.

2.5.6 “Soft” and “Hard” Real-time

We loosely identify a spectrum of from “soft” to “hard” temporalities — through some informally worded

texts. On that background we can introduce the term ‘real-time’. And hence distinguish between ‘soft’ and

‘hard’ real-time issues. From an example of trying to formalise these in RSL, we then set the course for this

chapter.

2.5.7 Soft Temporalities

You have often wished, we assume, that “your salary never goes down, say between your ages of 25 to 65”.
How to express that?

Taking into account other factors, you may additionally wish that “your salary goes up.”
How do we express that?

Taking also into account that your job is a seasonal one, we may need to refine the above into “between
un-employments your salary does not go down”.

How now to express that?

2.5.8 Hard Temporalities

The above quoted (“...”) statements may not have convinced you about the importance of speaking precisely

about time, whether narrating or formalising.

So let’s try some other examples:

“The alarm clock must sound exactly at 6 am unless someone has turned it off sometime between 5am
and 6 am the same morning.”

“The gas valve must be open for exactly 20 seconds every 60 seconds.”
“The sum total of time periods — during which the gas valve is open and there is no flame consuming

the gas — must not exceed one twentieth of the time the gas valve is open.”
“The time between pressing an elevator call button on any floor and the arrival of the cage and the

opening of the cage door at that floor must not exceed a given time tarrival”.
The next sections will hint at ways and means of speaking of time.
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2.5.9 Soft and Hard Real-time

The informally worded temporalities of “soft real-time” can be said to involve time in a very “soft” way:

No explicit times (eg., 15:45:00), deadlines (eg., “27’th February 2004”), or time intervals (eg., “within
2 hours”), were expressed.

The informally worded temporalities of “hard real-time”, in contrast, can be said to involve time in a

“hard” way: Explicit times were mentioned.

For pragmatic reasons, we refer to the former examples, the former “invocations” of ‘temporality’, as

being representative of soft real-time, whereas we say that the latter invocations are typical of hard real-

time.

Please do not confuse the issue of soft versus hard real-time: It is as much hard real-time if we say that

something must happen two light years and five seconds from tomorrow at noon!

Soft Real-Time Models Expressed in “Ordinary” RSL Logic

Example 5 Let us assume a salary data base SDB which at any time records your salary. In the con-

ventional way of modelling time in RSL we assume that SDB maps time into Salary:

type

Time, Sal
SDB = Time →m Sal

value

hi: (Sal×Sal)|(Time×Time)→ Bool

eq: (Sal×Sal)|(Time×Time)→ Bool

lo: (Sal×Sal)|(Time×Time)→ Bool

axiom

∀ σ :SDB,t,t
′
:Time • {t,t

′
}⊆domσ∧hi(t

′
,t)⇒∼lo(σ (t

′
),σ (t))

∀ t,t
′
:Time •

(hi(t
′
,t)≡∼(eq(t

′
,t)∨lo(t

′
,t))) ∧

(lo(t
′
,t)≡∼(eq(t

′
,t)∨hi(t

′
,t))) ∧

(eq(t
′
,t)≡∼(lo(t

′
,t)∨hi(t

′
,t))) ... /∗ same for Sal ∗/

Hard Real-Time Models Expressed in “Ordinary” RSL Logic

Example 6 To express hard real-time using just RSL we must assume a demon, a process which repre-

sents the clock:

type

T = Real

value

time: Unit→ T
time() as t

axiom

time() , time()

The axiom is informal: It states that no two invocations of the time function yields the same value. But

this is not enough. We need to express that “immediately consecutive” invocations of the time function

yields “adjacent” time points. T provides a linear model of real-time.

variable

t1,t2 : T
axiom

� (t1 := time();
t2 := time();
t2 − t1 = /∗ infinitesimally small time interval: TI∗/ ∧
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t2 > t1 ∧ ∼∃ t:T• t1 < t < t2 )

TI provides a linear model of intervals of real-time.18The � operator is here the “standard” RSL modal

operator over states: Let P be a predicate involving globally declared variables. Then �P asserts that P

holds in any state (of these variables). But even this is not enough. Much more is needed.

2.5.10 Temporal Logics

“The term Temporal Logic has been broadly used to cover all approaches to the representation of temporal
information within a logical framework, and also more narrowly to refer specifically to the modal-logic
type of approach introduced around 1960 by Arthur Prior under the name of Tense Logic and subsequently
developed further by logicians and computer scientists.” 19

“Applications of Temporal Logic include its use as a formalism for clarifying philosophical issues about
time, as a framework within which to define the semantics of temporal expressions in natural language, as a
language for encoding temporal knowledge in artificial intelligence, and as a tool for handling the temporal
aspects of the execution of computer programs.”

2.5.10.1 The Issues

The basic issue is simple: To be able to speak of temporal phenomena without having to explicitly mention-

ing time. That goes for vague, or “soft” notions of time: What we could call “soft real-time”, that something

happens at a time, or during a time interval, but with no “fixing” of absolute times nor time intervals. It also,

of course, goes for precise, or “hard” notions of time: What we could call “hard real-time”, that something

happens at a very definitive point in time, or during a time interval of a very specific length, and thus with

“fixing” of absolute times or time intervals.

2.5.10.2 A. N. Prior’s Tense Logics

We present a philosophical linguistics motivated temporal logic. Following the Stanford Encyclopedia of
Philosophy,20 Arthur Prior [322, 323, 324] developed a tense logic along the lines presented below:

• Pp: “It has at some time been the case that p held”
• Fp: “It will at some time be the case that p holds”
• Hp: “It has always been the case that p held”
• Gp: “It will always be the case that p holds”

P and F are known as the weak tense operators, while H and G are known as the strong tense operators.

The two pairs are generally regarded as inter-definable by way of the equivalences:

Pp ≡ ∼H(∼p)
Fp ≡ ∼G(∼p)

On the basis of these intended meanings, Prior used the operators to build formulas expressing various

philosophical theses about time, which might be taken as axioms of a formal system if so desired. Some

examples of such formulas, with Prior’s own glosses (from [323]), are:

19 This and the next slanted quoted text paragraphs are taken from http://plato.stanford.edu/entries/-

logic-temporal/.
20 http://plato.stanford.edu/entries/prior/
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Gp⇒Fp:
What will always be, will be

G(p⇒q)⇒(Gp⇒Gq)
If p will always imply q, then if p will always be the case, so will q

Fp⇒FFp
If it will be the case that p, it will be − in between − that it will be

∼Fp⇒F∼Fp
If it will never be that p then it will be that it will never be that p

A special temporal logic is the Minimal Tense Logic Kt. It is generated by the four axioms:

p⇒HFp
What is, has always been going to be

p⇒GPp
What is, will always have been

H(p⇒q)⇒(Hp⇒Hq)
Whatever always follows from what always has been, always has been

G(p⇒q)⇒(Gp⇒Gq)
Whatever always follows from what always will be, always will be

2.5.10.3 The Duration Calculus

The duration calculus, DC, is due to Zhou Chao Chen, C.A.R. Hoare, Anders P. Ravn, Michael Reichhardt
Hansen and others. The definitive introductory work on DC is [380]. We present a terse summary.

2.5.10.3.1 A Function & Safety Example

We show a classical example.

(1) For a lift system to be adequate it must always be safe and function adequately. There are three

functional requirements.

(2) For the lift system to be safe, then for any duration that the door on floor i is open, the lift must be

also at that floor.
(3) The length of time between when someone pushes a button, inside a lift cage, to send it to floor i,

and the arrival of that cage at floor i must be less than some time ts.

(4) The length of time between when someone pushes a button, at floor i, to call it to that floor, and the

arrival of a cage at that floor must be less than some time tc.

(5) The length of time that a door is open when a cage is at floor i must be at least some time to.

(1) Req ≡
�(SafetyReq ∧ FunctReq1 ∧ FunctReq2 ∧ FunctReq3)

(2) SafetyReq ≡
⌈door=i⌉ ⇒ ⌈floor=i⌉

(3) FunctReq1 ≡
(⌈i ∈ send⌉ ; true⇒ ℓ≤ts) ∨ (ℓ≤ts ; ⌈door=i⌉ ; true)

(4) FunctReq2 ≡
(⌈i ∈ call⌉ ; true⇒ ℓ≤tc) ∨ (ℓ≤tc ; ⌈door=i⌉ ; true)

(5) FunctReq3 ≡
⌈door,i⌉ ; ⌈door=i⌉ ; ⌈door,i⌉ ⇒ ℓ≥to

2.5.10.3.2 The Syntax

We only present an overview of the DC syntax. The presentation of this part follows that of Skakkebæk et

al. [343] (1992).
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2.5.10.3.2.1 Simple Expressions: We define simple, i.e., atomic expressions.

x,y,...,z:State Variable
a,b,...,c:Static Variable
ff,tt:Bool Const
k,k
′
,...,k

′′
:Const

Static variables designate time-independent values. We assume some context which helps us determine the

type of variables.

2.5.10.3.2.2 State Expressions and Assertions: We define state expressions and state assertions. A

state assertion is a state expression of type Bool, and op is an operator symbol of arity n. We assume a

context which helps us determine that an identifier is an op!

se:State Expr ::= Const | Bool Const | op(se1,...,sen)
P:State Asrt ::= State Expr

We assume a context which helps us determine that a state expression is of type Bool, i.e., is a state

assertion.

2.5.10.3.2.3 Durations and Duration Terms: If P is a state assertion, then
∫

P is a duration.

We define duration terms.

dt:Dur Term ::=
∫

P | Real | op(dt1,...,dtn) | ℓ

ℓ is an abbreviation for the duration term
∫

tt. op is an n operator symbol of type Real. We assume a context

which helps us determine that an identifier is an op!

2.5.10.3.2.4 Duration Formulas: We define duration formulas. Let A be any n-ary predicate symbol

over real-valued duration arguments. We assume a context which helps us determine that an identifier is an

A!

d:Dur Form ::= A(dt1,...,dtn)
| true | false |
| ∼d

′
| d1∨dn

| d1;dn

| d1∧dn

| d1⇒dn

| d1∧dn

| ∀ a: d /∗ a is ∗/ Static Variable

Delimiting parentheses can be inserted to clarify precedence.

2.5.10.3.2.5 Common Duration Formula Abbreviations: We make free use of the following com-

mon abbreviations:

⌈⌉ : ℓ= 0 : point duration

⌈P⌉ :
∫

P = ℓ∧ ℓ > 0 : almost everywhere P

^d : true;d; true : somewhere d

�d : ¬(⋄¬d) : always d

d1→ d2 : d1; true⇒ d1∨ (d : 1;d : 2; true) : d2 follows d1

Precedence Rules:

First : ¬ � ⋄
Second : ∨ ∧ ;

Third : ⇒ →
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2.5.10.3.3 Discussion: From Domains to Designs

We have covered core aspects of the Duration Calculus. The Duration Calculus offers a logic based

on intervals and real-time. One can use the Duration Calculus to abstractly express constraints, i.e.,

requirements, on the duration of states. One can also use the Duration Calculus to abstractly express

properties of the domain, i.e., of the application area for which software is sought. And one can finally hint

at major design decisions also using the Duration Calculus.

Only in a very implicit sense can Duration Calculus expressions be said to specify sequential pro-

grams — such as we are normally prepared to implement in computing systems: in terms of sequential

programs. A Duration Calculus expression, however, usually implies a sequential program, or a set of

cooperating such. RSL specifications, the “closer” we get to software design, i.e., the more “concrete” such

specifications become, rather specifically specify sequential programs. At least, it would be a good idea for

the developer to make sure that this is so!

Now how can we combine the ability of the Duration Calculus to express quantitative properties of

software (to be designed) and the actual specification of such software?

We turn to this question next. That is, we may seem to completely abandon thoughts and concepts of

Duration Calculus, in favour of rather “down to earth” concepts of explicit timing in what could be

considered a specification programming language, Timed RSL, TRSL.

2.6 Spatial and Temporal Modelling

It is not always that we are compelled to endow our domain descriptions with those of spatial and/or tem-

poral properties. In our experimental domain descriptions, for example, [67, 95, 71, 69, 42, 55, 64, 36], we

have either found no need to model space and/or time, or we model them explicitly, using slightly different

types and observers than presented above. We have brought this material on various temporal logics in

order to strongly hint at their being used in domain modelling – so there is an interesting challenge !

2.7 Matter

Space, in the sense of SPACE, is “inhabited” ! The inhabitants are the entities that Kai Sørlander’s Philos-

ophy refers to, Page 13. They possess properties about which we reason. We shall take the view that these

entities are ofMATTER. Matter is anything that has mass and takes up space.
The modelling of matters, sometimes referred to as MATTER, is done primarily by means of at-

tributes. We refer to a future, extensive section, Sect. 4.4, on Attributes. But already here is a good place

to discuss the ‘matter’ of matter ! How does matter manifest itself to you, a human mortal, the domain
analyser & describer ? You, yourself, your body, is a manifestation of matter. The room, you are in, is

matter. The things in it, each are matter. The outdoor environment, in which you walk, is matter. Is the air,

you breathe, matter ? Yes we say ! Is the atmosphere21 matter ? Yes indeed. Really ? Does atmosphere have

mass ? Yes, indeed !

There is a notion: substance theory22. We shall not discuss its possible rôle here. But we shall take the

liberty of sometimes using the term ‘substance’ in lieu of the term ‘matter’.

2.8 Identity and Mereology

Identity, as a philosophical issue, has emerged from Kai Sørlander’s Philosophy, Chapter 1. We shall make

capital use of that concept in this monograph. Mereology, as a philosophical and logic issue, was studied

21 – the troposphere, stratosphere, ozone layer, mesosphere, thermosphere, ionosphere, exosphere, ...
22 Substance theory, or substance-attribute theory, is an ontological theory about object-hood positing that a substance

is distinct from its properties. A thing-in-itself is a property-bearer that must be distinguished from the properties it

bears [Wikipedia].
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by Stanisław Leśniewski, a Polish philosopher/logician in the 1920s [271, 359, 344]. We shall likewise

make capital use of that concept in this monograph. Section 2.8.2 next provides an informal discussion of

the concept.

2.8.1 Identity

It is a fact, that is, an absolutely necessary condition for our description of any world that its entities have

unique identity. It is, however a problem in our domain analyser & describer, to secure such identity; so we

must, wherever necessary present axioms expressing so. This will be done in Sect. 4.2. A further treatment

of mereology is given in Appendix B.

2.8.2 Mereology: Philosophy and Logic

“Mereology (from the Greek µερoς ‘part’) is a theory of part-hood relations: of the relations of part to

whole and the relations of part to part within a whole”23.

2.8.2.1 Mereology Understood Spatially

In this contribution we restrict ‘parts’ to be those that, firstly, are spatially distinguishable, then, secondly,

while “being based” on such spatially distinguishable parts, are conceptually related. We use the term

‘part’ in a more general sense than in [70]. The relation: “being based”, shall be made clear in this paper.

Accordingly two parts, px and py, (of a same “whole”) are are either “adjacent”, or are “embedded within”,

one within the other, as loosely indicated in Fig. 2.2. ‘Adjacent’ parts are direct parts of a same third part,

Embedded WithinAdjacent

p

p

p

p

x

y

z z

p
x

yp

Fig. 2.2. Immediately ‘Adjacent’ and ‘Embedded Within’ Parts

pz, i.e., px and py are “embedded within” pz; or one (px) or the other (py) or both (px and py) are parts of a

same third part, p′z “embedded within” pz; et cetera; as loosely indicated in Fig. 2.3, or one is “embedded

within” the other — etc. as loosely indicated in Fig. 2.3.
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Fig. 2.3. Transitively ‘Adjacent’ and ‘Embedded Within’ Parts

23 Achille Varzi: Mereology, http://plato.stanford.edu/entries/mereology/ 2009 and [115].
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Parts, whether ‘adjacent’ or ‘embedded within’, can share properties. For adjacent parts this sharing seems,

in the literature, to be diagrammatically expressed by letting the part rectangles “intersect”. Usually prop-

erties are not spatial hence ‘intersection’ seems confusing. We refer to Fig. 2.4.

[L]

p p
z z

p
x

yp

p
x

p
y

Embedded SharingAdjacent and Sharing
,

Embedded WithinAdjacent

p

p

p

p

x

y

z z

p
x

yp

[R]

Fig. 2.4. Two models, [L,R], of parts sharing properties

Instead of depicting parts sharing properties as in Fig. 2.4[L]eft, where shaded, dashed rounded-edge

rectangles stands for ‘sharing’, we shall (eventually) show parts sharing properties as in Fig. 2.4[R]ight

where •—• connections connect those parts.

2.8.2.2 Our Informal Understanding of Mereology

Mereology, to us, is the study and knowledge about how physical and conceptual parts relate and what

it means for a part to be related to another part: being disjoint, being adjacent, being neighbours, being
contained properly within, being properly overlapped with, et cetera.

By physical parts we mean such spatial individuals which can be pointed to.

Examples: a road net (consisting of street segments and street intersections); a street segment (between
two intersections); a street intersection; a road (of sequentially neigbouring street segments of the same
name); a vehicle; and a platoon (of sequentially neigbouring vehicles).

By a conceptual part we mean an abstraction with no physical extent, which is either present or not.

Examples: a bus timetable (not as a piece or booklet of paper, or as an electronic device, but) as an
image in the minds of potential bus passengers; and routes of a pipeline, that is, neighbouring sequences
of pipes, valves, pumps, forks and joins, for example referred to in discourse: “the gas flows through
“such-and-such” a route”. The tricky thing here is that a route may be thought of as being both a concept

or being a physical part — in which case one ought give them different names: a planned route and an

actual road, for example.

The mereological notion of subpart, that is: contained within can be illustrated by examples: the
intersections and street segments are subparts of the road net; vehicles are subparts of a platoon; and pipes,
valves, pumps, forks and joins are subparts of pipelines.

The mereological notion of adjacency can be illustrated by examples. We consider the various controls
of an air traffic system, cf. Fig. B.1 on Page 293, as well as its aircraft, as adjacent within the air traffic
system; the pipes, valves, forks, joins and pumps of a pipeline, cf. Fig. B.6 on Page 296, as adjacent within
the pipeline system; two or more banks of a banking system, cf. Fig. B.3 on Page 295, as being adjacent.

The mereo-topological notion of neighbouring can be illustrated by examples: Some adjacent pipes
of a pipeline are neighbouring (connected) to other pipes or valves or pumps or forks or joins, et cetera; two
immediately adjacent vehicles of a platoon are neighbouring. The mereological notion of proper overlap
can be illustrated by examples some of which are of a general kind: two routes of a pipelines may overlap;
and two conceptual bus timetables may overlap with some, but not all bus line entries being the same; and

some really reflect adjacency: two adjacent pipe overlap in their connection, a wall between two rooms
overlap each of these rooms — that is, the rooms overlap each other “in the wall”.

2.9 A Foundation

This, then, is the foundation upon which this monograph is built: the Concepts, as outlined in Chapter 0,
the Philosophy of Kai Sørlander, as outlined in Chapter 1, and Logic and Mathematics, the closer
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inspection of the concepts SPACE, TIME and MATTER, and Identity, and Mereology of the present

chapter.

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



Part II

DOMAINS

Chapter 3–7 Overview

In the next four chapters “we introduce a domain science & engineering” of domain analysis & description. These four

chapters treat “more-or-less” separable core topics of domain analysis & description. The treatment focuses on what

we shall call the intrinsics, the essentials of domains.

• Chapter 3 introduces the concepts of entities, endurants and perdurants and unveils basic principles and techniques

for the analysis & description of what we shall call external endurant qualities, those which we can experience by

looking at them !

• Chapter 4 unveils basic principles and techniques for the analysis & description of what we shall call internal

endurant qualities, like identity, mereology or those, attributes, which we can otherwise measure by physical

instruments or which record events.

• Chapter 5 provides a bridge between the principles and techniques of Chapters 3–4 and Chapter 6 by further elab-

orating on the idea of transcendental deduction first introduced in Chapter 1; while also covering the concepts

of space and time, not as metaphysical phenomena, but, with our background in Kai Sørlander’s Philosophy, as

rational, transcendentally understood concepts.

• Chapter 6, finally, concludes the basic domain analysis & description principles and techniques by transcenden-

tally relating endurants, the “still” entities, observable in space, to perdurants, the “discrete dynamic” entities,

observable also in time: actions, events and behaviours.

Chapters 3–4 show you how to systematically develop descriptions of the structure and values of domains while Chapter

6 shows you how to follow that up with the development of core aspects of the behaviour of domains.

• Chapter 7 covers some principles and techniques of mostly non-intrinsical domain entities.
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A Theory, not The Theory

We write: “we introduce a domain science & engineering ...”. By this we mean: “there may be other such domain

science & engineerings” ! The science & engineering we refer to are the domain analysis & description prompts24.

We shall introduce these analysis & description prompts in the next four chapters. But there could be

another composition than the one we offer. The present one has served well in guiding the domain analysis

& description of many domains [80]. The notions of conjoins, for example, are based very much on a

mixture of observations and pragmatism, and, as such could be replaced ! Anyway, the reader is guided, in

the next 4 chapters, into this ontology and should, from there, be able to modify that ontology to suit the

problem at hand.

On Learning a Theory and On Learning a Method

In this monograph we aim to develop a theory of domain analysis & description, and to develop a method

of analysing & describing domains. The two things are not quite the same, but, obviously, related. It is

important that the reader understands the next subsections. Because of the double aim it is possible that the

reader misses the distinction, and hence to learn either !

First you learn about it ! Then you learn to do it !

Towards a Theory of Domain Analysis & Description

Before one can practice a method one must learn (i) its possible theoretical basis.

In this monograph the text from which you should learn about a theoretical basis for domain analysis

& description is interwoven with the text from which you should learn about the method, i.e. the practice

of applying some of the theory. Being interwoven may mean that the reader forgets what it is that is being

communicated.

The unfolding of the “story” of the possible theoretical basis is careful, “slow”, almost pedantic. It is

perhaps easy to get lost and forget that other thing to be learned, (ii), the method.

A Method for Domain Analysis & Description

The method, to repeat, embodies principles, techniques and tools for the analysis & description of domains.

So how does one proceed in doing a domain model ? First one determines what the domain is, i.e.,

an endurant. Then you analyse it as prescribed. At one point you are then ready to describe the root of

the domain, as a composite, or as a structure, or as a material. That description leads to the analysis of

sub-endurants, usually several. In a single person project you therefore have to put some of these ’several’

other endurants on hold, say put as a reminder on what we shall call a notice board. Then later, again an

again, from the subsequent analysis & description of these other endurants emerges yet more endurants to

be analysed & described. Etcetera.

The method involves an iterative process.

For the professional, practicing domain analyser & describer when, as is covered in Chapter 3, analyses

& describes the external qualities of endurants that person is fully aware of their being also internal qualities

to analyse & described, and also, subsequently, their transcendental deduction into perdurants: channels,
variables and behaviours. In Chapter 3, however, we pose exercise problems, at a stage where the problem

solver has yet to learn, as in subsequent chapters, 4–6, about internal qualities, such which ultimately decide

on the sort of an endurant; thus the problem solver is, to an extent, disadvantaged; hence may, after. f.ex.

Chapter 4 (etc.), have to return to “improve” on a proposed problem solution. It cannot be otherwise.

24 These are some analysis prompts

is entity pg. 43,
is endurant pg. 47,
is perdurant pg. 48,
is discrete pg. 48,
is continuous pg. 49,
is physical part pg. 50,
is structure pg. 50,

is living species pg. 51,
is natural-partpg. 51,
is artefact pg. 51,
is plant pg. 54,
is animal pg. 54,
is human pg. 54,
is atomic pg. 56,

is compound pg. 56,
is conjoin pg. 59,
is part materials pg. 59,
is material parts pg. 60,
is part parts pg. 61.

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



3

DOMAINS – A Taxonomy

External Qualities

In this chapter we introduce the concepts of endurants and perdurants, the concept of external
qualities1 of endurants, and cover the analysis and description of external qualities of endurants.

Our focus is on domains. So what are domains ? .

3.1 Overview of this Chapter

• This is a large chapter.

⋄⋄ It spans Pages 39–84.

⋄⋄ To help the reader we present this overview.

⋄⋄ Some sections can be “armchair-read”.

⋄⋄ They introduce overall concepts.

⋄⋄ These are Sects. 3.2, 3.3, 3.5, 3.14 and ??.

⋄⋄ Section 3.20 presents background theory material.

⋄⋄ It can be skipped, but, when read, must be read carefully.

⋄⋄ Sections 3.6–3.18 and 3.15 form a first “half” of serious study sections on the ontology of entities

and the analysis of external qualities of endurants.

⋄⋄ Sections 3.16–3.19 form the second“half” of serious study sections on the description of external

qualities of endurants.

3.2 Domains

Definition: 27 Domain: By a domain we shall understand a rationally describable segment of a

discrete dynamics segment of a human assisted reality, i.e., of the world, its physical parts:

natural [“God-given”] and artefactual [“man-made”], and its living species: plants and animals
including, notably, humans.

These are endurants (“still”), as well as perdurants (“alive”). Emphasis is placed on “human-
assisted” , that is, that there is at least one (man-made) artefact and, therefore, that humans are a primary

cause for change of endurant states as well as perdurant behaviours

This is a terse, but not a fully satisfactory characterisation. But it is the best we can come up with ! Let us

examine it in some detail.

• By a rational description we mean: a description which is logical, that is, a description over which

one can reason; furthermore we shall in addition to this, by rational, mean a description which otherwise

deploys additional mathematical concepts.

• By discrete dynamics we mean: a behaviour of the domain which, over time, varies, but in discrete
steps: endurant entities may move or change form in space, values of endurant mereologies may vary,

and/or values of endurant attributes may vary.

1 We refer to Definition 29 on Page 42 [Sect. 3.4] for an attempt to define the concept of external quality.
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Control theory, the study of the control of continuously operating dynamical systems in engineered pro-

cesses and machines, is one thing; domain engineering is “a different thing”. Control theory builds upon

classical physics, and uses classical mathematics, partial differential equations, etc., to model phenomena

of physics and therefrom engineered ‘machines’. Domain science & engineering, in some contrast, builds

upon mathematical logic, and, to some extent, modern algebra, to model phenomena of mostly artefactual

systems.

• By “a reality” we mean: that which we, as humans, with our senses, can see, hear, smell, taste and

touch — as well as that for which we humans have devised apparatuses that measure: mass (kg), time

interval (s), temperature (K), electric current (A), amount of substance (mol), luminous intensity (cd),

and distance (m).

• By “a human assisted reality” we mean: a world in which focus is on man made endurants and

human instigated actions, events and behaviours.

The other technical terms will be explained more formally in the rest of this chapter.

Definition: 28 Domain Description: By a domain description we shall understand a combination

of narration and formalisation of a domain. A formal specification is a collection of sort , or
type definitions, function and behaviour definitions, together with axioms and proof obligations
constraining the definitions. A specification narrative is a natural language text which in terse

statements introduces the names of (in this case, the domain), and, in cases, also the definitions,
of sorts (types), functions, behaviours and axioms; not anthropomorphically, but by emphasizing
their properties

Domain descriptions are (to be) void of any reference to future, contemplated software, let alone IT sys-

tems, that may then2 support entities of the domain. As such domain models3 can be studied separately,

for their own sake, for example as a basis for investigating possible domain theories, or can, subsequently,

form the basis for requirements engineering with a view towards development of (‘future’) software, etc.

Our aim is to provide a method for the precise analysis and the formal description of domains.

3.3 Universe of Discourse

By a universe of discourse we shall understand the same as the domain of interest , that is, the

domain to be analysed & described

Universes of Discourse

Example 7 4We refer to a number of Internet accessible experimental reports5 of descriptions of the following

domains:

• railways [35, 85, 38],

• container shipping [42],

• stock exchange [55],

• oil pipelines [60],

• “The Market” [36],

• Web systems [54],

• weather information [67],

• credit card systems [64],

• document systems [71],

• urban planning [95],

• swarms of drones [69],

• container terminals [73]

2 – but it may be that a domain being analysed & described depends crucially on IT and software – in which case that

must somehow, “ever so abstractly”, be described !
3 We use the terms ‘domain descriptions’ and ‘domain models’ interchangeably.
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Method Step 1 Select Domain of Interest:

A principle of the method is, as an initial step of the development of a domain analyser & describer, is to

select the universe of discourse, to ascribe it a sort name, say UoD, and to remember that that universe,

and, as a technique, be subject to analysis & description .

Domain Description Prompt 0 name and sketch universe of discourse:

name and sketch universe of discourse

❝ Naming:

type UoD
Rough Sketch:

informal text ... ❞

A Road Transport Domain, I

Example 8

Naming:

type RTS

Rough Sketch: The road transport system that we have in mind consists of a road net and a set of

vehicles such that the road net serves to convey vehicles. We consider the road net to consist of hubs,

i.e., street intersections, or just street segment connection points, and links, i.e., street segments between

adjacent hubs. We consider vehicles to consist of departments of motor vehicles, bus companies, each

with zero, one or more buses, and vehicle associations, each with zero, one or more members who are

owners of zero, one or more vehicles

It may be a “large” domain, that is, consist of many, as we shall see, endurants and perdurants, of many

parts and materials, of many humans and artefacts, and of many actors, actions, events and behaviours.

Or it may be a “small” domain, that is, consist of a few such entities.

The choice of “boundaries”, that is, of how much or little to include, and of how much or little to exclude

is entirely the choice of the domain engineer cum scientist: the choice is crucial, and is not always obvious.

The choice delineates an interface, that is, that which is within the boundary, i.e., is in the domain, and

that which is without, i.e., outside the domain, i.e., is the context of the domain, that is, the external
domain interfaces. Experience helps set reasonable boundaries.

There are two “situations”: Either a domain analysis & description endeavour is pursued in order

to prepare for a subsequent development of requirements modelling , in which case one tends to choose

a “narrow” domain, that is, one that “fits”, includes, but not much more, the domain of interest for the

requirements. Or a domain analysis & description endeavour is pursued in order to research a domain.

Either one that can form the basis for subsequent engineering studies aimed, eventually at requirements

development; in this case “wider” boundaries may be sought. Or one that experimentally “throws a larger

4 In this monograph we bring several categories of numbered examples. There are the examples, let us call them the

text explanatory examples; then there are two kinds of examples related to domains: the informal domain examples

and formal domain examples. The latter exemplify the kind of domain analysis & descriptions this monograph

studies and for which this monograph presents a method for their construction. We leave it to the reader to discern

which examples are what !
5 These are draft reports, more-or-less complete. The writing of these reports was finished when sufficient evidence,

conforming or refuting one or another aspect of the domain analysis & description method.
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net”, that is, seeks a “large” domain so as to explore interfaces between what is thought of as internal
system interfaces.

Where, then, to start the domain analysis & description ? Either one can start “bottom-up”, that is,

with atomic entities: endurants or perdurants, one-by-one, and work one’s way “out”, to include composite

entities, again endurants or perdurants, to finally reach some satisfaction: Eureka, a goal has been reached.

Or one can start “top-down”, that is, “casting a wide net”. The choice is yours. Our presentation, however,

is “top down”: most general domain aspects first.

Domain science & engineering marks a new area of computing science. Just as we are formalis-
ing the syntax and semantics of programming languages, so we are formalising the syntax and semantics
of human-assisted domains.

Just as physicists are studying the natural physical world, endowing it with mathematical models, so

we, computing scientists, are studying these domains, endowing them with mathematical models.

A difference between the endeavours of physicists and ours lies in the tools: the physics models are

based on classical mathematics, differential equations and integrals, etc.; our models are based on mathe-
matical logic, set theory, and algebra.

Where physicists thus classically use a variety of differential and integral calculi to model the physical

world, we shall be using the analysis & description calculi presented in this chapter to model primarily

artefactual domains. As we shall see, in several examples, there is, however, a need for describing a number

of domain aspects both on control theory and computing science grounds – yet the two theories underlying

these description tools need be unified. At the time of writing this monograph such a unifying theory has

yet to emerge.

3.4 External Qualities

Definition: 29 External Quality: By an external quality of an endurant we shall, initially, mean a

property that is manifest, one that can be touched or seen,generally, one that “forms” the endurable entities

of a domain.

More generally, by an external quality of an endurant we shall mean an abstract property about a

collection of manifest entities, like a structure of manifest entities, or a structure of abstracted such entities

A Road Transport System, II: Manifest External Qualities

Example 9 Our intention is that the manifest external qualities of a road transport system are those of

its roads, their hubs6i.e., road (or street) intersections, and their links, i.e., the roads (streets) between

hubs, and vehicles, i.e., automobiles – that ply the roads – the buses, trucks, private cars, bicycles, etc.

A Road Transport System, II: Abstract External Qualities

Example 10 Examples of what could be considered abstract external qualities of a road transport do-

main are: the aggregate of all hubs and all links, the aggregate of all buses, say into bus companies, the

aggregate of all bus companies into public transport, and the aggregate of all vehicles into a department of

vehicles. Some of these aggregates may, at first be treated as abstract. Subsequently, in our further anal-

ysis & description we may decide to consider some of them as concretely manifested in, for example,

actual departments of roads

Method Step 2 External Qualities:

6 We have highlighted certain endurant sort names – as they will re-appear in rather many upcoming examples.
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An important step in the process of unfolding an analysis & description of a domain is to determine which

are the external qualities of entities of that domain. Our attempt, in Definition 29 on the facing page, to

encircle the ‘external quality’ concept may not be fully satisfactory. We shall try “repair” that “failure

to be precise” by numerous examples – and otherwise hope that some readers can suggest improved

definitions .

We refer to Fig. 3.1 on the next page where a largest dashed-line “upper left” box indicate, in a way, the

concepts entailed by external qualities.

3.5 Entities

A core concept of domain modelling is that of an entity.

Definition: 30 Entity: By an entity we shall understand a phenomenon, i.e., something that can be

observed, i.e., be seen or touched by humans, or that can be conceived as an abstraction of an entity;

alternatively, a phenomenon is an entity, if it exists, it is “being”, it is that which makes a “thing” what it
is: essence, essential nature [268, Vol. I, pg. 665]

Analysis Predicate Prompt 1 is entity:

The domain analyser analyses “things” (θ ) into either entities or non-entities. The method provides the

domain analysis prompt:

• is entity – where is entity(θ) holds if θ is an entity 7

is entity is said to be a prerequisite prompt for all other prompts. Prompts, whether analysis or descrip-

tion prompts, are aidé-memoires; they are not program constructs, they can not be defined mathematically8;

think of them as written on the wall of your working place, there to remind you of what you should remem-

ber to do.

Method Step 3 “What can be Described”:

A next step in the development of a domain analyser & describer is to decide on what can be described.

Both with respect to the universe of discourse and with respect to every subsequently identified entity. The

is entity analysis prompt is the tool used to prompt that analysis and decision. The domain analysers
has great leeway here. They can, perhaps rather arbitrarily, some would say, magisterially, decide on

leaving out phenomena for further treatment, phenomena that others would say can be described. An

excuse for exclusion could be that the domain analysers can claim that the phenomenon is not relevant to

their inquiry .

To sum up: An entity is what we can analyse and describe using the analysis & description prompts outlined
in this chapter. Other words for ‘entity’ are: ‘material object’ or ‘thing’ . Since we shall be needing the

term ‘material’ for a specific class of entities, and since the term ‘object’ is already heavily overloaded, we

shall just use the term ‘entity’.

The entities that we are concerned with are those with which Kai Sørlander’s Philosophy is likewise

concerned. They are the ones that are unavoidable in any description of any possible world. And then,

which are those entities ? In both [345] and [348] Kai Sørlander rationally deduces that these entities must

be in space and time, must satisfy laws of physics – like those of Newton and Einstein, but among them are

also living species: plants and animals and hence humans. The living species, besides still being in space
and time, and satisfying laws of physics, must satisfy further properties.

7 marks the end of a analysis prompt definition.
8 See however [62, 65] where we do suggest an underlying mathematical model of domains and give prompts a

semantics.
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Figure 3.1 shows an upper ontology9,10 for domains such as we shall focus on in this monograph.

We shall briefly review Fig. 3.1 by means of a top-down, left-traversal of the tree (whose root is at the top).
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Fig. 3.1. Upper Ontology

3.5.1 A Linnean, Binomial Taxonomy

We shall first present an idealised form of ontology for the domains that we are interested in studying and

for whose construction of domain analyses & descriptions we wish to present a method. This idealised form

follows that of Carl von Linné (Carl Linneaus, 1707–1778) the Swedish botanist, zoologist, and physician

who formalised binomial nomenclature, the modern system of naming organisms. He is known as the

“father of modern taxonomy”
We refer to the ontology description that now follows, as ‘ideal’. It is so, we claim, because it is strictly

binomial, and it is, in a sense, and also as a result of being binomial, abstract in that it does not reflect how
it should preferably be used. We shall later, on the basis of the following taxonomy, present a workable, we
claim, practically useful ontology.
An ‘Idealised’ Domain Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[0] Universes of discourse consists of non-describable phenomena [1.0] and describable phenomena [1.1].

[1.0] Non-describable phenomena will here be left further un-analysed.

[1.1] Describable phenomena, are also called entities [1.2].

9 An upper ontology (in the sense used in information science) consists of very general terms that are common

across all domains [Wikipedia].
10 We could organise the ontology differently: entities are either naturals, artefacts or living species, et cetera. If an

upper node (•) satisfies a predicate P then all descendant nodes do likewise.
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[1.2] Entities are either endurants11 [2.1] or perdurants12 [2.2].

[2.1] Endurants are either physical13 [3.1] or living species14 [3.2].

[3.1] Physical endurants are either singular15 [4.1] or composites16 [4.2].

[4.1] Singulars are either atomic parts17 [5.1] or materials18 [5.2].

[5.1] Atomic parts are presently left further un-analysed.

[5.2] Materials are presently left further un-analysed.

[4.2] Composites are either definite composites19 or indefinite composites20.

[3.2] Living species are either plants21 [4.3] or animals22 [4.4].

[4.3] Plants are here left further un-analysed.

[4.4] Animals are either humans [5.3] or other ... [5.4].

[5.3] Humans are here left further un-analysed.

[5.4] Other ... is here left further un-analysed.

[2.2] Perdurants are either instantaneous23 [3.3] or prolonged24 [3.4].

[3.3] Instantaneous perdurants are either actions25 [4.5] or events26 [4.6].

[4.5] We shall here leave actions further un-analysed.

[4.6] We shall here leave events further un-analysed.

[3.4] We shall here rename prolonged perdurants into behaviours27

[3.4] Behaviours are here left further un-analysed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The above textual listing is rendered graphically in Fig. 3.2 on the next page.

Figure 3.5.1 on the facing page shows the basic relational structure of general domain concepts. Fig-

ure 3.1 on the preceding page, in principle, builds on the taxonomy of Fig. 3.5.1 on the facing page. The

ontology of Fig. 3.1 is “massaged” with respect to Fig. 3.5.1 on the preceding page. Some domain analy-

sis & description concepts have been added; some “intermediary” concepts have been inserted, and, most

importantly, the ‘taxonomy’ has evolved into an ‘ontology′. Where the taxonomy only dealt with tangible,

visible properties28, the ontology ‘adds’ intangible, but objectively measurable properties shown by the

bottom vertical unique identifier, mereology and attribute lines We shall now proceed to justify Fig. 3.1.

3.5.2 A Cursory Overview

There are describable phenomena and there are phenomena that we cannot describe. The former we shall

call entities. The entities are either endurants, “still” entities – existing in space, or are perdurants, “alive”

entities – existing also in time. Endurants are either discrete or continuous – in which latter case we call

them materials. Discrete endurants are physical parts, or living species, or are structures. Physical parts are

either naturals, or artefacts, i.e. man-made. Natural parts are either atomic or composite parts. Man-made

parts are either atomic parts, composite parts or are conjoins. In this monograph we shall refer to man-

made parts as artefacts, and we shall, surprise-surprise, “collapse” our treatment of natural and artefactual

11 Cf. Defn. 31 on Page 47
12 Cf. Defn. 32 on Page 47
13 Physical endurants are such entities which can alone be justified in terms of physical laws such as Newton’s etc.
14 Living specifies are such entities which, in addition to physical laws are also subject to biological laws.
15 By a singular entity we shall mean a single instance or something to be considered by itself [Merriam Webster].
16 By a constellation we shall mean a grouping of usually two or more endurants.
17 See Sect. 3.13.1 on Page 56
18 Cf. Defn. 48 on Page 55
19 A definite composite has a given number of endurants.
20 An indefinite composite has a possibly varying number of endurants.
21 See Sect. 3.11.1 on Page 54
22 See Sect. 3.11.2 on Page 54
23 An Instantaneous Perdurant occurs at a (or any) single point in time and manifests itself in a similarly instantaneous

state change – where a state is the internal qualities value of any assembly of endurants.
24 A Prolonged Perdurant occurs over time, perdures for either an indefinite or an infinite time interval.
25 An action is an internally provoked instantaneous state change.
26 An event is an externally provoked instantaneous state change.
27 A behaviour is a set of sequences of actions, events and behaviours.
28 – like those used as the basis for plant determination according to Carl von Linné

August 16, 2020, 11:41, A Foundation for Software Development © Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark



46 3 DOMAINS – A Taxonomy External Qualities

Perdurants

InstantaneousLiving SpeciesPhysicals

Endurants

Entities

Universe of Discourse

Singular Composite

M
at

er
ia

l D
e
f
i
n
i
t
e
 
C
o
m
p
o
s
i
t
e
s

I
n
d
e
f
i
n
i
t
e
 
C
o
m
p
o
s
i
t
e
s

A
to

m
ic

 P
ar

t

P
la

n
ts

H
u

m
an

O
th

er
 ..

.

A
ct

io
n

E
ve

n
t

P
ro

lo
n

g
ed

 B
eh

av
io

u
r

N
o

n
−

d
es

cr
ib

ab
le

Animals

Fig. 3.2. A Binomial Taxonomy. The ...definite composites are defined in terms of endurants.

parts into just physical parts. Conjoins are either part-materials, or material-parts, or part-parts conjoins.

Living Species are either plants or animals. Among animals we have the humans. Structures are structures

over either a definite number of endurants of usually distinct sorts, or an indefinite number of endurants of

the same sort.

3.5.3 Summary

The categorisation into structures, natural parts, artefactual parts, plants, and animals is thus partly based

in Sørlander’s Philosophy, partly pragmatic. The distinction between endurants and perdurants, are neces-

sitated by Kai Sørlander’s Philosophy as entities being in space, respectively entities being in space and
time. Furthermore: discrete and continuous are motivated by arguments of natural sciences; structures are

purely pragmatic; plants and animals, including humans, are necessitated by Kai Sørlander’s Philosophy.

The distinction between natural, physical parts, and artefacts is not necessary in Sørlander’s Philosophy,

but, we claim, necessary, philosophically, in order to perform the intentional “pull”, a transcendental de-

duction.

The distinction between part-materials, material-parts, and part-parts is pragmatic. We could have cho-

sen another sub-ontology for artefacts. Also, from empirical observation, there seems to be no need for

material-materials conjoins. In part-materials conjoins the materials are “contained within” the part; in

material-parts conjoins the material, anthropomorphically speaking, “contains the parts”; and in part-parts
conjoins the parts are monitored and controlled by the part. In a perceived material-materials artefact,

should the material “contain” the materials ? How ?

3.5.3.1 Space and Time: Whither Entities ?

Are space and time entities ? Of course not ! They are simply abstract concepts that apply to any entity.
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3.6 Endurants and Perdurants

The concepts of endurants and perdurants are not present in, that is, are not essential to Sørlander’s Phi-

losophy. Since our departure point is that of computing science where, eventually, conventional computing

performs operations on, i.e. processes data, we shall, however, introduce these two notions: endurant and

perdurant. The former, in a rough sense, “corresponds” to data; the latter, similarly, to processes.

Philosophers have otherwise spent quite some thoughts on endurants29 and perdurants30. It seems ob-

vious that entities exists in space. But how do entities persist through time ? Two accounts of persistence31

are endurance theory (endurantism) and perdurance theory (perdurantism). We shall basically stay clear

of these, the footnoted sources, and rely on Kai Sørlander’s Philosophy.

Method Step 4 Initial Focus is on Endurants:

A basic principle of the domain analyser & describer method is that of initially focusing on en-
durants. Once all we wish to know about domain endurants has been analysed and described, then we

shift focus to perdurants .

3.6.1 Endurants

Definition: 31 Endurant: By an endurant we shall understand an entity that can be observed, or

conceived and described, as a “complete thing” at no matter which given snapshot of time; alternatively

an entity is endurant if it is capable of enduring, that is persist, “hold out” [268, Vol. I, pg. 656]. Were we

to “freeze” time we would still be able to observe the entire endurant

Endurants

Example 11 Geography Endurants: Geography endurants are: fields, meadows, lakes, rivers, forests, hills,

mountains, et cetera. Railway System Endurants: a railway system, its net, its individual tracks, switch points,

trains, their individual locomotives, et cetera.

A Caveat: Please observe the following: In Example 11 we seemingly rather easily, refer to such things

as fields, meadows, lakes, rivers, etc., as endurants that can be singled out from one another. It probably

took mankind millenia to make this categorisation. Easier, perhaps, with the artefacts: railway net, track,
locomotives, etc. These endurants were so designated by their designers, and we have kept these designa-

tions.

Analysis Predicate Prompt 2 is endurant:

The domain analyser analyses an entity, φ , into an endurant as prompted by the domain analysis
prompt:

• is endurant – φ is an endurant if is endurant(φ) holds.

is entity is a prerequisite prompt for is endurant

3.6.2 Perdurants

Definition: 32 Perdurant: By a perdurant we shall understand an entity for which only a fragment

exists if we look at or touch them at any given snapshot in time. Were we to freeze time we would only

see or touch a fragment of the perdurant [268, Vol. II, pg. 1552]

29 en.wikipedia.org/wiki/Formal ontology#Endurant
30 https://en.wikipedia.org/wiki/Formal ontology#Perdurant
31 plato.stanford.edu/entries/temporal-parts/
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Perdurants

Example 12 Geography Perdurants: the continuous changing of the weather (meteorology); the erosion of

coast lines; the rising of some land and the “sinking” of other land areas; volcano eruptions; earth quakes; et cetera.

Railway System Perdurants: the ride of a train from one railway station to another; and the stop of a train at a

railway station from some arrival time to some departure time

Analysis Predicate Prompt 3 is perdurant:

The domain analyser analyses an entity e into perdurants as prompted by the domain analysis prompt:

• is perdurant– e is a perdurant if is perdurant(e) holds.

is entity is a prerequisite prompt for is perdurant

Occurrent, accident, continuant and happening are synonyms for perdurant.

We shall, in this monograph not develop an analysis calculus for perdurants, but leave such a, to us

interesting research challenge to capable readers.

3.7 Endurants: Discrete and Continuous

We decide to facilitate the modelling of two kinds of endurants: discrete endurants and continuous en-

durants. Discrete endurants, we allow, may contain continuous endurants.

3.7.1 Discrete Endurants

Definition: 33 Discrete Endurant: By a discrete endurant we shall understand an endurant which

is separate, individual or distinct in form or concept

Analysis Predicate Prompt 4 is discrete:

The domain analyser analyses endurants, e, into discrete entities as prompted by the domain analysis
prompt:

• is discrete – e is discrete if is discrete(e) holds

To simplify matters we shall allow separate elements of a discrete endurant to be continuous ! That is,

a discrete endurant, i.e., a part, may be conjoined with a continuous endurant, a material; we refer to

Sect. 3.13.3 on Page 58.

Discrete Endurants

Example 13 The individual endurants of the above example of railway system endurants, Example 11 on the

preceding page, were all discrete. Here are examples of discrete endurants of pipeline systems. A pipeline and its

individual units: wells, pipes, valves, pumps, forks, joins, and sinks.

Caveat: Be aware of the following problem. Just because you ascribe the type name valve to a discrete

endurant, e, does not “automatically” endow the so-typed entity, e, with all, or at least some of those

qualities that valve values, such as you and I can agree on as being valve values, do possess. No, we have

to do much more analysis for “your” naming an entity of type valve, and for that entity to indeed be what

others would associate with valve values. That “much more” analysis entails ascribing a sufficient number

of internal qualities to what we labeled as valves, qualities such as unique identification, mereology and

attributes.
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3.7.2 Continuous Endurants: Materials

Definition: 34 Continuous Endurant: By a continuous endurant we shall understand an en-

durant which is prolonged, without interruption, in an unbroken series or pattern

Analysis Predicate Prompt 5 is continuous:

The domain analyser analyses endurants e into continuous entities as prompted by the domain analysis
prompt:

• is continuous or is material – e is discrete if is continuous(e) (is material(e)) holds

We shall prefer to refer to continuous endurants as materials. Continuous materials are otherwise liquid,

or gaseous, or plasmatic, or granular, or plant products, i.e., chopped sugar cane, threshed, or otherwise, et

cetera.

Materials

Example 14 Specific examples of materials are: water, oil, gas, compressed air, etc. A container, which we con-

sider a discrete endurant, may be conjoined with another, now continuous endurant, a material, like a gas pipeline

unit may “contain” gas. We refer to Sect. 3.16.3 on Page 70.

We cover materials further in Sect. 3.12 on Page 55.

Continuity shall here not be understood in the sense of mathematics. Our definition of ‘continuity’

focused on prolonged, without interruption, in an unbroken series or pattern. In that sense materials shall

be seen as ‘continuous’. The mathematical notion of ‘continuity’ is an abstract one. The endurant notion of

‘continuity’ is physical one.

Method Step 5 Discrete versus Continuous:

One may question the distinction between discrete and continuous endurants. For most natural, God-

given, and probably all man-made discrete endurants the temperature of its surroundings may decide its

state of “firmness” or “fluidity” ! We decide here to leave this, to some, crucial aspect untreated ! .

3.8 Physical Parts, Structures and Living Species

We decide to analyse endurants into either of three kinds: physical parts, structures and living species. The

distinction between the first two is pragmatic. The distinction between these and living species is motivated

in Kai Sørlander’s Philosophy.

3.8.1 Compound Endurants, “Roots” and “Siblings”

We need, in the following, to make definitions based on endurants being compounds.

Definition: 35 Compound Endurants: By a compound endurant we shall understand an endurant

which can be considered as comprising two elements: a “root” and one or more, usually more, “siblings”.

The “root” endurant, which is ignored for so-called endurant structures, can otherwise be said to “em-

body”, to “host”, the “siblings” These, the “siblings”, can be said to be sub-ordinate to the “root”,

also for endurant structures These definitions may seem vague, but are in fact, sufficiently precise !

August 16, 2020, 11:41, A Foundation for Software Development © Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark



50 3 DOMAINS – A Taxonomy External Qualities

3.8.2 Physical Parts

Physical parts are either natural parts, or are artefactual parts, i.e. man-made. Natural and man-made parts

are either atomic or composite. We additionally analyse artefacts into conjoins, i.e., compounds of a “root”
part and a definite number of different sort “sibling” materials, or a “root” material and an indefinite number
of same-sort “sibling” parts, or a “root” part and an indefinite number of same-sort “sibling” parts.

Definition: 38 Physical Parts: By a physical part we shall understand a discrete endurant existing in

time and subject to laws of physics, including the causality principle and gravitational pull a

a This characterisation is the result of our study of relations between philosophy and computing science, notably

influenced by Kai Sørlander’s Philosophy. We refer to our research report [72, www.imm.dtu.dk/˜dibj/2018/-

philosophy/filo.pdf].

Analysis Predicate Prompt 6 is physical part: The domain analyser analyses “things” (e) into

physical part. The method provides the domain analysis prompt:

• is physical part – where is physical part(e) holds if e is a physical part

Physical parts are going to be the “workhorse” of our analyses & descriptions of artefactual domains.

A Rough Sketch Domain Endurant Description

Example 15 The example is that of the production of rum. From

92 the sowing, watering, and tending to of sugar cane plants;

93 via the “burning” of these prior to harvest;

94 the harvest;

95 the collection of harvest from sugar cane fields to the

96 the chopping, crushing, (and sometimes repeated) boiling, cooling and centrifuging of sugar cane

when making sugar and molasses (into A, B, and low grade batches);

97 the fermentation, with water and yeast, producing a ‘wash’;

98 the (pot still or column still) distilling of the wash into rum;

99 the aging of rum in oak barrels;

100 the charcoal filtration of rum;

101 the blending of rum;

102 the bottling of rum;

103 the preparation of cases of rum for sales/export; and

104 the transportation away from the rum distiller of the rum.

Some comments on Example 15: Each of the enumerated items above is phrased in terms of perdu-

rants. Behind each such perdurant lies some endurant. That is, in English, “every noun can be verbed”, and
vice-versa. So we anticipate the transcendence, from endurants to perdurants.

Section 3.13 on Page 55 continues our treatment of physical parts.

3.8.3 Structures

Definition: 39 Endurant Structure: By an endurant structure, or just , we shall understand a

discrete endurant whose “root” element the domain engineer chooses to ignore, i.e., to not endow with

internal qualities such as unique identifiers, mereology and attributes; but whose “siblings” are described

as consisting of one or more discrete endurants

Analysis Predicate Prompt 7 is structure: The domain analyser analyses “things” (e) into struc-

tures. The method provides the domain analysis prompt:

• is structure – where is structure(e) holds if e is a structure

We refer to Sect. 3.10 for further analysis of structures into set and composite structures.
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3.8.4 Living Species

Living Species are either plants or animals. Among animals we have the humans.

Definition: 40 Living Species, I: By a living species we shall understand a discrete endurant, subject

to laws of physics, and additionally subject to causality of purpose a

a See Footnote a on the preceding page of Definition 38 on the facing page.

Analysis Predicate Prompt 8 is living species: The domain analyser analyses “things” (e) into

living species. The method provides the domain analysis prompt:

• is living species – where is living species(e) holds if e is a living species

We refer to Sect. 3.11 for further treatment of living species.

3.9 Natural Parts and Artefacts

We shall examine two kinds of physical parts: natural and man-made, i.e., artefactual, parts.

Physical Parts

Example 16 The geography examples (Example 11 on Page 47) are all natural parts. The railway system exam-

ples (Example 11 on Page 47) are all artefacts

3.9.1 Natural Parts

Definition: 41 Natural Parts: Natural parts are not artefactuals, but are given by nature; are in space
and time; are subject to the laws of physics, and also subject to the principle of causality and gravitational
pull Natural parts are parts which the domain engineer chooses to endow with all three internal

qualities: unique identification, mereology, and one or more attributes

Analysis Predicate Prompt 9 is natural part: The domain analyser analyses “things” (e) into

natural parts. The method provides the domain analysis prompt:

• is natural part – where is natural part(e) holds if e is a natural part

Example 17 Natural Parts: River Systems Further examples of natural parts are: a river system

– with its short or long stretches of water sources (springs, glaciers, meadows or even lakes) emerging

into brooks or streams or rivers; winding or straight brook, stream and river sections; lakes; waterfalls;

confluences of brooks, streams and rivers into appropriate ones of these; and divergences of either ones of

these into appropriate ones of these

3.9.2 Artefacts – Man-made Parts

Definition: 42 Man-made Parts: Artefacts: Artefacts are man-made either discrete or continuous

endurants. In this section we shall only consider discrete endurants. Man-made continuous endurants are

not treated separately but are lumped with natural materials. Artefacts are subject to the laws of physics,

and are parts which, like for natural parts, the domain engineer chooses to endow with all three internal

qualities: unique identification, mereology, and one or more attributes

Analysis Predicate Prompt 10 is artefact: The domain analyser analyses “things” (e) into arte-

fact. The method provides the domain analysis prompt:
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• is artefact – where is artefact(e) holds if e is an artefact

Example 18 Artefactual Parts: Financial Service Industry A further example of man-made parts

are those of a financial service industry – taken here in a wide sense: (a) customers of any of the below; (b-d)

banks: savings & loan, commercial and investment banks; (e) foreign exchange services; (f) insurance; (g-h)

stock brokers and exchanges; (i) [other] commodities exchanges, (j) credit unions; (k) credit card companies;

(l) accountancy companies; (m) consumer finance companies; (n) investment funds; and (o-. . . ) government

and international overseeing agencies (national banks, The World Bank, International Monetary Fund (IMF),

European Central Bank (ECB), etc

We shall assume, cf. Sect. 4.4 [Attributes], that artefacts all come with an attribute of kind intent, that is, a

set of purposes for which the artefact was constructed, and for which it is intended to serve.

3.9.3 A Pragmatic Decision

We now make a rather drastic decision. It is a pragmatic decision, that is, it is not motivated by concerns of

syntax, nor is it motivated by concerns of semantics. It is motivated by concerns of usage.

The decision is to henceforth not distinguish between natural and artefactual endurants.

We justify the decision as follows: All of the domains we have researched and engineered, viz. [80], are

significantly characterised by their artefacts. All of their domain descriptions focus exclusively on artefacts.

We have finally, experimentally, found that a presence of natural parts would not alter the description

“materially” !

3.10 Structures [Conceptual Physical Parts]

3.10.1 General

Structures are “conceptual, composite endurants”. A structure “gathers” one or more endurants under “one

umbrella”, often simplifying a presentation of some elements of a domain description. Sometimes, in our

domain modelling, we choose to model an endurant as a structure, sometimes as a composite part ; it all

depends on what we wish to focus on in our domain model. Thus we choose, when doing so, to model

endurants as structures for pragmatic reasons. As such structures are “compounds” where we are interested

only in the (external and internal) qualities of the elements, the “siblings”, of the compound, but not in the

qualities of the structure, i.e., the “root”, itself.

Transport System Structures

Example 19 A transport system is modelled as structured into a road net structure and an automobile structure.

The road net structure is then structured as a pair: a structure of hubs and a structure of links. These latter structures

are then modelled as set of hubs, respectively links.

Structures versus Composites

Example 20 We could have modelled the road net structure as a composite part with unique identity, mereology

and attributes which could then serve to model a road net authority. We could have modelled the automobile

structure as a composite part with unique identity, mereology and attributes which could then serve to model a

department of vehicles

Whether to analyse & describe a discrete endurant into a structure or a physical part is a matter of choice.

If we choose to analyse a discrete endurant into a physical part then it is because we are interested in

endowing the part with internal qualities, the unique identifiers, mereology and one or more attributes.

If we choose to analyse a discrete endurant into a structure then it is because we are not interested in

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



3.11 Living Species – Plants and Animals 53

endowing the endurant with qualities. When we choose that an endurant sort should be modelled as a

part sort with unique identification, mereology and proper attributes, then it is because we eventually shall

consider the part sort as being the basis for transcendentally deduced behaviours.

3.10.2 Composite Structures

Definition: 43 Composite Structure: By a composite structure we shall understand a discrete

endurant which the domain engineer chooses to describe as consisting of a definite number of discrete

“sibling” endurants of usually distinct sorts but to not endow the “root” element with internal qualities

such as unique identifiers, mereology and attributes

Analysis Predicate Prompt 11 is composite structure: The domain analyser analyses “things”

(e) into composite structures. The method provides the domain analysis prompt:

• is composite structure – where is composite structure(e) holds if e is a composite structure

3.10.3 Set Structures

Definition: 44 Set Structure: By a set structure we shall understand a discrete endurant which the

domain engineer chooses to describe as consisting of an indefinite number of discrete “sibling” endurants

of the same sort, and to not endow its “root” element with internal qualities such as unique identifiers,

mereology and attributes

Analysis Predicate Prompt 12 is set structure: The domain analyser analyses “things” (e) into

set structures. The method provides the domain analysis prompt:

• is set structure – where is set structure(e) holds if e is a set structure

3.11 Living Species – Plants and Animals

We refer to Sect. 3.8.4 for our first characterisation (Page 51) of the concept of living species32: a discrete

endurant existing in time, subject to laws of physics, and additionally subject to causality of purpose.33

Definition: 45 Living Species, II: Living species must have some form they can be developed to
reach ; which they must be causally determined to maintain. This development and maintenance must

further engage in an exchange of matter with an environment. It must be possible that living species occur

in one of two forms: one form which is characterised by development, form and exchange; another form

which, additionally, can be characterised by the ability to purposeful movement The first we call plants,

the second we call animals

It is appropriate here to mention Carl Linnaeus (1707–1778). He was a Swedish botanist, zoologist, and

physician who formalised binomial nomenclature, the modern system of naming organisms. He is known

as the “father of modern taxonomy”. We refer to http://www.gutenberg.org/ebooks/20771.

32 See analysis prompt 8 on Page 51.
33 See Footnote a on Page 50.
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3.11.1 Plants

Plants

Example 21 Although we have not yet come across domains for which the need to model the living species of

plants were needed, we give some examples anyway: grass, tulip, rhododendron, oak tree.

Analysis Predicate Prompt 13 is plant: The domain analyser analyses “things” (ℓ) into a plant.

The method provides the domain analysis prompt:

• is plant – where is plant(ℓ) holds if ℓ is a plant

The predicate is living species(ℓ) is a prerequisite for is plant(ℓ).

3.11.2 Animals

Definition: 46 Animal: We refer to the initial definition of living species above – while emphasizing the

following traits: (i) a form that animals can be developed to reach and (ii) causally determined to maintain
through (iii) development and maintenance in an exchange of matter with an environment, and (iv) ability
to purposeful movement

Analysis Predicate Prompt 14 is animal: The domain analyser analyses “things” (ℓ) into an ani-

mal. The method provides the domain analysis prompt:

• is animal – where is animal(ℓ) holds if ℓ is an animal

The predicate is living species(ℓ) is a prerequisite for is animal(ℓ).

Animals

Example 22 Although we have not yet come across domains for which the need to model the living species of

animals, in general, were needed, we give some examples anyway: A band of musicians, a swarm of flies, a bunch

of crooks, a crew of sailors, a gang of outlaws, a group of people, a herd of cattle, a mob of hair, a pack of dogs, a

flock of geese, a pride of lions, and a school of dolphins.

3.11.2.1 Humans

Definition: 47 Human: A human (a person) is an animal, cf. Definition 46, with the additional proper-

ties of having language, being conscious of having knowledge (of its own situation), and responsibility

Analysis Predicate Prompt 15 is human: The domain analyser analyses “things” (ℓ) into a human.

The method provides the domain analysis prompt:

• is human – where is human(ℓ) holds if ℓ is a human

The predicate is animal(ℓ) is a prerequisite for is human(ℓ).
We refer to [72, Sects. 10.4–10.5] for a specific treatment of living species, animals and humans, and

to [72] in general for the philosophy background for rationalising the treatment of living species, animals

and humans.

We have not, in our many experimental domain modelling efforts had occasion to model humans;

or rather: we have modelled, for example, automobiles as possessing human qualities, i.e., “subsuming

humans”. We have found, in these experimental domain modelling efforts that we often confer anthropo-

morphic qualities on artefacts, that is, that these artefacts have human characteristics. You, the reader are

reminded that when some programmers try to explain their programs they do so using such phrases as and
here the program does ... so-and-so !
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3.12 Continuous Endurants: Materials

Definition: 48 Material: By a material we shall understand a continuous endurant

We shall simplify our treatment of materials. We model a material as potentially consisting of an amalgam

of one or more substances of different sorts. So a continuous endurant is a “single” material.34 Composite

physical parts may be conjoined with materials: natural parts may “contain” natural and artefactual materi-

als, artefacts may “contain” natural and artefactual materials. We leave it to the reader to provide analysis

predicates for natural and artefactual “materials”.

Natural and Man-made Materials

Example 23 A natural part, say a land area, may contain glaciers, springs, rivers, lakes, and border seas. An

artefact, say an automobile, usually contains gasoline, lubrication oil, engine cooler liquid and window screen

washer water.

Material substances are either liquid, like water, sewage, or oil; or gaseous, like natural gas; or plasmatic –

a combination of granular and liquid forms, like blood; or granular, like iron ore, sand, or pebbles (stones,

etc.); or agricultural, like sugar cane, chopped wood, grain, etc.

3.13 Atomic, Compound and Conjoin Parts

A distinguishing quality of natural and artefactual parts is whether they are atomic (Sect. 3.13.1) or com-

pound or conjoins (Sects. 3.13.2)–3.13.3). Please note that we shall, in the following, examine the concept

of parts in quite some detail. This is a choice. The choice is based on pragmatics. It is still the domain

analyser cum describers’ choice whether to consider a discrete endurant a compound or a conjoin part or

a structure. If the domain engineer wishes to investigate the details of a discrete endurant then the domain

engineer must choose to model35 the discrete endurant as a part. If not, then as a structure,

Non-atomic Parts: Non-atomic parts are analysed, we suggest, into

• either compound endurants [composites or sets] (Sect. 3.13.2.1 on Page 57)

• or conjoins.

Compound sets are further analysed into

• either simple, one part sort sets (Sect. 3.15.2.2.1 on Page 63) or

• several alternative part sort sets (Sect. 3.15.2.2.2 on Page 64).

Conjoins, (Sect. 3.13.3 on Page 58), are further analysed and described into:

• part-materials conjoins (Sect. 3.15.4.1 on Page 64 and 3.16.3.1 on Page 70),

• material-parts-parts conjoins (Sect. 3.15.4.2 on Page 64 and 3.16.3.2 on Page 71) and

• part-parts conjoins (Sect. 3.15.4.3 on Page 65 and 3.16.3.3 on Page 72).

We thus distinguish between seven kinds of parts:

• (0) atomic,

• compounds:

⋄⋄ (1) either composites,

⋄⋄ or sets – and within sets

◦◦ (2) either single sort part sets

◦◦ (3) or alternative sorts parts sets;
• or conjoins:

⋄⋄ (4) part-materials,

⋄⋄ (5) material-parts-parts and

⋄⋄ (6) part-parts.

34 Attributes of that “single” material may then reveal how it is (chemically or otherwise) composed from distinct

substances.
35 We use the term ‘to model’ interchangeably with the phrase ‘to analyse & describe’ ; similarly a model is used

interchangeably with an analysis & description.
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Our choice is one of pragmatics. It would sometimes be awkward to model endurants without the

facility of concrete sets; and, using the conjoin modelling concept reveals intention ! We shall have more

to say about this in time.

Atomic and Conjoin Parts

Example 24 We shall here hint at some examples. In modelling certain domains, given some further

unspecified context, we may choose to model consumers, retailers, wholesalers and consumer product
manufacturers as atomic, while the market is modelled as a part-parts conjoins of sets of consumers,
retailers, wholesalers and consumer product manufacturers. In some other context we may choose oth-

erwise ! Along another line wells, pipes, pumps, valves, forks joins and sinks of an oil pipeline system

are individually modelled as part-materials conjoins and the oil pipeline system as a composite of sets of

these part-materials conjoins – each part-materials conjoin consisting of the overall part-materials con-
join, an atomic part and a definite set of materials of different sorts. Similarly for canal systems, waste
management, rum production and water management systems (as in The Netherlands). And finally we

may model, as a material-parts conjoin, air traffic as a single material-parts conjoin consisting of an

atomic part (say the air traffic monitor & advisory authority) and a concrete set of distinct aircraft parts.

Similarly for ocean ship monitor & advisory authorities et cetera.

3.13.1 Atomic Parts

Definition: 49 Atomic Part: Atomic parts are those which, in a given context, are deemed to not
consist of meaningful, separately observable proper sub-parts. A sub-part is a part

We emphasize the term ‘demeed’. The domain analyser & describer is the one who is ‘deeming’. It is all a

choice.

Analysis Predicate Prompt 16 is atomic:

The domain analyser analyses a discrete endurant, i.e., a part p into an atomic endurant:

• is atomic: p is an atomic endurant if is atomic(p) holds

is discrete is a prerequisite prompt of is atomic.

The is atomic analysis prompt comes in two variants: is natural atomic and is artefactual -

atomic. Similarly for the is composite analysis prompt: is natural composite and is artefact-

ual composite. In the following we shall often omit the infix natural or artefactual .

Atomic Road Net Parts

Example 25 From one point of view all of the following can be considered atomic parts: hubs, links36, and

automobiles.

3.13.2 Compound Parts

We, pragmatically, distinguish between compound-, i.e., Cartesian-product-like, and set-oriented, i.e.,

parts. We shall treat both as concrete type sorts.

Definition: 50 Compound Part: Compound parts are those which are either composite parts or are

sets of parts

Analysis Predicate Prompt 17 is compound:

36 Hub ≡ street intersection; link ≡ street segments with no intervening hubs.
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The domain analyser analyses a discrete endurant, i.e., a part p into a compound:

• is compound: p is a compound if is compound(p) holds

3.13.2.1 Composite Parts

Definition: 51 Composite Part: Composite parts are those which, in a given context, are deemed to

meaningfully consist of separately observable a [“root”] part and a definite number of proper [“sibling”]

sub-parts of distinct sorts

We emphasize the term ‘demeed’. The domain analyser & describer is the one who is ‘deeming’. It is all a

choice.

Analysis Predicate Prompt 18 is composite:

The domain analyser analyses a discrete endurant, i.e., a part p into a composite endurant:

• is composite: p is a composite endurant if is composite(p) holds

is physical part is a prerequisite prompt of is composite.

Composite Automobile Parts

Example 26 We refer to Example 25 on the preceding page. We there viewed automobiles as atomic parts. From

another point of view we shall here understand automobiles as composite parts: the engine train, the chassis, the car

body, the doors and the wheels. These can again be considered physical parts.

3.13.2.2 Set Parts

Whereas compounds consist of a definite number of parts of distinct sorts, sets consist of an indefinite
number of parts of some sort[s].

Definition: 52 Set Part: Set parts are those which, in a given context, are deemed to meaningfully
consist of separately observable a [“root”] part and an indefinite number of proper [“sibling”] sub-parts
of the same sort

We emphasize the term ‘demeed’. The domain analyser & describer is the one who is ‘deeming’. It is all a

choice.

Analysis Predicate Prompt 19 is set:

The domain analyser analyses a discrete endurant, i.e., a part p into a set endurant:

• is set: p is a composite endurant if is set(p) holds

is physical part is a prerequisite prompt of is set.

Set Part Examples

Example 27 A railway track can be considered a set of railway units – usually themselves considered atomic

parts. A library can be considered a set of books – usually themselves considered atomic parts. A container line can

be considered a set of container vessels – usually themselves considered non-atomic or conjoin parts.

We distinguish between two kinds of sets. Sets consisting of elements of the same sort, and set consisting

of elements of two or more, alternative sorts.
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3.13.2.2.1 Simple One-Sort Sets

Definition: 53 Simple One-Sort Sets: Simple one-sort sets are those which, in a given context, are

deemed to meaningfully consist of separately observable a [“root”] part and an indefinite number of

proper [“sibling”] sub-parts of the same sort

Analysis Predicate Prompt 20 is single sort set:

The domain analyser analyses a discrete endurant, i.e., a part p into a set endurant:

• is single sort set: p is a composite endurant if is single sort set(p) holds

is set(p) is a prerequisite prompt of is single sort set(p).

Simple One-Sort Sets

Example 28 The books of library can be considered a set of same sort books.

3.13.2.2.2 Alternative Sorts Sets

Definition: 54 Alternative Sorts Sets: Alternative, several distinct sort sets are those which, in a

given context, are deemed to meaningfully consist of separately observable a [“root”] part and an indefi-

nite number of proper [“sibling”] sub-parts of a definite number of two or more distinct sorts

Analysis Predicate Prompt 21 is alternative sorts set:

The domain analyser analyses a discrete endurant, i.e., a part p into a set endurant:

• is alternative sorts set: p is a composite endurant if is alternative sorts set(p) holds

is set(p) is a prerequisite prompt of is alternative sorts set(p).

Alternative Sorts Sets

Example 29 The rail units of a rail track can be considered a set of parts of different sorts: linear rail

units, single switch point rail units, double switch point rail units, terminal units, et cetera,

3.13.3 Conjoins

Definition: 55 Conjoin: By a conjoin we shall here understand a physical part which can be under-

stood to properly embody two or three further physical parts

We say that these “further” parts are conjoined.

We suggest three kinds of conjoins: part-materials conjoins, material-parts-parts conjoins and part-parts
conjoins. We have decided to include these three endurant categories for the following reason: their use, the

fact that the domain analyser & describer chooses to model a concept as a conjoin, shall reveal an intent.
The intents are these. For part-materials conjoins and part-parts conjoins the two elements of the conjoin

serve two very related, i.e., conjoined, rôles: (a) the part as the overall monitor (and potential controller),

(b) the materials or parts as that which is being monitored and to some extent controlled by the part. For

material-parts-parts conjoins the three elements (the material (a), respectively the parts (b) and the parts

(c)) serve three related, i.e., conjoined, rôles: (a) the material as the “carrier” of the (b) the parts whose

raison d’etre is that they can “inhabit” the material and (c) the parts whose raison d’etre is that they can

“service” the former parts, i.e., (b). We shall think of the material (a) as if it was an atomic part but such
that it ’embodies’ the material.
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Analysis Predicate Prompt 22 is conjoin:

The domain analyser analyses endurants e into conjoin entities as prompted by the domain analysis
prompt:

• is conjoin – e is a conjoin if is conjoin(e) holds

3.13.3.1 Part-Materials Conjoins

Definition: 56 Part-Materials Conjoin: By a part-materials conjoin we shall understand an en-

durant which is a composition of a [“root”] part, and one or more (intentionally) distinct [“sibling”] mate-

rials

The pragmatics of part-materials conjoins is that they serve to model such domains as water & flood
management – as in The Netherlands State Water Management Authority37; canal systems, i.e., artefactual

waterways, typically with locks – as in, for example the Panama Canal Authority38; water, oil, gas and other
pipelines – as in, for example the (now defunct) Nabucco West Pipeline Proposal39; waste management –

as in the European Union Waste Management Project40; uni-flow production systems – as in, for example,

the production of spirits, like whiskey, rum, etc., and in industrial manufacturing. Where road transport
nets typically be modelled as bi-directed, cyclic graphs, the above ‘conjoin nets’ typically can be modelled

as directed, acyclic graphs41. A difference between water & flood management and canal systems is that

the former primarily manages the water level, by means of pumps, whereas the latter primarily manages

the passage of anywhere from [300 tons] barges to [300.000 tons] vessels, by means of locks.

Caveat: We could have stipulated that conjoins consist of one or more [“root”] physical parts, etc., but it

appears, from modelling experience, that to settle on exactly one makes modelling “easier” !

Analysis Predicate Prompt 23 is part materials conjoin:

The domain analyser analyses endurants e into part-materials conjoin entities as prompted by the domain
analysis prompt:

• is part materials conjoin – e is a part-materials conjoin if is part materials conjoin(e)

holds

We emphasize that the domain analyser & describer is making a choice. The domain analyser & describer
is the one who ‘chooses’. The context and aims of the domain modelling effort decides which choices to

make.

Part-Material Conjoins: Pipelines, I

Example 30 A pipeline consists of a number of conjoined pipeline units: The pipeline units (each with

their “container” and some liquid). A pipeline unit is either a well (with some, zero, or a maximum of

liquid), a pump, pumping or not (with some, zero, or a maximum of liquid), a pipe (with some, zero, or a

maximum of liquid), a valve, closed or partially or fully open (with some, zero, or a maximum of liquid),

a fork diverting a line into two (with some, zero, or a maximum of liquid) and a join merging two lines

into one (with some, zero, or a maximum of liquid), a sink (with some, zero, or a maximum of liquid),

Liquid flows in one direction, from wells to sinks. There are no cycles.

Part-Material Conjoins: Canals with Locks, I

37 www.rijkswaterstaat.nl/english/index.aspx
38 www.pancanal.com/eng
39 en.wikipedia.org/wiki/Nabucco pipeline
40 www.urban-waste.eu/project
41 – although waste management systems may contain some cyclicity
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Example 31 A system of canals with locks consists of a number of canal units. A canal unit is a con-

joined endurant consisting of a pair: a discrete canal unit and a material – some [“muddy”] water ! Canal

units serve to convey canal vessels (pleasure boats, barges) in either direction of the canal system. Discrete

canal units are either linear (or, for that matter a curved) stretches of a canal; fork/join: diverting/joining

one stretch of canal into two, respectively two into one – forks/joins connect linear canal units whose

water levels “agree”; or lock sequences of one or more single locks. A lock sequence connects two linear

canal units whose water levels “disagree”. A single lock allows canal vessels to be lowered/raised in order

to be conveyed into next single lock or linear canal units. Single locks may either be open in one or in

the opposite direction, for a vessel in the single lock to sail out of the single lock in that direction or into

the single lock from the opposite direction, or they may be closed, that is, in the process of lowering or

raising its water level. Etc., etc.

Part-Materials Conjoins: Waste Management, I

Example 32 Waste management [systems] are about the transport and treatment of waste. Waste can,

for example, be non-clean water, sewage, chemical side-products, or other. Transport can, for example,

be pipes, barrels, conveyor belts, or other. Treatment can, for example, be removing undesired materials

from non-clean water, sewage and chemicals resulting in at least clean water or desired chemical and

one or more waste products. A waste treatment system consists, typically, of a number of conjoin units:

sources of the waste, waste transport networks, where some segments of these networks converge on

treatment plants, from which emerges two or more waste and non-waste networks.

In this monograph we shall exemplify excerpts of many different kinds of (of a category of) domains.

A sub-category is that of domains primarily “populated” with conjoins such as those listed in the main

opening, the pragmatics, paragraph of this section. We refer to Sect. 3.16.3 on Page 70, Example 37 on

Page 71, Sect. 4.3.7 on Page 94, Sect. 4.4.8 on Page 110 and Sect. 6.10.1 on Page 154.

3.13.3.2 Material-Parts-Parts Conjoins

Definition: 57 Material-Parts-Parts Conjoin: By a material-parts-parts conjoin we shall under-

stand an endurant which is a composition of (a) the material-parts conjoin [“root”] material, (b) zero, one

or more (intentionally) distinct fixed [“sibling”] parts, and (c) zero, one or more (intentionally) distinct

moving [“sibling”] parts

The pragmatics of material-parts conjoins is that they serve to model such domains as: Vessel traffic on the
open seas: the open seas are the material (a), i.e., the oceans, seas, great lakes and channels; vessels are

the moving parts (c), they ply from harbour to harbour and sometimes on canals (the fixed parts, (b)). Air
traffic in the sky: (a) the air space is the material; (b) airports are the fixed parts; and (c) aircraft of all kinds

are the moving parts.

Analysis Predicate Prompt 24 is material parts parts conjoin:

The domain analyser analyses endurants e into material-parts-parts conjoin entities as prompted by the

domain analysis prompt:

• is material parts parts conjoin – e is a material-parts conjoin if is material parts -

parts conjoin(e) holds

We again emphasize that the domain analyser & describer is making a choice. The domain analyser &
describer is the one who is ‘choose’. The context and aims of the domain modelling effort decides which

choices to make.
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3.13.3.3 Part-Parts Conjoins

Part-parts conjoins come in two forms: (i) “proper” part-parts which embody a “root” and zero one or more,

but a definite number of “siblings; and (ii) a “simplified” part-parts where we ignore the “root”. It is up to

the domain analyser cum describer to make the choice whether to include the “root” or not. You may think

of the latter as representing a structure (the“root”) with sets of “siblings”.

Analysis Predicate Prompt 25 is part parts conjoin:

The domain analyser analyses endurants e into part-parts conjoin entities as prompted by the domain
analysis prompt:

• is part parts conjoin – e is a part-parts conjoin if is part parts conjoin(e) holds

Part-Parts Conjoin: Container Terminal Ports

Example 33

There is the set of composite container terminal ports
There is the composite part of the port itself, with its structures of sets of container vessels, structures

of sets of quay side ship/quay quay cranes, structures of sets of quay crane to terminal port bay trucks,

structures of sets of terminal port bays and structures of sets of container land trucks. The containers are

embodied in vessel bays, on quay cranes, on bay trucks, in terminal port bays and on land trucks.

There are a set of zero, one or more container vessels: each vessel being a part-parts conjoin of the

“bare” vessel, containing a part set of vessel container bays.

There is a set quay cranes, each quay crane being a part-parts conjoin of the “bare” crane ho[i]sting

a part set of zero or one container part.

There is a set quay crane to terminal port bay trucks, each bay truck being a part-parts conjoin of the

“bare” truck ho[i]sting a part set of zero, one or two containers.

There is a set of (vessel or terminal port) container bays. with each container bay being a structure
container rows, with a container row being a structure container stack, with a container stack being a

sequence containers,

There is a set of terminal port to and from customer land trucks, each such land truck being a part-
parts conjoin of the “bare” truck hoisting a part set of zero or one container.

We refer to [73, Container Terminals, September 2018], an experimental case study report where we used

this, the atomic, composite and concrete set approach. We refer to [376, A Unified Theory of Programming
approach for rTiMo] an extension of CSP, with real-time and process mobility expressivity as a promising

approach.

• • •

Method Step 6 From Analysis to Description:

We have reached a stage in our unraveling an, or the, analysis calculus where it is now possible to

“switch” to a, or the, description calculus. That is, here is a step of the method: to conscientiously apply
description prompts. These follow in Sect. 3.16.

To prepare for the external qualities description calculi we must, however, first review how we discover en-
durant sorts, Sect. 3.14, examine a notion of states, Sect. 3.18, review the unfolding ontology of endurants,

Sect. ?? and introduce some endurant analysis functions (not predicates) , Sect. 3.15.

3.14 On Discovering Endurant Sorts

The subject of ‘discovery’ depends very much on whether the endurant is an artefact or a natural part,
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3.14.1 On Discovering Man-made Endurants

Artefacts are man-made. Usually the designers – the engineers, the craftsmen – who make these parts start

out by ascribing specific names to them. And these names become our sort names. So the α,β ,γ points

below are really only relevant for the analysis of natural discrete endurants.

3.14.2 On Discovering Natural Endurants

Our aim now is to present the basic principles that let the domain analyser decides on endurant sorts.

We observe endurants one-by-one.

(α) Our analysis of parts concludes when we have “lifted” our examination of a particular endurant
instance to the conclusion that it is of a given sort, that is, reflects a formal concept.

Thus there is, in this analysis, a “eureka”, a step where we shift focus from the concrete to the abstract,

from observing specific endurant instances to postulating a sort: from one to the many. If e is an endurant

of sort E , then we express that as: e:E .

In Sect. 3.15 we shall introduce analysis functions for all the endurants of our ontology.

(β ) The analyser analyses, for each of these endurants, ei, which formal concept, i.e., sort, it
belongs to; let us say that it is of sort Ek; thus the sub-parts of e are of sorts {E1,E2, . . . ,En}. Some
Ek may be natural parts, other artefacts, or structures, or materials. And parts may be either atomic
or composite.

The domain analyser continues to examine a finite number of other composite parts: {p j, pℓ, . . . , pn}. It is

then “discovered”, that is, decided, that they all consists of the same number of sub-parts {ei1 ,ei2 ,. . . ,eim},
{e j1 ,e j2 ,. . . ,e jm}, {eℓ1

,eℓ2
,. . . ,eℓm

}, ..., {en1
,en2

,. . . ,enm}, of the same, respective, endurant sorts.

(γ) It is therefore concluded, that is, decided, that {ei,e j,eℓ,. . . ,en} are all of the same endurant sort
E with observable part sub-sorts {E1,E2,. . . ,Em}.

Above we have type-font-highlighted three sentences: (α,β ,γ). When you analyse what they “prescribe”

you will see that they entail a “depth-first search” for endurant sorts. The β sentence says it rather directly:

“The analyser analyses, for each of these endurants, pk, which formal concept, i.e., endurant sort it belongs
to.” To do this analysis in a proper way, the analyser must (“recursively”) analyse structures into sub-

structures, parts and materials, and parts “down” to their atomicity. For the parts (whether natural or man-

made) and materials of structures the analyser cum describer decides on their sort, and work (“recurse”)

their way “back”, through possibly intermediate endurants, to the pks. Of course, when the analyser starts

by examining atomic parts and materials, then their endurant structure and part analysis “recursion” is not

necessary.

• • •

Thus the discovery of natural parts and natural materials is very much of the kind that the Swedish 18th

century botanist, zoologist, and physician Carl von Linné (Carl Linnaeus, 1707–1778) who formulated the

so-called binomial nomenclature, the system of naming organisms42. Linné is also referred to af “the father
of taxonomy”.

3.14.3 An Aside: Taxonomy in Botanics and Zoology

For the discovery of natural parts we must therefore really refer to the taxonomy disciplines of botanics

https://en.m.wikipedia.org/wiki/Botanyand zoology https://en.wikipedia.org/wiki/Zo-

ology. The term systematics, en.m.wikipedia.org/wiki/Systematics, is, more or less, synonymous

with taxonomy, en.m.wikipedia.org/wiki/Plant taxonomy. Typically, for new plant species to be

42 Linnæus, Systema Naturae, around 1735. Systema naturæ, sive regna tria naturæ systematice proposita

per classes, ordines, genera, & species. pp. [112]. Lugduni Batavorum. (Haak), See www.biodiversitylibra-

ry.org/item/15373#page/2/mode/1up
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identified botanists make use of a herbarium, en.m.wikipedia.org/wiki/Herbarium. Perhaps geogra-

phers, for example, should consider establishing digital herbaria, en.wikipedia.org/wiki/Virtual -

herbarium, for geographical matters. And, similarly, for each of the more-or-less separately identifiable

man-made domains – some of which are listed in [80].

3.15 Endurant Analysis Function Prompts

We need informally define some analysis functions to be used in the domain description prompt definitions;

one, basically, for each non-atomic endurant sort.

3.15.1 Introductory Remarks: On the Non-trivial Nature of Analysis

In this section, i.e., Sect. 3.15, we shall characterise43 a number of analysis functions. These analysis func-

tions apply to endurants, e, such that if is category(e) then we analyse category(e) with respect to its

sorts: which are they ?
This analysis is at the core of domain analysis. It is far from that straightforward. Many possibilities

offer themselves. Several model choices are abundant. More than one may lead to acceptable, reasonable

models. Some may lead to awkward models.

This is so since the domain analyser “moves” from the informal, well, in principle, non-formalisable

world of “reality” to the formal world of a domain model.

The presentation, below, of the various analysis functions follows the “tree-like” structure of Fig. 3.1

on Page 44, in a left-to-right, depth-first traversal – except that we treat structures before conjoins.

3.15.2 Analyse Compound Parts

3.15.2.1 Analyse Composite Parts

Analysis Function Prompt 1 analyse composite parts:

The domain analyser analyses physical parts into a composite part The method provides the domain
analysis prompt:

• analyse composite parts directs the domain analyser to observe the definite number of values

and corresponding distinct sorts of the part.

value analyse composite parts(e) ≡ ((e1,...,en),(❝ E1,...,En ❞))

The ordering, ((e1,...,en),(❝ E1,...,En ❞)), is arbitrary.

3.15.2.2 Analyse Part Sets

3.15.2.2.1 Analyse Single Sort Part Sets

Analysis Function Prompt 2 analyse single sort part set:

The domain analyser analyses physical parts into single sort part sets. The method provides the domain
analysis prompt:

• analyse single sort part set directs the domain analyser to observe the the single sort part set

of values and their single sort.

value analyse single sort part sets(e) ≡ ({p1,p2,...,pn},❝ P ❞)

43 – that is, not define [and certainly not formally so, since that is not possible]
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3.15.2.2.2 Analyse Alternative Sorts Part Sets

Analysis Function Prompt 3 analyse alternative sorts part set:

The domain analyser analyses physical parts into alternative sorts part sets. The method provides the

domain analysis prompt:

• analyse alternative sorts part set directs the domain analyser to observe the values and cor-

responding sorts of the part.

value analyse alternative sorts part set(e) ≡ ((p1,❝ E1 ❞),...,(pn,❝ En ❞))

The set of parts, of different sorts, may have more than one element, p, p′, ..., p′′ being of the same sort

Ei.

3.15.3 Analyse Structures

Structures are like compounds: they are either composite or are set structures, in which latter case they are

either single sort part sets or are alternative sorts part sets. As such we treat them as if they were compounds

but shall not later, in Chapter 4, analyse their “root” element for possible internal qualities as they have no

“root” element !

3.15.4 Analyse Conjoins

3.15.4.1 Analyse Part-Materials Conjoins

Analysis Function Prompt 4 analyse part materials:

The domain analyser analyses a conjoin into a part-materials conjoin. The method provides the domain
analysis prompt:

• analyse part materials directs the domain analyser to observe the values and sorts of the part

and the materials:

value analyse part materials(e) ≡ ((p,❝ P ❞),{(m1,❝ M 1 ❞),...,(mm,❝ M m ❞)})

3.15.4.2 Analyse Material-Parts-Parts Conjoins

Analysis Function Prompt 5 analyse material parts parts:

The domain analyser analyses a conjoin into a material-parts-parts conjoin. The method provides the

domain analysis prompt:

• analyse material parts parts directs the domain analyser to observe the values and sorts of the

material, the “fixed” parts and the “movable” parts.

value

analyse material parts parts(e)≡((m,{fp1,...fpm},{mp1,...,mpn}),(❝ M,fP,mP ❞))

Elaboration 1 Type, Values and Type Names: The endurant analysis functions, this and the below,

all illustrate quoting
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Material and Parts of Transports

Example 34

We exemplify three kinds of transport.

• Air Transport: The material of a air transport is an airspace, an EXTENT.44 The fixed parts of air

transport is a set of two or more airports. The movable parts of air transport is a set of zero, one or

more aircraft.

• Ocean-Shipping: The material of ocean-shipping is the oceans, seen as one, an EXTENT. The

fixed parts of ocean-shipping is a set of two or more harbours. The movable parts of ocean-shipping

is a set of zero, one or more ships.

• Rail Transport The material of rail transport is a (possibly bridge- or tunnel-connected) land area,

the EXTENT. The fixed parts of rail transport is a connected rail net. The movable parts of ocean-

shipping is a set of zero, one or more trains.

3.15.4.3 Analyse Part-Parts Conjoins

Analysis Function Prompt 6 analyse part parts:

The domain analysis prompt

• analyse part partsdirects the domain analyser to observe a “compound” of one or more materials

that the conjoin embodies – together with their material sort names.

value

analyse part parts(e) ≡ ((p,(p1,p2,...,pn)),(❝ P ❞,(❝ P1,...,Pn ❞)))

3.16 Calculating Sort Describers

Based on the analyses of Sects. 3.8, 3.10, 3.12 and 3.13, we conclude that there are the following kinds of

endurants to sort- (i.e., type) and observer function describe:

• � composite parts (a),

• sets:

⋄⋄ � single sort part sets (b),

⋄⋄ � alternative sorts part sets (c),

• conjoins:

⋄⋄ � part-materials conjoins,

⋄⋄ � material-parts-parts conjoins,

⋄⋄ � part-parts conjoins, and

• ��� structures, with their three variants (a-b-c).

Atomic parts are what is left, when compounds, conjoins and structures have no further sub endurants. The

general signature of the describer functions are of the form:

value describe ... sorts: E→ RSL-Text

3.16.1 Calculating Compound Parts Sorts

Compound parts are either composite parts, with a definite number of elements, or are sets, with an indefi-

nite number of elements. Set parts are either single sort sets or are alternative sorts sets.

44 For EXTENTs see Item 70 on Page 23 of Sect. 2.4 on Page 22.
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3.16.1.1 Calculating Composite Parts Sorts

The above analysis amounts to the analyser first “applying” the domain analysis prompt is composite(e)

to a discrete endurant, e, where we now assume that the obtained truth value is true. Let us assume that

endurants e:E consist of sub-endurants of sorts {E1,E2,. . . ,Em}. Since we cannot automatically guarantee

that our domain descriptions secure that E and each Ei (1≤i≤m) denotes disjoint sets of entities we must

prove it.

Domain Description Prompt 1 calculate composite parts sorts: If is composite(e) holds,

then the analyser “applies” the domain description prompt

• calculate composite parts sorts(e)

resulting in the analyser writing down the endurant sorts and endurant sort observers domain description text

according to the following schema:

2. calculate composite parts sorts(e) Describer

let ( 45,(❝ E1,...,En ❞)) = analyse composite parts sorts(e)46 in

❝ Narration:

[s ] ... narrative text on sorts ...
[o ] ... narrative text on sort observers ...
[p ] ... narrative text on proof obligations ...

Formalisation:

type

[s ] E1, ❞...❝ , Em

value

[o ] obs E1: E→ E1, ❞...❝ , obs Em: E→ Em

proof obligation

[p ] [Disjointness of endurant sorts ]❞

end

45 The use of the underscore, , shall inform the reader that there is not need, here, for naming a value.

46 For analyse composite parts see Sect. 3.15.2.1 on Page 63

Elaboration 2 Type, Values and Type Names: Note the use of quotes above. Please observe that

when we write obs E then obs E is the name of a function. The E, when juxtaposed to obs is now a

name

Analysis Function Prompt 7 type name, type of, is :

The definition of obs Ei implicitly implies the definition of

• obs Ei(e)=ei ⊃ type name(ei)≡❝ Ei ❞∧ type of(ei)≡Ei ∧ is Ei(ei)

Modelling Choice 1 Composites: For compound endurants and structures the analyser cum describer

chooses some to be modelled as composites.

A Road Transport Domain, I: Composite

Example 35 47

105 There is the universe of discourse, UoD.

It is composed from

106 a road net, RN, and

107 a fleet of vehicles, FV.
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type

105 UoD
106 RN
107 FV

value

106 obs RN: UoD→ RN
107 obs FV: UoD→ FV

We continue the analysis & description of “our” road transport system:

108 The road net consists of

a a, as we shall later see, structure, SH, of hubs

and

b a, as we shall also later see, structure, SL, of

links.

109 The fleet of vehicles consists of

a a, as we shall likewise see, structure, SBC, of

bus companies, and

b a, as we shall later see, structure, PA, a pool of

automobiles.

type

108a SH
108b SL
109a SBC
109b PA

value

108a obs SH: RN→ SH
108b obs SL: RN→ SL
109a obs BC: FV→ BC
109b obs PA: FV→ PA

Figure 3.3 graphically depicts [the dotted/dashed lines] Example 35 on the preceding page’s composition

of parts. The fully lined square boxes stand for atomic parts: links, hubs, buses and automobiles. These will

be formally introduced in Example 38 on Page 72.

sLsH

RN

SH SL

FV

SBC

sA

PABCs

h1:H

h2:H

hm:H

l1:L

ln:L

l2:L

b11:B

b1p:B

bs1:B

bsq:B

a1:A

a2:A

ar:A

bs2:Bb12:B

bc1:sBC bc_s:sBC

Fig. 3.3. A Road Transport System Compounds and Structures

47 Example 35 on the preceding page’s Narration is not representative of what it should be. Here is a more reasonable

narration:

• A road net is a set of hubs (road intersections) and links such that links are connected to adjacent hubs, and

such that connected links and hubs form roads and where a road is a thoroughfare, route, or way

on land between two places that has been paved or otherwise improved to allow travel

by foot or some form of conveyance, including a motor vehicle, cart, bicycle, or horse

[Wikipedia]

Et cetera for fleet of vehicles.

We bring this clarification here, once, and allow ourselves, with the reader’s permission, to narrate only very

steno-graphically.
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3.16.1.2 Calculating Single Sort Part Sets

Domain Description Prompt 2 calculate single sort parts sort: If is single set sort -

parts(e) holds, then the analyser “applies” the domain description prompt

• calculate single sort parts(e)

resulting in the analyser writing down the single set sort and sort observers domain description text according

to the following schema:

3. calculate single sort parts sort(e) Describer

let ( ,❝ P ❞) = analyse single sort part(e)48 in

❝ Narration:

[s ] ... narrative text on sort ...
[o ] ... narrative text on sort observer ...
[p ] ... narrative text on proof obligation ...

Formalisation:

type

[s ] P
[s ] Ps = P-set

value

[o ] obs Ps: E→ Ps ❞

end

48 For analyse single sort part see Sect. 3.15.2.2.1 on Page 63.

Elaboration 3 Type, Values and Type Names: Note the use of quotes above. Please observe that

when we write obs Ps then obs Ps is the name of a function. The Ps, when juxtaposed to obs is now a

name

Modelling Choice 2 Single Sort Part Sets: For compounds and structures the analyser cum describer

chooses some to be modelled as sets of endurants of the same sort.

3.16.1.3 Calculating Alternative Sort Part Sets

To motivate the alternative sorts notion we first bring this example.

Example 36 Alternative Rail Units

110 The example is that of a railway system.

111 We focus on railway nets. They can be observed

from the railway system.

112 The railway net embodies a set of [railway] net

units.

113 A net unit is either a straight or curved linear

unit, or a simple switch, i.e., a turnout, unit50 or

a simple cross-over, i.e., a rigid crossing unit, or

a single switched cross-over, i.e., a single slip

unit, or a double switched cross-over, i.e., a dou-

ble slip unit, or a terminal unit.

114 As a formal specification language technicality

disjointness of the respective rail unit types is af-

forded by RSL’s :: type definition construct.

We refer to Figure 3.4 on the facing page.

type

110. RS

111. RN

value

111. obs RN: RS→ RN

type

50 https://en.wikipedia.org/wiki/Railroad switch

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



3.16 Calculating Sort Describers 69

[L]
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Unit
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Fig. 3.4. Left: Four net units; Right: A railway net

112. NUs = NU-set

113. NU = LU | PU | RU | SU | DU | TU

114. LU :: LinU

114. PU :: PntU

114. SU :: SwiU

114. DU :: DblU

114. TU :: TerU

value

112. obs NUs: RN→ NUs

We continue this example in Example 50 on Page 93

Domain Description Prompt 3 calculate alternative sort part sorts: If is alternative -

sort parts sorts(e) holds, then the analyser “applies” the domain description prompt

• calculate alternative sort part sorts(e)

resulting in the analyser writing down the alternative sort and sort observers domain description text accord-

ing to the following schema:

4. calculate alternative sort part sorts(e) Describer

let ((p1,❝ E1 ❞),...,(pn,❝ En ❞)) = analyse alternative sorts part set sorts(e)51 in

❝ Narration:

[s ] ... narrative text on alternative sorts ...
[o ] ... narrative text on sort observers ...
[p ] ... narrative text on proof obligations ...

Formalisation:

type

[s ] Ea = E 1 | ... | E n
[s ] E 1 :: End 1, ..., E n :: End n
value

[o ] obs Ea: E→ Ea
axiom

[p ] [ disjointness of alternative sorts ] E 1, ..., E n
end

The set of parts, of different sorts, may have more than one element, say p, p′, ..., p′′ being of the same

sort E i. Since parts are not mentioned in the sort description above, cf., , only the distinct alternative sort

observers appear in that description.

51 For analyse alternative sort part sorts see Sect. 3.15.2.2.2 on Page 64.
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Modelling Choice 3 Alternative Sort Part Sets: For compounds and structures the analyser cum

describer chooses some to be modelled as sets of endurants of alternative sorts.

3.16.2 Calculating Structure Sorts

You will have observed that the compound parts and the structures endurants have in common that they both

analyse into composites, respectively sets. What distinguishes them is that compound parts have internal

qualities, but structures have not. Their “siblings” may, and usually will, have. Since this section, i.e.,

Sect. 3.16, is about sort describers only we can therefore “re-use” the sort observers of Sect. 3.16.1 – and

need therefore not “repeat” them here.

Modelling Choice 4 Structures: For discrete endurants the analyser cum describer chooses some to

be modelled as structures, that is, as an endurants with no substance “in-itself”, only in it “siblings”.

3.16.3 Calculating Conjoin Sorts

We remind the reader of Sect. 3.13.3 on Page 58 on conjoins.

3.16.3.1 Calculating Part-Materials Sorts

Domain Description Prompt 4 calculate part materials sorts: The domain description
prompt:

• calculate part materials sorts(e)

yields the conjoin sorts and conjoin sort observers domain description text according to the following schema:

5. calculate part materials sorts(e) Describer

let (( ,❝ P ❞),(( ,❝ M1 ❞),...,( ,❝ Mm ❞))) = analyse part materials sorts(e)53 in

❝ Narration:

[s ] ... narrative text on conjoin sorts ...
[o ] ... narrative text on conjoin sort observers ...

Formalisation:

type

[s ] P
[s ] M1, ..., Mm
value

[o ] obs P: E→ P
[o ] obs M1: E→ M1, ❞...❝ , obs Mm: E→ Mm ❞

end

53 For analyse part materials sorts see Sect. 3.15.4.1 on Page 64.

We shall mostly associate more than one material with a special kind of conjoins: the so-called treatment

conjoins, leaving all other conjoins to embody just one material.

Analysis Function Prompt 8 type name, type of, is :

The definitions of obs Mi: E -¿ Mi implicitly imply the definition of

• obs Mi(e) = mo ⊃ type name(mi) ≡ ❝ Mi ❞

obs Mi(e) = mi ⊃ type of(mi) ≡ Mi
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Modelling Choice 5 Part-Materials: For some physical parts the analyser cum describer chooses for

some to be modelled as conjoins, and then in the form of a “master” part of a set of “sibling” materials.

Pipeline Parts and Material

Example 37 We refer to Appendix Sect. A.1.

3.16.3.2 Calculating Material-Parts-Parts Sorts

Domain Description Prompt 5 calculate material parts parts sorts: The domain descrip-
tion prompt:

• calculate material parts parts sorts(e)

yields the material-parts-parts conjoin sorts and conjoin sort observers domain description text according to the

following schema:

6. calculate material parts sorts(e) Describer

let ( ,(❝ M,fP,mP ❞)) = analyse material parts parts material(e)55 in

❞Narration:

[s ] ... narrative text on conjoin sorts ...
[o ] ... narrative text on conjoin sort observers ...

Formalisation:

type

[s ] M, fP, mP
value

[o ] obs M: E→ M
[o ] obs fP: E→ fP
[o ] obs mP: E→ mP ❞

end

55 For analyse material parts parts sorts see Sect. 3.15.4.2 on Page 64.

Analysis Function Prompt 9 type name, type of, is :

The definitions of obs M: E→ M and obs P: E→ P implicitly imply the definition of

• obs M(e)=m ⊃ type name(m)≡❝ M ❞

obs fP(e)=fp⇒ type name(fp)≡❝ fP ❞

obs mP(e)=mp⇒ type name(mp)≡❝ mP ❞

obs M(e)=m ⊃ type of(m)≡M
obs fP(e)=fp⇒ type of(fp)≡fP
obs mP(e)=mp⇒ type of(mp)≡mP

Modelling Choice 6 Material-Parts-Parts: For some physical parts the analyser cum describer chooses

for some to be modelled as conjoins, and then in the form of a “master” material and of a set of “sibling”

materials.
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3.16.3.3 Calculating Part-Parts Sorts

Domain Description Prompt 6 calculate part parts sorts: The domain description
prompt:

• calculate part parts sorts(e)

yields the conjoin sorts and conjoin sort observers domain description text according to the following schema:

7. calculate part parts sorts(e) Describer

let ( ,(❝ P ❞,(❝ P1,...,Pn ❞))) = analyse part parts sorts(e) in

❝ Narration:

[s ] ... narrative text on conjoin sorts ...
[o ] ... narrative text on conjoin sort observers ...
[p ] ... proof obligation text ...

Formalisation:

type

[s ] P, P1, ..., Pn
value

[o ] obs P: E→ P
[o ] obs P1: E→ P1, ..., obs Pn: E→ Pn
axiom

[p ] [ disjointness of P1, ..., Pn ] ❞

end

56 For analyse part parts sorts see Sect. 3.15.4.3 on Page 65.

Analysis Function Prompt 10 type name, type of, is :

The definitions of obs P: E→ P implicitly imply the definition of

• obs P(e) = p ⊃ type name(p) ≡ ❝ P ❞

obs P(e) = p ⊃ type of(p) ≡ P
obs Pi(e) = pi ⊃ type name(pi) ≡ ❝ Pi ❞ [ i = 1,...,n ]

obs Pi(e) = pi ⊃ type of(pi) ≡ Pi [ i = 1,...,n ]

Modelling Choice 7 Part-Parts: As for composites, structures and, now, in general for conjoins the

analyser cum describer chooses for some model of a domain, one subset of the parts forming the conjoin,

for another model of supposedly “the same” domain another subset.

A Road Transport Domain, III: Part-Parts

Example 38

115 The structure of hubs is a set, sH, of atomic hubs, H.

116 The structure of links is a set, sL, of atomic links, L.

117 The structure of buses is a set, sBC, of composite bus companies, BC.

118 The composite bus companies, BC, are sets of buses, sB.

119 The structure of private automobiles is a set, sA, of atomic automobiles, A.

115 H, sH = H-set axiom ∀ h:H • is atomic(h)

116 L, sL = L-set axiom ∀ l:L • is atomic(l)

117 BC, BCs = BC-set axiom ∀ bc:BC • is composite(bc)

118 B, Bs = B-set axiom ∀ b:B • is atomic(b)

119 A, sA = A-set axiom ∀ a:A • is atomic(a)
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value

115 obs sH: SH→ sH

116 obs sL: SL→ sL

117 obs sBC: SBC→ BCs

118 obs Bs: BCs→ Bs

119 obs sA: SA→ sA

3.17 On Endurant Sorts

3.17.1 Derivation Chains

Let E be a composite sort or a structure. Let E1, E2, . . . , Em be the endurants “discovered” by means of

observe endurant sorts(e) where e:E. We say that E1, E2, . . . , Em are (immediately) derived from

E. If Ek is derived from E j and E j is derived from Ei, then, by transitivity, Ek is derived from Ei.

3.17.2 No Recursive Derivations:

We “mandate” that if Ek is derived from E j then sort name E j is different from sort name Ek and there

can be no Ek derived from E j , that is, Ek cannot be derived from Ek. That is, we do not “provide for”

recursive domain sorts. It is not a question, actually of allowing recursive domain sorts. It is, we claim

to have observed, in very many analysis & description experiments, that there are no recursive domain

sorts !58

3.17.3 Names of Part Sorts and Types

The domain analysis & description text prompts observe endurant sorts, as well as the below-

defined observe part type, observe component sorts and observe material sorts – as well as

the further below defined attribute names, observe material sorts, observe unique identifi-

er, observe mereology and observe attributes prompts introduced below – “yield” type names.

That is, it is as if there is a reservoir of an indefinite-sized set of such names from which these names

are selected, and once obtained are never again selected. There may be domains for which two distinct

part sorts may be composed from identical part sorts. In this case the domain analyser indicates so by
prescribing a part sort already introduced.

3.18 States

In our continued modelling we shall make good use of a concept of states.

Definition: 58 State: By a state we shall understand any collection of one or more parts

In Chapter 4 we introduce the notion of attributes. Among attributes there are the dynamic attributes. They

model that internal part quality values may change dynamically. So we may wish, on occasion, to ‘refine’

our notion of state to be just those parts which have dynamic attributes.

Given any universe of discourse, uod:UoD, we can recursively calculate its “full” state.

58 Some readers may object, but we insist ! If trees are brought forward as an example of a recursively definable

domain, then we argue: Yes, trees can be recursively defined, but it is not recursive. Trees can, as well, be defined

as a variant of graphs, and you wouldn’t claim, would you, that graphs are recursive ?
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120 Let e be any endurant.

Let arg parts be the parts to be calculated.

Let res parts be the parts calculated.

Initialise the calculator with arg parts={e} and res parts={}.
Calculation stops with arg parts empty and res parts the result.

121 If is composite(e) then we obtain its immediate parts, analyse composite part(e);
now rearrange argument and result parameters:

remove e from in parts;

add analyse composite part(e) to in parts;

and join e to out parts.

122 If is part parts(e) then we obtain its immediate parts;

then suitably rearrange argument and result parameters.

123 If is part materials(e) then we obtain its immediate parts;

then suitably rearrange argument and result parameters.

124 And so forth !

value

120. calc parts: E-set→ E-set→ E-set

120. calc parts(arg parts)(res parts) ≡
120. if arg parts = {} then res parts else

120. let e • e ∈ arg parts in

121. is composite(e)→
121. calc parts(analyse composite part(e))(res parts∪{e})
122. is part parts(e)→
122. calc parts(analyse part parts(e))(res parts∪{e})
123. is part materials(e)→
123. calc parts(analyse part materials(e))(res parts∪{e})
124. et cetera !
120. end end

Constants and States

Example 39

125 Let there be given a universe of discourse, rts. It is an example of a state.

From that state we can calculate other states.

126 The set of all hubs, hs.

127 The set of all links, ls.

128 The set of all hubs and links, hls.

129 The set of all bus companies, bcs.

130 The set of all buses, bs.

131 The set of all private automobiles, as.

132 The set of all parts, ps.

value

125 rts:UoD [125]

126 hs:H-set ≡:H-set ≡ obs sH(obs SH(obs RN(rts)))

127 ls:L-set ≡:L-set ≡ obs sL(obs SL(obs RN(rts)))

128 hls:(H|L)-set ≡ hs∪ls

129 bcs:BC-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

130 bs:B-set ≡ ∪{obs Bs(bc)|bc:BC•bc ∈ bcs}
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131 as:A-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

132 ps:(UoB|H|L|BC|B|A)-set≡ rts∪hls∪bcs∪bs∪as

Method Step 7 Domain State:

We have found, once all the state components, i.e., the endurant parts, have had their external qualities

analysed, that it is then expedient to define the domain state. It can then be the basis for several concepts

of internal qualities.

We refer to Sect. 6.2.1 on Page 127 for more on states.

3.19 A Domain Discovery Process, I

In this and some following sections59 we shall clarify some aspects of the domain analysis & descrip-
tion method. A method principle is that of exhaustively analyse & describe all external qualities of the

domain under scrutiny. A method technique implied here is that sketched in Sect. 4.8 on Page 118. The

method tools are here all the analysis and description prompts covered so far.

In this initial chapter on domain analysis & description we have systematically covered, first,

the analysis of external qualities of domain endurants, then the description of these. We have done so in

a style which analysed domains, as it were, “top-down”; from overall domain universes of discourse;

through entities, endurants, discrete and continuous (material) endurants; further “across” physical parts,

structures and living species; the natural and artefactual parts of the physical parts; to finally conclude our

external qualities analysis with the atomic, composite and conjoin parts. With the ontology of the external

qualities of domain endurants “behind us” we then concluded the main sections of this chapter with the

description of external domain qualities, that is, Describer Schemas 1–5 (Pages 66–71). We can now gather

all of this together with advice on a systematic process of performing the analysis & description process.

Chapters 4 (Sect. 4.8 on Page 118) and 6 (Sect. 6.12 on Page 158) will likewise systematise the processes

of discovering internal endurant qualities and perdurants, respectively.

3.19.1 A Domain Discovery Notice Board

Common to all the discovery processes is an idea of a notice board. A notice board, at any time in the

development of a domain description, is a repository of the analysis and description process. We suggest

to model the notice board in terms of three global variables. The new variable holds the parts yet to be

described, The ans variable holds the sort name of parts that have so far been described, the gen variable

holds the parts that have so far been described, and the txt variable holds the RSL-Text so far generated. We

model the txt variable as a map from endurant identifier names to RSL-Text.

A Domain Discovery Notice Board

variable

new := {uod} ,
asn := { ❝ UoD ❞}

gen := {} ,
txt:RSL-Text:= [ uid UoD(uod) 7→ 〈❝ type UoD ❞〉 ]

59 Sects. 4.8 on Page 118 and 6.12 on Page 158

August 16, 2020, 11:41, A Foundation for Software Development © Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark



76 3 DOMAINS – A Taxonomy External Qualities

3.19.2 An Endurant External Qualities Discovery Process

The discover sorts pseudo program suggests a systematic way of proceeding through analysis, manifested

by the is · · · predicates, to (→) description.

TSome comments are in order. The e-seta|e-setb expression yields a set of endurants that are either

in e-seta, or in e-seta, or in both, but such that two endurants, ex and ey which are of the same endurants

type, say E, and are in respective sets is only represented once in the result; that is, if they are type-wise

the same, but value-wise different they will only be included once in the result. As this is the first time

RSL-Text is put on the notice board we express this as:

• txt := txt ∪ [ type name(v) 7→ 〈RSL-Text〉 ]

Subsequent insertion of RSL-Text for internal quality descriptions and perdurants is then concatenated to

the end of previously uploaded RSL-Text.
An External Qualities Domain Analysis and Description Process

value

discover sorts: Unit→ Unit

discover sorts() ≡
while new , {} do let v • v ∈ new in

( new := new \ {v} ‖ gen := gen ∪ {v} ‖ ans := ans \ {type of(v)} ) ;

is atomic(v)→ skip ,

is compound(v)→
is composite(v)→

let ((e1,...,en),(❝ E1,...,En ❞))=analyse composite parts(v) in

( ans := ans ∪ {❝ E1,...,En ❞} ‖ new := new | {e1,...,en}
‖ txt := txt ∪ [ type name(v) 7→ 〈calculate composite part sorts(v)〉 ] ) end,

is set(v)→
( is single sort set(v)→

let ({p1,...,pn},❝ P ❞)=analyse single sort parts set(v) in

( ans := ans ∪ {❝ P ❞} ‖ new := new | {p1,...,pn} ‖
txt := txt ∪ [ type name(v) 7→ calculate single sort part sort(v) ] ) end,

is alternative sorts set(v)→
let ((p1,❝ E1 ❞),...,(pn,❝ En ❞))= analyse alternative sorts part set(v) in

( ans := ans ∪ {❝ E1,...,En ❞} ‖ new := new | {p1,...,pn} ‖
txt := txt ∪ [ type name(v) 7→ calculate alternative sorts part sort(v) ] ) end ),

is conjoin(v)→
( is part materials conjoin(v) →

let ((p,❝ P ❞),{(m1,❝ M 1 ❞),...,(mm,❝ M m ❞)})=analyse part materials(v) in

( new := new | {m1,...,mn} ‖ ans := ans ∪ {❝ P ❞} ‖
txt := txt ∪ [ type name(v) 7→ 〈describe part materials sorts(v)〉 ] ) end,

is material parts parts conjoin(v) →
let((m,{fp1,...fpm},{mp1,...,mpn}),(❝ M,fP,mP ❞))=analyse material parts parts(v) in

( ans := ans ∪ {❝ M,fP,mP ❞} ‖ new := new | {m,fp1,...fpm}
‖ txt := txt ∪ [ type name(v) 7→ 〈describe material parts parts sorts(v)〉 ] ) end,

is part parts conjoin(v) →
let ((p,(p1,p2,...,pn)),(❝ P ❞,(❝ P1,...,Pn ❞)))=analyse part parts(v) in

( ans := ans ∪ {❝ P,P1,...,Pn ❞} ‖ new := new | {p,p1,...,pn}
‖ txt := txt ∪ [ type name(v) 7→ 〈describe part parts sorts(v)〉 ] ) end ) end end

3.19.3 An Assumption

In the above External Qualities Domain Analysis and Description Process Schema we have conjectured

that atomic parts have already had their type and observer function defined.

59 For structures we remove the structure endurants, here v, from ans as it has no “root” part to be further analysed

and described. This marks – a major – difference between composite endurants and structure endurants.
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3.20 Formal Concept Analysis

Domain analysis involves that of concept analysis. As soon as we have identified an entity for analysis

we have identified a concept. The entity is usually a spatio-temporal, i.e., a physical thing. Once we speak

of it, it becomes a concept. Instead of examining just one entity the domain analyser shall examine many

entities. Instead of describing one entity the domain describer shall describe a class of entities. Ganter &

Wille’s [158] addresses this issue.

3.20.1 A Formalisation

This section is a transcription of Ganter & Wille’s [158] Formal Concept Analysis, Mathematical Founda-

tions, the 1999 edition, Pages 17–18.

Some Notation: By E we shall understand the type of entities; by E we shall understand a phenome-

non of type E ; by Q we shall understand the type of qualities; by Q we shall understand a quality of type

Q; by E -set we shall understand the type of sets of entities; by ES we shall understand a set of entities of

type E -set; by Q-set we shall understand the type of sets of qualities; and by QS we shall understand a a

set of qualities of type Q-set.

Definition: 59 Formal Context: A formal context K := (ES,I,QS) consists of two sets; ES of

entities andQS of qualities, and a relation I between E and Q

To express that E is in relation I to a Quality Q we write E · I ·Q, which we read as “entity E has quality

Q” Example endurant entities are a specific vehicle, another specific vehicle, et cetera; a specific street

segment (link), another street segment, et cetera; a specific road intersection (hub), another specific road

intersection, et cetera, a monitor. Example endurant entity qualities are (a vehicle) has mobility, (a vehicle)

has velocity (≥0), (a vehicle) has acceleration, et cetera; (a link) has length (>0), (a link) has location, (a

link) has traffic state, et cetera.

Definition: 60 Qualities Common to a Set of Entities: For any subset, sES ⊆ ES, of entities we

can define DQ for “derive[d] set of qualities”.

DQ : E -set→ (E -set × I × Q-set)→ Q-set

DQ(sES)(ES,I,QS) ≡ {Q | Q:Q,E:E • E∈sES ∧ E · I ·Q}
pre: sES ⊆ ES

The above expresses: “the set of qualities common to entities in sES”

Definition: 61 Entities Common to a Set of Qualities: For any subset, sQS⊆QS, of qualities we

can define DE for “derive[d] set of entities”.

DE : Q-set→ (E -set × I × Q-set)→ E -set

DE (sQS)(ES,I,QS) ≡ {E | E:E , Q:Q • Q∈sQ ∧ E · I ·Q },
pre: sQS ⊆ QS

The above expresses: “the set of entities which have all qualities in sQS”

Definition: 62 Formal Concept: A formal concept of a context K is a pair:

• (sQ,sE) where

⋄⋄ DQ(sE)(E,I,Q) = sQ and

⋄⋄ DE (sQ)(E,I,Q) = sE;

• sQ is called the intent ofK and sE is called the extent ofK
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3.20.2 Types Are Formal Concepts

Now comes the “crunch”: In the TripTych domain analysis we strive to find formal concepts and,
when we think we have found one, we assign a type (or a sort) and qualities to it !

3.20.3 Practicalities

There is a little problem. To search for all those entities of a domain which each have the same sets of

qualities is not feasible. So we do a combination of two things: (i) we identify a small set of entities all

having the same qualities and tentatively associate them with a type, and (ii) we identify certain nouns of

our national language and if such a noun does indeed designate a set of entities all having the same set

of qualities then we tentatively associate the noun with a type. Having thus, tentatively, identified a type

we conjecture that type and search for counterexamples, that is, entities which refute the conjecture. This

“process” of conjectures and refutations is iterated until some satisfaction is arrived at that the postulated

type constitutes a reasonable conjecture.

3.20.4 Formal Concepts: A Wider Implication

The formal concepts of a domain form Galois Connections [158]. We gladly admit that this fact is one of

the reasons why we emphasise formal concept analysis. At the same time we must admit that this paper

does not do justice to this fact. We have experimented with the analysis & description of a number of

domains, and have noticed such Galois connections, but it is, for us, too early to report on this. Thus we

invite the reader to study this aspect of domain analysis.

3.21 Summary

This chapter’s main title was: DOMAINS – A Taxonomy. So, the taxonomy of a domain, such as we have

studied it and such as we ordain one aspect of domain analysis & description, is about manifestly

visible and tangible properties, that is, the external qualities. For that study & practice we have suggested a

number of analysis & description prompts.

3.21.1 The Description Schemas

We have culminated this chapter with the analysis prompts 1–6 (Pages 63–65), and the description prompts

1–6 (Pages 66–72).

They all describe the, in our case RSL, domain description text to ‘produce’ when external quality

analysing & describing a given endurant; but what about the description of those endurants revealed by the
analysis & description of that given endurant ?

The answer is simple. That is up to you ! The domain analysis & description method primarily

gives you the tools. But !

• A principle of the method could be to secure that all relevant, i.e., implied, endurants are analysed &

described.

• A technique could be to, somehow, “set aside” all those endurants revealed by the analysis & descrip-
tion of any given endurant – with the proviso that no endurant, of type, for example, P, is analysed &

described more than once.

We refer to Sect. 3.19 on Page 75 for a suggested analysis & description technique (cum pseudo program

expressed in pseudo RSL).
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3.21.2 Modelling Choices

In this chapter we have put forward some advice on description choices: We refer to Modelling Choices
1–7 (Pages 66–72). The analysis predicates and functions are merely aids. They do not effect descriptions,

but descriptions are based on the result of inquiries based on deployment of these predicates and functions.

Real decisions are made when effecting a description function. So the rôle of these modelling choice

paragraphs is to alert the describer to make judicious choices.

3.21.3 Method Principles, Techniques and Tools

Recall that by a method we shall understand a set of principles for selecting and applying a set of tech-
niques using a set of tools in order to construct an artefact.

3.21.3.1 Principles of External Qualities

In this chapter we have illustrated the use of the following principles:

Divide and Conquer: We claim that the divide principle is applied in establishing the ontology: in dis-

tinguishing between describables and non-describables, in distinguishing between endurants and per-

durants, and in otherwise suggesting the taxonomy as illustrated in Fig. 3.1 on Page 44. We claim

that a guiding principle in this “division” has been Kai Sørlander’s Philosophy. And we claim that this

“division” has helped and will help “conquer” the complexity of issues as they continue to unfold in

the next chapters.

Abstraction: This principle is applied in simply focusing on abstract names for endurant sorts, disre-

garding any further meaning of these names – meanings that will be “revealed” as we go along in

analysing as describing, in the next chapters, first unique identifiers, mereologies and attributes, then

the elements of perdurants.

Narration & Formalisation: This principle is applied in developing and presenting the domain en-

durant descriptions which are always, as shown in both the description schemas and in those examples

which do present formalisations, in that they also show narratives.

3.21.3.2 Techniques of External Qualities

In this chapter we have illustrated the use of the following techniques:

Model-oriented Specification: Although we say model-oriented, there really are three aspects to our

formal specifications: the use of discrete mathematics60 – so far logic, sets, Cartesians; the use of

RSL’s specification/programming-like constructs: type definitions, function signatures, etc.; and the

use of abstract sorts – as “inspired” from algebraic specifications.

Formal Concept Analysis: This technique, whose mathematical foundation was outlined in Sect. 3.20,

involves “top-down” analysis, from most abstract concepts towards less and less abstract concepts,

versus “bottom-up” analysis i.e., the “other way around”. We refer to Sect. 3.14.

3.21.3.3 Tools of External Qualities

The main tools are the English language, used in narrative descriptions, the RAISE Specification Language

RSL, used in formal descriptions, and the analysis and description prompts – reviewed below – and as used

by the domain analyser & describer, but a use that may not necessarily be explicitly recorded, as their

“existence” are to mainly serve as aide-mémoire.
In this chapter we have introduced a number of external qualities analysis prompts. Let π designate a

phenomena. The following are some of the external qualities analysis prompts.

• If a phenomenon, φ , is entity(φ ) then it 1 Pg. 43

60 – thus accounting for our use of the term ‘model-oriented’
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⋄⋄ is endurant(e) or 2 Pg. 47

⋄⋄ is perdurant(e). 3 Pg. 48

• If an entity, e, is endurant(e), then it

⋄⋄ is discrete(e) or 4 Pg. 48

⋄⋄ is material(e). 5 Pg. 49

• If an endurant, e, is discrete(e), then it

⋄⋄ is physical part(e) or 6 Pg. 50

⋄⋄ is structure(e) or 7 Pg. 50

⋄⋄ is living species(e). 8 Pg. 51

• If a discrete endurant, e, is physical part(e) then it

⋄⋄ is natural part(e) or 9 Pg. 51

⋄⋄ is artefact(e). 10 Pg. 51

We have “lumped” natural and artefactual parts into just parts. So you will not find this

characteristic reflected in Fig. 3.1 on Page 44. Still:

• If a discrete endurant, e, is physical part(e) then it

⋄⋄ is atomic(e) or 16 Pg. 56

⋄⋄ is compound(e) or 17 Pg. 56

⋄⋄ is conjoin(e). 22 Pg. 59

• If a physical part, e, is is compound(e) then it

⋄⋄ is composite(e) or 18 Pg. 57

⋄⋄ is set(e). 19 Pg. 57

• Analysis of endurants into composites enables

⋄⋄ analyse composite parts(e) 1 Pg. 63

And this, finally, enable

◦◦ calculate composite parts sorts(e), respectively 1 Pg. 66

• If a compound, e, is set(e) then it

⋄⋄ is single sort set(e) or 20 Pg. 58

⋄⋄ is alternative sorts set(e). 21 Pg. 58

• Analysis of endurants into sets enables

⋄⋄ analyse single sort part set(e), respectively 2 Pg. 63

⋄⋄ analyse alternative sorts part set(e). 3 Pg. 64

And these, finally, enable

◦◦ calculate single sort parts sort(e), respectively 2 Pg. 68

◦◦ calculate alternative sort part sorts(e) 3 Pg. 69

• If a compound, e, is conjoin(e) then it

⋄⋄ is part materials conjoin(e) or 23 Pg. 59

⋄⋄ is material parts conjoin(e) or 24 Pg. 60

⋄⋄ is part parts conjoin(e). 25 Pg. 61

which, respectively enables

⋄⋄ analyse part materials conjoin(e) 4 Pg. 64

⋄⋄ analyse material parts parts conjoin(e) 5 Pg. 64

⋄⋄ analyse part parts conjoin(e) 6 Pg. 65

and these, finally enables

◦◦ calculate part materials sorts(e), 4 Pg. 70

◦◦ calculate material parts parts sorts(e), 5 Pg. 71

◦◦ calculate part parts sorts(e) or 6 Pg. 72

• If a discrete endurant, e, is living species(e) then it

⋄⋄ is plant(e) or 13 Pg. 54

⋄⋄ is animal(e). 14 Pg. 54

• Some animals satisfy

⋄⋄ is human(e). 15 Pg. 54
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3.21.4 How Much or How Little Do We Analyse and Describe ?

How many of a domain’s external qualities do we analyse and describe ? There are two kinds of answers

to this question. An Engineering Answer: This kind of answer may be relevant for the case of a full

scale software development – where a domain engineering phase is followed by a requirements engineer-

ing phase which is then followed by a software design phase. We may then try to capture just what we

think we need for that subsequent requirements capture, its analysis and prescription. Or, to “guard against

unforeseen eventualities”, a little more ! Reading engineering domain analysis & description case studies

helps. So do experience ! A Scientific Answer: Or we try to capture “all” ! Now that is clearly not pos-

sible, at least not “in one fell swoop”61 ! So how do we go about it, as domain scientists cum engineers ?

We do it “domain-area-by-domain-area”. Sort of, for example like this: First what is thought of as a core

domain is analysed & described. Then some additional aspects, i.e., entities, are included in a next analysis

& description – leaving out, typically, some initially analysed & described entities. and so on. Just like, for

example, physicists, analyse & describe natural world phenomena.

We shall have more to say about what to include and what to exclude in the next chapters.

3.22 Bibliographical Notes

We refer to [70, Sect. 5.3] for a thorough, 2016–2017, five page review of types in formal specification and

programming languages.

3.23 Exercise Problems

We embark of a series of exercise problems, cf. Sects. 4.12 on Page 121, 6.14 on Page 161, 7.11 on

Page 195 and 8.9 on Page 243.

3.23.1 Research Problems

Exercise 1 A Research Challenge. Reformulate Composites as Conjoins: In this chapter we

have treated artefactual composites apart from conjoins. But, really, are these artefacts not also conjoins ?

Reformulate the appropriate text to reflect this “change of ontology” !

Exercise 2 A Research Challenge. Symmetry of Part-Parts Conjoins: Sets versus Compos-
ites: In this chapter we have suggested Material-Parts, Part-Materials and Part-Parts conjoins. The

‘plural’ s in material-parts means that we allow a set, more precisely, an indefinite number of parts; the plu-

ral s in part-materials means that we expect either a single or a Cartesian of a definite number of materials,

expressed as a Cartesian; and the ‘plural’ s in part-parts means that we allow sets of parts.

[Q1] Consider a Part-Cartesian-Parts conjoin, almost like the Part-Parts conjoin but with a definite

number of parts of possibly distinct sorts. How is that possibility different from the suggestion of research

problem 1 above ?

[Q2] Could one contemplate a variant Part-Materials variant where the s indicates that we now expect

an in definite number of materials ?

[Q3] Discuss those possibilities, [a–b], and reformulate ontology accordingly.

3.23.2 A Student Exercise

Exercise 3 An MSc Student Exercise. Document System Parts: A document system consists of

persons and documents. To anticipate exercise 29 on Page 163 we characterise, so that the reader can

get at what we mean by documents, these as subject to the following operations:

61 To do something in one fell swoop is to do it suddenly or in a single, swift action.
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[a] creation: before there might have been a number of unrelated documents – now there is a

[new] document, with some text created and written by a person; [b] editing: before there was a

document – now there is a document with text and editing being done by a person; [c] reading:
before there was a document – now there is “the same” document, only now it has been read by a

person; [d] copying: before there was a document – now there is “the same” document, only now

it has been copied by a person – and there is a copy (of the former, still existing, separate document)

identifying that (former) document and with all the “contents” of the “original” of which it is a

copy – the ‘copy’ creator is also identified; [e] shredding: before there was a document – now

that document no longer “exists” – but otherwise all other documents remain unchanged !

[Q1] You are to narrate and formalise the parts of the document system.

[Q2] Are shredded documents to be a part of the system ?

This exercise is continued in Exercises 16 on Page 121, 17 on Page 121, 18 on Page 122 and 29 on

Page 163.

3.23.3 Term Projects

In a textbook as this we cannot primarily rely on simple 10 line problems. It should be clear to the reader:

lecturer and student, that exercise problems must be more-or-less comprehensive; they must encompass a

reasonably well-delineated domain. We now list a number of such potential problem domains62:

1 the consumer, retailer, wholesaler, etc., merchandise market;

2 financial service industry;

3 container line industry – with the (possibly overlapping) subdomain:

a container terminal ports,

b container stowage, and

c container logistics;

4 railways systems;

5 waste disposal systems,

We suggest that the lecturer, who is using this primer for a dedicated series of lectures on domain analysis

& description,

• “divide” the class students into one or more groups of preferably 4–6 students each.

• that each group be assigned a distinct domain.

62 We refer to a number of experimental domain analysis & description reports:

• 2019: Container Terminal Ports, ECNU, Shanghai, China URL: imm.dtu.dk/ dibj/2018/yangshan/-

maersk-pa.pdf

• 2018: Documents, TongJi Univ., Shanghai, China URL: imm.dtu.dk/˜dibj/2017/docs/docs.pdf

• 2017: Urban Planning, TongJi Univ., Shanghai, China URL: imm.dtu.dk/˜dibj2017/up/urban-plan-

ning.pdf

• 2017: Swarms of Drones, Inst. of Softw., Chinese Acad. of Sci., Peking, China URL: imm.dtu.dk/˜dibj/-

2017/swarms/swarm-paper.pdf

• 2013: Road Transport, Techn. Univ. of Denmark URL: imm.dtu.dk/˜dibj/road-p.pdf

• 2012: Credit Cards, Univ. of Uppsala, Sweden URL: imm.dtu.dk/˜dibj/2016/credit/accs.pdf

• 2912: Weather Information, Univ. of Bergen, Norway URL: imm.dtu.dk/˜dibj/2016/wis/wis-p.pdf

• 2010: Web-based Transaction Processing, Techn. Univ. of Vienna, Austria URL: imm.dtu.dk/˜dibj/-

wfdftp.pdf

• 2010: The Tokyo Stock Exchange, Tokyo Univ., Japan URL: imm.dtu.dk/˜db/todai/tse-1.pdf, URL:

imm.dtu.dk/˜db/todai/tse-2.pdf

• 2009: Pipelines, Techn. Univ. of Graz, Austria URL: imm.dtu.dk/˜dibj/pipe-p.pdf

• 2007: A Container Line Industry Domain, Techn. Univ. of Denmark URL: imm.dtu.dk/˜dibj/container-

-paper.pdf

• 2002: The Market, Techn. Univ. of Denmark URL: imm.dtu.dk/˜dibj/themarket.pdf

• 1995–2004: Railways, Techn. Univ. of Denmark - a compendium URL: imm.dtu.dk/˜dibj/train-book.pdf
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• and that, from week-to-week they discuss and write down their analysis and description (narratives and

formalisations) of that domain, in phases corresponding to the ‘Exercise Problem’ Sects. 3.23.3 (the

next section), and forthcoming sections: 4.12.3, 6.14.3, 7.11.2 and 8.9.2.

• For teachers and individual students the publisher provides access to “large scale” examples covering

several of the exercise domains that we have listed.

We shall briefly illustrate some external quality aspects of these domains,

• in a first week of study, completely unstructured – since , you have not yet learned the full contents of

this chapter, “rambling on”; to be followed,

• in a second week of study, once you have learned the “stuff” of this chapter, more structured, and

according to the concepts of this chapter.

Exercise 4 An MSc Student Exercise. The Consumer Market, External Qualities: You are to

analyse and describe the external qualities of ‘the market’ domain of artefactual entities including con-

sumers, retailers, wholesalers, possibly importers/exporters, and producers of merchandise aimed at ordi-

nary consumers.

Exercise 5 An MSc Student Exercise. Financial Service Industry, External Qualities: You

are to analyse and describe the external qualities of a financial service industry domain of artefactual

entities including banks, insurance companies, mortgage institutions, brokers and stock exchanges. Of

what discrete endurants consists the banks, insurance companies, mortgage institutions, brokers and stock

exchanges ?

Exercise 6 An MSc Student Exercise. Container Line Industry, External Qualities: You are

to analyse and describe the external qualities of a container line industry domain of artefactual entities

including containers, container vessels, container terminal ports, trucks (transporting containers between

customers and terminal ports), and the container line management. Of what discrete endurants consists

these and related discrete endurants ?

Exercise 7 An MSc Student Exercise. Railway Systems, External Qualities: You are to analyse

and describe the external qualities of a railway domain of artefactual entities including trains and railway

nets. Of what discrete endurants consists the trains, and of what discrete endurants consists the railway

nets ?

Exercise 8 A PhD Student Problem. Part-Material Conjoins: Canals, External Qualities: We

refer to Example 31 on Page 59. You are to analyse and describe the external qualities of a canal system

of artefactual entities including locks, straight (if curved) stretches of canals, and canal forks and joins

(diverting, respectively collecting) water flows.

Exercise 9 A PhD Student Problem. Part-Materials Conjoins: Rum Production, External
Qualities: We refer to Example 15 on Page 50. You are to analyse and describe the external qualities

of a rum production system of artefactual entities including sugar cane fields, transport links from fields

to sugar cane chopping facilities, such facilities, from these to the rum distillery, rum distilleries with their

pot- or column stills and other production means, ware houses, an so forth.

Exercise 10 A PhD Student Problem. Part-Materials Conjoins: Waste Management, Exter-
nal Qualities: We refer to Example 32 on Page 60. You are to analyse and describe a waste management

systems domain of artefactual entities, say focusing on just the (a) waste conveyors (whether ‘belts’ or

‘pipe’) and (b) waste processors: (a) conveyor belts or pipes, their “merging” and “diversion” (joins and

forks), their initial sources and ultimate sinks, whether pumps (as for pipe) or no such things (as for me-

chanically moving belts that either move goods upwards, horisontally, or downwards, etc.); (b) industrial,
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sewage, agricultural product, leachate63, or other, biological, etc., treatment. Note that conveyor nets are

directional and have no cycles.

These exercise problems are continued in Sects. 4.12.3 on Page 122, 6.14.3 on Page 163, 7.11.2 on

Page 195 and 8.9.2 on Page 243.

63 A leachate is any liquid that, in the course of passing through matter, extracts soluble or suspended solids, or any

other component of the material through which it has passed.
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4

DOMAINS – Towards a Statics1 Ontology

Internal Qualities

In this chapter we introduce the concept of internal qualities of endurants, and cover the analysis
and description of unique identifiers, mereologies and attributes of endurants. There is
yet another, interrelating internal quality: intentionality, “something” that expresses intention,
design idea, purpose of artefacts – well, some would say, also natural endurants.

External qualities of endurants of a manifest domain are, in a simplifying sense, those we can see and

touch. They so to speak, take form.

Internal qualities of endurants of a manifest domain are, in a less simplifying sense, those which we

may not be able to see or “feel” when touching an endurant, but they can, as we now ‘mandate’ them, be rea-

soned about, as for unique identifiers and mereologies, or be measured by some physical/chemical
means, or be “spoken of” by intentional deduction, and be reasoned about, as we do when we attribute
properties to endurants.

As it turns out2, to analyse and describe mereology we need first analyse and describe unique identifiers;

and to analyse and describe attributes we need first analyse and describe mereologies. Hence:

Method Step 8 Sequential Analysis & Description of Internal Qualities:

We advice that the domain analyser & describer first analyse & describe unique identification of all

endurant sorts; then analyse & describe mereologies of all endurant sorts; finally analyse & describe

attributes of all endurant sorts.

In this monograph we shall not suggest the modelling of unique identifiers and mereology of materials. We

shall comment on that in appropriate sections.

4.1 Overview of this Chapter

• Section 4.2 covers the crucial notion of unique identification of endurants;

• Sect. 4.3 the likewise important notion of mereology – relations between parts;

• Sect. 4.4 covers the notion of attributes, that, which in a sense, gives “flesh & blood’ to endurants; and

• Sect. 4.5 covers the novel notion, in computing, that of “intentional pull”.

• Finally Sect. 4.8 follows up on the domain discovery process of Sect. 3.19.

Other sections provide elucidation or summary observations.

4.2 Unique Identifiers

The concept of parts having unique identifiability, that is, that two parts, if they are the same, have the

same unique identifier, and if they are not the same, then they have distinct identifiers, that concept is

fundamental to our being able to analyse and describe internal qualities of endurants. So we are left with

the issue of “sameness” !

1 The ‘Statics’ refer back to ‘DOMAINS’ – not to ‘Ontology’ !
2 You, the first time reader cannot know this, i.e., the “turns out”. Once we have developed and presented the material

of this chapter, then you can see it; clearly !
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4.2.1 On Uniqueness of Endurants

We therefore introduce the notion of unique identification of part endurants. We assume (i) that all part

endurants, e, of any domain E, have unique identifiers, (ii) that unique identifiers (of part endurants e:E)

are abstract values (of the unique identifier sort UI of part endurants e:E), (iii) such that distinct part

endurant sorts, Ei and E j , have distinctly named unique identifier sorts, say UIi and UI j
3, and (iv) that all

uii:UIi and ui j:UI j are distinct.

Representation of Unique Identifiers: Unique identifiers are abstractions. When we endow two

endurants (say of the same sort) distinct unique identifiers then we are simply saying that these two en-

durants are distinct. We are not assuming anything about how these identifiers otherwise come about.

Identifiability of Endurants: From a philosophical point of view, and with basis in Kai Sørlander’s

Philosophy, cf. Paragraph Identity, Difference and Relations (Page 14), one can rationally argue that

there are many endurants, and that they are unique, and hence uniquely identifiable. From an empirical

point of view, and since one may eventually have a software development in mind, we may wonder how

unique identifiablity can be accommodated.

Unique identifiability for discrete endurants even though they may be mobile, is straightforward: one

can think of of many ways of ascribing a unique identifier to any part; discrete endurants do not “morph”4.

Hence one can think of many such unique identification schemas.

Unique identifiability for materials may seem a bit more tricky. For this monograph we shall not suggest

to endow materials with unique identification. We have simply not experimented with such part-materials

and material-parts domains – not enough – to suggest so.

4.2.2 Uniqueness Modelling Tools

The analysis method offers an observer function uid E which when applied to part endurants, e, yields the

unique identifier, ui:UI, of e.

Domain Description Prompt 7 describe unique identifier: We can therefore apply the domain
description prompt:

• describe unique identifier

to endurants e:E resulting in the analyser writing down the unique identifier type and observer domain de-

scription text according to the following schema:

8. describe unique identifier Observer

❝ Narration:

[s ] ... narrative text on unique identifier sort UI ...
[u ] ... narrative text on unique identifier observer uid E ...
[a ] ... axiom on uniqueness of unique identifiers ...

Formalisation:

type

[s ] UI
value

[u ] uid E: E→ UI ❞

is part(e) is a prerequisite for describe unique identifier(e).

The unique identifier type name, UI above, chosen, of course, by the domain analyser cum describer,
usually properly embodies the type name, E, of the endurant being analysed and mereology-described.

Thus a part of type-name E might be given the mereology type name EI. Generally we shall refer to these

names by UI.

3 This restriction is not necessary, but, for the time, we can assume that it is.
4 – from a state of being solid, but in various “shapes”, via states of melting, to states of vapour
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Analysis Function Prompt 11 type name, type of, is :

Given description schema 7 we have, so-to-speak, “in-reverse” that

∀ e:E • uid E(e)=ui⇒ type of(ui)=UI ∧ type name(ui)=❝ UI ❞∧ is UI(ui)

Unique Identifiers

Example 40

133 We assign unique identifiers to all parts.
134 By a road identifier we shall mean a link or a hub

identifier.
135 By a vehicle identifier we shall mean a bus or an

automobile identifier.
136 Unique identifiers uniquely identify all parts.

a All hubs have distinct [unique] identifiers.

b All links have distinct identifiers.

c All bus companies have distinct identifiers.

d All buses of all bus companies have distinct

identifiers.

e All automobiles have distinct identifiers.

f All parts have distinct identifiers.

type

133 H UI, L UI, BC UI, B UI, A UI
134 R UI = H UI | L UI
135 V UI = B UI | A UI
value

136a uid H: H→ H UI
136b uid L: H→ L UI
136c uid BC: H→ BC UI
136d uid B: H→ B UI
136e uid A: H→ A UI

4.2.3 All Unique Identifiers of a Domain

Given a universe of discourse we can calculate the set of the unique identifiers of all its parts.

value

calculate all unique identifiers: UoD→ UI-set

calculate all unique identifiers(uod) ≡
let parts = calc parts({uod})({}) in

{ uid E(e) | e:E • e ∈ parts } end

Road Transport: Unique Identifier Auxiliary Functions

Example 41 Extract Parts from Their Unique Identifiers: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

137 From the unique identifier of a part we can retrieve, ℘, the part having that identifier.

type

137 P = H | L | BC | B | A
value

137 ℘: H UI→H | L UI→L | BC UI→BC | B UI→B | A UI→A

137 ℘(ui) ≡ let p:(H|L|BC|B|A)•p∈ps∧uid P(p)=ui in p end

4.2.4 Unique Identifier Constants

Given a domain which do not “grow” or “shrink” in its number of observable endurants we can speak of

the constancy of their sets of unique identifiers.
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value

all uniq ids: Unit→ Unit

all uniq ids() ≡
let ps = calc parts(uod) in

{ uid E(p) | p ∈ ps ∧ type name(p)=❝ E ❞} end

Unique Identifier Constants

Example 42 We can calculate:

138 the set, huis, of unique hub identifiers;

139 the set, luis, of unique link identifiers;

140 the map, hluim, from unique hub identifiers to the set of unique link iidentifiers of the links connected

to the zero, one or more identified hubs,

141 the map, lhuim, from unique link identifiers to the set of unique hub iidentifiers of the two hubs

connected to the identified link;

142 the set, ruis, of all unique hub and link, i.e., road identifiers;

143 the set, bcuis, of unique bus company identifiers;

144 the set, buis, of unique bus identifiers;

145 the set, auis, of unique private automobile identifiers;

146 the set, vuis, of unique bus and automobile, i.e., vehicle identifiers;

147 the map, bcbuim, from unique bus company identifiers to the set of its unique bus identifiers; and

148 the (bijective) map, bbcuibm, from unique bus identifiers to their unique bus company identifiers.

value

138 huis:H UI-set ≡ {uid H(h)|h:H•h ∈ hs}
139 luis:L UI-set ≡ {uid L(l)|l:L•l ∈ ls}
142 ruis:R UI-set ≡ huis∪luis

140 hluim:(H UI→m L UI-set) ≡
140 [h ui 7→luis|h ui:H UI,luis:L UI-set•h ui∈huis∧( ,luis, )=mereo H(η(h ui)) ] [cf. Item 167]

141 lhuim:(L+UI→m H UI-set) ≡
141 [ l ui 7→huis | h ui:L UI,huis:H UI-set • l ui∈luis ∧ ( ,huis, )=mereo L(η(l ui)) ] [cf. Item 168]

143 bcuis:BC UI-set ≡ {uid BC(bc)|bc:BC•bc ∈ bcs}
144 buis:B UI-set ≡ ∪{uid B(b)|b:B•b ∈ bs}
145 auis:A UI-set ≡ {uid A(a)|a:A•a ∈ as}
146 vuis:V UI-set ≡ buis ∪ auis

147 bcbuim:(BC UI→m B UI-set) ≡
147 [ bc ui 7→ buis | bc ui:BC UI, bc:BC • bc∈bcs ∧ bc ui=uid BC(bc) ∧ ( , ,buis)=mereo BC(bc) ]
148 bbcuibm:(B UI→m BC UI) ≡
148 [ b ui 7→ bc ui | b ui:B UI,bc ui:BC ui • bc ui=dombcbuim∧b ui∈bcbuim(bc ui) ]

4.2.5 A Domain Law: Uniqueness of Endurant Identifiers

We postulate that the unique identifier observer functions are about the uniqueness of the postulated en-

durant identifiers, but how is that guaranteed ? We know, as “an indisputable law of domains”, that they are

distinct, but our formulas do not guarantee that ! So we must formalise their uniqueness.

All Parts of a Domain have Unique Identifiers

A Domain Law 1 All Parts of a Domain have Unique Identifiers:

149 All parts of a described domain have unique identifiers.

axiom

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



4.3 Mereology 89

149 card calc parts(uod) = card calculate all unique identifiers(uod)

Uniqueness of Road Net Identifiers

Example 43 We must express the following axioms:

150 All hub identifiers are distinct.

151 All link identifiers are distinct.

152 All bus company identifiers are distinct.

153 All bus identifiers are distinct.

154 All private automobile identifiers are distinct.

155 All part identifiers are distinct.

axiom

150 card hs = card huis

151 card ls = card luis

152 card bcs = card bcuis

153 card bs = card buis

154 card as = card auis

155 card {huis∪luis∪bcuis∪buis∪auis}
155 = card huis+card luis+card bcuis+card buis+card auis

We ascribe, in principle, unique identifiers to all endurants whether natural or artefactual. We find, from our

many experiments, cf. the Universes of Discourse example, Page 40, that we really focus on those domain

entities which are artefactual endurants and their behavioural “counterparts”.

Pipeline Unique Identifiers

Example 44 We refer to Appendix Sect. A.2.

Rail Net Unique Identifiers

Example 45

156 With every rail net unit we associate a unique

identifier.

157 That is, no two rail net units have the same

unique identifier.

158 Trains have unique identifiers.

159 We let tris denote the set of all train identifiers.

160 No two distinct trains have the same unique

identifier.

161 Train identifiers are distinct from rail net unit

identifiers.

type

156. UI
value

156. uid NU: NU→ UI

axiom

157. ∀ ui i,ui j:UI •

157. ui i = ui j ≡ uid NU(ui i)=uid NU(ui j)

4.3 Mereology

We refer to introductory section Sect. 2.8.2 on mereology as a philosophical–logic subject and Appendix

Sect. B for closing material on mereology. We shall not endow materials with mereologies. We shall

comment on this in Sect. 4.3.5 on Page 93.

Definition: 63 Mereology: Mereology is the study and knowledge of parts and part relations
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Mereology, as a logical/philosophical discipline, can perhaps best be attributed to the Polish mathematici-

an/logician Stanisław Leśniewski [115, 61].

4.3.1 Endurant Relations

Which are the relations that can be relevant for “endurant-hood”? There are basically two relations: (i)

physical ones, and (ii) conceptual ones.

(i) Physically two or more endurants may be topologically either adjacent to one another, like rails of

a line, or within an endurant, like links and hubs of a road net, or an atomic part is conjoined to one or

more materials, or a material is conjoined to one or more parts. The latter two could also be considered

conceptual “adjacencies”.

(ii) Conceptually some parts, like automobiles, “belong” to an embedding endurant, like to an automo-

bile club, or are registered in the local department of vehicles, or are ‘intended’ to drive on roads

4.3.2 Mereology Modelling Tools

When the domain analyser decides that some endurants are related in a specifically enunciated mereology,

the analyser has to decide on suitable mereology types and mereology observers (i.e., endurant relations).

162 We may, to illustration, define a mereology type of an endurant e:E as a triplet type expression over

set of unique [endurant] identifiers.

163 There is the identification of all those endurant sorts Ei1 ,Ei2 , ...,Eim where at least one of whose prop-

erties "is of interest" to parts e:E .

164 There is the identification of all those sorts Eio1
,Eio2

, ...,Eion where at least one of whose properties

"is of interest" to endurants e:E and vice-versa.

165 There is the identification of all those endurant sorts Eo1
,Eo2

, ...,Eoo for whom properties of e:E "is-

of interest" to endurants of sorts Eo1
,Eo2

, ...,Eoo .

166 The mereology triplet sets of unique identifiers are disjoint and are all unique identifiers of the universe

of discourse.

The triplet mereology is just a suggestion. As it is formulated here we mean the three ‘sets’ to be dis-
joint. Other forms of expressing a mereology should be considered for the particular domain and for the
particular endurants of that domain. We leave out further characterisation of the seemingly vague notion
"is of interest".

type

163 iEI = iEI1 | iEI2 | ... | iEIm

164 ioEI = ioEI1 | ioEI2 | ... | ioEIn

165 oEI = oEI1 | oEI2 | ... | oEIo

162 MT = iEI-set × ioEI-set × oEI-set

axiom

166 ∀ (iset,ioset,oset):MT •

166 card iset + card ioset + card oset = card ∪{iset,ioset,oset}
166 ∪{iset,ioset,oset} ⊆ calc all unique identifiers(uod)
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Domain Description Prompt 8 describe mereology(e): If has mereology(p) holds for parts p of type P, then

the analyser can apply the domain description prompt :

• describe mereology

to parts of that type and write down the mereology types and observer domain description text according to the

following schema:

9. describe mereology(e) Observer

❝ Narration:

[ t ] ... narrative text on mereology type ...
[m ] ... narrative text on mereology observer ...
[a ] ... narrative text on mereology type constraints ...

Formalisation:

type

[ t ] MT = M (UIi,UI j,...,UIk)

value

[m ] mereo P: P→ MT

axiom [Well−formedness of Domain Mereologies ]
[a ] A : A (MT) ❞

The mereology type name, MT, chosen of course, by the domain analyser cum describer, usually properly em-

bodies the type name, E, of the endurant being analysed and mereology-described. The mereology type expression

M (UIi,UI j,...,UIk) is a type expression over unique identifiers. Thus a part of type-name P might be given the mere-

ology type name MP. A (MT) is a predicate over possibly all unique identifier types of the domain description. To

write down the concrete type definition for MT requires a bit of analysis and thinking

Modelling Choice 8 Mereology: As for endurant descriptions the analyser cum describer chooses for some model

of a domain, one mereology, for another model of supposedly “the same” domain another mereology.

Mereology of a Road Net

Example 46

167 The mereology of hubs is a pair: (i) the set of all bus and automobile identifiers5, and (ii) the set of unique

identifiers of the links that it is connected to and the set of all unique identifiers of all vehicle (buses and private

automobiles).6.

168 The mereology of links is a pair: (i) the set of all bus and automobile identifiers, and (ii) the set of the two

distinct hubs they are connected to.

169 The mereology of of a bus company is a set the unique identifiers of the buses operated by that company.

170 The mereology of a bus is a pair: (i) the set of the one single unique identifier of the bus company it is operating

for, and (ii) the unique identifiers of all links and hubs7.

171 The mereology of an automobile is the set of the unique identifiers of all links and hubs8.

type

167 H Mer = V UI-set×L UI-set

168 L Mer = V UI-set×H UI-set

169 BC Mer = B UI-set

170 B Mer = BC UI×R UI-set

171 A Mer = R UI-set

value

167 mereo H: H→ H Mer

168 mereo L: L→ L Mer

169 mereo BC: BC→ BC Mer

170 mereo B: B→ B Mer

171 mereo A: A→ A Mer

4.3.2.1 Invariance of Mereologies

For mereologies one can usually express some invariants. Such invariants express “law-like properties”,

facts which are indisputable. We refer to Sect. 4.3.4 on the next page.

Invariance of Road Nets
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Example 47 The observed mereologies must express identifiers of the state of such for road nets:

axiom

167 ∀ (vuis,luis):H Mer • luis⊆luis ∧ vuis=vuis

168 ∀ (vuis,huis):L Mer • vuis=vuis ∧ huis⊆huis ∧ cardhuis=2
169 ∀ buis:H Mer • buis = buis

170 ∀ (bc ui,ruis):H Mer•bc ui∈bcuis∧ruis=ruis

171 ∀ ruis:A Mer • ruis=ruis

172 For all hubs, h, and links, l, in the same road net,

173 if the hub h connects to link l then link l connects to hub h.

axiom

172 ∀ h:H,l:L • h ∈ hs ∧ l ∈ ls⇒
172 let ( ,luis)=mereo H(h), ( ,huis)=mereo L(l)

173 in uid L(l)∈luis ≡ uid H(h)∈huis end

174 For all links, l, and hubs, ha,hb, in the same road net,

175 if the l connects to hubs ha and hb, then ha and hb both connects to link l.

axiom

174 ∀ h a,h b:H,l:L • {h a,h b} ⊆ hs ∧ l ∈ ls⇒
174 let ( ,luis)=mereo H(h), ( ,huis)=mereo L(l)

175 in uid L(l)∈luis ≡ uid H(h)∈huis end

4.3.2.2 Deductions made from Mereologies

Once we have settled basic properties of the mereologies of a domain we can, like for unique identifiers,

cf. Example 40 on Page 87, “play around” with that concept: ‘the mereology of a domain’.

Possible Consequences of a Road Net Mereology

Example 48

176 are there [isolated] units from which one can not “reach” other units ?

177 does the net consist of two or more “disjoint” nets ?

178 et cetera.

We leave it to the reader to narrate and formalise the above properly.

4.3.3 Formulation of Mereologies

The observe mereology domain descriptor, Page 91, may give the impression that the mereo type MT
can be described “at the point of issue” of the observe mereology prompt. Since the MT type expression

may, in general, depend on any part sort the mereo type MT can, for some domains, “first” be described

when all part sorts have had their unique identifiers defined.

4.3.4 Fixed and Varying Mereologies

The mereology of parts is not necessarily fixed.

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



4.3 Mereology 93

Definition: 64 Fixed Mereology: By a fixed mereology we shall understand a mereology of a part

which remains fixed over time.

Definition: 65 Varying Mereology: By a varying mereology we shall understand a mereology of

a part which may vary over time.

Fixed and Varying Mereology

Example 49 Let us consider a road net, cf. Examples 35 on Page 66, ?? on Page ??, 38 on Page 72

Example 46 on Page 91 and Example 47 on Page 91. If hubs and links never change “affiliation”, that

is: hubs are in fixed relation to zero one or more links, and links are in a fixed relation to exactly two hubs

then the mereology of Example 46 on Page 91 is a fixed mereology. If, on the other hand hubs may be

inserted into or removed from the net, and/or links may be removed from or inserted between any two

existing hubs, then the mereology of Example 46 on Page 91 is a varying mereology.

4.3.5 No Materials Mereology

We comment on our decision, for this monograph, to not endow materials with mereologies. A first reason

is that we “restrict” the concept of mereology to part endurants, that is, to endurants with “more-or-less”

fixed extents. Materials can be said to normally not have fixed extents, that is, they can “morph” from small,

fixed into spatially extended forms. For domains of part-materials conjoins this is particularly true. The

materials in such domains flow through and between parts. Some parts, at some times, embodying large,

at other times small amounts of material. Some proper, but partial amount of material flowing from one

part to a next. Et cetera. It is for the same reason that we do not endow materials with identity. So, for this

monograph we decide to not suggest the modelling of materials mereologies.

4.3.6 Some Modelling Observations

It is, in principle, possible to find examples of mereologies of natural parts: rivers: their confluence,

lakes and oceans; and geography: mountain ranges, flat lands, etc. But in our experimental case studies,

cf. Example on Page 40, we have found no really interesting such cases. All our experimental case studies

appears to focus on the mereology of artefacts. And, finally, in modelling humans, we find that their mere-

ology encompass all other humans and all artefacts ! Humans cannot be tamed to refrain from interacting

with everyone and everything.

Some domain models may emphasize physical mereologies based on spatial relations, others may em-

phasize conceptual mereologies based on logical “connections”.

Rail Net Mereology

Example 50 We refer to Example 36 on Page 68.

179 A linear rail unit is connected to exactly two distinct other rail net units of any given rail net.

180 A point unit is connected to exactly three distinct other rail net units of any given rail net.

181 A rigid crossing unit is connected to exactly four distinct other rail net units of any given rail net.

182 A single and a double slip unit is connected to exactly four distinct other rail net units of any given

rail net.

183 A terminal unit is connected to exactly one distinct other rail net unit of any given rail net.

184 So we model the mereology of a railway net unit as a pair of sets of rail net unit unique identifiers

distinct from that of the rail net unit.

value

184. mereo NU: NU→ (UI-set×UI-set)
axiom
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184. ∀ nu:NU •

184. let (uis i,uis o)=mereo NU(nu) in

184. case (card uis i,card usi o) =
179. (is LU(nu)→ (1,1),
180. is PU(nu)→ (1,2) ∨ (2,1),
181. is RU(nu) → (2,2),
182. is SU(nu)→ (2,2), is DU(nu)→ (2,2),
183. is TU(nu) → (1,0) ∨ (0,1),
184. → chaos) end

184. ∧ uis i∩uis o={}
184. ∧ uid NU(nu) < (uis i ∪ uis o)
184. end

Figure 4.1 illustrates the mereology of four rail units.
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ui ui
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Fig. 4.1. Four Symmetric Rail Unit Mereologies

4.3.7 Conjoin Mereologies

Conjoins, their “roots” and “siblings”, enjoy some special mereology relations.9

Let us first consider the pragmatics of conjoins, e. Part-materials conjoins, e, are “carriers” or

“holders” of materials. The carrier is p, that is, analyse conjoin part(e). The carried or held materi-

als are (m1,m2, ...,mm), that is, analyse conjoin materials(e). Usually we shall only associate more

than one material with the so-called treatment conjoin. See below. The carrier or holder, p, somehow pro-

vides a “container” for each mi. We shall, without loss of generality, restrict supply, pipe, valve, pump
and dispose conjoins, see below, to embody just one material. Conjoins either serve to transport or to

process10 materials. Transport is achieved by moving material between topologically connected conjoins.

Processing is achieved by treating one or more materials, of the same conjoin, to interact by being op-
erated upon. Conjoins that participate in the transport and treatment of materials, we conclude, typically

form directed, acyclic nets. We shall refer to such nets as ‘conjoin nets’.
Further pragmatics are those of the interconnection of conjoins as expressed in their mereologies.

First, to transport, they must form, usually directed, acyclic, nets. These nets are sequences of conjoins

acting as pipes, “interspersed” by conjoins serving to fork (divert), from one, a fork conjoin, flow, into

two, usually pipe, conjoins, or to join (merge) transport from two (or more) , usually pipe flow, into one,

the join flow, or to treat, within a single conjoin, the ‘treatment’ conjoin, one or more materials into one

or more new and/or replacement materials. By a flow net we shall understand a collection of conjoins

formed as an acyclic, directed graph. Figure 4.2 on the next page abstracts a possible conjoin flow net. .

9 We remind the reader of the ‘pragmatics’ paragraph of Sect. 3.13.3 on Page 58.
10 – the supply, pipe, valve, pump and dispose conjoins transport are restricted to carry just one material; the

treatment conjoin usually process, hence contain, more than one material.
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Pump, Valve

Join, Fork

Supply (Well), Dispose (Sink)

Treat

pipe

Fig. 4.2. An Abstracted Directed, Acyclic Flow Net of Conjoins

The abstracted flow net shown in Fig. 4.2 on the facing page is at the basis in domain models for

waste management, industrial production supply, production and demand, (water oil gas, etc.) pipe lines,

et cetera.

For directed, acyclic nets of material transport and treatment of units of connected conjoins we can

conclude that there must be units which supply [inputs] materials to the net; units which open or close, by

means of pumps [empowers] or valves [on/off], the flow of materials; units which simply pipes [flows]

materials “along”; units which fork [flow] materials in two [or more]11 ongoing directions; units which

join two [or more]12 material flows into one flow; units which treat [process] one or more incoming [in-

flowed] and contained materials13 into one or more contained and outgoing [out-flowed] materials14; and

units which dispose [outputs] one [or more]15 materials16.

Let us then consider the technicalities of modelling conjoins e. The conjoin has a part:

observe conjoin part(e), p, and it has one or more materials: observe conjoin materials(e),

(m1,m2, ...,mm). The mereology of p includes that of the unique identifier of e.

When we, above, cautiously, write ‘includes’ it is to say that there may be other topological or concep-

tual (including intentional) relations.

We can likewise consider material-parts conjoins but leave this to the reader.

This section is “conjoined” with Sect. 4.4.8 on Page 110.

Pipeline Mereology

Example 51 We refer to Appendix Sect. A.3.

4.4 Attributes

To recall: there are three sets of internal qualities: unique identifiers, part mereology and attributes.

Unique identifiers and mereology are rather definite kinds of internal endurant qualities; attributes form

more “free-wheeling” sets of internal qualities. Whereas, for this monograph, we suggest to not endow

11 In this monograph we shall just treat the case of two fork outlets.
12 See footnote 11.
13 mi1 ,mi2 , ...,mis
14 mo1

,mo2
, ...,mod

15 See footnote 11.
16 We shall not “speculate” on the possible, general relationships between mi1 ,mi2 , ...,mis and mo1

,mo2
, ...,mod

.
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materials with unique identification and mereologies all endurants, i.e., including materials, are endowed

with attributes.

4.4.1 Inseparability of Attributes from Parts and Materials

Parts and materials are typically recognised because of their spatial form and are otherwise characterised

by their intangible, but measurable attributes. That is, whereas endurants, whether discrete (as are parts) or

continuous (as are materials), are physical, tangible, in the sense of being spatial [or being abstractions, i.e.,

concepts, of spatial endurants], attributes are intangible: cannot normally be touched17, or seen18, but can

be objectively measured19. Thus, in our quest for describing domains where humans play an active rôle, we

rule out subjective “attributes”: feelings, sentiments, moods. Thus we shall abstain, in our domain science

also from matters of aesthetics. We equate all endurants — which have the same type of unique identifiers
the same type of mereologies, and the same types of attributes — with one sort. Thus removing an internal

quality from an endurant makes no sense: the endurant of that type either becomes an endurant of another

type or ceases to exist (i.e., becomes a non-entity) !

We can roughly distinguish between two kinds of attributes: those which can be motivated by physical
(incl. chemical) concerns, and those, which, although they embody some form of ‘physics measures’,

appear to reflect on event histories: “if ‘something’, φ , has ‘happened’ to an endurant, ea, then some
‘commensurate thing’, ψ , has ‘happened’ to another (one or more) endurants, eb.” where the ‘something’
and ‘commensurate thing’ usually involve some ‘interaction’ between the two (or more) endurants. It can

take some reflection and analysis to properly identify endurants ea and eb and commensurate events φ and

ψ . Example 65 on Page 113 shall illustrate the, as we shall call it, intentional pull of event histories.

4.4.2 Attribute Modelling Tools

4.4.2.1 Attribute Quality and Attribute Value

We distinguish between an attribute (as a logical proposition, of a name, i.e.) type, and an attribute value,

as a value in some value space.

Analysis Function Prompt 12 analyse attribute types:

One can calculate the set of attribute type names of parts and materials with the following domain
analysis prompt:

• analyse attribute type names

Thus for a part p we may have analyse attribute type names(p) = {❝A1 ❞,❝A2 ❞, ...,❝Am ❞}.

4.4.2.2 Attribute Types and Functions

Let us recall that attributes cover qualities other than unique identifiers and mereology. Let us then consider

that parts and materials have one or more attributes. These attributes are qualities which help characterise

“what it means” to be a part or a material. Note that we expect every part and material to have at least one

attribute. The question is now, in general, how many and, particularly, which.

17 One can see the red colour of a wall, but one touches the wall.
18 One cannot see electric current, and one may touch an electric wire, but only if it conducts high voltage can one

know that it is indeed an electric wire.
19 That is, we restrict our domain analysis with respect to attributes to such quantities which are observable, say

by mechanical, electrical or chemical instruments. Once objective measurements can be made of human feelings,

beauty, and other, we may wish to include these “attributes” in our domain descriptions.
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Domain Description Prompt 9 describe attributes: The domain analyser experiments, thinks and

reflects about endurant, e, attributes. That process is initiated by the domain description prompt:

• describe attributes(e).

The result of that domain description prompt is that the domain analyser cum describer writes down
the attribute (sorts or) types and observers domain description text according to the following schema: for
any endurant e.

10. describe attributes Observer

let {❝ A1, ..., Am ❞} = analyse attribute type names(e) in

❝ Narration:

[ t ] ... narrative text on attribute sorts ...
[o ] ... narrative text on attribute sort observers ...
[p ] ... narrative text on attribute sort proof obligations ...

Formalisation:

type

[ t ] A1, ..., Am,

value

[o ] attr A1: E→A1, ..., attr Am: E→Am

proof obligation [Disjointness of Attribute Types ]
[p ] PO: let P be any part sort in [the domain description]

[p ] let a:(A1|A2|...|Am) in is Ai(a) , is A j(a) [ i,i, i,j:[1..m ] ] end end ❞

end

The is A j(e) is defined by Ai, i:[1..n].

Modelling Choice 9 Endurant Attributes: As for endurant and mereology descriptions the analyser

cum describer chooses for some model of a domain, one set of attributes, for another model of supposedly

“the same” domain another set of attributes .

Let A1, ..., An be the set of all conceivable attributes of endurants e:E . (Usually n is a rather large natural

number, say in the order of a hundred conceivable such.) In any one domain model the domain analyser

cum describer selects a modest subset, A1, ..., Am, i.e., m < n. Across many domain models for “more-
or-less the same” domain m varies and the attributes, A1, ..., Am, selected for one model may differ from

those, A′1, ..., A′
m′

, chosen for another model.

The type definitions: A1, ..., Am, inform us that the domain analyser has decided to focus on the

distinctly named A1, ..., Am attributes.20 The value clauses attr A1:P→A1, ..., attr An:P→An are then “auto-

matically” given: if an endurant, e:E, has an attribute Ai then there is postulated, “by definition” [eureka]

an attribute observer function attr Ai:E→Ai et cetera

We cannot automatically, that is, syntactically, guarantee that our domain descriptions secure that the

various attribute types for a endurant sort denote disjoint sets of values. Therefore we must prove it.

4.4.2.3 Attribute Categories

Michael A. Jackson [252] has suggested a hierarchy of attribute categories: from static to dynamic values –

and within the dynamic value category: inert values, reactive values, active values – and within the dynamic

active value category: autonomous values, biddable values and programmable values. We now review these

attribute value types. The review is based on [252, M.A.Jackson]. Endurant attributes are either constant or

varying, i.e., static or dynamic attributes.

Attribute Category: 1 By a static attribute, a:A, is static attribute(a), we shall understand an

attribute whose values are constants, i.e., cannot change.

20 The attribute type names are chosen by the domain analyser to reflect on domain phenomena.
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Static Attributes

Example 52 Let us exemplify road net attributes in this and the next examples. And let us assume the

following attributes: year of first link construction and link length at that time. We may consider both to

be static attributes: The year first established, seems an obvious static attribute and the length is fixed at

the time the road was first built.

Attribute Category: 2 By a dynamic attribute, a:A, is dynamic attribute(a), we shall under-

stand an attribute whose values are variable, i.e., can change. Dynamic attributes are either inert, reactive
or active attributes.

Attribute Category: 3 By an inert attribute, a:A, is inert attribute(a), we shall understand a

dynamic attribute whose values only change as the result of external stimuli where these stimuli prescribe

new values.

Inert Attribute

Example 53 And let us now further assume the following link attribute: link name. We may consider

it to be an inert attribute: the name is not “assigned” to the link by the link itself, but probably by some

road net authority which we are not modelling.

Attribute Category: 4 By a reactive attribute, a:A, is reactive attribute(a), we shall under-

stand a dynamic attribute whose values, if they vary, change in response to external stimuli, where these

stimuli either come from outside the domain of interest or from other endurants.

Reactive Attributes

Example 54 Let us further assume the following two link attributes: “wear and tear”, respectively “icy

and slippery”. We will consider those attributes to be reactive in that automobiles (another part) travelling

the link, an external “force”, typically causes the “wear and tear”, respectively the weather (outside our

domain) causes the “icy and slippery” property.

Attribute Category: 5 By an active attribute, a:A, is active attribute(a), we shall understand a

dynamic attribute whose values change (also) of its own volition. Active attributes are either autonomous,
biddable or programmable attributes.

Attribute Category: 6 By an autonomous attribute, a:A, is autonomous attribute(a), we shall

understand a dynamic active attribute whose values change only “on their own volition”. The values of an

autonomous attributes are a “law onto themselves and their surroundings”.

Autonomous Attributes

Example 55 We enlarge scope of our examples of attribute categories to now also include automobiles

(on the road net). In this example we assume that an automobile is driven by a human [behaviour]. These

are some automobile attributes: velocity, acceleration, and moving straight, or turning left, or turning

right. We shall consider these three attributes to be autonomous. It is the driver, not the automobile, who

decides whether the automobile should drive at constant velocity, including 0, or accelerate or decelerate,

including stopping. And it is the driver who decides when to turn left or right, or not turn at all.

Attribute Category: 7 By a biddable attribute, a:A, is biddable attribute(a) we shall under-

stand a dynamic active attribute whose values are prescribed but may fail to be observed as such.
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Attribute Category: 8 By a programmable attribute, a:A, is programmable attribute(a), we

shall understand a dynamic active attribute whose values can be prescribed.

Programmable Attribute

Example 56 We continue with the automobile on the road net examples. In this example we assume

that an automobile includes, as one inseparable entity, “the driver”. These are some automobile attributes:

position on a link, velocity, acceleration (incl. deceleration), and direction: straight, turning left, turning

right. We shall now consider these three attributes to be programmable.

Figure 4.3 captures an attribute value ontology.

dynamic

active

endurant

autonomous programmable

static

attributes

attributes

inert reactive

monitorable attributes

biddableattributes

monitorable
only

Fig. 4.3. Attribute Value Ontology

Figure 4.3 hints at three categories of dynamic attributes: monitorable only, biddable and pro-
grammable attributes.

Attribute Category: 9 By a monitorable only attribute, a:A, is monitorable only attribute(a),

we shall understand a dynamic active attribute which is either inert or reactive or autonomous.

That is: is monitorable(e)≡is inert(e)∨is reactive(e)∨is autonomous(e).

Road Net Attributes

Example 57 We treat some attributes of the hubs of a road net.

185 There is a hub state. It is a set of pairs, (l f ,lt ), of link identifiers, where these link identifiers are in

the mereology of the hub. The meaning of the hub state in which, e.g., (l f ,lt ) is an element, is that the

hub is open, “green”, for traffic f rom link l f to link lt . If a hub state is empty then the hub is closed,

i.e., “red” for traffic from any connected links to any other connected links.

186 There is a hub state space. It is a set of hub states. The current hub state must be in its state space.

The meaning of the hub state space is that its states are all those the hub can attain.
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187 Since we can think rationally about it, it can be described, hence we can model, as an attribute of

hubs, a history of its traffic: the recording, per unique bus and automobile identifier, of the time

ordered presence in the hub of these vehicles. Hub history is an event history.

type

185 HΣ = (L UI×L UI)-set

axiom

185 ∀ h:H • obs HΣ (h) ∈ obs HΩ (h)

type

186 HΩ = HΣ -set

187 H Traffic

187 H Traffic = (A UI|B UI) →m (TIME × VPos)∗

axiom

187 ∀ ht:H Traffic,ui:(A UI|B UI) •

187 ui ∈ dom ht⇒ time ordered(ht(ui))

value

185 attr HΣ : H→ HΣ

186 attr HΩ : H→ HΩ
187 attr H Traffic: H→ H Traffic

value

187 time ordered: (TIME × VPos)∗ → Bool

187 time ordered(tvpl)≡ ...

Invariance of Road Net Traffic States

Example 58 We continue Example 57 on the previous page.

188 The link identifiers of hub states must be in the set, luis, of the road net’s link identifiers.

axiom

188 ∀ h:H • h ∈ hs⇒
188 let hσ = attr HΣ (h) in ∀ (luii,liuii

′):(L UI×L UI) • (luii,luii
′) ∈ hσ ⇒ {luii ,l

′
uii
} ⊆ luis end

Pipeline Attributes

Example 59 We refer to Appendix Sect. A.4.

You may skip Example 60 in a first reading.

Road Transport: Further Attributes

Example 60 Links: We show just a few attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

189 There is a link state. It is a set of pairs, (h f ,ht ), of distinct hub identifiers, where these hub identifiers

are in the mereology of the link. The meaning of a link state in which (h f ,ht ) is an element is that

the link is open, “green”, for traffic f rom hub h f to hub ht . Link states can have either 0, 1 or 2

elements.

190 There is a link state space. It is a set of link states. The meaning of the link state space is that its states

are all those the which the link can attain. The current link state must be in its state space. If a link

state space is empty then the link is (permanently) closed. If it has one element then it is a one-way

link. If a one-way link, l, is imminent on a hub whose mereology designates that link, then the link

is a “trap”, i.e., a “blind cul-de-sac”.

191 Since we can think rationally about it, it can be described, hence it can model, as an attribute of links

a history of its traffic: the recording, per unique bus and automobile identifier, of the time ordered

positions along the link (from one hub to the next) of these vehicles.

192 The hub identifiers of link states must be in the set, huis, of the road net’s hub identifiers.

type

189 LΣ = H UI-set [programmable, Df.8 Pg.99]

axiom

189 ∀ lσ :LΣ •card lσ=2

189 ∀ l:L • obs LΣ (l) ∈ obs LΩ (l)

type
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190 LΩ = LΣ -set [static, Df.1 Pg.97]

191 L Traffic [programmable, Df.8 Pg.99]

191 L Traffic = (A UI|B UI) →m (T×(H UI×Frac×H UI))∗

191 Frac = Real, axiom frac:Fract • 0<frac<1

value

189 attr LΣ : L→ LΣ
190 attr LΩ : L→ LΩ

191 attr L Traffic: :→ L Traffic

axiom

191 ∀ lt:L Traffic,ui:(A UI|B UI)•ui ∈ dom ht⇒ time ordered(ht(ui))

192 ∀ l:L • l ∈ ls⇒
192 let lσ = attr LΣ (l) in ∀ (huii,huii

′):(H UI×K UI) •

192 (huii,huii
′) ∈ lσ ⇒ {huii ,h

′
uii
} ⊆ huis end

Bus Companies: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bus companies operate a number of lines that service passenger transport along routes of the road net. Each line

being serviced by a number of buses.

193 Bus companies create, maintain, revise and distribute [to the public (not modeled here), and to buses] bus time

tables, not further defined.

type

193 BusTimTbl [programmable, Df.8 Pg.99]

value

193 attr BusTimTbl: BC→ BusTimTbl

There are two notions of time at play here: the indefinite “real” or “actual” time; and the definite calendar, hour,

minute and second time designation occurring in some textual form in, e.g., time tables.

Buses: We show just a few attributes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

194 Buses run routes, according to their line number, ln:LN, in the

195 bus time table, btt:BusTimTbl obtained from their bus company, and and keep, as inert attributes, their segment

of that time table.

196 Buses occupy positions on the road net:

a either at a hub identified by some h ui,
b or on a link, some fraction, f:Fract, down an identified link, l ui, from one of its identified connecting hubs,

fh ui, in the direction of the other identified hub, th ui.
197 Et cetera.

type

194 LN [programmable, Df.8 Pg.99]

195 BusTimTbl [inert, Df.3 Pg.98]

196 BPos == atHub | onLink [programmable, Df.8 Pg.99]

196a atHub :: h ui:H UI

196b onLink :: fh ui:H UI×l ui:L UI×frac:Fract×th ui:H UI

196b Fract = Real, axiom frac:Fract • 0<frac<1

197 ...
value

195 attr BusTimTbl: B→ BusTimTbl

196 attr BPos: B→ BPos

Private Automobiles: We show just a few attributes: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We illustrate but a few attributes:

198 Automobiles have static number plate registration numbers.

199 Automobiles have dynamic positions on the road net:

[196a] either at a hub identified by some h ui,
[196b] or on a link, some fraction, frac:Fract down an identified link, l ui, from one of its identified con-

necting hubs, fh ui, in the direction of the other identified hub, th ui.
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type

198 RegNo [static, Df.1 Pg.97]

199 APos == atHub | onLink [programmable, Df.8 Pg.99]

196a atHub :: h ui:H UI

196b onLink :: fh ui:H UI × l ui:L UI × frac:Fract × th ui:H UI

196b Fract = Real, axiom frac:Fract • 0<frac<1

value

198 attr RegNo: A→ RegNo

199 attr APos: A→ APos

Obvious attributes that are not illustrated are those of velocity and acceleration, forward or backward movement,

turning right, left or going straight, etc. The acceleration, deceleration, even velocity, or turning right, turning left,

moving straight, or forward or backward are seen as command actions. As such they denote actions by the automobile

— such as pressing the accelerator, or lifting accelerator pressure or braking, or turning the wheel in one

direction or another, etc. As actions they have a kind of counterpart in the velocity, the acceleration, etc. attributes.

Observe that bus companies each have their own distinct bus time table, and that these are modeled as

programmable, Item 193 on the previous page, Page 101. Observe then that buses each have their own

distinct bus time table, and that these are model-led as inert, Item 195 on the preceding page, Page 101.

In Items 288–289b Pg. 151 we shall see how the buses communicate with their respective bus companies

in order for the buses to obtain the programmed bus time tables “in lieu” of their inert one ! In Items 187

Pg. 99 and 191 Pg. 100, we illustrated an aspect of domain analysis & description that may seem, and at

least some decades ago would have seemed, strange: namely that if we can think, hence speak, about it,

then we can model it “as a fact” in the domain. The case in point is that we include among hub and link

attributes their histories of the timed whereabouts of buses and automobiles.21

Calculating Attributes

200 Given endurant e we can meta-linguistically22 calculate names for its static attributes.

201 Given endurant e we can meta-linguistically calculate name for its monitorable-only attributes at-

tributes.

202 Given endurant e we can meta-linguistically calculate names for its controllable attributes.

203 These four sets make up all the attributes of endurant e.

The type names ST, MA, PT designate mutually disjoint sets, ST, of names of static attributes, sets, MA, of

names of monitoriable, i.e., monitorable-only and biddable, attributes, sets, PT, of names of programmable,

i.e., fully controllable attributes.

value

200 stat attr types: E→ ST
201 moni attr types: E→ MA
202 prgr attr types: E→ PT

axiom

203 ∀ e:E •

200 let stat nms = stat attr types(e),
201 moni nms = moni attr types(e),
202 prgr nms = prgr types(e) in

203 card stat nms + card moni nms + card prgr nms
203 = card(stat nms ∪ mon nms ∪ prgr nms) end

The above formulas are indicative, like mathematical formulas, they are not computable.

204 Given endurant e we can meta-linguistically calculate its static attribute values, stat attr vals;

22 By using the term meta-linguistically here we shall indicate that we go outside what is computable – and thus appeal

to the reader’s forbearance.
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205 given endurant e we can meta-linguistically calculate its monitorable-only attribute values, moni attr vals;

and

206 given endurant e we can meta-linguistically calculate its programmable attribute values, prgr attr vals.

The type names sa1, ..., pap refer to the types denoted by the corresponding types name nsa1, ..., npap.

value

204 stat attr vals: E→ SA1×SA2×...×SAs
204 stat attr vals(e) ≡
204 let {nsa1,nsa2,...,nsas} = stat attr types(e) in

204 (attr sa1(e),attr sa2(e),...,attr sas(e)) end

205 moni attr vals: E→ MA1×MA2×...×MAm
205 moni attr vals(e) ≡
205 let {nma1,nma2,...,nmam} = moni attr types(e) in

205 (attr ma1(e),attr ma2(e),...,attr mam(e)) end

206 prgr attr vals: E→ PA1×PA2×...×PAp
206 prgr attr vals(e) ≡
206 let {npa1,npa2,...,npap} = prgr attr types(e) in

206 (attr pa1(e),attr pa2(e),...,attr pap(e)) end

The “ordering” of type values, (attr sa1(e),...,attr sas(e)), (attr ma1(e),...,attr mam(e)), et cetera, is

arbitrary.

4.4.3 A Discourse on Attribute Kinds

In this, in a sense, discursive, section we shall depart, somewhat, from a more direct presentation of analysis

and description prompts. We shall muse, as it were, about the following, perceived kinds of concepts and

attributes:

• space, time and substance,

• spatio and temporal attributes,

• natural and artefactual attributes,

• geometric attributes,

• action and event attributes,

• and others !

4.4.3.1 A Discussion

Space, Time and Matter23: Space, SPACE, time, TIME, and substance, MATTER, cannot be

sôle attributes of endurants24. Endurants exist in space and time. Manifest endurants have substance, i.e.,

consists ofMATTER. These three kinds of properties follow by transcendental deduction from rational

reasoning. So it is futile to ascribe attributes sôlely of these kinds to endurants ! But, stop here, pause a bit.

Somehow we must ascribe what appears to be space, time and substance properties to endurants: length,

speed, weight. So what is the problem ? The problem is that these latter kinds of properties are artefactual

properties. Mankind have found a need to somehow measure spatial, temporal and substance phenomena.

Spatio-like Attributes: The geographical location of a specific “point”25 on the surface of earth,

represented by its longitude26 and latitude27, can be an attribute of an endurant. This is so because the rep-

resentation are artefactual qualities, not transcendentally deducible facts. POINT are mathematical con-

cepts, created as mathematical abstractions – as are LINEs, CURVEs, SURFACEs and EXTENTs.

23 We remind the reader of Chapter 2.
24 But spatial measures, time stamps, time intervals, and substance (matters) may be attributes
25 By “a specific ‘point’ ” we do not mean a POINT.
26 Longitude is the angle east or west of a reference meridian to another meridian that passes through that point

[Wikipedia].
27 Latitude is the angle between the equatorial plane and the straight line that passes through that point and through

(or close to) the center of the earth [Wikipedia]
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The respective Lengths, Areas and Volumes of spatial entities are artefactual qualities ascribed by humans

and measured in, for example, m, m2 and m3, respectively.

Temporal-like Attributes: Other attributes are endowed, as properties of endurants, not by man, but

inherently there, given to us. The Time at which some action is invoked or some event occurs, is not a

TIME; and the TimeInterval (time interval or duration) between two actions or events is not a TI. Instead

humans, after many attempts, have devised ways and means of representing, respectively measuring Times

and TimeIntervals28. A DAY is not 24 hours, 0 minute, 0 seconds, and 0 which or whatever fraction of

a second you may think of. A SIDERIALYEAR is the TI it takes for the earth to orbit the sun. While

doing so, the earth spins on its axis. One complete spin takes exactly aDAY. But our concept of a Day is

that of 24 Hours, with each hour “divided” into 60 Minutes, and each minute into 60 Seconds, and so forth.

So Year, Month, Week, Day, Hour, Minute, Second, etc., are human constructions devised to represent

time intervals. These time interval representations are of some absolute kind. They are independent of

which endurant, at which POINT in SPACE, e.g., where on earth, they may be related to. As human

constructions they have lead to many ingenious means for their measure: clocks of many kinds29,30. But

clocks do not measure time, only time intervals. The time that an event occurred, or is to occur, or an action

was (to be) invoked, are of absolute kind. A time, like “Saturday 16 May, 2020, at 9:27:03” is such an

example. Time has, to some physicists, no [absolute] beginning point. There is no “On the first day and
in the first hour of creation”. So mankind has settled on some, you may say, ‘compromise’. We “speak

of” time, usually, as if it was an interval: “Around the year 482 Before Christ 31”, or “August 16, 2020:
11:41 am, after Christ 32”. Time indications must state the, or an approximate location on earth, for which

they are given, or some other reference frame, e.g., a time zone, such as Greenwich Mean Time, GMT or

other (CET, EET, WET, ET, PST etc.). For early continental continental explorers and ocean sea-farers,

accurate chronometers became indispensable33.

Spatio-Temporal-like Attributes: We talk, for example, of speed as distance, i.e., length, covered

by time interval. And we talk, for example, of velocity, i.e., speed with vectorial direction. On one hand

they are spatio-temporal phenomena, inherent as transcendentally deducible facts. On the other hand we

also experience them, and may have need to represent them as attributes. In other words, we must be careful

in our analysis.

Action and Event Attributes34: An important class of attributes record actions and events that

occur to endurants. That an action or event occurs or has occurred is immaterial, but we can talk about
it ! As such it may need being recorded in an appropriate attribute. Such recording are, to be meaningful,

time-stamped.

Action and Event Attributes

Example 61 From our continuing road transport example we give an example. The occurrence of an

automobile at a hub or on a link is an event and can, as such, be recorded in both hub, link and automobile

“history” attributes. From our likewise continuing pipeline example we give examples. The actions of

28 To wit: quartz-crystal clocks of the 1930s.
29 A second is defined as 9,192,631,770 oscillations of the caesium atom, off by only one second after running for 300

million years.
30 Some references [www.encyclopedia.com]:

• Gibbs, Sharon L. Greek and Roman Sundials.

New Haven, CT: Yale University Press, 1976.

• Landes, David S. Revolution in Time: Clocks and the Making of the Modern World.

Cambridge, MT: The Belknap Press of Harvard University Press, 1983.

• Tannenbaum, Beulah, and Myra Stillman. Understanding Time: The Science of Clocks and Calendars.

New York: Whittlesey House, McGraw-Hill Book Company, Inc.,1958.

31 – time of the birth of the Greek philosopher Plato
32 – time at last editing this text
33 Christiaan Huygens, following his invention of the pendulum clock in 1656,

made the first attempt at a marine chronometer in 1673
34 We refer to Defns. 70 on Page 129 and 71 on Page 129 for definitions of the concepts of action and event.
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opening and closing of valves, the actions of starting and ending of pumping, and the events of a pipe

unit becoming empty, or overflowing (“choked”), or changing from laminar to turbulent flow35, can, as

such, be recorded in both pipeline unit “history” attributes.

Natural and Artefactual Attributes: From the above we can see that in seeking properties of

endurants we waver between natural phenomena and artefactual “measures”. So we need be clear of the

distinction, for an endurant, whether what may seem to be [a kind of] an endurant attribute is really a

SPACE,TIME or SUBSTANCE phenomenon; or whether it is one for which we have “invented”

measures. The former we refer to as natural attributes. They can be expressed using the physical attribute
kinds detailed in Sect. 4.4.4 next The latter we refer to as artefactual attributes. They can be expressed

using both physical attribute kinds and domain concepts such as, for example,unique identifiers.

Geometrical Attributes: Manifest endurants reside in space. But we characterise them by such

geometric measures as position in some earthly, or relative coordinate system, length, a relative measure,

and volume. For intricate geometric objects we may be comprehension-wise better off by presenting them

in diagrams, drawings or annotated photos or videos.

4.4.3.2 A Preliminary Conclusion

We could go on finding further varieties of attributes. But we stop here ! So why this section ? So that you

may hopefully be very careful in your assignment of attributes.

4.4.4 Physics Attributes

In this section we shall muse about the kind of attributes that are typical of natural parts, but which may

also be relevant as attributes of artefacts.

Typically, when physicists write computer programs, intended for calculating physics behaviours, they

“lump” all of these into the type Real, thereby hiding some important physics ’dimensions’. In this section

we shall review that which is missing !

The subject of physical dimensions in programming languages is rather decisively treated in David

Kennedy’s 1996 PhD Thesis [259] — so there really is no point in trying to cast new light on this subject

other than to remind the reader of what these physical dimensions are all about.

4.4.4.1 SI: The International System of Quantities

In physics we operate on values of attributes of manifest, i.e., physical phenomena. The type of some of

these attributes are recorded in well known tables, cf. Tables 4.1–4.3. Table 4.1 shows the base units of

physics.

Base quantity Name Type

length meter m

mass kilogram kg

time second s

electric current ampere A

thermodynamic temperature kelvin K

amount of substance mole mol

luminous intensity candela cd

Table 4.1. Base SI Units

Table 4.2 on the next page shows the units of physics derived from the base units. Table 4.3 shows further
units of physics derived from the base units. velocity is speed with three dimensional direction and is, for example,

given as

35 Becoming empty, overflowing or transiting between laminar and turbulent flows are fuzzy measures; see Sect. 4.4.9

on Page 111.
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Name Type Derived Quantity Derived Type

radian rad angle m/m

steradian sr solid angle m2×m−2

Hertz Hz frequency s−1

newton N force, weight kg×m×s−2

pascal Pa pressure, stress N/m2

joule J energy, work, heat N×m

watt W power, radiant flux J/s

coulomb C electric charge s×A

volt V electromotive force W/A (kg×m2×s−3×A−1)

farad F capacitance C/V (kg−1×m−2×s4×A2)

ohm Ω electrical resistance V/A (kg×m2×s3×A2)

siemens S electrical conductance A/V (kg1×m2×s3×A2)

weber Wb magnetic flux V×s (kg×m2×s−2×A−1)

tesla T magnetic flux density Wb/m2 (kg×s2×A−1)

henry H inductance Wb/A (kg×m2×s−2×A2)

degree Celsius oC temp. rel. to 273.15 K K

lumen lm luminous flux cd×sr (cd)

lux lx illuminance lm/m2 (m2×cd)

Table 4.2. Derived SI Units

Name Explanation Derived Type

area square meter m2

volume cubic meter m3

speed meter per second m/s

wave number reciprocal meter m-1

mass density kilogram per cubic meter kg/m3

specific volume cubic meter per kilogram m3/kg

current density ampere per square meter A/m2

magnetic field strength ampere per meter A/m

substance concentration mole per cubic meter mol/m3

luminance candela per square meter cd/m2

mass fraction kilogram per kilogram kg/kg = 1

Table 4.3. Further SI Units

• velocity, meter per second with direction: m/s

• acceleration, meter per second squared and (longitude,latitude,azimuth) measured in radian: m/s2(r,r,r)

Table 4.4 shows standard prefixes for SI units of measure and Tables 4.5 show fractions of SI units.

Prefix name deca hecto kilo mega giga

Prefix symbol da h k M G

Factor 100 101 102 103 106 109

Prefix name tera peta exa zetta yotta

Prefix symbol T P E Z Y

Factor 1012 1015 1018 1021 1024

Table 4.4. Standard Prefixes for SI Units of Measure

• • •

The point in bringing this material is that when modelling, i.e., describing domains we must be extremely

careful in not falling into the trap of modelling physics types, etc., as we do in programming – by simple

Reals. We claim, without evidence, that many trivial programming mistakes are due to confusions between

especially derived SI units, fractions and prefixes.
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Prefix name deca hecto kilo mega giga

Prefix symbol da h k M G

Factor 100 101 102 103 106 109

Prefix name tera peta exa zetta yotta

Prefix symbol T P E Z Y

Factor 1012 1015 1018 1021 1024

Prefix name deci centi milli micro nano

Prefix symbol d c m µ n

Factor 100 10−1 10−2 10−3 10−6 10−9

Prefix name pico femto atto zepto yocto

Prefix symbol p f a z y

Factor 10−12 10−15 10−18 10−21 10−24

Table 4.5. SI Units of Measure and Fractions

4.4.4.2 Units are Indivisible

A volt, kg×m2×s−3×A−1, see Table 4.2, is “indivisible”. It is not a composite structure of mass, length,

time, and electric current – in some intricate relationship.

• • •

Physical attributes may ascribe mass and volume to endurants. But they do not reveal the substance, i.e.,

the material from which the endurant is made. That is done by chemical attributes.

4.4.4.3 Chemical Elements

The chemical elements are, to us, what makes up a substance ofMATTER. The mole, mol, substance is

about chemical molecules. A mole contains exactly 6.02214076×1023 (the Avogadro number) constituent

particles, usually atoms, molecules, or ions – of the elements, cf. ’The Periodic Table’, en.wikipedi-
a.orgwiki/Periodic table, cf. Fig. 4.4. Any specific molecule is then a compound of two or more

Fig. 4.4. Periodic Table

elements, for example, calciumphosphat: Ca3(PO4)2.

Moles bring substance to endurants. The physics attributes may ascribe weight and volume to endurants,

but they do not explain what it is that gives weight, i.e., fills out the volume.

Road Net

August 16, 2020, 11:41, A Foundation for Software Development © Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark



108 4 DOMAINS – Towards a Statics Ontology Internal Qualities

Example 62

Hub attributes:

207 number of lanes,
208 surface,
209 etc.;

type

207. NoL

208. SUR

209. ...
value

207. attr NoL:H→NoL

208. attr SUR:H→SUR

209. ...

Link attributes:

210 number of lanes,
211 surface.
212 etc.

value

210. attr NoL:L→NoL

211. attr SUR:L→SUR

212. ...

Automobile attributes:

213 Length
214 Width
215 Height

216 Power

217 Fuel (Gasoline, Diesel, Electric,...)

218 Velocity,

219 Acceleration, ...

type

213. Length = Nat:cm

214. Width = Nat:cm

215. Height = Nat:cm

216. BHp = Nat:kg×m−2×s−3

217. Fuel

218. Vel = Real:m×s−1

219. Acc = Real:m×s−2

value

213. attr Length: A→Length

214. attr Width: A→Width

215. attr Height: A→Height

216. attr BHp: A→BHp

217. attr Fuel: A→Fuel

218. attr Vel: A→Vel

219. attr Acc: A→Acc

4.4.5 Presentation of Physical Attributes

Physical attributes have several dimensions [i] First, as an example, there are the abstract physical units time

interval, distance, mass, etc. [ii] Then, to continue with these units, there are the concrete physical units,

e.g., s (second), e.g., m (meter) and, e.g., g (gramme). [iii] Finally there are the scales 10n, n a positive

natural number, or n a negative such. We suggest that your abstract physical attribute type, A, embodies

220 of what abstract physical units it is, i.e., obs phys unit,

221 of what concrete physical units it is, i.e., obs conr unit, and

222 its scale, i.e., obs scale.

type

220 AbsPhysUnit Attr =
′′
time_interval

′′
|
′′
length

′′
|
′′
mass

′′
| ...

221 ConcPhysUnit Attr =
′′
second

′′
|
′′
minute

′′
|
′′
hour

′′
|
′′
meter

′′
|
′′
gram

′′
| ...

222 PhysScale Attr = Intg
value

220 obs AbsPhysUnit Attr: E
∼
→ AbsPhysUnit

221 obs ConcPhysUnit Attr: E
∼
→ ConcPhysUnit

222 obs PhysScale Attr: E
∼
→ PhysScale

These sketched observer functions are partial as they are undefined for non-physical attributes.

4.4.6 The Care and Feeding of Physical Attributes

The above, i.e., Sect. 4.4.5, suggests that we introduce the following analysis predicates and functions:

223 is physical attribute: A→ Bool,
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224 analyse abs phys attr: A
∼
→ Abs Phys Attr

225 analyse conc phys attr: A
∼
→ Conc Phys Attr

226 analyse phys attr scale: A
∼
→ Phys Attr Scale

where the user then defines the concrete Abs Phys Attr, Conc Phys Attr and Phys Attr Scale types as

per Sect. 4.4.5. Then we suggest that the user define a number of “conversion” functions:

• convert from to(from concrete unit,to concrete unit): converts between concrete physical

attributes, e.g., pounds and kilograms, meters and yards, meters and kilometers, gram and ounces, etc.,

• add concrete values(v1,v2),subtract concrete values(v1,v2),multiply concrete val-
ues(v1,v2), etc. – you see what we mean !

We suggest that the domain analyser & describer, when professionally developing domain models for

domains that can be characterised by some dominance of physical attribute endurants, be very careful in

caring for their physical unit analysis & description. Many aircraft, train and power plant disasters can be

referred back to software which handles physical units erroneously. We refer to [6, 74, 181] for more on

this issue.

4.4.7 Artefactual Attributes

Despite our pragmatic decision to not distinguish between natural and artefactual parts, cf. Sect. 3.9.3 on

Page 52, We shall now exemplify classes of attributes sôlely on their parts being man-made. The reason for

these exemplifications is that we shall primarily advocate the application of domain analysis & description

to domains on the basis of our interest in understanding their artefacts !

4.4.7.1 Examples of Artefactual Attributes

We exemplify some artefactual attributes.

• Designs. Artefacts are man-made endurants. Hence “exhibit” a design. My three dimensional villa

has floor plans, etc. The artefact attribute: ‘design’ can thus be presented by the architect’s or the

construction engineer’s CAD/CAM drawings.

• States of an artefact, such as, for example, a road intersection (or railway track) traffic signal; and

• Currency, e.g., Kr, $, , e , U, et cetera, used as an attribute36, say the cost of a train ticket.

• Artefactual Dimensions. Let the domain be that of industrial production whose attributes could

then be: production: units produced per year, Units/Year; growth: increase in units produced per year,

Units×Year−2; productivity: production per staff, Units×Year−1×Staff−1 — where the base for units
and staff are natural numbers.

Document Artefactual Attributes

Example 63 Let us consider documents as artefactual parts. Typical document attributes are: (i) kind of doc-

ument: book, report, pamphlet, letter and ticket, (ii) publication date, (iii) number of pages, (iv) au-

thor/publisher and (v) possible colophon information. All of these attributes are non-physics quantities.

Road Net Artefactual Attributes

Example 64 Hub attributes:

227 state: set of pairs of link identifiers from, respectively to which automobiles may traverse the hub;

228 state space: set of all possible hub states.

36 One could also consider a [10 e ] bank note to be an artefact, i.e., a part.
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type

227. HΣ = (LI×LI)-set

228. HΩ = HΣ -set

value

227. attr HΣ :H→HΣ
228. attr HΩ :H→HΩ

Link attributes:

229 state: set of 0, 1, 2 or 3 pairs of adjacent hub identifiers, the link is closed, open in one direction

(closed in the opposite), open in the other direction, or open in both directions; and

230 state space: set of all possible link states.

type

229. LΣ = (LI×LI)-set

230. LΩ = LΣ -set

value

229. attr LΣ :L→LΣ
230. attr LΩ :L→LΩ

4.4.8 Conjoin Attributes

This section is “conjoined” with Sect. 4.3.7 on Page 94. Part-materials conjoins, the atomic part and its one

or more materials, enjoy some special attributes relations. We refer to Sect. 4.3.7’s Fig. 4.2 on Page 95. We

observe there the following generic flow-net conjoins: supply, pipe, pump, valve, join, fork, treat and

dispose. For these we now suggest some archetypical conjoin part attributes. Indices i index join inlets:

1, 2 or more, and fork outlet: 1, 2, or more. If index is left out the conjoin unit has at most 1 inlet and at

most one outlet.

4.4.8.1 Conjoin Attribute Categories

231 attr Substance: the substance name of the material that can be “carried” by the conjoin part unit.

232 attr Volume: volume of material that the conjoin part can take, measured say in m3;

233 attr Max In Flowi: typically a volume/sec quantity, measured as max in f lowi : m3/sec;37

234 attr Max Out Flowi: as for in-flow, but now for outlets: max out f lowi : m3/sec;38

235 attr Curr In Flowi: typically a volume/sec quantity, measured as curr in f lowi : m3/sec;

236 attr Curr Out Flowi: as for in-flow, but now for outlets: curr out f lowi : m3/sec;

237 Number of Flow Inlets: a natural number n, typically 1 or 2;

238 Number of Flow Outlets: a natural number n, typically 1 or 2;

239 attr Open Close: of a valve or pump, e.g., indicated as "open" or "closed";

4.4.8.2 Conjoin Attribute Assignments

supply: We assume a well of indefinite capacity.

• attr Substance[s], attr Max Out Flow Mi, attr Curr Out Flow Mi.

• Possibly other attributes.

pipe: We assume a pipe to be as a tube.

• attr Substance, attr Volume Substance, attr Max In Flow, attr Curr In Flow, attr Max Out -
Flow, attr Curr Out Flow.

• Possibly other attributes.

pump: We assume a simple positive displacement pump.

• attr Substance, attr Volume Substance, attr Max In Flow, attr Curr In Flow, attr Max Out -
Flow, attr Curr Out Flow.

• attr Pumping Volume per Sec:
• attr Pumping Height:
• Possibly other attributes.

37 set by conjoin unit manufacturer to indicate maximum laminar flow
38 set by conjoin unit manufacturer to indicate maximum laminar flow
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valve: We assume a simple butterfly valve.

• attr Substance, attr Volume Substance, attr Max In Flow, attr Curr In Flow, attr Max Out -
Flow, attr Curr Out Flow, attr Open Close.

• Possibly other attributes.

join: A join has 1 inlet and n outlets, for n usually being two.

• itemize

• attr Substance, attr Volume Substance, attr Max In Flow1, attr Max In Flow2, attr Curr -
In Flow1, attr Curr In Flow2, attr Max Out Flow, attr Curr Out Flow.

• Possibly other attributes.

fork: A fork has one inlet and n outlets, for n usually being two.

• itemize

• attr Substance, attr Volume Substance, attr Max In Flow, attr Curr In Flow, attr Max Out -
Flow1, attr Max Out Flow2, attr Curr Out Flow1, attr Curr Out Flow2.

• Possibly other attributes.

treat: Besides the attributes of the join and fork units, the treatment units are characterised by the

operations that they can perform on their conjoined materials.

• Operations: Usually a treatment unit can perform one operation on its ‘embodied’ (conjoined)

materials. But it is always good to generalise, so we say there there are n ≥ 1 operations. Each

operation is characterised by a “recipe scaled” signature. m is the number of distinct materials,

each of substance Substance i. fi j
is an appropriate fraction, 0≤ fi j

≤ 1.

⋄⋄ o1: Operation 1: f11
Substance 1 × f12

Substance 2 × ·· · f1m Substance m
⋄⋄ o2: Operation 2: f21

Substance 1 × f22
Substance 2 × ·· · f2m Substance m

⋄⋄ . . .

⋄⋄ om: Operation n: fn1
Substance 1 × fn2

Substance 2 × ·· · f2m Substance m
• Possibly other attributes.

dispose: A disposal conjoin usually has indefinite capacity (i.e., volume).

• attr Substance, attr Volume Substance, attr Max In Flow, attr Curr In Flow.

• Possibly other attributes.

We could likewise consider material-parts conjoins, but leave that to the reader.

4.4.9 Fuzzy Attributes

Fuzzy sets introduced, notably, by Lotfi Zadeh [379, 1965]39 are somewhat like sets whose elements have

degrees of membership. Fuzzy set is a mathematical model of vague qualitative or quantitative data, fre-

quently generated by means of the natural language. We shall thus distinguish between fuzzy attribute

values, i.e., vague qualitative values, and fuzzy attributes, i.e., vague quantitative types. Before Klaua and

Zadeh fuzziness in logic had been studied as infinite-valued logic Łukasiewicz40 and Alfred Tarski41.

4.4.9.0.1 Fuzzy Sets and Fuzzy Logic

We shall informally characterise fuzziness. In classical set theory an element is either a member of some

set or it is not, i.e., true or false. In fuzzy set theory an element has a degree, indicated, for example, by a

real number in the interval from and including 0 to and including 1. If membership degree is 0 the element

is not in the set. If membership degree is 1 the element is certainly in the set. So when we speak of a

fuzzy element, as being either of an attribute or an attribute value, then we should indicate its “membership
degree”. For the logic of reasoning over fuzzy attribute values and fuzzy attributes we refer to classical

textbooks on fuzzy logic and fuzzy sets, e.g., [254].

39 – and, it appears, also, same year, by Dieter Klaua, [260, 261].
40 Hay, L.S., 1963, Axiomatization of the infinite-valued predicate calculus. Journal of Symbolic Logic 28:7786.
41 Mancosu, Paolo; Zach, Richard; Badesa, Calixto (2004). Many-valued logics. The Development of Mathematical

Logic from Russell to Tarski 1900-1935. The Development of Modern Logic. Oxford University Press. pp. 418420.

ISBN 9780199722723.
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4.4.9.0.2 Fuzzy Attribute Types

So we can think of an attribute A as being fuzzy, is fuzzy(A) to mean that its values are fuzzy, i.e., lie in

the open interval from and including 0 to and including 1.

4.4.9.0.3 Fuzzy Attribute Values

And these values can be represented, in RSL, by Reals:

• type A: fuzzy: Real

4.4.9.0.4 Fuzzy Reasoning

A las, we shall not, in this monograph, explore the possibilities of modelling domains using Fuzzy Logic !

4.4.9.0.5 Fuzziness: A Possible Research Topic ?

Instead we urge readers to do so. The research field of fuzzy sets, logic, systems and engineering is very
large. We refer to such peer reviewed journals as

• IEEE Transactions on Fuzzy Systems, IEEE ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91;

• International Journal of Fuzzy Systems, Springer springer.com/journal/40815;

• Fuzzy Sets and Systems, Elsevier journals.elsevier.com/fuzzy-sets-and-systems;

• International Journal of Fuzzy Logic and Intelligent Systems, ijfis.org/main.html;

• Journal of Intelligent & Fuzzy Systems, content.iospress.com/journals/journal-of-intelligent--

and-fuzzy-systems/P.

4.5 Intentionality

The conjoin concept, that of relating some endurants more strongly, in the form of conjoins, reflects one or more

intentions. In the next section we shall encircle the ‘intention’ concept by quoting from Kai Sørlander’s Philosophy

[345, 346, 347, 348].

4.5.1 Issues Leading Up to Intentionality

Causality of Purpose: If there is to be the possibility of language and meaning then there must exist primary entities

which are not entirely encapsulated within the physical conditions; that they are stable and can influence one another.

This is only possible if such primary entities are subject to a supplementary causality directed at the future: a causality

of purpose.

Living Species: These primary entities are here called living species . What can be deduced about them ? They

are characterised by causality of purpose: they have some form they can be developed to reach; and which they must

be causally determined to maintain; this development and maintenance must occur in an exchange of matter with

an environment. It must be possible that living species occur in one of two forms: one form which is characterised

by development, form and exchange, and another form which, additionally, can be characterised by the ability to

purposeful movements. The first we call plants, the second we call animal s.

Animate Entities: For an animal to purposefully move around there must be “additional conditions” for such

self-movements to be in accordance with the principle of causality: they must have sensory organs sensing among

others the immediate purpose of its movement; they must have means of motion so that it can move; and they must

have instincts, incentives and feelings as causal conditions that what it senses can drive it to movements. And all of

this in accordance with the laws of physics.

Animals: To possess these three kinds of “additional conditions”, must be built from special units which have an

inner relation to their function as a whole; Their purposefulness must be built into their physical building units, that is,

as we can now say, their genomes. That is, animals are built from genomes which give them the inner determination to

such building blocks for instincts, incentives and feelings. Similar kinds of deduction can be carried out with respect

to plants. Transcendentally one can deduce basic principles of evolution but not its details.

Humans – Consciousness and Learning: The existence of animals is a necessary condition for there being

language and meaning in any world. That there can be language means that animals are capable of developing language.
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And this must presuppose that animals can learn from their experience. To learn implies that animals can feel pleasure

and distaste and can learn . One can therefore deduce that animals must possess such building blocks whose inner

determination is a basis for learning and consciousness.

Language: Animals with higher social interaction uses signs, eventually developing a language . These languages

adhere to the same system of defined concepts which are a prerequisite for any description of any world: namely the

system that philosophy lays bare from a basis of transcendental deductions and the principle of contradiction and its

implicit meaning theory. A human is an animal which has a language.

Knowledge: Humans must be conscious of having knowledge of its concrete situation, and as such that human

can have knowledge about what he feels and eventually that human can know whether what he feels is true or false.

Consequently a human can describe his situation correctly.

Responsibility: In this way one can deduce that humans can thus have memory and hence can have responsibil-

ity , be responsible. Further deductions lead us into ethics .

•••

We shall not further develop the theme of living species: plants and animals, thus excluding, most notably humans, in

this chapter. We claim that the present chapter, due to its foundation in Kai Sørlander’s Philosophy, provides a firm

foundation within which we, or others, can further develop this theme: analysis & description of living species.

•••

Intentionality: Intentionality as a philosophical concept is defined by the Stanford Encyclopedia of Philoso-

phy42 as “the power of minds to be about, to represent, or to stand for, things, properties and states of affairs.”

Intentional Pull: Two or more artefactual parts of different sorts, but with overlapping sets of intents may excert

an intentional “pull” on one another. This intentional “pull” may take many forms. Let px : X and py : Y be two parts

of different sorts (X ,Y ), and with common intent, ι . Manifestations of these, their common intent must somehow be

subject to constraints, and these must be expressed predicatively.

When a composite or conjoin artefact models “itself” as put together with a number of other endurants then it does

have an intentionality and the components’ individual intentionalities does, i.e., shall relate to that. The composite road

transport system has intentionality of the road serving the automobile part, and the automobiles have the intent of being

served by the roads, across “a divide”, and vice versa, the roads of serving the automobiles.

Natural endurants, for example, rivers, lakes, seas43 and oceans become, in a way, artefacts with and when mankind

using them for transport; natural gas becomes an artefact when drilled for, exploited and piped; and harbours make no

sense without artefactual boats sailing on the natural water.

This, perhaps vague, concept of intentionality has yet to be developed into something of a theory. Despite that

this is yet to be done, cf. Exercise 12 on Page 121, we shall proceed to define an intentionality analysis function.

First we postulate a set of intent designators. An intent designator is really a further undefined quantity. But let us,

for the moment, think of them as simple character strings, that is, literals, for example "road", "hub", "link",

"automobile", "transport", etc.

type Intent

Analysis Function Prompt 13 analyse intentionality:

The domain analyser analyses an endurant as to the a finite number of intents, zero or more, with which the analyser

judges the endurant can be associated. The method provides the domain analysis prompt:

• analyse intentionality directs the domain analyser to observe a set of intents.

value analyse intentionality(e)≡ {i 1,i 2,...,i n}⊆Intent

Intentional Pull, I

Example 65 We illustrate the concept of intentional “pull”:

42 Jacob, P. (Aug 31, 2010). Intentionality. Stanford Encyclopedia of Philosophy (https://seop.illc.-

uva.nl/entries/intentionality/) October 15, 2014, retrieved April 3, 2018.
43 Seas are smaller than oceans and are usually located where the land and ocean meet. Typically, seas are par-

tially enclosed by land. The Sargasso Sea is an exception. It is defined only by ocean currents [oceanser-

vice.noaa.gov/facts/oceanorsea.html].
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240 automobiles include the intent of ’transport’,

241 and so do hubs and links.

240 analyse intentionality: A→ ("transport"|...)-set

241 analyse intentionality: H→ ("transport"|...)-set

241 analyse intentionality: L→ ("transport"|...)-set

Manifestations of "transport" is reflected in automobiles having the automobile position attribute, APos, Item 199

Pg. 101, hubs having the hub traffic attribute, H Traffic, Item 187 Pg. 99, and in links having the link traffic attribute,

L Traffic, Item 191 Pg. 100.

242 Seen from the point of view of an automobile there is its own traffic history, A Hist, which is a (time ordered)

sequence of timed automobile’s positions;

243 seen from the point of view of a hub there is its own traffic history, H Traffic Item 187 Pg. 99, which is a (time

ordered) sequence of timed maps from automobile identities into automobile positions; and

244 seen from the point of view of a link there is its own traffic history, L Traffic Item 191 Pg. 100, which is a (time

ordered) sequence of timed maps from automobile identities into automobile positions.

The intentional “pull” of these manifestations is this:

245 The union, i.e. proper merge of all automobile traffic histories, AllATH, must now be identical to the same proper

merge of all hub, AllHTH, and all link traffic histories, AllLTH.

type

242 A Hi = (T × APos)∗

187 H Trf = A UI →m (TIME × APos)∗

191 L Trf = A UI→m (TIME×APos)∗

245 AllATH=TIME→m (AUI→m APos)

245 AllHTH=TIME→m (AUI→m APos)

245 AllLTH=TIME→m (AUI→m APos)

axiom

245 let allA=mrg AllATH({(a,attr A Hi(a))|a:A•a ∈ as}),
245 allH=mrg AllHTH({attr H Trf(h)|h:H•h ∈ hs}),
245 allL=mrg AllLTH({attr L Trf(l)|l:L•h ∈ ls}) in

245 allA = mrg HLT(allH,allL) end

We leave the definition of the four merge functions to the reader !

Discussion: We endow each automobile with its history of timed positions and each hub and link with their

histories of timed automobile positions. These histories are facts ! They are not something that is laboriously recorded,

where such recordings may be imprecise or cumbersome44 . The facts are there, so we can (but may not necessarily)

talk about these histories as facts. It is in that sense that the purpose (‘transport’) for which man let automobiles,

hubs and link be made with their ‘transport’ intent are subject to an intentional “pull”. It can be no other way: if

automobiles “record” their history, then hubs and links must together “record” identically the same history !.

Please note, that intents are not [thought of as] attributes. We consider intents to be a fourth, a compre-

hensive internal quality of endurants. They, so to speak, govern relations between the three other internal

quality of endurants: the unique identifiers, the mereologies and the attributes. That is, they predicate them,

“arrange” their comprehensiveness. Much more should be said about intentionality. It is a truly, I believe,

worthy research topic of its own. We refer to Exercise 12 on Page 121.

An Aspect of Comprehensivess of Internal Qualities

Example 66 Let us illustrate the issues “at play” here.

• Consider a road transport system uod.

⋄⋄ Applying analyse intentionality(uod) may yield the set {"transport", ...}.
• Consider a financial service industry, fss.

44 or thought technologically in-feasible – at least some decades ago!
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⋄⋄ Applying analyse intentionality(fss) may yield the set {"interest on deposit",
...}.

• Consider a health care system, hcs.

⋄⋄ Applying analyse intentionality(hcs) may yield the set {"cure diseases", ...}.

What these analyses of intentionality yields, with respect to expressing intentional pull, is entirely of the

discretion of the domain analyser & describer

We bring the above example, Example 66 on the preceding page, to indicate, as the name of the example

reveals, “An Aspect of Comprehensivess of Internal Qualities”. That the various components of artefactual

systems relate in – further to be explored – ways. In this respect, performing domain analysis & description

is not only an engineering pursuit, but also one of research. We leave it to the readers to pursue this research

aspect of domain analysis & description – while referring to Exercise 12 on Page 121.

4.5.2 Artefacts

Humans create artefacts – for a reason, to serve a purpose, that is, with intent. Artefacts are like parts.

They satisfy the laws of physics – and serve a purpose, fulfill an intent.

4.5.3 Assignment of Attributes

So what can we deduce from the above, a little more than two pages ?

The attributes of natural parts and natural materials are generally of such concrete types – ex-

pressible as some real with a dimension45 of the International System of Units: https://physics.-
nist.gov/cuu/Units/units.html. Attribute values usually enter differential equations and integrals,

that is, classical calculus.

The attributes of humans, besides those of parts, significantly includes one of a usually non-empty set

of intents. In directing the creation of artefacts humans create these with an intent.

Intentional Pull, II

Example 67 These are examples of human intents: they create roads and automobiles with the intent of transport,

they create houses with the intents of living, offices, production, etc., and they create pipelines with the intent of oil

or gas transport

Human attribute values usually enter into modal logic expressions.

4.5.3.1 Artefacts, including Man-made Materials:

Artefacts, besides those of parts, significantly includes a usually singleton set of intents.

Intents

Example 68 Roads and automobiles possess the intent of transport; houses possess either one of the intents of

living, offices, production; and pipelines possess the intent of oil or gas transport.

Artefact attribute values usually enter into mathematical logic expressions.

We leave it to the reader to formulate attribute assignment principles for plants and non-human animals.

45 Basic units are meter, kilogram, second, Ampere, Kelvin, mole, and candela. Some derived units are: Newton:

kg×m×s−2, Weber: kg×m2× s−2×A−1, etc.
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4.5.4 Galois Connections

Galois Theory was first developed by Évariste Galois [1811-1832] around 183046. Galois theory empha-

sizes a notion of Galois connections. We refer to standard textbooks on Galois Theory, e.g., [351,

2009].

4.5.4.1 Galois Theory: An Ultra-brief Characterisation

To us, an essence of Galois connections can be illustrated as follows:

• Let us observe47 properties of a number of endurants, say in the form of attribute types.

• Let the function F map sets of entities to the set of common attributes.

• Let the function G map sets of attributes to sets of entities that all have these attributes.

• (F ,G ) is a Galois connection

⋄⋄ if, when including more entities, the common attributes remain the same or fewer, and

⋄⋄ if when including more attributes, the set of entities remain the same or fewer.

⋄⋄ (F ,G ) is monotonously decreasing.

LEGO Blocks

Example 69 We48have

• There is a collection of LEGO™ blocks.

• From this collection, A, we identify the red square blocks, e.

• That is F (A) is B = {attr Color(e) = red,attr Form(e)=square}.
• We now add all the blue square blocks.

• And obtain A′.

• Now the common properties are their squareness: F (A′) is B′ = {attr Form(e)=square}.
• More blocks as argument to F yields fewer or the same number of properties.

• The more entities we observe, the fewer common attributes they possess.

Civil Engineering: Consultants and Contractors

Example 70 Less playful, perhaps more seriously, and certainly more relevant to our endeavour, is

this next example.

• Let X be the set of civil engineering, i.e., building, consultants, i.e., those who, like architects and

structural engineers design buildings – of whatever kind.

• Let Y be the set of building contractors, i.e., those firms who actually implement, i.e., build to, those

designs.

• Now a subset, Xbridges of X , contain exactly those consultants who specialise in the design of bridges,

with a subset, Ybridges, of Y capable of building bridges.

• If we change to a subset, X ′′ = Xbridges,tunnels of X , allowing the design of both bridges and tunnels,

then we obtain a corresponding subset, Ybridges,tunnels, of Y .

• So when

⋄⋄ we enlarge the number of properties from ‘bridges’ to ‘bridges and tunnels’,

⋄⋄ we reduce, most likely, the number of contractors able to fulfill such properties,

⋄⋄ and vice versa,

• then we have a Galois Connection.

46 en.wikipedia.org/wiki/Galois theory
47 The following is an edited version of an explanation kindly provided by Asger Eir, e-mail, June 5, 2020 [142, 143,

82].
48 From E-mail, Asger Eir, June 5, 2020

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



4.6 Systems Modelling 117

4.5.4.2 Galois Connections and Intentionality

We have a hunch 50! Namely that there are some sort of Galois Connections with respect to intentionality.

4.5.4.3 Galois Connections and Intentionality: A Possible Research Topic ?

We leave to to the interested reader to pursue this line of inquiry.

4.6 Systems Modelling

4.6.1 General

In Sect. 4.3.7, as well as in numerous examples we started to reveal some “classes” of domains for the

modelling of which it appears that there are some “standard” techniques. For general, usually bi-directed

networks of usually atomic parts, we analysed & described these graphs into sets of units whose mere-

ology “revealed” their “interconnection”. For less general, usually directed, acyclic networks of usually

conjoins, we analysed & described these graphs also into sets of units, now the conjoins, whose mereology

now “revealed” their “interconnection”. For less topologically, more conceptually and intentionally related

aggregations51 of endurants, we analysed & described as possibly hierarchically organised composite en-

durants, whose mereology, in their way, “revealed” the “interconnection” of the aggregations.

4.6.2 Passively Mobile Endurants

Some endurants are mobile. Mobile endurants are either actively mobile, i.e., move on their own accord, or

passively mobile, i.e., are transported by other endurants. Usually passively mobile endurants are expressed

as siblings of part-parts conjoins – where the ‘parts’ usually consist of a definite number of these: usually

zero, one or two.

Credit Card Shopping System

Example 71 A credit card shopping system52 consists of (i) credit card (user)s, (ii) shops and (iii)

credit card honoring banks. The shops offer for sale and users hoard merchandise. We suggest to

model, as a fourth element of the system, (iv) the merchandise. And let credit card user and shop
attributes reflect their merchandise by their unique identifiers.

Container Terminal Port

Example 72 A container terminal port53 consists of (i) vessels, (ii) vessel to/from quay cranes,

(iii) quay crane to/from stack trucks, (iv) stack or land truck to/from stack cranes, (v) stacks, and

(vi) land trucks. Vessels and stacks hold any number of containers over indefinite time intervals.

Cranes and trucks hold zero, one or two containers over expectedly short time intervals.We suggest to

model, as a seventh element, of a container terminal port (vii) containers; then let vessel, crane, truck
and stack attributes reflect their zero or more containers by their unique identifiers.

General Hospital System

50 Hunch: a feeling or guess based on intuition rather than fact.
51 for lack of a better term
52 See imm.dtu.dk/˜dibj/2016/credit/accs.pdf
53 See imm.dtu.dk/˜dibj/2018/yangshan/maersk-pa.pdf
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Example 73 A general hospital consists of (i) beds, (ii) staff, and (iii) patients. Patients occupy beds
are operated upon by medical doctor staff, are otherwise cared for my nurse staff, et cetera. We suggest

to model occupants of beds, patients on operating tables, and patients being cared for by nurses by unique

patient identifiers.

Thus we suggest the following modelling choices: Actively mobile endurants shall be transcendentally

deduced into behaviours. Passively mobile endurants if “embodied” by actively mobile endurants, shall

not. If, instead, these passively mobile endurants are modelled as a major set of endurants of their domain

they will be modelled as behaviours – with few other actions than responding to “who, at the moment,
transports them”. All this should be clear after Chapter 6.

4.7 Discussion of Endurants

Domain descriptions are, as we have already shown, formulated, both informally and formally, by means

of abstract types, that is, by sorts for which no concrete models are usually given. Sorts are made to denote

possibly empty, possibly infinite, rarely singleton, sets of entities on the basis of the qualities defined

for these sorts, whether external or internal. By junk we shall understand that the domain description

unintentionally denotes undesired entities. By confusion we shall understand that the domain description

unintentionally have two or more identifications of the same entity or type. The question is can we formulate
a [formal] domain description such that it does not denote junk or confusion ? The short answer to this is

no ! So, since one naturally wishes “no junk, no confusion” what does one do ? The answer to that is one
proceeds with great care !

4.8 A Domain Discovery Process, II

We shall again emhasize some aspects of the domain analyser & describer method. A method principle
is that of exhaustively analyse & describe all internal qualities of the domain under scrutiny. A method
technique implied here is that sketched below. The method tools are here all the analysis and descrip-

tion prompts covered so far.

The predecessor of this section is Sect. 3.19 on Page 75. Please be reminded of Discovery Schema
0 ’s declaration of Notice Board variables (Page 75). In this section we collect (i) the description of
unique identifiers of all parts of the state; (ii) the description of mereologies of all parts of the state;

and (iii) the description of attributes of all parts of the state. (iii) We finally gather these into the dis-
cover internal endurant qualities procedures.

An Endurant Internal Qualities Domain Analysis and Description Process

discover uids: Unit→ Unit

discover uids() ≡
for ∀ v • v ∈ gen

do txt := txt † [ type name(v) 7→txt(type name(v))̂ 〈describe unique identifier(v)〉 ] end

discover mereologies: Unit→ Unit

discover mereologies() ≡
for ∀ v • v ∈ gen

do txt := txt † [ type name(v) 7→txt(type name(v))̂ 〈describe mereology(v)〉 ] end

discover attributes: Unit→ Unit

discover attributes() ≡
for ∀ v • v ∈ gen

do txt := txt † [ type name(v) 7→txt(type name(v))̂ 〈describe attributes(v)〉 ] end

discover internal endurant qualities: Unit→ Unit

discover internal endurant qualities() ≡
discover uids() ;
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axiom [ all parts have unique identifiers ]
discover mereologies() ;

axiom [ all unique identifiers are mentioned in sum total of ]
[ all mereologies and no isolated proper sets of parts ]

discover attributes() ;

axiom [ sum total of all attributes span all parts of the state ]

We shall comment on the axioms in the next section.

4.9 Domain Description Laws

The axioms of the immediately above Discovery Schema expresses some domain facts: [i] the unique-

ness of part identifiers; [ii] that mereologies mention all parts and that the mereologies of no proper subset

of parts subset of parts refer only to parts of that subset; and [iii] that part attributes, when they refer, refer

only to parts of the state.

4.10 Summary

This chapter’s main title was: DOMAINS – Towards a Statics Ontology. The term ‘statics’ pertain

to qualities of the ‘Domain’, not to its ‘Ontology’. So, an aspect of the ontology of a domain, such as

we have studied it and such as we ordain one aspect of domain analysis & description, is about somehow

measurable properties, or about historical actions and events to which endurants of the domain have been

subjected, that is, the internal qualities. For that study & practice we have suggested a number of analysis

& description prompts.

4.10.1 The Description Schemas

We have culminated this chapter with description prompts for unique identifier description schema 7 on

Page 86, mereology description schema 8 on Page 91 and attribute description schema 9 on Page 97.

They all describe in, in our case RSL, the domain description text to ‘produce’ when internal quality

analysing & describing a given endurant; but what about the description of those endurants revealed by the

analysis & description of that given endurant ?

The answer is simple. That is up to you ! The domain analysis & description method gives you

the tools, some techniques and a few principles. But:

• A principle of the method could be to secure that all relevant, i.e., implied, endurants are analysed &

described.

• A technique could be to, somehow, “set aside” all those endurants revealed by the analysis & descrip-
tion of any given endurant – with the proviso that no endurant, of type, for example, P, is analysed &

described more than once.

Same answer that we gave in Sect. 3.21.1 Page 78. A technique, such as alluded to above, is show ‘for-

malised’ in the pseudo-program of Sect. 4.8 on the preceding page.

4.10.2 Modelling Choices

In this chapter we have put forward some advice on description choices: We refer to Modelling
Choices 8 on Page 91 and 9 on Page 97. The analysis predicates and functions are merely aids.

They do not effect descriptions, but descriptions are based on the result of their inquiry. Real decisions are

made when effecting a description function. So the rôle of these modelling choice paragraphs is to alert

the describer to make judicious choices.
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4.10.3 Method Principles, Techniques and Tools

Recall that by a method we shall understand a set of principles for selecting and applying a set of tech-
niques using a set of tools in order to construct an artefact.

4.10.3.1 Principles of Internal Qualities

In this chapter we have illustrated the use of the following techniques:

Divide and Conquer: Application of this principle has in this chapter been quite pronounced: the ‘divi-

sions’ are those of first (i) the analysis & description of unique identification, then (ii) the analysis &

description of mereologies, and then, finally, (iii) the analysis & description of attributes – and in that

order. We have found, in numerous case studies [80], that any other “strict” order very often brings

confusion !54

Representational Abstract: Application of this principle has,in this chapter, been to the type defini-

tions of unique identifiers, mereologies and attributes. For unique identifiers in that no representation

need be prescribed. For mereologies in that all we are really interested in are which parts “partake” in

part-to-part relations. For attributes we have not directed the domain analyser cum describer as how

express possible attribute type expressions, and often we just identify an attribute type by its identifier.

4.10.3.2 Techniques of Internal Qualities

In this chapter we have illustrated the use of the following principles:

Invariants: We remind the reader of Item 50 on Page 8, and refer to Example 43 on Page 89: Uniqueness
of Road Net Identifiers, Example 47 on Page 91: Invariance of Road Nets and Example 58 on

Page 100: Invariance of Road Net Traffic States.

Intentional Pull : We remind the reader of Item 49 on Page 8, and refer to Example 65 on Page 113:

Intentional Pull, I and Example 67 on Page 115: Intentional Pull, II.

4.10.3.3 Tools

4.10.3.3.1 Summary of The Internal Qualities Analysis Calculus

• analyse attribute types and Page 96

• is physical attribute. Page 108

4.10.3.3.2 Summary of The Internal Qualities Description Calculus

• describe unique identifier, Page 86

• describe mereology and Page 91

• describe attributes. Page 97

4.11 Bibliographical Notes

We refer to [70, Sect. 5.3] for a thorough, 2016–2017, five page review of types in formal specification and

programming languages.

54 “Eager-beaver”, inventive “whiz kids” are often caught up in their creativeness and muddles matters up, forgets

careful and necessary analyses whose absence often shows up late, and much analysis & description work has to be

redone !
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4.12 Exercise Problems

4.12.1 Research Problems

Exercise 11 A Research Challenge. Fuzzy Descriptions: Experiment with, present examples, and,

possibly, develop analysis & description prompts for Fuzzy attributes.

Exercise 12 A Research Challenge. Intentionality: Suggest possible intentions and possible in-

tentional pulls for domains of artefacts, say as they are mentioned in the Term Projects section. Present

possible examples. More generally, develop a theory of intentionality.

Exercise 13 A Research Challenge. Galois Connections: Study Galois Connections as, for exam-

ple presented in [158, Ganter & Wille]. Then search for such connections with respect to internal qualities

of pairs of different sort discrete endurants. Present examples. Suggest possible [?] analysis & description

prompts.

Exercise 14 A PhD Student Problem. Living Species: Humans: Suggest an outline mereology

and attribute concepts for humans.

Exercise 15 A PhD Student Problem. Michael Jackson’s Categories of Attributes: Suggest a

critique of Jackson’s categories of attributes, cf. Sect. 4.4.2.3.

• Is Jackson’s categorisation equally applicable to natural parts as well as to discrete artefacts ?

• Somehow or other, do discrete artefacts mandate a different categorisation ?

• Suggest a categorisation for discrete artefacts.

4.12.2 Student Exercises

Exercise 16 An MSc Student Exercise. Unique Document Identification: We refer to Exercise 3

on Page 81.

[Q1] you are to narrate and formalise unique identification for persons and documents. We refer to

upcoming Exercises 17, 18 on the next page and Exercise 29 on Page 163.

Exercise 17 An MSc Student Exercise. Document System Mereologies: We refer to Exercises 3

on Page 81 and 16.

We anticipate and elaborate on the actions that Exercise 29 on Page 163 will be handling.

create: The thus created document shall record (i) the identity of its [person] creator, (ii) time of

creation, and (iii) the text it now contains.

edit: The thus edited document shall record (i) the identity of its [person] editor, (ii) the time of

edit, and (iii) the changes being made to the

• master document, whose text is τM ,

• being edited into the edited document, whose text is τE ,

• such that these changes can be “seen” – for example as follows:

⋄⋄ there is a “forward” editing function, eF ,

⋄⋄ and an “undo” editing function, eU ,

⋄⋄ such that the text now recorded, in the edited document, is eF(τM),
⋄⋄ and such that eU(eF(τM))=τM .
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read: The thus read document shall record (i) the identity of its [person] reader and (ii) the time

of read.

copy: As a result of a copy we now have one more document in our system: besides the document,

the original, we now also have the copy.

The original document shall record (i) the identity of its [person] who had copied this document,

(ii) the identity of the copy, and (iii) the time of copying.

The copy document shall record (i) the identity of its [person] who made this copy, (ii) the identity

of the original document (from which it was made), and (iii) the time of copying.

shred: Let the identity of the document being shredded be dι .

Whereas there was a document of that identity, i.e., dι , there is, “officially”, no longer such a

document.

But, since persons can talk about the historical existence of dι , we may have to keep track of all

shredded documents. See question [Q2] of Exercise 3 on Page 81.

Therefore documents in such a “shredded” document archive must record (i) the identity of the

person who did the shredding and (ii) the time of shredding.

[Q1] you are to narrate and formalise mereologies for persons and documents.

We refer to upcoming Exercises 18 and 29 on Page 163.

Exercise 18 An MSc Student Exercise. Document System Attributes: We refer to Exercises 3

on Page 81 and 16 on the preceding page.

In addressing question [Q1] below you will have studied the indented text of Exercise 17 on the

previous page.

[Q1] you are to narrate and formalise attributes for persons and documents.

We refer to upcoming Exercise 29 on Page 163.

Exercise 19 An MSc Student Exercise. A Simple Consumer–Bank–Retailer Credit Card
System: The credit card system involves consumers, retailers banks and credit cards. A credit card is

an attribute of consumers, one per consumer. Consumers have bank accounts, one per consumer. Retailers

stock merchandise for sale, all merchandise are distinct, and have a price tag. Retailers have bank accounts,

one per retailer. Banks hold accounts for consumers and retailers. Credit cards identify their [consumer]

holder, one per credit card. Now to the problem to be solved. Please note item [g] before you start writing

down your solutions.

You are to formulate [a] appropriate sorts for consumers, retailers and banks as parts; [b] appropriate

sets of unique identifiers, mereologies and [c] attributes for consumers, retailers and banks; You are to

express appropriate well-formedness conditions for [d] all mereologies and [e] all attributes. You are to

express an intentional pull [f] relating the bank balances of consumers and retailers. While doing this, you

are to [g] spot what might, inadvertently, have been left out in the above, first paragraphs ‘presentation’ of

this, albeit simple consumer-retailer-bank credit card system.

4.12.3 Term Projects

We continue the term projects of Sect. 3.23.3 on Page 82.

For the specific domain topic that a group is working on it is to treat, for example, in separate weeks,

these topics in the order listed:

• unique identifiers, cf. Sect. 4.2,

• mereology, cf. Sect. 4.3, and

• attributes, cf. Sect. 4.4, the latter possibly over

two weeks.

Exercise 20 An MSc Student Exercise. The Consumer Market, Internal Qualities: We refer to

Exercise 4 on Page 83. You are, in turn, to analyse and describe
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• the unique identifiers,

• mereologies,

• a suitable sample of attributes, and

• possible intentional pulls

of consumer markets.

Exercise 21 An MSc Student Exercise. Financial Service Industry, Internal Qualities: We

refer to Exercise 5 on Page 83. You are, in turn, to analyse and describe

• the unique identifiers,

• mereologies,

• a suitable sample of attributes, and

• possible intentional pulls

of financial service industries.

Exercise 22 An MSc Student Exercise. Container Line Industry, Internal Qualities: We refer

to Exercise 6 on Page 83. You are, in turn, to analyse and describe

• the unique identifiers,

• mereologies,

• a suitable sample of attributes, and

• possible intentional pulls

of container lines.

Exercise 23 An MSc Student Exercise. Railway Systems, Internal Qualities: We refer to Exer-

cise 7 on Page 83. You are, in turn, to analyse and describe

• the unique identifiers,

• mereologies,

• a suitable sample of attributes, and

• possible intentional pulls

of railway systems.

Exercise 24 A PhD Student Problem. Part-Material Conjoins: Canals, Internal Qualities: We

refer to Example 8 on Page 83. You are, in turn, to analyse and describe

• the unique identifiers,

• mereologies,

• a suitable sample of attributes, and

• possible intentional pulls

of canal systems.

Exercise 25 A PhD Student Problem. Part-Materials Conjoins: Rum Production, Internal
Qualities: We refer to Exercise 9 on Page 83. You are, in turn, to analyse and describe

• the unique identifiers,

• mereologies,

• a suitable sample of attributes, and

• possible intentional pulls

of rum production.

Exercise 26 A PhD Student Problem. Part-Materials Conjoins: Waste Management, Internal
Qualities: We refer to Exercise 10 on Page 83. You are, in turn, to analyse and describe

• the unique identifiers,

• mereologies,

• a suitable sample of attributes, and

• possible intentional pulls

of waste management.

These exercise problems are continued in Sects. 6.14.3 on Page 163, 7.11.2 on Page 195 and 8.9.2 on

Page 243.
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TRANSCENDENTAL DEDUCTION

In this chapter we discuss the concept of transcendental deduction.

It should be clear to the reader that in domain analysis & description we are reflecting on a number of

philosophical issues; first and foremost on those of ontology. For this chapter we reflect on a sub-field of

epistemology, we reflect on issues of transcendental nature. Should you wish to follow-up on the concept of

transcendentality, we refer to [191, Immanuel Kant], [242, Oxford Companion to Philosophy, pp 878–880],

[12, The Cambridge Dictionary of Philosophy, pp 807–810], [110, The Blackwell Dictionary of Philosophy,

pp 54–55 (1998)], [348, Sørlander] and Chapter 1.

Definition: 66 Transcendental, II: By transcendental we shall understand the philosophical notion:

the a priori or intuitive basis of knowledge, independent of experience

A priori knowledge or intuition is central: By a priori we mean that it not only precedes, but also determines

rational thought.

Definition: 67 Transcendental Deduction, II: By a transcendental deduction we shall under-

stand the philosophical notion: a transcendental “conversion” of one kind of knowledge into a
seemingly different kind of knowledge

Some Transcendental Deductions

Example 74 We give some intuitive examples of transcendental deductions. They are from the “domain” of pro-

gramming languages. There is the syntax of a programming language, and there are the programs that supposedly

adhere to this syntax. Given that, the following are now transcendental deductions.

The software tool, a syntax checker, that takes a program and checks whether it satisfies the syntax, including the

statically decidable context conditions, i.e., the statics semantics – that tool is one of several forms of transcendental

deductions.

The software tools, an automatic theorem prover1and a model checker, for example SPIN [241], that takes a

program and some theorem, respectively a Promela statement, and proves, respectively checks, the program correct

with respect the theorem, or the statement.

A compiler and an interpreter for any programming language.

Yes, indeed, any abstract interpretation [129, 96] reflects a transcendental deduction: firstly, these examples

show that there are many transcendental deductions; secondly, they show that there is no single-most preferred

transcendental deduction.

A transcendental deduction, crudely speaking, is just any abstraction that can be “linked” to another, not

by logical necessity, but by logical (and philosophical) possibility !

Definition: 68 Transcendentality: By transcendentality we shall here mean the philosophical no-

tion: the state or condition of being transcendental

Transcendentality

1 ACL2 [258], Coq [28], Isabelle/HOL [299], STeP [93], PVS [303] and Z3 [94]
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Example 75 We can speak of a bus in at least three senses:

(i) The bus as it is being "maintained, serviced, refueled";
(ii) the bus as it "speeds" down its route; and
(iii) the bus as it "appears" (listed) in a bus time table.

The three senses are:

(i) as an endurant (here a part),
(ii) as a perdurant (as we shall see, a behaviour), and
(iii) as an attribute2.

The above example, we claim, reflects transcendentality as follows:

(i) We have knowledge of an endurant (i.e., a part) being an endurant.

(ii) We are then to assume that the perdurant referred to in (ii) is an aspect of the endurant mentioned in (i)

– where perdurants are to be assumed to represent a different kind of knowledge.

(iii) And, finally, we are to further assume that the attribute mentioned in (iii) is somehow related to both

(i) and (ii) – where at least this attribute is to be assumed to represent yet a different kind of knowledge.

In other words: two (i–ii) kinds of different knowledge; that they relate must indeed be based on a priori
knowledge. Someone claims that they relate ! The two statements (i–ii) are claimed to relate transcenden-

tally.3

2 – in this case rather: as a fragment of a bus time table attribute.
3 – the attribute statement was “thrown” in “for good measure”, i.e., to highlight the issue !
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DOMAINS – Towards a Dynamics Ontology: Perdurants

In this chapter we transcendentally “morph” parts into behaviours. We analyse that notion and
its constituent notions of actors, channels and communication, actions and events.

The main transcendental deduction of this chapter is that of associating with each part a behaviour. This

section shows the details of that association. Perdurants are understood in terms of a notion of state and a

notion of time.

6.1 Structure of this Chapter

In order to culminate, in Sect. 6.7 we need to treat a number of pre-requisite topics. There are quite a few

of these, so a summary-of-what-is-to-come seems reasonable.

• Section 6.2 covers primarily the notion of domain states in the form of CSP variables – one for each of

the parts having monitorable attributes;

• Sect. 6.3 surveys the notions of actors, actions, events and behaviours;

• Sect. 6.4 discuss the modelling of concurrent domain behaviours in terms of CSP processes – with brief

subsections on CSP and Petri nets;

• Sect. 6.5 then introduces the notions of CSP channels, output and input – to model interaction between

domain behaviours;

• Sect. 6.6 discusses action, event and behaviour signatures in general;

• Sect. 6.7 is now ready to tackle the important issue of defining domain behaviours, including their

signatures;

• Sect. 6.8 shows how to express the initialisation of a running domain behaviour;

• Sect. 6.10 loosely discusses the modelling of domain actions; while

• Sect. 6.11 briefly touches upon the modelling of domain events.

• Finally Sect. 6.12 follows up on the domain discovery process of Sects. 3.19 and 4.8.

Other sections provide elucidation or summary observations.

6.2 States and Time

We first covered the notions of state in Sects. 1.3.2.7 on Page 14 and 3.18 on Page 73 and time in Sect. 2.5

on Page 24.

6.2.1 The Issue of States

Example 39 on Page 74 illustrated the idea of expressing the values of all parts having dynamic attributes.

We refer to [176] and Appendix Sect. D.6.2 on Page 325.

RSL variables of the form:

variable parts[uid P(p) ]:P := p

0 The ‘Dynamics’ refer back to ‘DOMAINS’ – not to ‘Ontology’ !
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are to be declared to model parts that have monitorable attributes; informally:

value

has monitorable attributes: P→ Bool

has monitorable attributes(p) ≡
∃ A • A ∈ analyse attributes types(p) • is monitorable(attr A(p))

possible variable declaration: P→ RSL-Text
possible variable declaration(p) ≡

if has monitorable attributes(p) then ❝ variable p[uid P(p) ]:P := p ❞ end

analyse attribute types is defined in domain analysis function prompt 12 on Page 96.

declaring all monitorable variables

Translation Schema 1 When we have ‘collected’ all external endurant descriptions

246 we can, for any given endurant, e, typically a universe of discourse domain,

247 calculate all relevant monitorable variable declarations;

248 that is, for those parts, p,

249 that have monitorable-only attributes.

247. declaring all monitorable variables: E→ RSL-Text

247. declaring all monitorable variables(e) ≡
248. let ps = calc parts(e) in

248. for ∀ p • p ∈ ps do possible variable declaration(p)

247. end end

State Values versus State Variables

Example 76 Item 132 on Page 74 expresses the value of all parts of a road transport system:

132. ps:(UoB|H|L|BC|B|A)-set ≡ rts∪hls∪bcs∪bs∪as.

250 We now introduce the set of variables, one for each part value of the domain being modelled.

250. { variable vp:(UoB|H|L|BC|B|A) | vp:(UoB|H|L|BC|B|A) • vp∈ps }

6.2.2 Time Considerations

We shall, without loss of generality, assume that actions and events are atomic and that behaviours are

composite. Atomic perdurants may “occur” during some time interval, but we omit consideration of and

concern for what actually goes on during such an interval. Composite perdurants can be analysed into

“constituent” actions, events and “sub-behaviours”. We shall also omit consideration of temporal properties

of behaviours. Instead we shall refer to two seminal monographs: Specifying Systems [263, Leslie

Lamport] and Duration Calculus: A Formal Approach to Real-Time Systems [380, Zhou ChaoChen

and Michael Reichhardt Hansen] (and [41, Chapter 15]). For a seminal book on “time in computing” we

refer to the eclectic [156, Mandrioli et al., 2012]. And for seminal book on time at the epistemology level

we refer to [353, J. van Benthem, 1991].
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6.3 Actors, Actions, Events and Behaviours: A Preview

To us perdurants are further, pragmatically, analysed into actions, events, and behaviours. We shall define

these terms below. Common to all of them is that they potentially change a state. Actions and events are here

considered atomic perdurants. For behaviours we distinguish between discrete and continuous behaviours.

6.3.1 Actors

Definition: 69 Actor: By an actor we shall understand something that is capable of initiating and

carrying out actions, events and behaviours

The notion of “carrying out” will be made clear in this overall chapter. We shall, in principle, associate

an actor with each part1. These actors will be described as behaviours. These behaviours evolve around a

state. The state is the set of qualities, in particular the dynamic attributes, of the associated parts and/or any

possible components or materials of the parts.

6.3.2 Discrete Actions

Definition: 70 Discrete Action: By a discrete action [366, Wilson and Shpall] we shall understand a

foreseeable thing which deliberately and potentially changes a well-formed state, in one step, usually into

another, still well-formed state, and for which an actor can be made responsible

An action is what happens when a function invocation changes, or potentially changes a state.

6.3.3 Discrete Events

Definition: 71 Event: By an event we shall understand some unforeseen thing, that is, some ‘not-

planned-for’ “action”, one which surreptitiously, non-deterministically changes a well-formed state into

another, but usually not a well-formed state, and for which no particular domain actor can be made re-

sponsible

Events can be characterised by a pair of (before and after) states, a predicate over these and, optionally, a

time or time interval .

We shall use the RSL concepts of clauses, i.e., expressions and statements to model actions. We shall use

the CSP concepts of channels and channel communication, i.e., message output: ch[..]! e and message
input: ch[..]? to model events. The notion of event continues to puzzle philosophers [141, 327, 285, 136,

192, 13, 114, 315, 113].

6.3.4 Discrete Behaviours

Definition: 72 Discrete Behaviour: By a discrete behaviour we shall understand a set of se-

quences of potentially interacting sets of discrete actions, events and behaviours

Discrete behaviours now become the focal point of our investigation. To every part we associate, by tran-

scendental deduction, a behaviour. We shall express these behaviours as CSP processes [238]. For those

behaviours we must therefore establish their means of communication via channels; their signatures; and

their definitions – as translated from endurant parts.

Behaviours

Example 77 In Fig. 6.5 on Page 137 we “symbolically”, i.e., the “...”, show the following parts: each individual

hub, each individual link, each individual bus company, each individual bus, and each individual automobile – and

all of these.

1 This is an example of a transcendental deduction.
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The idea is that those are the parts for which we shall define behaviours. That figure, however, and in contrast

to Fig. 6.5 on Page 137, shows the composite parts as not containing their atomic parts, but as if they were “free-

standing, atomic” parts. That shall visualise the transcendental interpretation as atomic part behaviours not being

somehow embedded in composite behaviours, but operating concurrently, in parallel

6.3.5 Continuous Behaviours

By a continuous behaviour we shall understand a continuous time sequence of state changes. We shall

not go into what may cause these state changes. And we shall not go into continuous behaviours in this

monograph.

6.4 Modelling Concurrent Behaviours

We choose to exploit the CSP [238] subset of RSL since CSP is a suitable vehicle for expressing suitably

abstract synchronisation and communication between behaviours. (In Sect. 6.4.2 on Page 132 we bring,

as an informative aside, The Petri Net Story.)

The mereology of domain parts induces channel declarations.

CSP channels are loss-free. That is: two CSP processes, of which one offers and the other offers to accept

a message do so synchronously and without forgetting that message. To model actual, so-called “real-life”

communication via queues or allowing “channels” to forget, then you must model that explicitly in CSP.

We refer to [238, 336, 340].

6.4.1 The CSP Story

CSP is a wonderful tool, i.e., a language with which to study and describe communicating sequen-
tial processes. It is the invention of Charles Anthony Richard Hoare. Major publications on CSP are

[237, 239, 238, 336, 340].

6.4.1.1 Informal Presentation

CSP processes (models of domain behaviours) Pi,Pj, ...,Pk can proceed in parallel:

P i ‖ P j ‖ ... ‖ P k

Behaviours sometimes synchronise and usually communicate. Synchronisation and communication is ab-

stracted as the sending (ch ! m) and receipt (ch ?) of messages, m:M, over channels, ch.

type M
channel ch:M

Communication between (unique identifier) indexed behaviours have their channels modelled as similarly

indexed channels:

out: ch[ idx ]!m
in: ch[ idx ]?
channel {ch[ ide ]:M|ide:IDE}

where IDE typically is some type expression over unique identifier types.

The expression

P i ⌈⌉ P j ⌈⌉ ... ⌈⌉ P k

can be understood as a choice: either P i, or P j, or ... or P k as non-deterministically internally chosen

with no stipulation as to why !

The expression
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P i ⌈⌉⌊⌋ P j ⌈⌉⌊⌋ ... ⌈⌉⌊⌋ P k

can be understood as a choice: either P i, or P j, or ... or P k as deterministically externally chosen on

the basis that the one chosen offers to participate in either an input, ch ?, or an output, ch ! msg, event. If

more than one P i offers a communication then one is arbitrarily chosen. If no P i offers a communication

the behaviour halts till some P j offers a communication.

6.4.1.2 A Syntax for CSP

We present the syntax for the CSP used in RSL.

P ::= stop

| skip

| P ‖ P parallel composition (interleave)

| P ⌈⌉ P internal non-deterministic choice

| P ⌈⌉⌊⌋ P external non-deterministic choice

| P ; P sequential composition

| if B then P else P end Boolean conditional

| let v = ch ? in ... end input value v on channel ch
| ch ! e ; P output value of expression e on channel ch

6.4.1.3 Disciplined Uses of CSP

In connection with domain modelling, which uses of CSP appear to be meaningful ? To understand our

answer let us consider the following. As suggested in Chapters 3–4 the domain of endurants consists of a

number of parts, some atomic, some compounded, that is, consisting of a part (a “root”) and a number of

proper sub-parts (its “siblings”). With Chapter 5 we shall consider each and every part to also represent a

behaviour, that is, with sub-parts representing behaviours not “embedded” in “root” part behaviours, but,

in a “first approximation” only bound to their roots by mutual mereologies.

This is a modelling decision. We could have chosen a more elaborate one; one that, from the days

of Algol 60 [257] was in line with the so-called ‘block structure’ concept. But have chosen not to !

Buses and Bus Companies

Example 78 We refer to Example ?? on Page ??. A bus company is like a “root” for its fleet of “sibling”

buses. But a bus company may cease to exist without the buses therefore necessarily also ceasing to exist.

They may continue to operate, probably illegally, without, possibly. a valid bus driving certificate. Or they

may be passed on to either private owners or to other bus companies. We use this example as a reason for

not endowing a “block structure” concept on behaviours.

So there we are. With a collection of part and sub-part behaviours that need communicate “across” and

“within” compounds. To do so they avail themselves of channels, ch[i,j], output, ch[i,j] ! e and input,
ch[i,j] ?. The general situation is then that a number of behaviours, Pi and Q j, wishes to synchronise

and communicate. The general, disciplined form for doing so can be schematically expressed as follows:

P(i,ujs,...)(...) ≡
...
⊠ { ch[ i,j ] ! e ; ... | j:UI • j ∈ ... } ;
... ;
P(i,ujs,...)(...)

Q(j,uis,...)(...) ≡
...
⊠ { let v = ch[ i,j ] ? in ... end | i:UI • i ∈ uis } ;
...
Q(j,uis,...)(...)
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The ⊠ operator is either ⌈⌉⌊⌋, or ⌈⌉, or ‖. We shall abstain from further ‘advice’ on the use of CSP but refer to

either [39, Software Engineering 2, Chapter 21] (Concurrent Specification Programming) or standard CSP

textbooks [237, 239, 238, 336, 340]. We shall take up this line of inquiry in Sect. 6.7.10 on Page 148 –A
Suggested Behaviour Definition 2 on Page 149.

6.4.2 The Petri Net Story

Petri nets2 are a wonderful concept first invented by Carl Adam Petri [314]. It is intended to model

a class of discrete event dynamic systems. A Petri net is a directed bipartite graph, in which some nodes
(traditionally represented by bars) represent transitions (i.e. events) that may occur, and other nodes

represent places (i.e. conditions, traditionally represented by circles). The directed arcs describe which

places are pre- and/or post-conditions for which transitions (signified by arrows). We shall basically

recommend the Petri net books by Wolfgang Reisig, some of which are [328, 329, 332, 333] – notably

[333].

6.4.2.1 Informal Presentation

Figure 6.1 shows a simplest form of Petri Net. Let us focus on the left net. The labeled circles designate

places. The labeled thick, black bar designate a transition. The arrows, −→s, designate (flow) arcs
and are labeled with a numeral, designating a natural number larger than 0. Inside the places we show 2,

2, respectively 0 tokens. Their constellation is also called a marking. In general, any composition of

places, transitions, markings and labels such that arcs emanating from a place are incident upon transitions

and such that arcs emanation from transitions are incident upon places, form a syntactically meaningful

Petri net, also called a Place-Transition Net, PTN.

2 t

1

2

pa

pb

pc
2

2

1

t

pa

pc

pb

Fig. 6.1. Two Petri Nets: Before and after Firing

Let us start by focusing on the left Petri net. The meaning of the number of tokens in places, the transition

input arc labels, and the transition output arc labels are as follows: If the respective transition input arc

labels can be satisfied by the respective number of tokens in source places then a firing can take place.

After a firing the Petri net has a new constellation.

The following (two-and-a-quarter pages)3 was written by Christian Krogh Madsen (around 2004)4

6.4.2.2 An Example – Christian Krogh Madsen

Critical Resource Sharing

2 The term Petri net stands for the ’language’ of Petri nets. A Petri net is an instance of the language of Petri

nets
3 – an An Example and An RSLModel of Petri nets.
4 Christian Krogh Madsen devised and wrote Chapters 12–14: Petri Nets, Message and Live Sequence Charts,

and Statecharts in [40, Pages 315–508].
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Fig. 6.2. Critical resource sharing

Example 79 Figure 6.2 shows an example PTN modelling four processes that access a common critical

resource. One process writes to the resource, while the other three processes read from the resource. To

ensure data integrity, mutual exclusion must be enforced between the writing process and the reading

processes. The protocol for mutual exclusion requires a reading process to claim a key before it may

read, while the writing process is required to claim three keys before it may write. A process that cannot

get the required number of keys must wait until more keys become available. The place Keys holds a

token for each key that is unused. When a process finishes reading or writing it returns the claimed keys

to the place Keys and proceeds to do some processing that does not access the critical resource.

6.4.2.3 An RSL Model of Petri nets – Christian Krogh Madsen

6.4.2.3.1 Syntax of Petri nets

We first formalise a syntax and then a static semantics for Petri nets, as PTN (for place-transition net),

with finite capacity places.

• A place transition net consists of a set of places with associated capacities, a set of transitions, a preset,

a postset and a marking.

• Only well-formed PTNs will be considered.

• Places and transitions are further unspecified entities.

• Presets are a mapping from transitions to sets of pairs of places and weights.

• Postsets are a mapping from transitions to sets of pairs of places and weights.

• A marking is a mapping of places to marks.

• A mark is a non-negative integer.

type

PTN = {| ptn:PTN
′
• wf PTN(ptn) |}

PTN
′
= (Place→m Nat) × Trans-set × Preset × Postset × Marking

Place
Trans
Preset = Trans →m (Place × Nat)-set

Postset = Trans →m (Place × Nat)-set

Marking = Place →m Nat

6.4.2.3.2 A Static Semantics

• A PTN is well-formed if:
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1-2 every transition in the set of transitions is included in the domain of the maps of presets and

postsets, and

3 every place is in the pre- or postset of some transition, and

4 every transition has a non-empty preset or postset, and

5 no transition can have a preset or postset that includes the same place more than once with different

weights, and

6 the marking covers all places, and

7 for every place the number of tokens assigned to it in the marking must be at most equal to the

capacity of the place.

value

wf PTN : PTN
′
→ Bool

wf PTN(ps, ts, pres, posts, mark) ≡
[1 ] dom pres = ts ∧
[2 ] dom posts = ts ∧
[3 ] {p | p:Place •

∃ pns: (Place×Nat)-set, n:Nat •

(p,n) ∈ pns∧pns ∈ rng pres ∪ rng posts} = dom ps ∧
[4 ] (∀ t:Trans • t ∈ ts⇒ pres(t) ∪ posts(t) , {}) ∧
[5 ] (∀ t:Trans •

∼(∃ n1, n2 : Nat, p : Place •

n1 , n2 ∧ p ∈ dom ps ∧
({(p,n1), (p,n2)} ⊆ pres(t) ∨
{(p,n1), (p,n2)} ⊆ posts(t)))) ∧

[6 ] dom mark = dom ps ∧
[7 ] (∀ p:Place • p ∈ dom ps⇒ mark(p)≤ps(p))

6.4.2.3.3 A Dynamic Semantics

We formalise the dynamic aspects of PTN, namely what it means for a transition to be activated and for a

transition to occur.

• A transition is activated:

⋄⋄ if for every place in its preset there are at least as many tokens as the weight of the corresponding

arrow, and

⋄⋄ if for every place in its postset the number of tokens at that place added to the weight of the corre-

sponding arrow is at most equal to the capacity of the place.

• The occurrence of an activated transition produces a new marking

⋄⋄ in which the number of tokens at each of the places in the preset is reduced by the weight of the

corresponding arrow, and

⋄⋄ in which the number of tokens at each of the places in the postset is increased by the weight of the

corresponding arrow.

value

activated: Trans×PTN
∼
→ Bool

activated(t,ptn) ≡
let (ps,ts,pres,posts,mark) = ptn in

(∀ p:Place,n:Nat • (p,n) ∈ pres(t)⇒ mark(p)≥n) ∧
(∀ p:Place,n:Nat • (p,n) ∈ posts(t)⇒ mark(p)+n≤ps(p))

end

pre let (ps,ts,pres,posts,mark) = ptn in t ∈ ts end
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occur: Trans×PTN
∼
→ PTN

occur(t,ptn) ≡
let (ps,ts,pres,posts,mark) = ptn in

(ps,ts,pres,posts,
mark †

[p 7→ mark(p)−n | p:Place,n:Nat • (p,n) ∈ pres(t) ] †

[p 7→ mark(p)+n | p:Place,n:Nat • (p,n) ∈ posts(t) ])
end

pre activated(t,ptn)

End-of-contribution by Christian Krogh Madsen

6.4.2.4 Petri Nets and Domain Science & Engineering – A Research Topic ?

We shall not, in this monograph, deal further with Petri nets ! So why bring this overall section at all ?

We bring it because with Petri nets one can model true concurrency. With CSP we model only interleaved
concurrency, that is, no two or more events can be modelled, in CSP, to truly occur simultaneously. With

Petri nets they can ! We also bring it so that the reader is properly informed. CSP is a textual ‘language’

where Petri nets is a graphical ‘language’. Some people or more gifted with respect to the former, other

people more with respect to the latter; few are equally at ease with both ‘notations’.

We suggest, as a research topic to study possible combinations of Petri net and RSL specifications,

for example with cross-annotations where RSL formula refer to Petri net places and transitions, and where

Petri net places and transitions, refer to RSL formula. Or, whatever springs to mind ?

6.5 Channels and Communication

6.5.1 From Mereologies to Channel Declarations

The fact that a part p of sort P with unique identifier pi, has a mereology, for example the set of unique iden-

tifiers {qa,qb, ...,qd} identifying parts {qa,qb, ...,qd} of sort Q, may mean that parts p and {qa,qb, ...,qd}
may wish to exchange – for example, attribute – values, one way (from p to the qs) or the other (vice versa)

or in both directions.

Figure 6.3 shows two dotted rectangle box diagrams.

m:j

m:i m:i m:i m:i

m:{j...l}

u:i

u:j u:j u:k u:l

u:i

p:P

q1:Q q2:Q qn:Qq:Q

p:P

1:1 Constallation 1:n Constallation

Parts

..... m:i m:i

.....

.....
m:i m:i

m:j

1:1 Constallation 1:n Constallation

m:{j...l}

Behaviours & Channels

u:i u:i

u:j u:j u:k u:l

ch_PQ[i,j]
ch_PQ[i,k]

ch_PQ[i,l]

c
h

_
P

Q
[i

,j
] 

=
 c

h
_
P

Q

ch_PQ

{ch_PQ[i,x]|x:{j,k,...,l}} = {ch_PQ[x]|x:{j,k,...,l}}

Fig. 6.3. Respective Part and Behaviour/Channel Constellations. u:p unique id. p; m:p mereology p

The left fragment of Fig. 6.3 intends to show a 1:1 Constellation of a single p:P box and a single

q:Q part, respectively, indicating, within these parts, their unique identifiers and mereologies. The right

fragment of the figure intends to show a 1:n Constellation of a single p:P box and a set of q:Q parts,
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now with arrowed lines connecting the p part with the q parts. These lines are intended to show channels.

We show them with two way arrows. We could instead have chosen one way arrows, in one or the other

direction. The directions are intended to show a direction of value transfer. We have given the same channel

names to all examples, ch PQ. We have ascribed channel message types MPQ to all channels.5 Figure 6.4

shows an arrangement similar to that of Fig. 6.3 on the previous page, but for an m:n Constellation.

m:{j...l} m:{j...l} m:{j...l}

m:{x...z} m:{x...z} m:{x...z}

Parts

. . . . .

.....
u:x u:y u:z

u:j u:k u:l

m:{j...l} m:{j...l} m:{j...l}

m:{x...z} m:{x...z} m:{x...z}

...
...

..... ...

...

... ......

Behaviours and Channels

. . . . .

u:x u:y u:z

u:j u:k u:l

{ch_PQ[p,q]|p:{x,y,...,z},q:{j,k,...,l}}

Fig. 6.4. Multiple Part and Channel Arrangements: u:p unique id. p; m:p mereology p

The channel declarations corresponding to Figs. 6.3 and 6.4 are:

channel

[1 ] ch PQ[ i,j ]:MPQ
[2 ] { ch PQ[ i,x ]:MPQ | x:{j,k,...,l} }
[3 ] { ch PQ[p,q ]:MPQ | p:{x,y,...,z}, q:{j,k,...,l} }

Since there is only one index i and j for channel [1], its declaration can be reduced. Similarly there is only

one i for declaration [2]:

channel

[1 ] ch PQ:MPQ
[2 ] { ch PQ[x ]:MPQ | x:{j,k,...,l} }

251 The following description identities holds:

251 { ch PQ[x ]:MPQ | x:{j,k,...,l} } ≡ ch PQ[ j ],ch PQ[k ],...,ch PQ[ l ],

251 { ch PQ[p,q ]:MPQ | p:{x,y,...,z}, q:{j,k,...,l} } ≡
251 ch PQ[x,j ],ch PQ[x,k ],...,ch PQ[x,l ],
251 ch PQ[y,j ],ch PQ[y,k ],...,ch PQ[y,l ],
251 ...,
251 ch PQ[z,j ],ch PQ[z,k ],...,ch PQ[z,l ]

We can sketch a diagram similar to Figs. 6.3 on the preceding page and 6.4 for the case of composite parts.

6.5.2 Channel Declarations

We can simplify the general treatment of channel declarations. Basically all we can say, for any domain, is

that any two distinct part behaviours may need to communicate. Therefore we declare a vector of channels

indexed by sets of two distinct part identifiers.

channel { ch[{ij,ik} ] | ij,ik:UI • {ij,ik}⊆ all uniq ids() ∧ ij,ik } M

5 Of course, these names and types would have to be distinct for any one domain description.
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Initially we shall leave the type of messages over channels further undefined. As we, laboriously, work

through the definition of behaviours, Sect. 6.7, we shall be able to make M precise. all uniq ids was defined

in Sect. 4.2.4 on Page 87.

In preparation for the next example we show Figure 6.5. In that example we shall however refine the

channel declaration indices to two element sets of unique identifiers from specific part identifier types.

a2:A

a1:Ab11:B

b12:B

b1j:B

bp1:B

bpq:B ar:A

bp2:B

bcp:BCbc1:BC

h1:H

h2:H

hm:H ln:L

l2:L

l1:L

. . . 

hl_ch[*,*]:HL_Msg

v_r_ch[*,*]:V_R_Msg b
c
_
b

_
c
h

[*
,*

]:
B

C
_
B

_
M

s
g

Fig. 6.5. Atomic Behaviours

Channels

Example 80 We shall argue for hub-to-link channels based on the mereologies of those parts. Hub parts may be

topologically connected to any number, 0 or more, link parts. Only instantiated road nets knows which. Hence there

must be channels between any hub behaviour and any link behaviour. Vice versa: link parts will be connected to

exactly two hub parts. Hence there must be channels from any link behaviour to two hub behaviours. See the figure

above.

Channel Message Types: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We ascribe types to the messages offered on channels.

252 Hubs and links communicate, both ways, with one another, over channels, hl ch, whose indexes are determined

by their mereologies.

253 Hubs send one kind of messages, links another.

254 Bus companies offer timed bus time tables to buses, one way.

255 Buses and automobiles offer their current, timed positions to the road element, hub or link they are on, one way.

type

253 H L Msg, L H Msg

252 HL Msg = H L Msg | L F Msg

254 BC B Msg = T × BusTimTbl

255 V R Msg = T × (BPos|APos)

Channel Declarations: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

256 This justifies the channel declaration which is calculated to be:

channel

256 { hl ch[h ui,l ui ]:H L Msg

256 | h ui:H UI,l ui:L UI•i ∈ huis∧j ∈ lhuim(h ui) }
256 ∪
256 { hl ch[h ui,l ui ]:L H Msg

256 | h ui:H UI,l ui:L UI•l ui ∈ luis∧i ∈ lhuim(l ui) }

August 16, 2020, 11:41, A Foundation for Software Development © Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark



138 6 DOMAINS – Towards a Dynamics Ontology: Perdurants

We shall argue for bus company-to-bus channels based on the mereologies of those parts. Bus companies need

communicate to all its buses, but not the buses of other bus companies. Buses of a bus company need communicate

to their bus company, but not to other bus companies.

257 This justifies the channel declaration which is calculated to be:

channel

257 { bc b ch[bc ui,b ui ] | bc ui:BC UI, b ui:B UI

257 • bc ui ∈ bcuis ∧ b ui ∈ buis }: BC B Msg

We shall argue for vehicle to road element channels based on the mereologies of those parts. Buses and automobiles

need communicate to all hubs and all links.

258 This justifies the channel declaration which is calculated to be:

channel

258 { v r ch[v ui,r ui ] | v ui:V UI,r ui:R UI

258 • v ui∈ vuis∧r ui∈ ruis }: V R Msg

The channel calculations are described on Pages 141–142

6.6 Signatures – In General

We shall treat perdurants as function invocations. In our cursory overview of perdurants we shall now focus

on one perdurant quality: function signatures.

Definition: 73 Function Signature: By a function signature we shall understand a function name
and a function type expression

Definition: 74 Function Type Expression: By a function type expression we shall understand

a pair of type expressions. separated by a function type constructor either→ (for total function) or
∼
→

(for partial function)

The type expressions are part sort or type, or material sort or type, or attribute type names, but may,

occasionally be expressions over respective type names involving -set, ×, ∗, →m and | type constructors.

6.6.1 Action Signatures and Definitions

Actors usually provide their initiated actions with arguments, say of type VAL. Hence the schematic func-

tion (action) signature and schematic definition:

action: VAL→ Σ
∼
→ Σ

action(v)(σ ) as σ ′

pre: P(v,σ )
post: Q(v,σ ,σ ′)

expresses that a selection of the domain state, as designated by the Σ type expression, is acted upon and

possibly changed. The partial function type operator
∼
→ shall indicate that action(v)(σ ) may not be defined

for the argument, i.e., initial state σ and/or the argument v:VAL, hence the precondition P(v,σ). The post

condition Q(v,σ ,σ ′) characterises the “after” state, σ ′:Σ , with respect to the “before” state, σ :Σ , and

possible arguments (v:VAL). Which could be the argument values, v:VAL, of actions ? Well, there can

basically be only the following kinds of argument values: parts, components and materials, respectively

unique part identifiers, mereologies and attribute values.
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Perdurant (action) analysis thus proceeds as follows: identifying relevant actions, assigning

names to these, delineating the “smallest” relevant state6, ascribing signatures to action functions, and

determining action pre-conditions and action post-conditions. Of these, ascribing signatures is the most

crucial: In the process of determining the action signature one oftentimes discovers that part or component

or material attributes have been left (“so far”) “undiscovered”.

6.6.2 Event Signatures and Definitions:

Events are usually characterised by the absence of known actors and the absence of explicit “external”

arguments. Hence the schematic function (event) signature:

value

event: Σ × Σ
∼
→ Bool

event(σ ,σ ′) as tf
pre: P(σ )
post: tf = Q(σ ,σ ′)

The event signature expresses that a selection of the domain as designated by the Σ type expression is

“acted” upon, by unknown actors, and possibly changed. The partial function type operator
∼
→ shall indicate

that event(σ ,σ ′) may not be defined for some states σ . The resulting state may, or may not, satisfy axioms

and well-formedness conditions over Σ – as expressed by the post condition Q(σ ,σ ′).
Events may thus cause well-formedness of states to fail. Subsequent actions, once actors discover such

“disturbing events”, are therefore expected to remedy that situation, that is, to restore well-formedness. We

shall not illustrate this point.

6.6.3 Behaviour Signatures

We shall only cover behaviour signatures when expressed in RSL/CSP [176]. The behaviour functions are

now called processes. That a behaviour function is a never-ending function, i.e., a process, is “revealed” by

the “trailing” Unit:

behaviour: ...→ ... Unit

That a process takes no argument is ”revealed” by a “leading” Unit:

behaviour: Unit→ ...

That a process accepts channel, viz.: ch, inputs, is “revealed” as follows:

behaviour: ...→ in ch ...

That a process offers channel, viz.: ch, outputs is “revealed” as follows:

behaviour: ...→ out ch ...

That a process accepts other arguments is “revealed” as follows:

behaviour: ARG→ ...

where ARG can be any type expression:

T, T→T, T→T→T, et cetera

where T is any type expression.

6 By “smallest” we mean: containing the fewest number of parts. Experience shows that the domain analyser cum

describer should strive for identifying the smallest state.
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6.6.4 Attribute Access, An Interpretation

We shall only be concerned with part attributes. And we shall here consider them in the context of part

behaviours. Part behaviour definitions embody part attributes.

• Static attributes designate constants. As such they can be “compiled” into behaviour definitions. We

choose, thus, to bring static attribute values as explicit behaviour arguments.

• Monitorable-only attributes designate time-varying values whose values we choose to access in the

following manner:

⋄⋄ attr A(p)
where p is a part in the global state, cf. Sect. 3.18 on Page 73.

• Biddable attributes designate time-varying values whose values we choose to access, respectively

biddably update in the following manner:

⋄⋄ attr A(p)
⋄⋄ update(attr A,A,p)
where p is a part in the global state. We shall informally explain the update functional below.

• Programmable attribute values are calculated by their behaviours. We list them as behaviour argu-

ments. The behaviour definitions may then specify new values. These are provided in the position of

the programmable attribute arguments in tail recursive invocations of these behaviours.

6.6.4.1 The update Functional

The generic update function is explained very informally:

[1 ] update: (P→A) × A × P→ P
[2 ] update(attr A,a,p) ≡ p′

[3 ] pre A ∈ analyse attributes(p) ∧ parts[uid P(p) ] is declared ∧ ...
[4 ] post attr A(p′) ≈ a ∧ ...

[1] The first argument is the observe attribute function, the second argument is the attribute value, the

third argument is the part, p, being updated.

[2] The result of applying the update function is a part, p′.

[3] The pre-condition is that the attribute type, A, is amongst the attributes of the part, that part p is in

the global state, i.e., has been declared as a variable, and more !

[4] The post-condition is that the updated attribute of p′ approximates the argument attribute value,

and “much, much more”.

The “much, much more” refers to the following: the unique identifier of p′ is that of p; the mereology of

p′ is that of p; all other attribute values of p′ is are those of p; and no other part has changed values.

The above amounts to a “storage model”, i.e., a model of domain state variables akin to the storage

models put forward first in [26, Bekič and Walk, 1971], see also [22, Bekič, Bjørner, Henhapl, Jones and

Lucas, 1974], then in [40, Sect. 8.7.1, Bjørner, 2006].

In the context of domain models we shall (later) introduced an array, parts, of variables global to an

entire domain description. For each physical part, p, with unique identifier, π , there will be a corresponding

array element: parts[π ]. To obtain a monitorable attribute A value for part p

• is thus expressed as attr A(parts[π ]).

To update a monitorable attribute A to value a:A for part p

• is correspondingly expressed as update(attr A,a,parts[π ]).
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6.6.4.2 Calculating In/Output Channel Signatures:

259 The function calc i o chn refs apply to parts and yield RSL-Text.
a From p we calculate its unique identifier value and its mereology value.

b If the mereology is not void then a (Currying7) right pointing arrow,→, is inserted.8

c If there is an input mereology then the keyword in is inserted

in front of the input mereology;

d similarly for the input/output mereology;

e and for the output mereology.

value

259 calc i o chn refs: P→ RSL-Text
259 calc i o chn refs(p) ≡ ;
259a let ui = uid P(p), (ics,iocs,ocs) = obs mereo (p) in

259b if ics ∪ iocs ∪ ocs ∪ atrvs , {} then ❝ → ❞ end ;

259c if ics ,{} then ❝ in ❞ calc chn refs(ui,ichs) end ;

259d if iocs,{} then ❝ in,out ❞ calc chn refs(ui,iochs) end ;

259e if ocs,{} then ❝ out ❞ calc chn refs(ui,ochs) end end

260 The function calc chn refs
a apply to a pair, (ui,uis) of a unique part identifier type name and a set of unique part identifier type

names and yield RSL-Text.
b If uis is empty no text is generated. Otherwise an array channel declaration is generated.

260a calc chn refs: P UI × Q UI-set→ RSL-Text
260b calc chn refs(pui,quis) ≡
260b { ❝ (pui,qui) ch[pui,qui ] ❞| qui:Q UI•qui ∈ quis }

261 The function calc all chn dcls
a apply to a pair, (pui,quis) of a unique part identifier and a set of unique part identifiers and yield

RSL-Text.
b If quis is empty no text is generated. Otherwise an array channel declaration

• { ≪| η(pui,qui) ch[pui,qui ]:η(pui,qui)M ≫| | qui:Q UI•qui ∈ quis }
is generated.

261a calc all chn dcls: P UI × Q UI-set→ RSL-Text
261a calc all chn dcls(pui,quis) ≡
261a { ❝ (pui,qui) ch[pui,qui ]:M ❞| qui:Q UI•qui ∈ quis }

The ❝ (pui,qui) ❞ invocation serves to name both the channel, ❝ (pui,qui) ch[pui,qui ] ❞, and the channel
message type, ❝ M ❞. That message type has, possibly, to be left open, at this stage of analysis & description. Message

types can perhaps best, i.e., easiest be decided upon once all the behaviour body definitions have been completed.

262 The overloaded distributed-fix operator ❝ ❞
9 is here applied to a pair of unique identifiers. Very informally:

262 ❝ ... ❞: (UI→ RSL-Text)|((X UI×Y UI)→ RSL-Text)

262 ❝ (x ui,y ui) ❞≡ (❝ (x ui,y ui ❞))

Repeating these channel calculations over distinct parts p1,p2,...,pn of the same part type P will yield “similar” be-

haviour signature channel references:

7 https://en.wikipedia.org/wiki/Currying
8 We refer to the three parts of the mereology value as the input, the input/output and the output mereology (values).
9 The η operator applies to a type and yields the name of the type.
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{PQ ch[p1ui
,qui ]|p1ui

:P UI,qui:Q UI•qui ∈ quis}
{PQ ch[p2ui

,qui ]|p2ui
:P UI,qui:Q UI•qui ∈ quis}

...
{PQ ch[pnui

,qui ]|pnui
:P UI,qui:Q UI•qui ∈ quis}

These distinct single channel references can be assembled into one:

{ PQ ch[pui,qui ] | pui:P UI,qui:Q UI : −pui ∈ puis,qui ∈ quis }
where puis = { p1ui

,p2ui
,...,pnui

}

As an example we have already calculated the array channels for Fig. 6.4 Pg. 136 – cf. the left, the Parts, of that figure

– cf. Items [1–3] Pages 136–136. The identities Item 251 Pg. 136 apply.

6.7 Behaviour Signatures and Definitions

In this section we shall finally show the schemas whereby discrete endurants are transcendentally “mor-

phed” into behaviours.

6.7.1 General on Behaviour Schemas

The general translation schema can be expressed as follows:

is endurant(e)

Translation Schema 2

value

BehaviourEndurant: E→ RSL-Text

BehaviourEndurant(e) ≡
is physical part(e) →

3 Pg. 143 is atomic(e) → BehaviourAtomic(e),

4 Pg. 144 is composite(e) → BehaviourComposite(e),

5 Pg. 144 is single sort set(e) → BehaviourSingleSortSet (e),

6 Pg. 145 is alternative sorts set(e)→ BehaviourAlternativeSortsSet(e),

7 Pg. 145 is structure(e) → BehaviourStructure(e)

8 Pg. 145 is conjoin(e) → BehaviourCon join(e),

is living species(e) → ..., [ we omit treatment of living species ]

→ skip

We have chosen to not “morph” materials into behaviours – as expressed by the last clause above.

6.7.1.1 The General Behaviour Signature

We associate with each part, p:P, a behaviour name M P. That is, every part p of sort P is associated with

the same behaviour name M P each individual such behaviour being distinguished by the initial unique

identifier constant argument.

Behaviours thus have as their first argument their unique part identifier: uid P(p). Behaviours evolves

around a state, or, rather, a set of values: its possibly changing mereology, mt:MT and the attributes of the

part.10 A behaviour signature is therefore:

M P: ui:UI×me:MT×stat attr types(p)
→ prgr attr types(p)
→ calc i o chn refs(p) Unit

10 We presently leave out consideration of possible components and materials of the part.
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where (i) ui:UI is the unique identifier value and type of part p; (ii) me:MT is the value and type

mereology of part p, me = mereo P(p); (iii) stat attr types(p): static attribute types of part p:P; (iv)

prgr attr types(p): controllable attribute types of part p:P; (v) calc i o chn refs(p) calculates references

to the input, the input/output and the output channels serving the attributes shared between part p and the

parts designated in its mereology me.

6.7.2 Preamble Definitions

We have, in Chapter 4 and in this chapter, defined a number of analysis predicates, analysis functions, and

perdurant calculators. These will be used in the preamble of all the part BehaviourSchemas of this section.

We summarise some relevant functions and perdurant calculators.

calc all chn dcls, Item 261a, 141

calc chn refs, Item 260a, 141

calc i o chn refs, Item 259, 141

declaring all monitorable variables, Item 247, 128

moni attr types, Item 201, 102

moni attr vals, Item 204, 103

prgr attr types, Item 202, 102

prgr attr vals, Item 206, 103

stat attr types, Item 200, 102

stat attr vals, Item 204, 103

Translate Endurant, 142

Each BehaviourSchema requires more-or-less all of the below:

263 UI, unique identifier type;

264 MT, mereology type;

265 ST, static attribute types;

266 PT, programmable attribute types;

267 IOR, input/output channel references.

value,
263. UI = type of(uid E(e))
264. MT = type of(mereo E(e))
265. ST = stat attr types(e),
266. PT = prgr attr types(e),
267. IOR = calc i o chn refs(e)

6.7.3 A Behaviour Signature Calculator

For each endurant to be Behaviourd we need collect the elements, values and types that are relevant to that

endurant’s behaviour signature.

collect signature: E→ ❝ UI ❞×❝ MT ❞×❝ ST ❞×❝ PT ❞×❝ IOR ❞

collect signature(e) ≡
(type of(uid E(e)),type of(mereo E(e)),
stat attr types(e),prgr attr types(e),
calc i o chn refs(e))

So we assume this clause to be part of each e:E schema, ..., below:

value

let (❝ UI,MT,ST,PT,IOR ❞) = collect signature(e) in ... end

The Behaviour schemas that now follow make use of analyse part materials part and analyse part ma-

terials materials endurant analysis function prompts defined in Sect. 3.15 on Page 63.

6.7.4 Atomic Schema

Let p:P be an atomic part. It “translates” into behaviour MP:

is atomic(e)

Translation Schema 3
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value

BehaviourAtomic(e) ≡
❝ value

MP: UI×MT×ST→ PT→ IOR Unit

MP(ui,me,sv)(pv) ≡ BP(ui,me,sv)(pv) ❞

The signature identifiers UI, MT, ST and PT are taken from the collect signature function. They

are always understood syntactically when “occurring” in, e.g., signatures. Expression BP(ui,me,sv)(pv)
stands for the behaviour definition body in which the names ui, me, sv, pv are chosen, freely by the

domain describer and bound to the behaviour definition head, i.e., the left hand side of the ≡. That ex-

pression, BP(ui,me,sv)(pv), may thus stand for quite a complex RSL/CSP clause. We elaborate on that in

Sect. 6.7.10.

6.7.5 Composite Schema

Let P be a composite sort defined in terms of endurant sub-sorts E1, E2, . . . , En. Here we only need be

concerned with the translation of p:P, translation of “siblings” follows from the sub-sort endurants e1,
e2, . . . , en which have been set aside. The behaviour description translated from p:P, is thus a behaviour

description of the “root”, M P, relying on and handling the unique identifier, mereology and attributes of

part p

is composite(e)

Translation Schema 4

BehaviourComposite: E→ RSL-Text

BehaviourComposite(e) ≡
❝ value

M E : UI × MT × ST→ PT→ IOR Unit

M E (ui,me,sv)(pv) ≡ BE (ui,me,sv)(pv) ❞

Modelling Choice 10 Composites: The above schema mandates that the conjoin behaviour, M E , be

defined. It does not say anything about the subsidiary elements of the composite. They are handled by the

analyse and describe perdurant process, Sect. 6.12 on Page 158. Why do we express the above ? We

do so because the schemas are just suggestions ! The domain analyser & describer method mandates that

all observed parts be described.

6.7.6 Single Sort Set Schema

is single sort set(e)

Translation Schema 5

BehaviourSingleSortSet : E→ RSL-Text

BehaviourSingleSortSet(e) ≡
❝ value

M E : UI × MT × ST→ PT→ IOR Unit

M E (ui,me,sv)(pv) ≡ BE (ui,me,sv)(pv) ❞
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6.7.7 Alternative Sorts Set Schema

is alternative sorts set(e)

Translation Schema 6

BehaviourAlternativeSortsSet: E→ RSL-Text

BehaviourAlternativeSortsSet(e) ≡
❝ value

M E : UI × MT × ST→ PT→ IOR Unit

M E (ui,me,sv)(pv) ≡ BE (ui,me,sv)(pv) ❞

6.7.8 Structure Schema

is structure(e)

Translation Schema 7

BehaviourStructure: E→ RSL-Text

BehaviourStructure(e) ≡ ❝ ❞

6.7.9 Conjoin Schemas

is conjoin(e)

Translation Schema 8

BehaviourCon join: E→ RSL-Text

BehaviourCon join(e) ≡
is part materials conjoin(e) → BehaviourPart Materials Con join(e),

is material parts conjoin(e) → BehaviourMaterial Parts Con join(e),

is part parts conjoin(e) → BehaviourPart Parts Con join(e)

6.7.9.1 The Part-Materials Conjoin Schema

The Part-Materials Conjoin Schema reveal more of the “semantics” of conjoins. A part-materials

conjoin gives rise to one behaviour: the conjoin behaviour, MC, with the additional programmable-like

argument of the conjoin material. That is, in this monograph, we shall treat materials as “passive”, i.e., not

having a behaviour that we define separately from that of MC.

is part materials conjoin(e)

Translation Schema 9

let ( ,(M1,...,Mm)) = analyse part materials materials(e) in

value

BehaviourPart Materials Con join(e) ≡
❝ value

MC: UI×MT×ST→ PT×(M1×...×Mm)→ IOR Unit

MC(ui,me,sv)(pv,cm) ≡BP(ui,me,sv)(pv,cm) ❞

end
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6.7.9.2 The Material-Parts Conjoin Schema

The Material-Parts Conjoin Schema reveals more of the “semantics” of conjoins. A material-parts

conjoin gives rise to one behaviour: the conjoin “root” behaviour, MC. The behaviour of the “sibling”

part behaviours is defined separately – as is expressed by the analyse and describe perdurant process
of Sect. 6.12 on Page 158. The former, MC, “keeps track” of the material compound, cm, relating the

contained materials to the atomic ”root” part. The “sibling” behaviours proceed at their own will.

is material parts conjoin(e)

Translation Schema 10

let ( ,CM) = analyse material parts material(e) in

value

BehaviourMaterial Parts Con join(e) ≡
❝ value

MC: UI×MT×ST→ PT×CM IOR Unit

MC(ui,me,sv)(pv,cm) ≡BP(ui,me,sv)(pv,cm) ❞

end

Modelling Choice 11 Material-Parts: The analyse and describe perdurant process, cf. Sect. 6.12

on Page 158 does prescribe the schema for some arbitrarily chosen part in ps, that is, mandates that all be

described – and that is why we are mentioning it here.

A Conjoin Canal Lock

Example 81 Let p be a conjoin canal lock with atom part a and material m. Then m is the water, a

natural material, in the conjoin, housed in the fixed chamber of p. and a is the lock mechanics: two gates
that can open and close, letting water in and out of the lock, a paddle, i.e., a valve by means of which

water is filled or emptied, a winding gear, the mechanism which allows paddles to be lifted (opened) or

lowered (closed). et cetera. The MC behaviour, i.e., the overall behaviour of the canal lock, when it so

decides11inform the M A behaviour to operate its mechanics; it does so based on either sampling its con-

tainer, m, water level, say by means of an dynamic attribute attr Level(m), or receiving appropriate

messages from the M A behaviour. The M A behaviour, i.e., the lock mechanics, in a sense, is obliv-

ious to the water (and the vessels), and keeps itself occupied by monitoring and controlling its various

mechanisms: the gates, paddles, winding gear, et cetera.

6.7.9.3 The Part-Parts Conjoin Schema

The Part-Parts Conjoin Schema reveals more of the “semantics” of conjoins. A part-parts conjoin

gives rise to one behaviour: the conjoin’s “root” part behaviour, MC. MC may be expected to “keep track”

of the “sibling” parts, ps – the contained parts to the conjoin part – behaviours.

is part parts conjoin(e)

Translation Schema 11

value

BehaviourPart Parts Con join(e) ≡
❝ value

MC: UI×MT×ST→ PT→ IOR Unit

MC(ui,me,sv)(pv) ≡ BP(ui,me,sv)(pv) ❞

11 We do not model the vessels that travels the canals and enter and leave locks.
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The next example focuses only on signatures.

Road Transport Behaviour Signatures

Example 82 We first decide on names of behaviours. In the translation schemas we gave schematic names to

behaviours of the form M P. We now assign mnemonic names: from part names to names of transcendentally inter-

preted behaviours and then we assign signatures to these behaviours.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

268 hubhui
:

a there is the usual “triplet” of arguments: unique identifier, mereology and static attributes;

b then there are the programmable attributes;

c and finally there are the input/output channel references: first those allowing communication between hub

and link behaviours,

d and then those allowing communication between hub and vehicle (bus and automobile) behaviours.

value

268 hubhui
:

268a h ui:H UI×(vuis,luis, ):H Mer×HΩ

268b → (HΣ×H Traffic)

268c → in,out { h l ch[h ui,l ui ] | l ui:L UI•l ui ∈ luis }
268d { ba r ch[h ui,v ui ] | v ui:V UI•v ui∈vuis } Unit

268a pre: vuis = vuis ∧ luis = luis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

269 linklui
:

a there is the usual “triplet” of arguments: unique identifier, mereology and static attributes;

b then there are the programmable attributes;

c and finally there are the input/output channel references: first those allowing communication between hub

and link behaviours,

d and then those allowing communication between link and vehicle (bus and automobile) behaviours.

value

269 linklui
:

269a l ui:L UI×(vuis,huis, ):L Mer×LΩ
269b → (LΣ×L Traffic)

269c → in,out { h l ch[h ui,l ui ] | h ui:H UI:h ui ∈ huis }
269d { ba r ch[ l ui,v ui ] | v ui:(B UI|A UI)•v ui∈vuis } Unit

269a pre: vuis = vuis ∧ huis = huis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

270 bus companybcui
:

a there is here just a “doublet” of arguments: unique identifier and mereology;

b then there is the one programmable attribute;

c and finally there are the input/output channel references allowing communication between the bus company

and buses.

value

270 bus companybcui
:

270a bc ui:BC UI×( , ,buis):BC Mer

270b → BusTimTbl

270c in,out {bc b ch[bc ui,b ui ]|b ui:B UI•b ui∈buis} Unit

270a pre: buis = buis ∧ huis = huis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

271 busbui
:
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a there is here just a “doublet” of arguments: unique identifier and mereology;

b then there are the programmable attributes;

c and finally there are the input/output channel references: first the input/output allowing communication

between the bus company and buses,

d and the input/output allowing communication between the bus and the hub and link behaviours.

value

271 busbui
:

271a b ui:B UI×(bc ui, ,ruis):B Mer

271b → (LN × BTT × BPOS)

271c → out bc b ch[bc ui,b ui ],
271d {ba r ch[ r ui,b ui ]|r ui:(H UI|L UI)•ui∈vuis} Unit

271a pre: ruis = ruis ∧ bc ui ∈ bcuis

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

272 automobileaui
:

a there is the usual “triplet” of arguments: unique identifier, mereology and static attributes;

b then there is the one programmable attribute;

c and finally there are the input/output channel references allowing communication between the automobile

and the hub and link behaviours.

value

272 automobileaui
:

272a a ui:A UI×( , ,ruis):A Mer×rn:RegNo

272b → apos:APos

272c in,out {ba r ch[a ui,r ui ]|r ui:(H UI|L UI)•r ui∈ruis} Unit

272a pre: ruis = ruis ∧ a ui ∈ auis

6.7.10 Core Behaviour

The core processes can be understood as never ending, “tail recursively defined” processes:

Core Behaviour Part e (I)

A Suggested Behaviour Definition 1

BP: UI×MT×ST→ PT→ IOT Unit

BP(ui,me,sv)(pv) ≡ let (me′,pv′) = FP(ui,me,sv)(pv) in M P(ui,me′,sv)(pa′) end

FP: UI×MT×ST→ PT→ IOT→ MT×PT

We present a rough sketch of Fπ . The Fπ action non-deterministically internal choice chooses between

• either [1,2,3,4]

⋄⋄ [1] accepting input from

⋄⋄ [4] a suitable (“offering”) part process,

⋄⋄ [2] optionally offering a reply, and

⋄⋄ [3] finally delivering an updated state;

• or [5,6,7,8]

⋄⋄ [5] finding a suitable “order” (val)
⋄⋄ [8] to a suitable (“inquiring”) behaviour (π ′),
⋄⋄ [6] offering that value (on channel ch[π ′]
⋄⋄ [7] and then delivering an updated state;

• or [9] doing own work resulting in an updated state.
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Core Behaviour Part e (II)

A Suggested Behaviour Definition 2

value

FP: UI×MT×ST→ PT→ IOR→ MT×PT

FP(ui,me,sv)(pv) ≡
[1 ] ⌈⌉⌊⌋ { let val = ch[π ′ ] ? in

[2 ] ( ch[π ′ ] ! in reply(val)(me,sv)(pv) ⌈⌉ skip ) ;

[3 ] in update(val)(me,sv)(pv) end | π ′: Π • π ′ ∈ calc i o chn refs(p)}
[5 ] ⌈⌉ ⌈⌉⌊⌋ { let val = await reply(π ′)(me,sv)(pv) in

[6 ] ch[π ′ ] ! val ;

[7 ] out update(val)(me,sv)(pv) end | π ′: Π • π ′ ∈ calc i o chn refs(p)}
[9 ] ⌈⌉ (me,own work(sv)(pv))

in reply: VAL→ ST→ MT×ST→→ PT→ IOR→ VAL

in update: VAL→ MT×ST→ PT→ IOR × (MT×PT)

await reply: UI→ MT×ST→ PT→ IOR→ VAL

out update: VAL→ MT×ST→ PT→ IOR→ MT×PT

own work: SA→ MT×PT→ IOR→ MT×PT

We leave these auxiliary functions and VAL undefined.

The in reply, in update, await reply, out update and own work functions contain references to static

and programmable attributes values by stating their names: sv and pv; and to monitorable attribute, Am, val-

ues by stating attr A(part[ui]). Updates. v, to biddable attributes, Ab, are expressed as update(A,v,part[ui]).

Automobile Behaviour

Example 83 We define the behaviours in a different order than the treatment of their signatures. We

“split” definition of the automobile behaviour into the behaviour of automobiles when positioned at

a hub, and into the behaviour automobiles when positioned at on a link. In both cases the behaviours

include the “idling” of the automobile, i.e., its “not moving”, standing still.

273 We abstract automobile behaviour at a Hub (hui).
274 The vehicle remains at that hub, “idling”,

275 informing the hub behaviour,

276 or, internally non-deterministically,

a moves onto a link, tli, whose “next” hub, identified by th ui, is obtained from the mereology of

the link identified by tl ui;
b informs the hub it is leaving and the link it is entering of its initial link position,

c whereupon the vehicle resumes the vehicle behaviour positioned at the very beginning (0) of that

link,

277 or, again internally non-deterministically,

278 the vehicle “disappears — off the radar” !

273 automobileaui
(a ui,({},(ruis,vuis),{}),rn)

273 (apos:atH(fl ui,h ui,tl ui)) ≡
274 (ba r ch[a ui,h ui ] ! (record TIME(),atH(fl ui,h ui,tl ui));
275 automobileaui

(a ui,({},(ruis,vuis),{}),rn)(apos))
276 ⌈⌉
276a (let ({fh ui,th ui},ruis′)=mereo L(℘(tl ui)) in

276a assert: fh ui=h ui ∧ ruis=ruis′

273 let onl = (tl ui,h ui,0,th ui) in

276b (ba r ch[a ui,h ui ] ! (record TIME(),onL(onl)) ‖
276b ba r ch[a ui,tl ui ] ! (record TIME(),onL(onl))) ;
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276c automobileaui
(a ui,({},(ruis,vuis),{}),rn)

276c (onL(onl)) end end)
277 ⌈⌉
278 stop

You may skip Example 84 in a first reading.

Further Behaviours of a Road Transport System

Example 84 Automobile Behaviour (on a link) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

279 We abstract automobile behaviour on a Link.

a Internally non-deterministically, either

i the automobile remains, “idling”, i.e., not moving, on the link,

ii however, first informing the link of its position,

b or

i if if the automobile’s position on the link has not yet reached the hub, then

1 then the automobile moves an arbitrary small, positive Real-valued increment along the

link

2 informing the hub of this,

3 while resuming being an automobile ate the new position, or

ii else,

1 while obtaining a “next link” from the mereology of the hub (where that next link could

very well be the same as the link the vehicle is about to leave),

2 the vehicle informs both the link and the imminent hub that it is now at that hub, identi-

fied by th ui,
3 whereupon the vehicle resumes the vehicle behaviour positioned at that hub;

c or

d the vehicle “disappears — off the radar” !

279 automobileaui
(a ui,({},ruis,{}),rno)

279 (vp:onL(fh ui,l ui,f,th ui)) ≡
279(a)ii (ba r ch[ thui,aui ]!atH(lui,thui,nxt lui) ;

279(a)i automobileaui
(a ui,({},ruis,{}),rno)(vp))

279b ⌈⌉
279(b)i (if not yet at hub(f)

279(b)i then

279(b)i1 (let incr = increment(f) in

273 let onl = (tl ui,h ui,incr,th ui) in

279(b)i2 ba−r ch[ l ui,a ui ] ! onL(onl) ;

279(b)i3 automobileaui
(a ui,({},ruis,{}),rno)

279(b)i3 (onL(onl))

279(b)i end end)

279(b)ii else

279(b)ii1 (let nxt lui:L UI•nxt lui ∈ mereo H(℘(th ui)) in

279(b)ii2 ba r ch[ thui,aui ]!atH(l ui,th ui,nxt lui) ;

279(b)ii3 automobileaui
(a ui,({},ruis,{}),rno)

279(b)ii3 (atH(l ui,th ui,nxt lui)) end)

279(b)i end)

279c ⌈⌉
279d stop

279(b)i1 increment: Fract→ Fract

Hub Behaviour . . . . . . . . . . . . . . . . . . . . . . . We model the hub behaviour vis-a-vis vehicles: buses and automobiles.

280 The hub behaviour
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a non-deterministically, externally offers

b to accept timed vehicle positions —

c which will be at the hub, from some vehicle, v ui.

d The timed vehicle hub position is appended to the front of that vehicle’s entry in the hub’s traffic table;

e whereupon the hub proceeds as a hub behaviour with the updated hub traffic table.

f The hub behaviour offers to accept from any vehicle.

g A post condition expresses what is really a proof obligation: that the hub traffic, ht′ satisfies the axiom of

the endurant hub traffic attribute Item 187 Pg. 99.

value

280 hubhui
(h ui,(,(luis,vuis)),hω)(hσ ,ht)≡

280a ⌈⌉⌊⌋
280b { let m = ba r ch[h ui,v ui ] ? in

280c assert: m=( ,atHub( ,h ui, ))

280d let ht′ = ht † [h ui 7→ 〈m〉̂ht(h ui) ] in

280e hubhui
(h ui,(,(luis,vuis)),(hω))(hσ ,ht′)

280f | v ui:V UI•v ui∈vuis end end }
280g post: ∀ v ui:V UI•v ui ∈ dom ht′⇒time ordered(ht′(v ui))

Link Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

281 The link behaviour non-deterministically, externally offers

282 to accept timed vehicle positions —

283 which will be on the link, from some vehicle, v ui.

284 The timed vehicle link position is appended to the front of that vehicle’s entry in the link’s traffic table;

285 whereupon the link proceeds as a link behaviour with the updated link traffic table.

286 The link behaviour offers to accept from any vehicle.

287 A post condition expresses what is really a proof obligation: that the link traffic, lt′ satisfies the axiom of the

endurant link traffic attribute Item 191 Pg. 100.

281 linklui
(l ui,( ,(huis,vuis), ),lω)(lσ ,lt) ≡

281 ⌈⌉⌊⌋
282 { let m = ba r ch[ l ui,v ui ] ? in

283 assert: m=( ,onLink( ,l ui, , ))

284 let lt′ = lt † [ l ui 7→ 〈m〉 l̂t(l ui) ] in

285 linklui
(l ui,(huis,vuis),hω)(hσ ,lt′)

286 | v ui:V UI•v ui∈vuis end end }
287 post: ∀ v ui:V UI•v ui ∈ dom lt′⇒time ordered(lt′(v ui))

Bus Company Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We model bus companies very rudimentary. Bus companies keep a fleet of buses. Bus companies create, main-

tain, distribute bus time tables. Bus companies deploy their buses to honor obligations of their bus time tables. We

shall basically only model the distribution of bus time tables to buses. We shall not cover other aspects of bus com-

pany management, etc.

288 Bus companies non-deterministically, internally, chooses among

a updating their bus time tables

b whereupon they resume being bus companies, albeit with a new bus time table;

289 “interleaved” with

a offering the current time-stamped bus time table to buses which offer willingness to received them

b whereupon they resume being bus companies with unchanged bus time table.

270 bus companybcui
(bcui,( ,buis, ))(btt) ≡

288a (let btt′ = update(btt,...) in

288b bus companybcui
(bcui,( ,buis, ))(btt′) end )

289 ⌈⌉
289a ( ⌈⌉⌊⌋ {bc b ch[bc ui,b ui ] ! btt | b ui:B UI•b ui∈buis

289b bus companybcui
(bcui,( ,buis, ))(record TIME(),btt) } )
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We model the interface between buses and their owning companies — as well as the interface between buses and the

road net, the latter by almost “carbon-copying” all elements of the automobile behaviour(s).

290 The bus behaviour chooses to either

a accept a (latest) time-stamped buss time table from its bus company –

b where after it resumes being the bus behaviour now with the updated bus time table.

291 or, non-deterministically, internally,

a based on the bus position

i if it is at a hub then it behaves as prescribed in the case of automobiles at a hub,

ii else, it is on a link, and then it behaves as prescribed in the case of automobiles on a link.

290 busbui
(b ui,( ,(bc ui,ruis), ))(ln,btt,bpos)≡

290a (let btt′ = b bc ch[b ui,bc ui ] ? in

290b busbui
(b ui,({},(bc ui,ruis),{}))(ln,btt′,bpos) end)

291 ⌈⌉
291a (case bpos of

291(a)i atH(fl ui,h ui,tl ui)→
291(a)i atH busbui

(b ui,( ,(bc ui,ruis), ))(ln,btt,bpos),

291(a)ii aonL(fh ui,l ui,f,th ui)→
291(a)ii onL busbui

(b ui,( ,(bc ui,ruis), ))(ln,btt,bpos)

291a end)

Bus Behaviour at a Hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The atH busbui
behaviour definition is a simple transcription of the automobileaui

(atH) behaviour definition:

mereology expressions being changed from to , programmed attributes being changed from atH(fl ui,h ui,tl ui) to

(ln,btt,atH(fl ui,h ui,tl ui)), channel references a ui being replaced by b ui, and behaviour invocations renamed from

automobileaui
to busbui

. So formula lines 274–279d below presents “nothing new” !

291(a)i atH busbui
(b ui,( ,(bc ui,ruis), ))

291(a)i (ln,btt,atH(fl ui,h ui,tl ui)) ≡
274 (ba r ch[b ui,h ui ] ! (record TIME(),atH(fl ui,h ui,tl ui));

275 busbui
(b ui,({},(bc ui,ruis),{}))(ln,btt,bpos))

290a ⌈⌉
276a (let ({fh ui,th ui},ruis′)=mereo L(℘(tl ui)) in

276a assert: fh ui=h ui ∧ ruis=ruis′

273 let onl = (tl ui,h ui,0,th ui) in

276b (ba r ch[b ui,h ui ] ! (record TIME(),onL(onl)) ‖
276b ba r ch[b ui,tl ui ] ! (record TIME(),onL(onl))) ;

276c busbui
(b ui,({},(bc ui,ruis),{}))

276c (ln,btt,onL(onl)) end end )

279c ⌈⌉
279d stop

Bus Behaviour on a Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The onL busbui
behaviour definition is a similar simple transcription of the automobileaui

(onL) behaviour

definition. So formula lines 274–279d below presents “nothing new” !

292 – this is the “almost last formula line” !

291(a)ii onL busbui
(b ui,( ,(bc ui,ruis), ))

291(a)ii (ln,btt,bpos:onL(fh ui,l ui,f,th ui)) ≡
274 (ba r ch[b ui,h ui ] ! (record TIME(),bpos);

275 busbui
(b ui,({},(bc ui,ruis),{}))(ln,btt,bpos))

290a ⌈⌉
279(b)i (if not yet at hub(f)

279(b)i then

279(b)i1 (let incr = increment(f) in

273 let onl = (tl ui,h ui,incr,th ui) in

279(b)i2 ba−r ch[ l ui,b ui ] ! onL(onl) ;

279(b)i3 busbui
(b ui,({},(bc ui,ruis),{}))
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279(b)i3 (ln,btt,onL(onl))

279(b)i end end)

279(b)ii else

279(b)ii1 (let nl ui:L UI•nxt lui∈mereo H(℘(th ui)) in

279(b)ii2 ba r ch[ thui,b ui ]!atH(l ui,th ui,nxt lui) ;

279(b)ii3 busbui
(b ui,({},(bc ui,ruis),{}))

279(b)ii3 (ln,btt,atH(l ui,h ui,nxt lui))

279(b)ii1 end)end)

279c ⌈⌉
279d stop

6.8 System Initialisation

It is one thing to define the behaviours corresponding to all parts, whether composite or atomic. It is another

thing to specify an initial configuration of behaviours, that is, those behaviours which “start” the overall

system behaviour. The choice as to which parts, i.e., behaviours, are to represent an initial, i.e., a start

system behaviour, cannot be “formalised”, it really depends on the “deeper purpose” of the system. In

other words: requires careful analysis and is beyond the scope of the present monograph.

We sketch a general system initialisation function. It reflects the decision to transcendentally deduce all

parts into behaviours.

value

initialise system: Unit→ Unit

initialise system() ≡
let ps = calc parts({uod})({}) in

‖ { let ui = uid E(p), me = mereo E(p),
sv = static values(p), pv = programmable values(p) in

BP(ui,me,sv)(pv) | p:E • p ∈ ps
end }

end

Initial System

Example 85 Initial States: We recall the hub, link, bus company, bus and the automobile states out-

lined in Sect. 3.18 on Page 73.

value

126 hs:H-set ≡ ≡ obs sH(obs SH(obs RN(rts)))

127 ls:L-set ≡ ≡ obs sL(obs SL(obs RN(rts)))

129 bcs:BC-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

130 bs:B-set ≡ ∪{obs Bs(bc)|bc:BC•bc ∈ bcs}
131 as:A-set ≡ obs BCs(obs SBC(obs FV(obs RN(rts))))

Starting Initial Behaviours: We are reaching the end of this domain modelling example. Behind us there

are narratives and formalisations Item 105 Pg. 66– Item 278 Pg. 149.Based on these we now express the

signature and the body of the definition of a “system build and execute” function.

293 The system to be initialised is

a the parallel compositions (‖) of

b the distributed parallel composition (‖{...|...}) of all the hub behaviours,

c the distributed parallel composition (‖{...|...}) of all the link behaviours,

d the distributed parallel composition (‖{...|...}) of all the bus company behaviours,

e the distributed parallel composition (‖{...|...}) of all the bus behaviours, and

f the distributed parallel composition (‖{...|...}) of all the automobile behaviours.
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value

293 initial system: Unit→ Unit

293 initial system() ≡
293b ‖ { hubhui

(h ui,me,hω)(htrf,hσ )

293b | h:H•h ∈ hs, h ui:H UI•h ui=uid H(h), me:HMetL•me=mereo H(h),

293b htrf:H Traffic•htrf=attr H Traffic H(h),

293b hω:HΩ •hω=attr HΩ (h), hσ :HΣ •hσ=attr HΣ (h)∧hσ ∈ hω }
293a ‖
293c ‖ { linklui

(l ui,me,lω)(ltrf,lσ )

293c l:L•l ∈ ls, l ui:L UI•l ui=uid L(l), me:LMet•me=mereo L(l),

293c ltrf:L Traffic•ltrf=attr L Traffic H(l),

293c lω:LΩ •lω=attr LΩ (l), lσ :LΣ •lσ=attr LΣ (l)∧lσ ∈ lω }
293a ‖
293d ‖ { bus companybcui

(bcui,me)(btt)

293d bc:BC•bc ∈ bcs, bc ui:BC UI•bc ui=uid BC(bc), me:BCMet•me=mereo BC(bc),

293d btt:BusTimTbl•btt=attr BusTimTbl(bc) }
293a ‖
293e ‖ { busbui

(b ui,me)(ln,btt,bpos)

293e b:B•b ∈ bs, b ui:B UI•b ui=uid B(b), me:BMet•me=mereo B(b), ln:LN:pln=attr LN(b),

293e btt:BusTimTbl•btt=attr BusTimTbl(b), bpos:BPos•bpos=attr BPos(b) }
293a ‖
293f ‖ { automobileaui

(a ui,me,rn)(apos)

293f a:A•a ∈ as, a ui:A UI•a ui=uid A(a), me:AMet•me=mereo A(a),

293f rn:RegNo•rno=attr RegNo(a), apos:APos•apos=attr APos(a) }

6.9 Concurrency: Communication and Synchronisation

Translation Schemas 4, 9–11 reveal that two or more parts, which temporally coexist (i.e., at the same

time), imply a notion of concurrency . Translation Schema 2 on Page 149, through the RSL/CSP language

expressions ch ! v and ch ?, indicates the notions of communication and synchronisation . Other than this

we shall not cover these crucial notion related to parallelism .

6.10 Discrete Actions

In the extensive Road Transport System behaviour definitions, that is, in the Automobile Behaviour at
a Hub Example 83 on Page 149, the Further Behaviours of a Road Transport (Appendix) Exam-

ple 84 Page 150 and the Initial System example, Example 85 153, we have already “taken the lid off” the

subject of action analysis & description, that is, unsystematically “revealed” aspects of action analysis &
description. In this section we shall present a more systematic approach. We cannot do that for the full

category of manifest domains such as we have defined domains. But we can single out a a sub-category of

conjoin systems.

6.10.1 Conjoin Actions

The pragmatics of conjoins include (i) for single material conjoins, the transport, along the atomic part of

the material, in one or both directions; (ii) for multiple, i.e., more than one material conjoins, the treatment

of one or more of these materials, mixing, heating, “cleaning”, or other; as well as possibly also the trans-

port of one or more of these materials to or from a conjoin, from or to “an outside”, and between conjoins.

Caveat: There is, however, a problem ! The problem is that the domain phenomena that we really wish

to model are not discrete in time, but continuous over time, and that we have no other means of modelling
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these phenomena that using good old-fashioned mathematical analysis, that is, partial differential equations
as our analysis & description tool. Why is that a problem ? It is a problem because we really have no

“integrated” means of mixing the discrete mathematics-based notations – as here expressed in RSL – with

that of classical mathematics’ partial differential equations, PDE, while making sure that the whole thing,

the two notations, RSL and PDE, together makes sense, i.e., have a meaning. Research has gone on for now

almost 30 years when this is written, but no real progress has been made. The discrete formal specification

language research community, i.e., those of languages like, for example, VDM-SL, Z, RAISE, B, The B

Method, et cetera, are naturally “steeped” in proof concerns where were and are not foremost in the minds

of the PDE community. We refer to [10] for research papers on so-called “integrated formal methods”

So, not choosing a problematic “mixture” of RSL and PDE we settle for just expressing some properties of

actions on conjoin net parts. These are actions, to repeat, on parts but they involve materials and, although

they are part actions they have consequences for “their materials”.

To express these operations we associate with conjoins just five simple operations: supply, pump,

set valve, treat and dispose, These operations are operations “performed” by the part element of

a conjoin, but they have more-or-less direct influence on the attributes of one or more of the material

elements of a conjoin. There are no operations on forks, joins and pipes – what flows into these units

flow out: is distributed, is collected and is just plainly forwarded. We shall therefore suggest an algebra of

discrete operations. The inspiration for this algebra is derived from Yuri Gurevitch ’s concept of evolving
algebras, also now referred to as abstract state machines. We refer to [188, 103, 189, 104, 98, 103,

190, 97, 99, 104, 330, 331]. We refer to the operations that we shall suggest as discrete. That is, we shall

not here consider these operations as “taking time”. We invite the reader to consider a temporal logic for

domains while referring to [380, The Duration Calculus] and [263, Temporal Logic of Actions].

The conjoin operation make use of analyse part materials part and analyse part materials -

materials endurant analysis function prompts defined in Sect. 3.15 on Page 63.

6.10.1.1 Discrete Supply of Material to Conjoins

A volume or weight amount of an appropriate substance is to be added to material m of endurant e.

Conjoin Operation 1

Supply

let p:P = analyse part materials part(e), (m:M) = analyse part materials materials(e) in

6 m′ := supply m with x(m3|kg) of attr Substance(m)
end

The Supply Schema is to be understood as follows: A conjoin e, a volume or weight amount, x, and the

material m of e is indicated. A specified amount, x, of material is now added to that of m of e to become

the new value, m′, for that substance of e. Typically e would be a supply unit of the material network,

cf. Fig. 4.2 on Page 95.

6.10.1.2 Discrete Disposal of Material from Conjoins

A volume or weight amount, x, of an appropriate substance is to be removed, i.e., disposed, from material

mi of endurant e.

Conjoin Operation 2

Disposal

let p:P = analyse part materials part(e), (m:M) = analyse part materials materials(e) in

6 m′ := dispose x(m3|kg) from m
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end

The Disposal Schema is to be understood as follows: A conjoin e, a volume or weight amount, x, of

the material m of e is indicated. Somehow that amount of material is to be removed from that of m of e to

become the new value, m′, for that substance of e.

6.10.1.3 Discrete Pumping of Material from Conjoins

We shall leave the interpretation of the following schemas, as a challenge, to the reader.

Conjoin Operation 3

Pump

let p:P = analyse part materials part(e),
(m:M) = analyse part materials materials(e) in

let (b,a) = before after conjoins(p)(), f = pumping capacity(p) in

let p b:PB = analyse part materials part(b),
(m b:MB) = analyse part materials materials(b),
p a:PA = analyse part materials part(a),
(m a:MA) = analyse part materials materials(a) in

6 m a′ := m a ⊖ f (m a); m b′ := m b ⊕ f (m a)
end end end

6.10.1.4 Discrete Opening/Closing of Material Transport by Valves

A valve is to be set at a fraction f of “flow-put” where 0≤ f ≤ 1.

Conjoin Operation 4

Valve

let p:P = analyse part materials part(e),
(m: ) = analyse part materials materials(e) in

6 m′ := set valve opening at f for material m
end

6.10.1.5 Discrete Treatment of Materials of a Conjoin

Conjoin Operation 5

Treatment

let p:P = analyse part materials part(e),
(m1,m2,...mm) = analyse part materials materials(e) in axiom m≥1

6 m′1 := treat with a1/b of m1, c1/d of m2, ..., e1/f of mm with operation o1,
6 m′2 := treat with a2/b of m2, c2/d of m2, ..., e2/f of mm with operation o2 ,
6 ...
6 m′m := treat with am/b of m1, cm/d of m2, ..., em/f of mm with operation om

axiom ∀ i:Nat • 1≤i≤m⇒ ai≤b ∧ ci≤d ∧ ... ∧ ei≤f ∧
∧ ∀ (xi,y):{(ai,b),(ci,d),...,(ei,f)} • x1+x2+...+xm=y
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end

If, for some i, m′i is to have no contribution from some m j then x j/y = 0, i.e., x j = 0.

The Treatment Schema is to be understood as follows: There are up to m ‘assignments’. They are to

be understood as an equation system. The [to the] right [of :=] mis all have fixed, initial values. The [to the]

left [of :=] m′i denote a final value. By value we mean that either, for all entries of an ‘assignment/equation’,

we speak of Volume, or we speak of Weight. Et cetera !

• • •

You may think of the above 6s to single out the actual operations on conjoin parts. The schema text

surrounding these 6 lines serve to identify the quantities involved in the operations. So the conjoin part

actions are, in a sense, loosely described. We refer to Exercise 27 on Page 161.

• • •

This section ends a series of discourses on conjoins. We refer to Sect. 3.16.3 on Page 70, Example 37

on Page 71, Sect. 4.3.7 on Page 94 and Sect. 4.4.8 on Page 110. This last “installment” has been, but a

sketch. We refer to Sect. 7.4 on Page 173 on Rules & Regulations, Sect. 7.5 on Page 175 on Scripts and

Sect. 7.6 on Page 177 on License Languages, Pages 173–186, for a continuation of the subject.

6.11 Discrete Events

To clear any possible misunderstanding there are two kinds of events. There are the domain events that we

shall analyse & describe; and there are the events of the domain description. The latter are exemplified by

CSP’s out/input clauses: ch[..] ! e (offer value of expression e on channel ch[..]), and ch[..] ? (accept value

offered on channel ch[..]). We shall use the latter to model the former !

By domain event we shall understand a change of domain state for which we do, or cannot, point out a

known domain behaviour to be the cause of that event.

Domain Events

Example 86 We informally sketch some domain events. (i) An automobile suddenly skidding off a link

or hub, thus, in sense, “disappearing” from the road net, rendering the transport domain in chaos – if we

are not prepared to model the recovery, as is done in the domain, from such calamities. (ii) A pipeline

unit suddenly bursting, i.e., exploding, thus, in a sense, rendering the pipeline in chaos – if we are not

prepared to model the recovery, as is done in the domain, from such calamities.

We suggest to model domain events as follows. Let

BP: UI×MT×ST→ PT→ IOT Unit

BP(ui,me,sv)(pv) ≡ let (me
′
,pv
′
) = FP(ui,me,sv)(pv) in M P(ui,me

′
,sv)(pv

′
) end

be the body of a behaviour definition. Domain events that can be, say approximately, identified as taking

place in a resumption of M P(ui,me’,sv)(pa’) can then be expressed in a changed definition of BP:

value

BP: UI×MT×ST→ PT→ IOT Unit

BP(ui,me,sv)(pv) ≡
(1.) let (me

′
,pv
′
) = FP(ui,me,sv)(pv) in

(2.) either: chaos

(3.) or: let (me
′′
,sv
′
,pv
′′
) = handle eventP(me

′
,sv,pv

′
) in M P(ui,me

′′
,sv
′
)(pv

′′
) end

(4.) ⌈⌉M P(ui,me
′
,sv)(pv

′
) end

handle event: MT × ST × PT→ MT × ST × PT
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We informally explain: (1.) is as for the “un-event” version of BP. Then modelling the occurrence of

possibly not-occurring events means that the behaviour non-deterministically, line (4.), chooses the (2.-

3.) model or the (4.) model. (2.) either the domain analyser & describer chooses to not handle event

handle eventP, and specifies chaos; (3.) or the domain analyser & describer chooses to model some

handling of the event – before resuming M P. (4.) In this model no event has been “detected” – and life

proceeds as normal.

Similar domain events occurring “during” FP can be handled likewise.

6.12 A Domain Discovery Process, III

The predecessors of this section are Sects. 3.19 on Page 75 and 4.8 on Page 118.

We shall yet again emphasize some aspects of the domain analyser & describer method. A method
principle is that of exhaustively analyse & describe all external qualities of the domain under scrutiny. A

method technique implied here is that sketched below. The method tools are here all the analysis and

description prompts covered so far.

6.12.1 Review of The Endurant Analysis and Description Process

The endurant analysis & description process is defined in Sect. 4.8 on Page 118.

value

endurant analysis and description: Unit→ Unit

endurant analysis and description() ≡
discover sorts();
discover uids();
discover mereologies();
discover attributes()

We are now to define a perdurant analysis and description procedure – to follow the above en-
durant analysis and description procedure.

6.12.2 A Perdurant Analysis and Description Process

We define the perdurant analysis and description procedure in the reverse order of that of Sect. 4.8 on

Page 118, first the full procedure, then its sub-procedures.
A Domain Endurant Analysis and Description Process

value

perdurant analysis and description: Unit→ Unit

perdurant analysis and description() ≡
discover state(); axiom [ Note (a) ]

discover channels(); axiom [ Note (b) ]

discover behaviour signatures(); axiom [ Note (c) ]

discover behaviour definitions(); axiom [ Note (c) ]

discover initial system() axiom [ Note (d) ]

Note (a) The State: The state variable parts maps unique identifiers of every part into that part. We

might, perhaps should, modify “that part” into a quantity to which monitorable attribute value inquiries,

attr A, apply; and nothing more, that is, “parts” devoid themselves of unique identifiers, mereology, and

static and programmable attributes. We refrain from doing so here.

Note (b) The Channels: We refer to Sect. 6.5.2 on Page 136. Thus we indiscriminately declare a

channel for each pair of distinct unique part identifiers whether the corresponding pair of part behaviours,

if at all invoked, communicate or not.
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Note (c) Discrete Behaviour Signatures and Definitions: In Sect. 6.7 on Page 142 Translation
Schemas 3–11 “lump” expression of behaviour signature and definition into one RSL-Text. Here we

separate the two. The reason is one of pragmatics. We find it more productive to first settle on the signatures

of all behaviours before tackling the far more time-consuming work on defining the behaviours.

Note (d) The Running System: We refer to Sect. 6.8 on Page 153.

6.12.2.1 The discover state Procedure

We model the state of all parts as a globally declared variable parts, which is modelled as a map from

the unique identifiers of parts to their [initial] value, that is, parts(ui). We need basically only model

those parts, p, which have monitorable attributes, say A, as their values, attr A(p), need be read, that is

attr A(parts(ui)).

value

discover state: Unit→ Unit

discover state() ≡
for ∀ v • v ∈ gen do

txt := txt † [ type name(v) 7→txt(type name(v))̂ 〈describe state(v)〉 ] end

describe state: E→ RSL-Text
describe state(e) ≡ ❝ variable parts[uid E(e) ]:type name(e) := e ❞

6.12.2.2 The discover channels Procedure

We refer to Sects. 4.2.4 on Page 87 and 6.5.2 on Page 136.

value

discover channels: Unit→ Unit

discover channels() ≡
let ch txt = ❝ channel {ch[{ij,ik} ]|ij,ik:UI•ij,ik∧{ij,ik}⊆all uniq ids()}:M ❞ in

txt := txt † [ type name(uod) 7→〈ch txt〉̂ txt(type name(uod)) ]
end

6.12.2.3 The discover signatures Procedure

We refer to Sect. 6.7 on Page 142.

value

discover behaviour signatures: Unit→ Unit

discover behaviour signatures() ≡
for ∀ v • v ∈ gen do

let signature =
is atomic(v)→ 〈❝MP: UI×MT×ST→ PT→ IOR Unit ❞〉,

is composite(v)→ 〈❝M E : UI × MT × ST→ PT→ IOR Unit ❞〉

is structure(v)→ 〈〉,
is part materials conjoin(v)→
〈❝MC: UI×MT×ST→ PT×(M1×M2×...×Mm)→ IOR Unit ❞〉

is material parts conjoin(v)→ 〈❝ MC: UI×MT×ST→ PT×CM IOR Unit ❞〉

is part parts conjoin(v)→ 〈❝ MC: UI×MT×ST→ PT→ IOR Unit ❞〉 in

txt := txt † [ type name(v) 7→txt(type name(v))̂ signature ]
end end
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6.12.2.4 The discover behaviour definitions Procedure

We refer to Sect. 6.7 on Page 142.

value

discover behaviour definitions: Unit→ Unit

discover behaviour definitions() ≡
for ∀ v • v ∈ gen do

let definition =
is atomic(v)→ 〈❝MP(ui,me,sv)(pv) ≡BP(ui,me,sv)(pv) ❞〉,

is composite(v)→ 〈❝M E (ui,me,sv)(pv) ≡ BE (ui,me,sv)(pv) ❞〉

is structure(v)→ 〈〉,
is part materials conjoin(v)→ 〈❝ MC(ui,me,sv)(pv,cm) ≡ BP(ui,me,sv)(pv,cm) ❞〉

is material parts conjoin(v)→ 〈❝ MC(uic,me,sv)(pv,cm) ≡BP(ui,me,sv)(pv,cm) ❞〉

is part parts conjoin(v)→ 〈❝ MC(ui,me,sv)(pv) ≡ BP(ui,me,sv)(pv) ❞〉 in

txt := txt † [ type name(v) 7→txt(type name(v))̂ definition ]
end end

6.12.2.5 The initialise system Procedure

We refer to Sect. 6.8 on Page 153 (for initialise system()).

value

discover initial system: Unit→ Unit

discover initial system() ≡ txt := txt † [UoD 7→ txt(UoD)̂ 〈❝ initialise system() ❞〉 ]

6.13 Summary

This chapter’s main title was: DOMAINS – Towards a Dynamics Ontology. The term ‘Dynamics’

pertain to actions, events and behaviours of the ‘Domain’, not to its ‘Ontology’. So, an aspect of the

ontology of a domain, such as we have studied it and such as we ordain one aspect of domain analysis
& description, is also about the time-evolving occurrence, of actions, events and behaviours, that is, the

perdurants. For that study & practice we have suggested a number of analysis & description prompts.

6.13.1 Method Principles, Techniques and Tools

Recall that by a method we shall understand a set of principles for selecting and applying a set of tech-
niques using a set of tools in order to construct an artefact.

6.13.1.1 Principles of Perdurant Analysis & Description

In this chapter we have illustrated the use of the following principles:

Divide & Conquer : That concept is addressed in the sequential treatment of states, channels, behaviour

signatures and behaviour definitions.

Operational Abstraction : That concept is addressed in several ways: in the formulation of a notion

of domain states and its modelling in terms of RSL variables; in the modelling of domain behaviour

interactions in terms of CSP channels, output and input ; in the capturing of one essence of domain

behaviours in terms of the signature of CSP process definitions; and in the modelling of domain be-

haviours in terms of CSP processes.

In this chapter we have put forward some advice on description choices: We refer to Modelling
Choices 10 on Page 144 and 11 on Page 146. The analysis predicates and functions are merely aids.

They do not effect descriptions, but descriptions are based on the result of their inquiry. Real decisions are

made when effecting a description function. So the rôle of these modelling choice paragraphs is to alert

the describer to make judicious choices.
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6.13.1.2 Techniques of Perdurant Analysis & Description

In this chapter we have illustrated the use of the following techniques:

• Modelling Behaviours as CSP Processes: With that choice follows then the “standard” CSP tech-

niques of tail-recursive specification of concurrent processes/behaviours [237, 239, 238, 336, 340].

• Interpretation of Internal Endurant Qualities: As part of the translation of endurant parts to

CSP processes follows the interpretation of unique part identifiers as constant process identifiers; part

mereologies as determinant for CSP communication channel indices; static part attributes as constant

process, “by value” arguments; programmable part attributes as such process arguments that can be

given new values when tail-recursively [re-]invoked; and monitorable part attributes as “residing” in

RSL declared variables, one for each part having monitorable attributes.

6.13.1.3 Tools of Perdurant Analysis & Description

In this chapter we have illustrated the use of the following tools:

6.13.1.3.1 Analysis Functions

• calc all chn dcls Item 261a on Page 141

• calc chn refs Item 260a on Page 141

• calc i o chn refs Item 259 on Page 141

• moni attr types Item 201 on Page 102

• moni attr vals Item 204 on Page 102

• possible variable declaration Item 248 on Page 128

• prgr attr types Item 202 on Page 102

• prgr attr vals Item 206 on Page 103

• stat attr types Item 200 on Page 102

• stat attr vals Item 204 on Page 102

6.13.1.3.2 Description Schemas – Translations

possible variable declaration, 128

Translate Alternative Sorts Set, 145

Translate Atomic, 143

Translate Composite, 144

Translate Conjoin, 145

Translate Endurant, 128

Translate Material-Parts, 146

Translate Part-Materials, 145

Translate Part-Parts, 146

Translate Single Sort Set, 144

Translate Structure, 145

6.13.2 The Analysis & Description Calculus Reviewed

We have completed a first, the main task of this monograph: in Chapter 3 the external analysis & description

calculus; in Chapter 4 the internal analysis & description calculus; and in Chapter 6 the transcendental

deduction of endurants into perdurants. Appendix C summarises the four languages deployed in domain
analysis & description.

6.14 Exercise Problems

6.14.1 Research Problems

Exercise 27 A Research Challenge. PED Specification of Flows in Oil Pipelines: We refer to

Example 37 on Page 71, Sect. 6.10.1 on Page 154, Appendix Sect. A, and to Exercise 28 on the next

page. This research problem addresses an open problem. You are to assume a domain of oil pipelines. In
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this monograph many examples and term project exercises show fragments of, respectively are intended

to develop, a full domain description of road transport systems. Now you have in Appendix A a rather

complete description of the endurants of an oil pipeline domain12.

The problem to be studied, and for which we seek partial domain descriptions in some form of classical,

and, perhaps, not so classical mathematics: partial differential equations13, PDE, is the fluid dynamics14 of

the flow of oil in pipelines – and, for that matter, in any net of part-fluid-material conjoins.

• [Q1] First we ask you to set of the fluid dynamics for each kind of pipeline units: well, pump, pipe,
valve, fork, join and sink.

• [Q2] Then we ask that you, as a “little, preparatory exercise”, “glue” the fluid dynamics, i.e., their

mathematical equations, of pairs of pipeline units:

⋄⋄ (well;pump),

⋄⋄ (pump;pipe),

⋄⋄ (pipe;pipe),

⋄⋄ (pipe;valve),

⋄⋄ (valve;pipe),

⋄⋄ (pipe;fork ),

⋄⋄ (fork;(pipe|pipe) )15,

⋄⋄ ((pipe|pipe);join)16,

⋄⋄ (join;pipe) and

⋄⋄ (pipe;sink ).

• [Q3] Finally we ask you to consider the fluid dynamics of an entire pipeline system.17,18 That is, for

any pipeline system we seek a definite set of possibly somehow “parameterised” definite sets of Peds,

or whatever mathematics it takes, to model the full dynamics of any one such pipeline system !

• Make suitable assumptions.19

• [Q4] Publish the result !

• [Q5] Then start thinking about how to “blend” the PDEs into an RSL specification. What might we mean

by ‘blend’ ?20

6.14.2 Student Exercises

Exercise 28 A PhD Student Problem. RSL Specification of Flows in Oil Pipelines: We refer

to Sect. 6.10.1 on Page 154. It is now suggested that you, in turn, one-by-one, consider the following

sub-problems in the context of your domain of conjugate endurants be that of a ocean, canal and harbour

(basin) system with cargo liners.

• Define the external qualities of a domain of shipping lines based on the hinted waterways and vessels –

and based on there being shipping lines and terminal port that own, , keep track of operate and service

(load, unload) the cargo liner vessels.

• Define relevant internal qualities, one-by-one:

12 – Examples 13 on Page 48 [Discrete Endurants], 14 on Page 49 [Materials], 30 on Page 59 [Part-Material Conjoins:

Pipelines, I] and 37 on Page 71 [Pipeline Parts and Material] addresses this issue.
13 – for example: Dale R. Durran, Numerical methods for wave equations in geophysical fluid dynamics, Springer

Science & Business Media, New York, 1999
14 www.sciencedirect.com/handbook/handbook-of-mathematical-fluid-dynamics
15 – the | operator in (pipe|pipe) is intended to informally express that two pipes “emanate” a fork
16 – the | operator in (pipe|pipe) is intended to informally express that two pipes “enter” a join
17 Any such pipeline system has its “root” in, say, the formulas of Example 37 on Page 71 and Appendix A where we

present a rather comprehensive description of the endurants of a pipeline system.
18 Recall that an “entire” road transport system is modelled by Examples 43 on Page 89, 46 on Page 91, 47 on

Page 91, 48 on Page 92, 57 on Page 99, 58 on Page 100, 60 on Page 100, 62 on Page 107, 64 on Page 109, 39 on

Page 74, 76 on Page 128, 80 on Page 137, 82 on Page 147, 83 on Page 149, 84 on Page 150 and 85 on Page 153.
19 Examples of assumptions are that there are defined all the necessary attributes concerning pipeline units’ liquid flow

properties.
20 A standard concern is that of being able to carry out either mathematical logic proofs (of properties) or conventional

mathematical reasoning over ‘blended’, say, RSL expressed models and classic mathematical models.
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⋄⋄ unique identifiers, ⋄⋄ mereologies and, ⋄⋄ a small set of attributes.

• Now single one or two conjugates and cargo lines and terminal ports out for consideration as be-

haviours. Suggest, in turn,

⋄⋄ an overall state,

⋄⋄ a set of domain model channels,

⋄⋄ signatures of behaviours, and

⋄⋄ definition of behaviours.

Exercise 29 An MSc Student Exercise. Document System Actions: We refer to Exercises 3 on

Page 81, 16 on Page 121, 17 on Page 121 and 18 on Page 122. We also refer to Sect. 6.10.1 on Page 154.

[Q1] In line with the conjoin operation schemas, shown in Sect. 6.10.1, you are to provide document
operation schemas for the operations mentioned in Exercises 3, 16, 17 and 18. We refer to Exercise 30.

Exercise 30 An MSc Student Exercise. Document System Behaviours: We assume and refer

to exercise 29. You are to narrate and formalise the full set of document system perdurants: the channels,

cf. Sect. 6.5 on Page 135 and Example 80 on Page 137 the behaviour signatures, cf. Sect. 6.6 on Page 138

and Example 82 on Page 147, the behaviour definitions, cf. Sect. 6.6 on Page 138 and Example 82 on

Page 147, and the initial, i.e., the ‘running’ document system, i.e., the “start-up”, cf. Sect. 6.8 on Page 153

and Example 85 on Page 153.

6.14.3 Term Projects

We continue the term projects of Sects. 3.23.3 on Page 82 and 4.12.3 on Page 122.

For the specific domain topic that a group is working on it is to treat, for example, in separate, typically

four, consecutive weeks, these topics in the order listed:

• Channels, cf. Sect. 6.5 on Page 135 and Example 80 on Page 137;

• Behaviour Signatures, cf. Sect. 6.6 on Page 138 and Example 82 on Page 147;

• Discrete Behaviour Definitions, cf. Sect. 6.3.4 on Page 129, cf. Example 84 on Page 150;

• Running Systems, cf. Sect. 6.8 on Page 153 and Example 85 on Page 153.

Exercise 31 An MSc Student Exercise. The Consumer Market, Perdurants: We refer to Exer-

cises 4 on Page 83 and 20 on Page 122.

Exercise 32 An MSc Student Exercise. Financial Service Industry, Perdurants: We refer to

Exercises 5 on Page 83 and 21 on Page 123.

Exercise 33 An MSc Student Exercise. Container Line Industry, Perdurants: We refer to Ex-

ercises 6 on Page 83 and 22 on Page 123.

Exercise 34 An MSc Student Exercise. Railway Systems, Perdurants: We refer to Exercises 7

on Page 83 and 23 on Page 123.

Exercise 35 A PhD Student Problem. Part-Material Conjoins: Canals, Perdurants: We refer

to Exercises 8 on Page 83 and 24 on Page 123.

Exercise 36 A PhD Student Problem. Part-Materials Conjoins: Rum Production, Perdu-
rants: We refer to Exercises 9 on Page 83 and 25 on Page 123.

Exercise 37 A PhD Student Problem. Part-Materials Conjoins: Waste Management, Perdu-
rants: We refer to Exercises 10 on Page 83 and 26 on Page 123.

These exercise problems are continued in Sects. 7.11.2 on Page 195 and 8.9.2 on Page 243.
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DOMAIN FACETS

In this chapter we introduce the concept of domain facets. We cover the following facets: in-
trinsics, support technologies, rules and regulations, scripts, license languages,
management & organisation and human behaviour.

7.1 Introduction

In Chapters 3–6 we outlined a method for analysing & and describing domains. In this chapter we cover

some domain analysis & description principles and techniques not covered in Chapters 3–6. Those chapters.

focused on manifest domains. Here we, on one side, go “outside” the realm of manifest domains, and, on

the other side, cover, what we shall refer to as, facets, not covered in Chapters 3–6.

7.1.1 Facets of Domains

By a domain facet we shall understand one amongst a finite set of generic ways of analysing a domain:
a view of the domain, such that the different facets cover conceptually different views, and such that these
views together cover the domain Now, the definition of what a domain facet is can seem vague. It cannot

be otherwise. The definition is sharpened by the definitions of the specific facets. You can say, that the

definition of domain facet is the “sum” of the definitions of these specific facets. The specific facets – so

far1 – are:

• intrinsics (Sect. 7.2),

• support technology (Sect. 7.3),

• rules & regulations (Sect. 7.4),

• scripts (Sect. 7.5),

• license languages (Sect. 7.6),

• management & organisation (Sect. 7.7) and

• human behaviour (Sect. 7.8).

Of these, the rules & regulations, scripts and license languages are closely related. Vagueness may “pop

up”, here and there, in the delineation of facets. It is necessarily so. We are not in a domain of computer

science, let alone mathematics, where we can just define ourselves precisely out of any vagueness problems.

We are in the domain of (usually) really world facts. And these are often hard to encircle.

7.1.2 Relation to Previous Work

The present chapter is a rather complete rewrite of [52]. The reason for the rewriting was the expected

publication of [78]. [52] was finalised already in 2006, 10 years ago, before the analysis & description

calculus of [78] had emerged. It was time to revise [52] rather substantially.

1 We write: ‘so far’ in order to “announce”, or hint that there may be other specific facets. The one listed are the ones

we have been able to “isolate”, to identify, in the most recent 10-12 years.
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7.1.3 Structure of Chapter

The structure of this chapter follows the seven specific facets, as listed above. Each section, 7.2.–7.8., starts

by a definition of that specific facet , Then follows an analysis of the abstract concepts involved usually

with one or more examples – with these examples making up most of the section. We then “speculate” on

derivable requirements thus relating the present chapter to [66]. We close each of the sections, 7.2.–7.8.,

with some comments on how to model the specific facet of that section.

• • •

Examples 87–108 of sections 7.2–7.8 present quite a variety. In that, they reflect the wide spectrum of

facets.

• • •

More generally, domains can be characterised by intrinsically being endurant, or function, or event, or

behaviour intensive. Software support for activities in such domains then typically amount to database

systems, computation-bound systems, real-time embedded systems, respectively distributed process mon-

itoring and control systems. Other than this brief discourse we shall not cover the “intensity”-aspect of

domains in this chapter.

7.2 Intrinsics

• By domain intrinsics we shall understand those phenomena and concepts of a domain which
are basic to any of the other facets (listed earlier and treated, in some detail, below), with such
domain intrinsics initially covering at least one specific, hence named, stakeholder view

7.2.1 Conceptual Analysis

The principles and techniques of domain analysis & description, as unfolded in Chapters 3–6, focused on

and resulted in descriptions of the intrinsics of domains. They did so in focusing the analysis (and hence

the description) on the basic endurants and their related perdurants, that is, on those parts that most readily

present themselves for observation, analysis & description.

Railway Net Intrinsics

Example 87 We narrate and formalise three railway net intrinsics.

From the view of potential train passengers a railway net consists of lines, l:L, with names, ln:Ln, stations,

s:S, with names sn:Sn, and trains, tn:TN, with names tnm:Tnm. A line connects exactly two distinct

stations.

scheme N0 =
class

type

N, L, S, Sn, Ln, TN, Tnm
value

obs Ls: N→ L-set, obs Ss: N→ S-set

obs Ln: L→ Ln, obs Sn: S→ Sn
obs Sns: L→ Sn-set, obs Lns: S→ Ln-set

axiom

...
end

N, L, S, Sn and Ln designate nets, lines, stations, station names and line names. One can observe lines

and stations from nets, line and station names from lines and stations, pair sets of station names from

lines, and lines names (of lines) into and out from a station from stations. Axioms ensure proper graph

properties of these concepts.
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From the view of actual train passengers a railway net — in addition to the above — allows for several

lines between any pair of stations and, within stations, provides for one or more platform tracks, tr:Tr,

with names, trn:Trn, from which to embark on or alight from a train.

scheme N1 = extend N0 with

class

type

Tr, Trn
value

obs Trs: S→ Tr-set, obs Trn: Tr→ Trn
axiom

...
end

The only additions are that of track and track name types, related observer functions and axioms.

From the view of train operating staff a railway net — in addition to the above — has lines and stations

consisting of suitably connected rail units. A rail unit is either a simple (i.e., linear, straight) unit, or

is a switch unit, or is a simple crossover unit, or is a switchable crossover unit, etc. Simple units have

two connectors. Switch units have three connectors. Simple and switchable crossover units have four

connectors. A path, p:P, (through a unit) is a pair of connectors of that unit. A state, σ : Σ , of a unit is

the set of paths, in the direction of which a train may travel. A (current) state may be empty: The unit is

closed for traffic. A unit can be in any one of a number of states of its state space, ω : Ω .

scheme N2 = extend N1 with

class

type

U, C
P
′
= U × (C×C)

P = {| p:P
′
• let (u,(c,c

′
))=p in (c,c

′
)∈ ∪ obs Ω (u) end |}

Σ = P-set

Ω = Σ -set

value

obs Us: (N|L|S)→ U-set

obs Cs: U→ C-set

obs Σ : U→ Σ
obs Ω : U→ Ω

axiom

...
end

Unit and connector types have been added as have concrete types for paths, unit states, unit state spaces

and related observer functions, including unit state and unit state space observers.

Different stakeholder perspectives, not only of intrinsics, as here, but of any facet, lead to a number of

different models. The name of a phenomenon of one perspective, that is, of one model, may coincide

with the name of a “similar” phenomenon of another perspective, that is, of another model, and so on. If

the intention is that the “same” names cover comparable phenomena, then the developer must state the

comparison relation.

Intrinsics of Switches

Example 88 The intrinsic attribute of a rail switch is that it can take on a number of states. A simple

switch (
c|

Y
c/

c
) has three connectors: {c,c|,c/}. c is the connector of the common rail from which one can
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either “go straight” c|, or “fork” c/ (Fig. 7.1). So we have that a possible state space of such a switch

could be ωgs :

{{},
{(c,c|)},{(c|,c)},{(c,c|),(c|,c)},
{(c,c/)},{(c/,c)},{(c,c/),(c/,c)},{(c/,c),(c|,c)},
{(c,c|),(c|,c),(c/,c)},{(c,c/),(c/,c),(c|,c)},{(c/,c),(c,c|)},{(c,c/),(c|,c)}}

The above models a general switch ideally. Any particular switch ωps may have ωps⊂ωgs . Nothing is

said about how a state is determined: who sets and resets it, whether determined solely by the physical

position of the switch gear, or also by visible or virtual (i.e., invisible, intangible) signals up or down the

rail, away from the switch.

   

   

C C

CCC

C

C

C

C C C

Closed

C

C/

C|

C/ C/ C/

C/C/C/C/

C/ C/ C/ C/

C| C| C|

C|C|C|C|

C| C| C| C|

Fig. 7.1. Possible states of a rail switch

An Intrinsics of Documents

Example 89 Think of documents, written, by hand, or typed “onto” a computer text processing system.

One way of considering such documents is as follows. First we abstract from the syntax that such a doc-

ument, or set of more-or-less related documents, or just documents, may have: whether they are letters,

with sender and receive addressees, dates written, sent and/or received, opening and closing paragraphs,

etc., etc.; or they are books, technical, scientific, novels, or otherwise, or they are application forms, tax

returns, patient medical records, or otherwise. Then we focus on the operations that one may perform on

documents: their creation, editing, reading, copying, authorisation, “transfer”2, “freezing”3, and shred-

ding. Finally we consider documents as manifest parts, cf. Chapter 3, Parts, so documents have unique

identifications, in this case, changeable mereology, and a number of attributes. The mereology of a doc-

ument, d, reflects those other documents upon which a document is based, i.e., refers to, and/or refers to

d. Among the attributes of a document we can think of (i) a trace of what has happened to a document,

i.e., a trace of all the operations performed on “that” document, since and including creation — with that

trace, for example, consisting of time-stamped triples of the essence of the operations, the “actor” of the

operation (i.e., the operator), and possibly some abstraction of the locale of the document when operated

upon; (ii) a synopsis of what the document text “is all about”, (iii) and some “rendition” of the document

text. We refer to experimental technical research report [71].

This view of documents, whether “implementable” or “implemented” or not, is at the basis of our view

of license languages (for digital media, health-care (patient medical record), documents, and transport
(contracts) as that facet is covered in Sect. 7.6.
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7.2.2 Requirements

Chapter 8 illustrates requirements “derived” from the intrinsics of a road transport system – as outlined

in Chapters 3–6. So the present chapter has little to add to the subject of requirements “derived” from

intrinsics.

7.2.3 On Modeling Intrinsics

Chapters 3–6 outline basic principles, techniques and tools for modeling the intrinsics of manifest domains.

Modeling the domain intrinsics can often be expressed in property-oriented specification languages (like

CafeOBJ [157]), model-oriented specification languages (like Alloy [251], B [1], VDM-SL [88, 89, 154],

RSL [176], or Z [374]), event-based languages (like Petri nets or [332] or CSP [238]), respectively in

process-based specification languages (like MSCs [249], LSCs [200], Statecharts [199], or CSP [238]). An

area not well-developed is that of modeling continuous domain phenomena like the dynamics of automo-

bile, train and aircraft movements, flow in pipelines, etc. We refer to [302].

7.3 Support Technologies

• By a domain support technology we shall understand ways and means of implementing
certain observed phenomena or certain conceived concepts

The “ways and means” may be in the form of “soft technologies”: human manpower, see, however,

Sect. 7.8, or in the form of “hard” technologies: electro-mechanics, etc. The term ‘implementing’ is cru-

cial. It is here used in the sense that, ψτ , which is an ‘implementation’ of a endurant or perdurant, φ , is

an extension of φ , with φ being an abstraction of ψτ . We strive for the extensions to be proof theoretic
conservative extensions [274].

7.3.1 Conceptual Analysis

There are [always] basically two approaches the task of analysing & describing the support technology

facets of a domain. One either stumbles over it, or one tries to tackle the issue systematically. The “stum-

bling” approach occurs when one, in the midst of analysing & describing a domain realises that one is

tackling something that satisfies the definition of a support technology facet. In the systematic approach to

the analysis & description of the support technology facets of a domain one usually starts with a basically

intrinsics facet-oriented domain description. We then suggest that the domain engineer “inquires” of every

endurant and perdurant whether it is an intrinsic entity or, perhaps a support technology.

Railway Support Technology

Example 90 We give a rough sketch description of possible rail unit switch technologies.

(i) In “ye olde” days, rail switches were “thrown” by manual labour, i.e., by railway staff assigned to

and positioned at switches.

(ii) With the advent of reasonably reliable mechanics, pulleys and levers4 and steel wires, switches

were made to change state by means of “throwing” levers in a cabin tower located centrally at the station

(with the lever then connected through wires etc., to the actual switch).

(iii) This partial mechanical technology then emerged into electro-mechanics, and cabin tower staff

was “reduced” to pushing buttons.

(iv) Today, groups of switches, either from a station arrival point to a station track, or from a station

track to a station departure point, are set and reset by means also of electronics, by what is known as

interlocking (for example, so that two different routes cannot be open in a station if they cross one

another).

4 https://en.wikipedia.org/wiki/Pulley and http://en.wikipedia.org/wiki/Lever
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It must be stressed that Example 90 is just a rough sketch. In a proper narrative description the soft-

ware (cum domain) engineer must describe, in detail, the subsystem of electronics, electro-mechanics and

the human operator interface (buttons, lights, sounds, etc.). An aspect of supporting technology includes

recording the state-behaviour in response to external stimuli. We give an example.

Probabilistic Rail Switch Unit State Transitions

Example 91 Figure 7.2 indicates a way of formalising this aspect of a supporting technology. Figure 7.2

intends to model the probabilistic (erroneous and correct) behaviour of a switch when subjected to settings

(to switched (s) state) and re-settings (to direct (d) state). A switch may go to the switched state from the

direct state when subjected to a switch setting s with probability psd.

Input stimuli:

Probabilities:  0 <= p.. <= 1

States:

sw/psd

di/1−pdd−edd

sw/pss

di/1−pds−eds

sw/esssw/esd

sw/1−psd−esd

di/pdd
di/edsdi/edd

sw/1−pss−ess

di/pds

e sd

sw: Switch to switched state

di: Revert to direct state

pss: Switching to switched state from switched state

psd: Switching to switched state from direct state

pds: Reverting to direct state from switched state

pds: Reverting to direct state from direct state

esd: Switching to error state from direct state

edd: Reverting to error state from direct state

ess: Switching to error state from switched state

eds: Reverting to error state from switched state

s: Switched state

d: Direct (reverted) state

e: Error state

Fig. 7.2. Probabilistic state switching

Traffic Signals

Example 92 A traffic signal represents a technology in support of visualising hub states (transport net

road intersection signaling states) and in effecting state changes.

294 A traffic signal, ts:TS, is here5 considered a part with observable hub states and hub state spaces.

Hub states and hub state spaces are programmable, respectively static attributes of traffic signals.

295 A hub state space, hω , is a set of hub states such that each current hub state is in that hubs’ hub state

space.

296 A hub state, hσ , is now modeled as a set of hub triples.

297 Each hub triple has a link identifier li (“coming from”), a colour (red, yellow or green), and

another link identifier l j (“going to”).

298 Signaling is now a sequence of one or more pairs of next hub states and time intervals, ti:TI, for

example: <(hσ1, ti1),(hσ2, ti2), ...,(hσn−1, tin−1),(hσn, tin)>, n>0.

The idea of a signaling is to first change the designated hub to state hσ1, then wait ti1 time units, then

set the designated hub to state hσ2, then wait ti2 time units, et cetera, ending with final state σn and a
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(supposedly) long time interval tin before any decisions are to be made as to another signaling. The

set of hub states {hσ1,hσ2, ...,hσn−1} of <(hσ1, ti1),(hσ2, ti2), ...,(hσn−1, tin−1),(hσn, tin)>, n>0,

is called the set of intermediate states. Their purpose is to secure an orderly phase out of green via

yellow to red and phase in of red via yellow to green in some order for the various directions. We

leave it to the reader to devise proper well-formedness conditions for signaling sequences as they

depend on the hub topology.

299 A street signal (a semaphore) is now abstracted as a map from pairs of hub states to signaling se-

quences.

The idea is that given a hub one can observe its semaphore, and given the state, hσ (not in the above

set), of the hub “to be signaled” and the state hσn into which that hub is to be signal-led “one looks

up” under that pair in the semaphore and obtains the desired signaling.

type

294 TS ≡ H, HΣ , HΩ
value

295 attr HΣ : H,TS→ HΣ
295 attr HΩ : H,TS→ HΩ
type

296 HΣ = Htriple-set

296 HΩ = HΣ -set

297 Htriple = LI×Colour×LI
axiom

295 ∀ ts:TS • attr HΣ (ts) ∈ attr HΩ (ts)
type

297 Colour == red | yellow | green
298 Signaling = (HΣ×TI)∗

298 TI
299 Sempahore = (HΣ×HΣ ) →m Signalling
value

299 attr Semaphore:TS→ Sempahore

300 We treat hubs as processes with hub state spaces and semaphores as static attributes and hub states

as programmable attributes. We ignore other attributes and input/outputs.

301 We can think of the change of hub states as taking place based the result of some internal, non-

deterministic choice.

value

300. hub: HI × LI-set × (HΩ×Semaphore)→ HΣ in ... out ... Unit

300. hub(hi,lis,(hω ,sema))(hσ ) ≡
300. ...
301. ⌈⌉ let hσ ′:HI • ... in hub(hi,lis,(hω ,sema))(signaling(hσ ,hσ ′)) end

300. ...
300. pre: {hσ ,hσ ′} ⊆ hω

where we do not bother about the selection of hσ ′.

302 Given two traffic signal, i.e., hub states, hσinit and hσend, where hσinit designates a present hub

state and hσend designates a desired next hub state after signaling.

303 Now signaling is a sequence of one or more successful hub state changes.

value

302 signaling: (HΣ×HΣ ) × Semaphore→ HΣ → HΣ
303 signaling(hσ init,hσend,sema)(hσ ) ≡
303 let sg = sema(hσ init,hσend) in
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303 signal sequence(sg)(hσ ) end

303 pre hσ init = hσ ∧ (hσ init,hσend) ∈ dom sema

If a desired hub state change fails (i.e., does not meet the pre-condition, or for other reasons (e.g., failure

of technology)), then we do not define the outcome of signaling.

303 signal sequence(〈〉)(hσ ) ≡ hσ
303 signal sequence(〈(hσ ‘,ti)〉̂ sg)(hσ ) ≡
303 wait(ti); signal sequence(sg)(hσ ‘)

We omit expression of a number of well-formedness conditions, e.g., that the htriple link identifiers are

those of the corresponding mereology (lis), et cetera. The design of the semaphore, for a single hub or

for a net of connected hubs has many similarities with the design of interlocking tables for railway tracks

[230].

Another example shows another aspect of support technology: Namely that the technology must guar-

antee certain of its own behaviours, so that software designed to interface with this technology, together

with the technology, meets dependability requirements.

Railway Optical Gates

Example 93 Train traffic (itf:iTF), intrinsically, is a total function over some time interval, from time

(t:T) to continuously positioned (p:P) trains (tn:TN). Conventional optical gates sample, at regular inter-

vals, the intrinsic train traffic. The result is a sampled traffic (stf:sTF). Hence the collection of all optical

gates, for any given railway, is a partial function from intrinsic to sampled train traffics (stf). We need

to express quality criteria that any optical gate technology should satisfy — relative to a necessary and

sufficient description of a closeness predicate. The following axiom does that:

For all intrinsic traffics, itf, and for all optical gate technologies, og, the following must hold: Let stf be

the traffic sampled by the optical gates. For all time points, t, in the sampled traffic, those time points

must also be in the intrinsic traffic, and, for all trains, tn, in the intrinsic traffic at that time, the train

must be observed by the optical gates, and the actual position of the train and the sampled position must

somehow be check-able to be close, or identical to one another.

Since units change state with time, n:N, the railway net, needs to be part of any model of traffic.

type

T, TN
P = U∗

NetTraffic == net:N trf:(TN →m P)
iTF = T→ NetTraffic
sTF = T →m NetTraffic

oG = iTF
∼
→ sTF

value

close: NetTraffic × TN × NetTraffic
∼
→ Bool

axiom

∀ itt:iTF, og:OG • let stt = og(itt) in

∀ t:T • t ∈ dom stt ⇒
∀ Tn:TN • tn ∈ dom trf(itt(t))
⇒ tn ∈ dom trf(stt(t)) ∧ close(itt(t),tn,stt(t)) end

Check-ability is an issue of testing the optical gates when delivered for conformance to the closeness

predicate, i.e., to the axiom.
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7.3.2 Requirements

Section 4.4 [Extension] of [66] illustrates a possible toll-gate, whose behaviour exemplifies a support tech-

nology. So do pumps of a pipe-line system such as illustrated in Examples 24, 29 and 42–44 in [78]. A

pump of a pipe-line system gives rise to several forms of support technologies: from the Egyptian Shadoof

[irrigation] pumps, and the Hellenic Archimedian screw pumps, via the 11th century Su Song pumps of

China6, and the hydraulic “technologies” of Moorish Spain7 to the centrifugal and gear pumps of the

early industrial age, et cetera, The techniques – to mention those that have influenced this author – of

[380, 256, 301, 230] appears to apply well to the modeling of support technology requirements.

7.3.3 On Modeling Support Technologies

Support technologies in their relation to the domain in which they reside typically reflect real-time em-

beddedness. As such the techniques and languages for modeling support technologies resemble those for

modeling event and process intensity, while temporal notions are brought into focus. Hence typical mod-

eling notations include event-based languages (like Petri nets [332] or CSP) [238]), respectively process-

based specification languages (like MSCs, [249], LSCs [200], Statecharts [199], or CSP) [238]), as well as

temporal languages (like the Duration Calculus and [380] and Temporal Logic of Actions, TLA+) [263]).

7.4 Rules & Regulations

• By a domain rule we shall understand some text (in the domain) which prescribes how peo-
ple or equipment are expected to behave when dispatching their duties, respectively when
performing their functions

• By a domain regulation we shall understand some text (in the domain) which prescribes
what remedial actions are to be taken when it is decided that a rule has not been followed
according to its intention

The domain rules & regulations need or may not be explicitly present, i.e., written down. They may be part

of the “folklore”, i.e., tacitly assumed and understood.

7.4.1 Conceptual Analysis

Trains at Stations

Example 94

• Rule: In China the arrival and departure of trains at, respectively from, railway stations is subject to

the following rule:

In any three-minute interval at most one train may either arrive to or depart from a
railway station.

• Regulation: If it is discovered that the above rule is not obeyed, then there is some regulation

which prescribes administrative or legal management and/or staff action, as well as some correction

to the railway traffic.

Trains Along Lines

Example 95

• Rule: In many countries railway lines (between stations) are segmented into blocks or sectors. The

purpose is to stipulate that if two or more trains are moving along the line, then:

6 https://en.wikipedia.org/wiki/Su Song
7 http://www.islamicspain.tv/Arts-and-Science/The-Culture-of-Al-Andalus/Hydraulic-Technology.htm
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There must be at least one free sector (i.e., without a train) between any two trains
along a line.

• Regulation: If it is discovered that the above rule is not obeyed, then there is some regulation

which prescribes administrative or legal management and/or staff action, as well as some correction

to the railway traffic.

At a meta-level, i.e., explaining the general framework for describing the syntax and semantics of the

human-oriented domain languages for expressing rules and regulations, we can say the following: There

are, abstractly speaking, usually three kinds of languages involved wrt. (i.e., when expressing) rules and

regulations (respectively when invoking actions that are subject to rules and regulations). Two languages,

Rules and Reg, exist for describing rules, respectively regulations; and one, Stimulus, exists for describing

the form of the [always current] domain action stimuli. A syntactic stimulus, sy sti, denotes a function,

se sti:STI: Θ → Θ , from any configuration to a next configuration, where configurations are those of the

system being subjected to stimulations. A syntactic rule, sy rul:Rule, stands for, i.e., has as its semantics,

its meaning, rul:RUL, a predicate over current and next configurations, (Θ ×Θ )→ Bool, where these next

configurations have been brought about, i.e., caused, by the stimuli. These stimuli express: If the predicate

holds then the stimulus will result in a valid next configuration.

type

Stimulus, Rule, Θ
STI = Θ → Θ
RUL = (Θ × Θ )→ Bool

value

meaning: Stimulus→ STI
meaning: Rule→ RUL
valid: Stimulus × Rule→ Θ → Bool

valid(sy sti,sy rul)(θ ) ≡ meaning(sy rul)(θ ,(meaning(sy sti))(θ ))

A syntactic regulation, sy reg:Reg (related to a specific rule), stands for, i.e., has as its semantics,

its meaning, a semantic regulation, se reg:REG, which is a pair. This pair consists of a predicate,

pre reg:Pre REG, where Pre REG = (Θ × Θ ) → Bool, and a domain configuration-changing func-

tion, act reg:Act REG, where Act REG = Θ → Θ , that is, both involving current and next domain

configurations. The two kinds of functions express: If the predicate holds, then the action can be applied.

The predicate is almost the inverse of the rules functions. The action function serves to undo the stimulus

function.

type

Reg
Rul and Reg = Rule × Reg
REG = Pre REG × Act REG
Pre REG = Θ × Θ → Bool

Act REG = Θ → Θ
value

interpret: Reg→ REG

The idea is now the following: Any action (i.e., event) of the system, i.e., the application of any stimulus,

may be an action (i.e., event) in accordance with the rules, or it may not. Rules therefore express whether

stimuli are valid or not in the current configuration. And regulations therefore express whether they should

be applied, and, if so, with what effort. More specifically, there is usually, in any current system con-

figuration, given a set of pairs of rules and regulations. Let (sy rul,sy reg) be any such pair. Let sy sti
be any possible stimulus. And let θ be the current configuration. Let the stimulus, sy sti, applied in that

configuration result in a next configuration, θ ′, where θ ′ = (meaning(sy sti))(θ ). Let θ ′ violate the rule,

∼valid(sy sti,sy rul)(θ ), then if predicate part, pre reg, of the meaning of the regulation, sy reg, holds

in that violating next configuration, pre reg(θ ,(meaning(sy sti))(θ )), then the action part, act reg, of the

meaning of the regulation, sy reg, must be applied, act reg(θ ), to remedy the situation.
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axiom

∀ (sy rul,sy reg):Rul and Reg •

let se rul = meaning(sy rul),
(pre reg,act reg) = meaning(sy reg) in

∀ sy sti:Stimulus, θ :Θ •

∼valid(sy sti,se rul)(θ )
⇒ pre reg(θ ,(meaning(sy sti))(θ ))

⇒ ∃ nθ :Θ • act reg(θ )=nθ ∧ se rul(θ ,nθ )
end

It may be that the regulation predicate fails to detect applicability of regulations actions. That is, the inter-

pretation of a rule differs, in that respect, from the interpretation of a regulation. Such is life in the domain,

i.e., in actual reality.

7.4.2 Requirements

Implementation of rules & regulations implies monitoring and partially control ling the states symbolised

by Θ in Sect. 7.4.1. Thus some partial implementation of Θ must be required; as must some monitoring

of states θ :Θ and implementation of the predicates meaning, valid, interpret, pre reg and action(s) act reg.

The emerging requirements follow very much in the line of support technology requirements.

7.4.3 On Modeling Rules and Regulations

Usually rules (as well as regulations) are expressed in terms of domain entities, including those grouped

into “the state”, functions, events, and behaviours. Thus the full spectrum of model-ling techniques and

notations may be needed. Since rules usually express properties one often uses some combination of axioms

and wellformedness predicates. Properties sometimes include temporality and hence temporal notations

(like Duration Calculus or Temporal Logic of Actions ) are used. And since regulations usually express

state (restoration) changes one often uses state changing notations (such as found in Allard [251], B or

event-B [1], RSL [176], VDM-SL [88, 89, 154], and Z [374]). In some cases it may be relevant to model

using some constraint satisfaction notation [9] or some Fuzzy Logic notations [354].

7.5 Scripts

• By a domain script we shall understand the structured, almost, if not outright, formally ex-
pressed, wording of a procedure on how to proceed, one that has legally binding power, that
is, which may be contested in a court of law

7.5.1 Conceptual Analysis

Rules & regulations are usually expressed, even when informally so, as predicates. Scripts, in their proce-

dural form, are like instructions, as for an algorithm.

A Casually Described Bank Script

Example 96 Our formulation amounts to just a (casual) rough sketch. It is followed by a series of four

large examples. Each of these elaborate on the theme of (bank) scripts. The problem area is that of how

repayments of mortgage loans are to be calculated. At any one time a mortgage loan has a balance, a

most recent previous date of repayment, an interest rate and a handling fee. When a repayment occurs,

then the following calculations shall take place: (i) the interest on the balance of the loan since the most

recent repayment, (ii) the handling fee, normally considered fixed, (iii) the effective repayment — being

the difference between the repayment and the sum of the interest and the handling fee — and the new

balance, being the difference between the old balance and the effective repayment. We assume repay-
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ments to occur from a designated account, say a demand/deposit account. We assume that bank to have

designated fee and interest income accounts. (i) The interest is subtracted from the mortgage holder’s

demand/deposit account and added to the bank’s interest (income) account. (ii) The handling fee is sub-

tracted from the mortgage holder’s demand/deposit account and added to the bank’s fee (income) account.

(iii) The effective repayment is subtracted from the mortgage holder’s demand/deposit account and also

from the mortgage balance. Finally, one must also describe deviations such as overdue repayments, too

large, or too small repayments, and so on.

A Formally Described Bank Script

Example 97 First we must informally and formally define the bank state: There are clients (c:C),

account numbers (a:A), mortgage numbers (m:M), account yields (ay:AY) and mortgage interest rates

(mi:MI). The bank registers, by client, all accounts (ρ :A Register) and all mortgages (µ :M Register). To

each account number there is a balance (α:Accounts). To each mortgage number there is a loan (ℓ:Loans).

To each loan is attached the last date that interest was paid on the loan.

value

r, r
′
:Real axiom ...

type

C, A, M, Date
AY
′
= Real, AY = {| ay:AY

′
• 0<ay≤r |}

MI
′
= Real, MI = {| mi:MI

′
• 0<mi≤r

′
|}

Bank
′
= A Register × Accounts × M Register × Loans

Bank = {| β :Bank
′
• wf Bank(β )|}

A Register = C →m A-set

Accounts = A →m Balance
M Register = C →m M-set

Loans = M →m (Loan × Date)
Loan,Balance = P
P = Nat

Then we must define well-formedness of the bank state:

value

ay:AY, mi:MI
wf Bank: Bank→ Bool

wf Bank(ρ ,α,µ ,ℓ) ≡ ∪ rng ρ = dom α ∧ ∪ rng µ = dom ℓ
axiom

ay<mi [ ∧ ... ]

We — perhaps too rigidly — assume that mortgage interest rates are higher than demand/deposit account

interest rates: ay<mi. Operations on banks are denoted by the commands of the bank script language.

First the syntax:

type

Cmd = OpA | CloA | Dep |Wdr | OpM | CloM | Pay
OpA == mkOA(c:C)
CloA == mkCA(c:C,a:A)
Dep == mkD(c:C,a:A,p:P)
Wdr == mkW(c:C,a:A,p:P)
OpM == mkOM(c:C,p:P)
Pay == mkPM(c:C,a:A,m:M,p:P,d:Date)
CloM == mkCM(c:C,m:M,p:P)
Reply = A | M | P | OkNok
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OkNok == ok | notok
value

period: Date × Date→ Days [ for calculating interest ]
before: Date × Date→ Bool [first date is earlier than last date ]

And then the semantics:

int Cmd(mkPM(c,a,m,p,d))(ρ ,α,µ ,ℓ) ≡
let (b,d

′
) = ℓ(m) in

if α(a)≥p
then

let i = interest(mi,b,period(d,d
′
)),

ℓ′ = ℓ † [m7→ℓ(m)−(p−i) ]
α ′ = α † [a7→α(a)−p,ai 7→α(ai)+i ] in

((ρ ,α ′,µ ,ℓ′),ok) end

else

((ρ ,α ′,µ ,ℓ),nok)
end end

pre c ∈ dom µ ∧ a ∈ dom α ∧ m ∈ µ(c)
post before(d,d

′
)

interest: MI × Loan × Days→ P

The idea about scripts is that they can somehow be objectively enforced: that they can be precisely under-

stood and consistently carried out by all stakeholders, eventually leading to computerisation. But they are,

at all times, part of the domain.

7.5.2 Requirements

Script requirements call for the possibly interactive computerisation of algorithms, that is, for rather clas-

sical computing problems. But sometimes these scripts can be expressed, computably, in the form of pro-

grams in a domain specific language. As an example we refer to [124]. [124] illustrates how the design of

pension and life insurance products, and their administration, reserve calculations, and audit, can be based

on a common formal notation. The notation is human-readable and machine-processable,and specialised

to the actuarial domain, achieving great expressive power combined with ease of use and safety. More

specifically (a) product definitions based on standard actuarial models, including arbitrary continuous-time

Markov and semi-Markov models, with cyclic transitions permitted; (b) calculation descriptions for re-

serves and other quantities of interest, based on differential equations; and (c) administration rules.

7.5.3 On Modeling Scripts

Scripts (as are licenses) are like programs (respectively like prescriptions program executions). Hence

the full variety of techniques and notations for modeling programming (or specification) languages apply

[14, 187, 334, 339, 352, 367]. [40, Chaps. 6–9] cover pragmatics, semantics and syntax techniques for

defining functional, imperative and concurrent programming languages.

7.6 License Languages

License: a right or permission

granted in accordance with law

by a competent authority

to engage in some business or occupation,
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to do some act, or to engage in some transaction

which but for such license would be unlawful

Merriam Webster Online [286]

7.6.1 Conceptual Analysis

7.6.1.1 The Settings

A special form of scripts are increasingly appearing in some domains, notably the domain of electronic, or

digital media. Here licenses express that a licensor , o, permits a licensee, u, to render (i.e., play) works

of proprietary nature CD ROM-like music, DVD-like movies, etc. while obligating the licensee to pay the

licensor on behalf of the owners of these, usually artistic works. Classical digital rights license languages,

[27, 11, 121, 122, 123, 246, 117, 186, 196, 270, 293, 289, 272, 262, 337, 326, 325, 4, 294], applied to the

electronic “downloading”, payment and rendering (playing) of artistic works (for example music, literature

readings and movies). In this chapter we generalise such applications languages and we extend the concept

of licensing to also cover work authorisation (work commitment and promises) in health care, public gov-

ernment and schedule transport. The digital works for these new application domains are patient medical

records, public government documents and bus/train/aircraft transport contracts. Digital rights licensing for

artistic works seeks to safeguard against piracy and to ensure proper payments for the rights to render these

works. Health care and public government license languages seek to ensure transparent and professional

(accurate and timely) health care, respectively ‘good governance’. Transport contract languages seeks to

ensure timely and reliable transport services by an evolving set of transport companies. Proper mathemat-

ical definition of licensing languages seeks to ensure smooth and correct computerised management of

licenses and contracts.

7.6.1.2 On Licenses

The concepts of licenses and licensing express relations between (i) actors (licensors (the authority) and

licensees), (ii) entities (artistic works, hospital patients, public administration, citizen documents) and bus

transport contracts and (iii) functions (on entities), and as performed by actors. By issuing a license to

a licensee, a licensor wishes to express and enforce certain permissions and obligations: which functions

on which entities the licensee is allowed (is licensed, is permitted) to perform. In this chapter we shall

consider four kinds of entities: (i) digital recordings of artistic and intellectual nature: music, movies,

readings (“audio books”), and the like, (ii) patients in a hospital as represented also by their patient medical

records, (iii) documents related to public government, and (iv) transport vehicles, time tables and transport

nets (of a buses, trains and aircraft).

7.6.1.3 Permissions and Obligations

The permissions and obligations issues are, (1) for the owner (agent) of some intellectual property to

be paid (an obligation) by users when they perform permitted operations (rendering, copying, editing,

sub-licensing) on their works; (2) for the patient to be professionally treated — by medical staff who

are basically obliged to try to cure the patient; (3) for public administrators and citizens to enjoy good

governance: transparency in law making (national parliaments and local prefectures and city councils),

in law enforcement (i.e., the daily administration of laws), and law interpretation (the judiciary) — by

agents who are basically obliged to produce certain documents while being permitted to consult (i.e., read,

perhaps copy) other documents; and (4) for bus passengers to enjoy reliable bus schedules — offered by

bus transport companies on contract to, say public transport authorities and on sub-contract to other such

bus transport companies where these transport companies are obliged to honour a contracted schedule.
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7.6.2 The Pragmatics

By pragmatics we understand the
study and practice of the factors that govern
our choice of language in social interaction

and the effects of our choice on others.

In this section we shall rough-sketch-describe pragmatic aspects of the four domains of (1) production,

distribution and consumption of artistic works, (2) the hospitalisation of patient, i.e., hospital health care,

(3) the handling of law-based document in public government and (4) the operational management of

schedule transport vehicles. The emphasis is on the pragmatics of the terms, i.e., the language used in these

four domains.

7.6.2.1 Digital Media

Digital Media

Example 98 The intrinsic entities of the performing arts are the artistic works: drama or opera perfor-

mances, music performances, readings of poems, short stories, novels, or jokes, movies, documentaries,

newsreels, etc. We shall limit our span to the scope of electronic renditions of these artistic works: videos,

CDs or other. In this chapter we shall not touch upon the technical issues of “downloading”(whether

”streaming” or copying, or other). That and other issues should be analysed in [375].

7.6.2.1.1 Operations on Digital Works:

For a consumer to be able to enjoy these works that consumer must (normally first) usually “buy a ticket”

to their performances. The consumer, i.e., the theatre, opera, concert, etc., “goer” (usually) cannot copy

the performance (e.g., “tape it”), let alone edit such copies of performances. In the context of electronic,

i.e., digital renditions of these performances the above “cannots” take on a new meaning. The consumer

may copy digital recordings, may edit these, and may further pass on such copies or editions to others.

To do so, while protecting the rights of the producers (owners, performers), the consumer requests per-

mission to have the digital works transferred (“downloaded”) from the owner/producer to the consumer,

so that the consumer can render (“play”) these works on own rendering devices (CD, DVD, etc., play-

ers), possibly can copy all or parts of them, then possibly can edit all or parts of the copies, and, finally,

possibly can further license these “edited” versions to other consumers subject to payments to “original”

licensor.

7.6.2.1.2 License Agreement and Obligation:

To be able to obtain these permissions the user agrees with the wording of some license and pays for the

rights to operate on the digital works.

7.6.2.1.3 Two Assumptions:

Two, related assumptions underlie the pragmatics of the electronics of the artistic works. The first as-

sumption is that the format, the electronic representation of the artistic works is proprietary, that is, that

the producer still owns that format. Either the format is publicly known or it is not, that is, it is some-

how “secret”. In either case we “derive” the second assumption (from the fulfillment of the first). The

second assumption is that the consumer is not allowed to, or cannot operate8 on the works by own means

(software, machines). The second assumption implies that acceptance of a license results in the consumer
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receiving software that supports the consumer in performing all operations on licensed works, their copies

and edited versions: rendering, copying, editing and sub-licensing.

7.6.2.1.4 Protection of the Artistic Electronic Works:

The issue now is: how to protect the intellectual property (i.e., artistic) and financial (exploitation) rights

of the owners of the possibly rendered, copied and edited works, both when, and when not further dis-

tributed.

7.6.2.2 Health-care

Health-care

Example 99 Citizens go to hospitals in order to be treated for some calamity (disease or other), and by

doing so these citizens become patients. At hospitals patients, in a sense, issue a request to be treated with

the aim of full or partial restitution. This request is directed at medical staff, that is, the patient authorises

medical staff to perform a set of actions upon the patient. One could claim, as we shall, that the patient

issues a license.

7.6.2.2.1 Patients and Patient Medical Records:

So patients and their attendant patient medical records (PMRs) are the main entities, the “works” of this

domain. We shall treat them synonymously: PMRs as surrogates for patients. Typical actions on patients

— and hence on PMRs — involve admitting patients, interviewing patients, analysing patients, diagnos-

ing patients, planning treatment for patients, actually treating patients, and, under normal circumstance,

to finally release patients.

7.6.2.2.2 Medical Staff:

Medical staff may request (‘refer’ to) other medical staff to perform some of these actions. One can

conceive of describing action sequences (and ‘referrals’) in the form of hospitalisation (not treatment)

plans. We shall call such scripts for licenses.

7.6.2.2.3 Professional Health Care:

The issue is now, given that we record these licenses, their being issued and being honoured, whether the

handling of patients at hospitals follow, or does not follow properly issued licenses.

7.6.2.3 Government Documents

Documents

Example 100 By public government we shall, following Charles de Secondat, baron de Montesquieu

(1689–1755)9, understand a composition of three powers: the law-making (legislative), the law-enforcing

and the law-interpreting parts of public government. Typically national parliament and local (province

and city) councils are part of law-making government. Law-enforcing government is called the executive

(the administration). And law-interpreting government is called the judiciary [system] (including lawyers

etc.).

7.6.2.3.1 Documents:

A crucial means of expressing public administration is through documents.10 We shall therefore provide

a brief domain analysis of a concept of documents. (This document domain description also applies to
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patient medical records and, by some “light” interpretation, also to artistic works — insofar as they also

are documents.) Documents are created, edited and read ; and documents can be copied, distributed, the

subject of calculations (interpretations) and be shared and shredded.

7.6.2.3.2 Document Attributes:

With documents one can associate, as attributes of documents, the actors who created, edited, read,

copied, distributed, shared, performed calculations and shredded documents. With these operations on

documents, and hence as attributes of documents one can, again conceptually, associate the location and

time of these operations.

7.6.2.3.3 Actor Attributes and Licenses:

With actors (whether agents of public government or citizens) one can associate the authority (i.e., the

rights) these actors have with respect to performing actions on documents. We now intend to express

these authorisations as licenses.

7.6.2.3.4 Document Tracing:

An issue of public government is whether citizens and agents of public government act in accordance

with the laws — with actions and laws reflected in documents such that the action documents enables

a trace from the actions to the laws “governing” these actions. We shall therefore assume that every

document can be traced back to its law-origin as well as to all the documents any one document-creation

or -editing was based on.

7.6.2.4 Transportation

Transportation is one of the prime areas for domain analysis & description: roads and vehicles: private

automobiles, buses, trucks, etc., aircraft, shipping, trains.

Passenger and Goods Transport

Example 101

7.6.2.4.1 A Synopsis:

Contracts obligate transport companies to deliver bus traffic according to a timetable. The timetable is

part of the contract. A contractor may sub-contract (other) transport companies to deliver bus traffic

according to timetables that are sub-parts of their own timetable. Contractors are either public transport

authorities or contracted transport companies. Contracted transport companies may cancel a subset of

bus rides provided the total amount of cancellations per 24 hours for each bus line does not exceed a

contracted upper limit The cancellation rights are spelled out in the contract. A sub-contractor cannot

increase a contracted upper limit for cancellations above what the sub-contractor was told (in its contract)

by its contractor. Et cetera.

7.6.2.4.2 A Pragmatics and Semantics Analysis:

The “works” of the bus transport contracts are two: the timetables and, implicitly, the designated (and

obligated) bus traffic. A bus timetable appears to define one or more bus lines, with each bus line giving

rise to one or more bus rides. Nothing is (otherwise) said about regularity of bus rides. It appears that

bus ride cancellations must be reported back to the contractor. And we assume that cancellations by a

sub-contractor is further reported back also to the sub-contractor’s contractor. Hence eventually that the

public transport authority is notified. Nothing is said, in the contracts, such as we shall model them, about

passenger fees for bus rides nor of percentages of profits (i.e., royalties) to be paid back from a sub-

contractor to the contractor. So we shall not bother, in this example, about transport costs nor transport

August 16, 2020, 11:41, A Foundation for Software Development © Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark



182 7 DOMAIN FACETS

subsidies. But will leave that necessary aspect as an exercise. The opposite of cancellations appears to

be ‘insertion’ of extra bus rides, that is, bus rides not listed in the time table, but, perhaps, mandated by

special events11 We assume that such insertions must also be reported back to the contractor. We assume

concepts of acceptable and unacceptable bus ride delays. Details of delay acceptability may be given in

contracts, but we ignore further descriptions of delay acceptability. but assume that unacceptable bus ride

delays are also to be (iteratively) reported back to contractors. We finally assume that sub-contractors

cannot (otherwise) change timetables. (A timetable change can only occur after, or at, the expiration of a

license.) Thus we find that contracts have definite period of validity. (Expired contracts may be replaced

by new contracts, possibly with new timetables.)

7.6.2.4.3 Contracted Operations, An Overview:

The actions that may be granted by a contractor according to a contract are: (i) start: to commence, i.e.,

to start, a bus ride (obligated); (ii) end: to conclude a bus ride (obligated); (iii) cancel: to cancel a bus

ride (allowed, with restrictions); (iv) insert: to insert a bus ride; and (v) subcontract: to sub-contract part

or all of a contract.

7.6.3 Schematic Rendition of License Language Constructs

There are basically two aspects to licensing languages: (i) the [actual] licensing [and sub-licensing], in the

form of licenses, ℓ, by licensors, o, of permissions and thereby implied obligations, and (ii) the carrying-

out of these obligations in the form of licensee, u, actions. We shall treat licensors and licensees on par,

that is, some os are also us and vice versa. And we shall think of licenses as not necessarily material entities

(e.g., paper documents), but allow licenses to be tacitly established (understood).

7.6.3.1 Licensing

The granting of a license ℓ by a licensor o, to a set of licensees uu1
,uu2

, ...,uuu in which ℓ expresses that

these may perform actions aa1
,aa2

, ...,aaa on work items ee1
,ee2

, ...,eee can be schematised:

ℓ : licensor o contracts licensees {uu1
,uu2

,...,uuu}
to perform actions {aa1

,aa2
,...,aaa} on work items {ee1

,ee2
,...,eee}

allowing sub-licensing of actions {aai
,aa j

,...,aak
} to {uux ,uuy ,...,uuz}

The two sets of action designators, das :{aa1
,aa2

, ...,aaa} and sas :{aax ,aay , ...,aaz} need not relate. Sub-
licensing: Line 3 of the above schema, ℓ, expresses that licensees uu1

,uu2
, ...,uuu , may act as licensors

and (thereby sub-)license ℓ to licensees us : {uux,uuy , ...,uuz}, distinct from sus : {uu1
,uu2

, ...,uuu}, that is,

us∩sus = {}. Variants: One can easily “cook up” any number of variations of the above license schema.

Revoke Licenses: We do not show expressions for revoking part or all of a previously granted license.

7.6.3.2 Licensors and Licensees

Licensors and Licensees

Example 102

7.6.3.2.1 Digital Media:

For digital media the original licensors are the original producers of music, film, etc. The “original”

licensees are you and me ! Thereafter some of us may become licensors, etc.

7.6.3.2.2 Heath-care:

For health-care the original licensors are, say in Denmark, the Danish governments’ National Board of

Health12; and the “original” licensees are the national hospitals. These then sub-license their medical clin-
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ics (rheumatology, cancer, urology, gynecology, orthopedics, neurology, etc.) which again sub-licenses

their medical staff (doctors, nurses, etc.). A medical doctor may, as is the case in Denmark for certain

actions, not [necessarily] perform these but may sub-license their execution to nurses, etc.

7.6.3.2.3 Documents:

For government documents the original licensor are the (i) heads of parliament, regional and local govern-

ments, (ii) government (prime minister) and the heads of respective ministries, respectively the regional

and local agencies and administrations. The “original” licensees are (i′) the members of parliament, re-

gional and local councils charged with drafting laws, rules and regulations, (ii′) the ministry, respectively

the regional and local agency department heads. These (the ′s) then become licensors when licensing their

staff to handle specific documents.

7.6.3.2.4 Transport:

For scheduled passenger (etc.) transportation the original licensors are the state, regional and/or local

transport authorities. The “original” licensees are the public and private transport firms. These latter then

become licensors licensors licensing drivers to handle specific transport lines and/or vehicles.

7.6.3.3 Actors and Actions

In preparation for Example 103 we show Figure 7.3.

Admit
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Plan
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Treatment
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Fig. 7.3. An example single-illness non-fatal hospitalisation plan. States: {1,2,3,4,5,6,7,8,9}

Actors and Actions

Example 103
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7.6.3.3.1 Digital Media:

w refers to a digital “work” with w′ designating a newly created one; si refers to a sector of some work.

• render w(si,s j , ...,sk):
⋄⋄ sectors si,s j, ...,sk of work w

⋄⋄ are rendered (played, visualised) in that order.

• w′ := copy w(si,s j, ...,sk):
⋄⋄ sectors si,s j, ...,sk of work w

⋄⋄ are copied and becomes work w′.

• w′ := edit w with E (wα (sa,sb, ...,sc), ...,wγ (sp,sq, ...,sr)):
⋄⋄ work w is edited

⋄⋄ while [also] incorporating references to or excerpts from [other] works

⋄⋄ wα (sa,sb, ...,sc), ...,wγ (sp,sq, ...,sr).
• read w:

⋄⋄ work w is read, i.e., information about work w is somehow displayed.

• ℓ : licensor m contracts licensees {uu1
,uu2

,...,uuu}
⋄⋄ to perform actions {RENDER, COPY, EDIT, READ}
⋄⋄ on work items {wi1 ,wi2 , ...,wiw}.

Et cetera: other forms of actions can be thought of.

7.6.3.3.2 Heath-care:

• Actors are here limited to the patients and the medical staff.

• We refer to Fig. 7.3 on the previous page.

• It shows an archetypal hospitalisation plan.

⋄⋄ It identifies a number of actions;

⋄⋄ π designates patients,

⋄⋄ t designates treatment (medication, surgery, . . . ).

• Actions are performed by medical staff, say h, with h being an implicit argument of the actions.

• interview π : a PMR with name, age, family relations, addresses, etc., is established for patient π .

• admit π : the PMR records the anamnese (medical history) for patient π .

• establish analysis plan π : the PMR records which analyses (blood tests, ECG, blood pressure, etc.)

are to be carried out.

• analyse π : the PMR records the results of the analyses referred to previously.

• diagnose π : medical staff h diagnoses, based on the analyses most recently performed.

• plan treatment for π : medical staff h sets up a treatment plan for patient π based on the diagnosis

most recently performed.

• treat π wrt. t: medical staff h performs treatment t on patient π , observes “reaction” and records this

in the PMR. Predicate “actions”:

• more analysis π ?,

• more treatment π ? and

• more diagnosis π ?.

• release π : either the patient dies or is declared ready to be sent ’home’.

• ℓ : licensor o contracts medical staff {mm1
,mm2

, ...,mmm}
⋄⋄ to perform actions

◦◦ {interview,
◦◦ admit,

◦◦ plan analysis,
◦◦ analyse,

◦◦ diagnose,
◦◦ plan treatment,

◦◦ treat,
◦◦ release}

⋄⋄ on patients {πp1
,πp2

, ...,πpp}.
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Et cetera: other forms of actions can be thought of.

7.6.3.3.3 Documents:

d refer to documents with d′ designating new documents.

• d′ := create based on dx,dy, ...,dz: A new document, named d′, is created, with no information

“contents”, but referring to existing documents dx,dy, ...,dz.

• edit d with E based on dnα ,dβ , ...,dγ : document d is edited with E being the editing function and

E −1 being its “undo” inverse.

• read d: document d is being read.

• d′ := copy d: document d is copied into a new document named d′.

• freeze d: document d can, from now on, only be read.

• shred d: document d is shredded. That is, no more actions can be performed on d.

• ℓ : licensor o contracts civil service staff {cc1
,cc2

, ...,ccc} to perform actions {CREATE, EDIT,

READ, COPY, FREEZE, SHRED} on documents {dd1
,dd2

, ...,ddd
}.

Et cetera: other forms of actions can be thought of.

7.6.3.3.4 Transport:

• We restrict, without loss of generality, to bus transport.

⋄⋄ There is a timetable, tt.

⋄⋄ It records bus lines,l, and specific instances of bus rides, b.

• These are some archetypal operations:

⋄⋄ start bus ride l,b at time t: Bus line l is recorded in tt and its departure in tt is recorded as τ .

Starting that bus ride at t means that the start is either on time, i.e., t=τ , or the start is delayed

δd : τ-t or advanced δa : t-τ where δd and δa are expected to be small intervals. All this is to be

reported, in due time, to the contractor.

⋄⋄ end bus ride l,b at time t: Ending bus ride l,b at time t means that it is either ended on time, or

earlier, or delayed. This is to be reported, in due time, to the contractor.

⋄⋄ cancel bus ride l,b at time t: t must be earlier than the scheduled departure of bus ride l,b.

⋄⋄ insert an extra bus l,b′ at time t: t must be the same time as the scheduled departure of bus ride

l,b with b′ being a “marked” version of b.

⋄⋄ ℓ : licensor o contracts transport staff {bb1
,bb2

, ...,bbb
} to perform actions {START, END,

CANCEL, INSERT} on work items {ee1
,ee2

,...,eee}.

Et cetera: other forms of actions can be thought of.

7.6.4 Requirements

Requirements for license language implementation basically amounts to requirements for three aspects.

(i) The design of the license language, its abstract and concrete syntax, its interpreter, and its interfaces

to distributed licensor and licensee behaviours; (ii) the requirements for a distributed system of licensor

and licensee behaviours; and (iii) the monitoring and partial control of the states of licensor and licensee

behaviours. The structuring of these distributed licensor and licensee behaviours differ from slightly to

somewhat, but not that significant in the four license languages examples. Basically the licensor and li-

censee behaviours form a set of behaviours. Basically everyone can communicate with everyone. For the

case of digital media licensee behaviours communicate back to licensor behaviours whenever a properly

licensed action is performed – resulting in the transfer of funds from licensees to licensors. For the case of

health care some central authority is expected to validate the granting of licenses and appear to be bound

by medical training. For the case of documents such checks appear to be bound by predetermined autho-

risation rules. For the case of transport one can perhaps speak of more rigid management & organisation

dependencies as licenses are traditionally transferred between independent authorities and companies.
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7.6.5 On Modeling License Languages

Licensors are expected to maintain a state which records all the licenses it has issued. Whenever at licensee

“reports back” (the begin and/or the end) of the performance of a granted action, this is recorded in its state.

Sometimes these granted actions are subject to fees. The licensor therefore calculates outstanding fees —

etc. Licensees are expected to maintain a state which records all the licenses it has accepted. Whenever an

action is to be performed the licensee records this and checks that it is permitted to perform this action. In

many cases the licensee is expected to “report back”, both the beginning and the end of performance of that

action, to the licensor. A typical technique of modeling licensors, licensees and patients, i.e., their PMRs, is

to model them as (never ending) processes, a la CSP [238]. with input/output, ch ?/ch ! m, communications

between licensors, licensees and PMRs. Their states are modeled as programmable attributes.

7.7 Management & Organisation

• By domain management we shall understand such people (such decisions) (i) who (which)
determine, formulate and thus set standards (cf. rules and regulations, Sect. 7.4) concerning
strategic, tactical and operational decisions; (ii) who ensure that these decisions are passed
on to (lower) levels of management and to floor staff; (iii) who make sure that such orders, as
they were, are indeed carried out; (iv) who handle undesirable deviations in the carrying out
of these orders cum decisions; and (v) who “backstops” complaints from lower management
levels and from “floor” staff

• By domain organisation we shall understand (vi) the structuring of management and non-
management staff “oversee-able” into clusters with “tight” and “meaningful” relations; (vii) the
allocation of strategic, tactical and operational concerns to within management and non-
management staff clusters; and hence (viii) the “lines of command”: who does what, and who
reports to whom, administratively and functionally

The ‘&’ is justified from the interrelations of items (i–viii).

7.7.1 Conceptual Analysis

We first bring some examples.

Train Monitoring, I

Example 104 In China, as an example, till the early 1990s, rescheduling of trains occurs at stations and

involves telephone negotiations with neighbouring stations (“up and down the lines”). Such rescheduling

negotiations, by phone, imply reasonably strict management and organisation (M&O). This kind of M&O

reflects the geographical layout of the rail net.

Railway Management and Organisation: Train Monitoring, II

Example 105 We single out a rather special case of railway management and organisation. Cer-

tain (lowest-level operational and station-located) supervisors are responsible for the day-to-day timely

progress of trains within a station and along its incoming and outgoing lines, and according to given

timetables. These supervisors and their immediate (middle-level) managers (see below for regional man-

agers) set guidelines (for local station and incoming and outgoing lines) for the monitoring of train traffic,

and for controlling trains that are either ahead of or behind their schedules. By an incoming and an outgo-

ing line we mean part of a line between two stations, the remaining part being handled by neighbouring

station management. Once it has been decided, by such a manager, that a train is not following its sched-

ule, based on information monitored by non-management staff, then that manager directs that staff: (i)

to suggest a new schedule for the train in question, as well as for possibly affected other trains, (ii) to

negotiate the new schedule with appropriate neighbouring stations, until a proper reschedule can be de-
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cided upon, by the managers at respective stations, (iii) and to enact that new schedule.13 A (middle-level

operations) manager for regional traffic, i.e., train traffic involving several stations and lines, resolves

possible disputes and conflicts.

The above, albeit rough-sketch description, illustrated the following management and organisation issues:

(i) There is a set of lowest-level (as here: train traffic scheduling and rescheduling) supervisors and their

staff; (ii) they are organised into one such group (as here: per station); (iii) there is a middle-level (as here:

regional train traffic scheduling and rescheduling) manager (possibly with some small staff), organised with

one such per suitable (as here: railway) region; and (iv) the guidelines issued jointly by local and regional

(...) supervisors and managers imply an organisational structuring of lines of information provision and

command.

People staff enterprises, the components of infrastructures with which we are concerned, i.e., for which

we develop software. The larger these enterprises — these infrastructure components — the more need

there is for management and organisation. The role of management is roughly, for our purposes, twofold:

first, to perform strategic, tactical and operational work, to set strategic, tactical and operational policies —

and to see to it that they are followed. The role of management is, second, to react to adverse conditions,

that is, to unforeseen situations, and to decide how they should be handled, i.e., conflict resolution. Policy

setting should help non-management staff operate normal situations — those for which no management

interference is thus needed. And management “backstops” problems: management takes these problems

off the shoulders of non-management staff. To help management and staff know who’s in charge wrt.

policy setting and problem handling, a clear conception of the overall organisation is needed. Organisation

defines lines of communication within management and staff, and between these. Whenever management

and staff has to turn to others for assistance they usually, in a reasonably well-functioning enterprise, follow

the command line: the paths of organigrams — the usually hierarchical box and arrow/line diagrams.

The management and organisation model of a domain is a partial specification; hence all the usual

abstraction and modeling principles, techniques and tools apply. More specifically, management is a set of

predicate functions, or of observer and generator functions These either parametrise other, the operations

functions, that is, determine their behaviour, or yield results that become arguments to these other functions.

Organisation is thus a set of constraints on communication behaviours. Hierarchical, rather than linear, and

matrix structured organisations can also be modeled as sets (of recursively invoked sets) of equations.

To relate classical organigrams to formal descriptions we first show such an organigram (Fig. 7.4 on

the following page), and then we show schematic processes which — for a rather simple scenario — model

managers and the managed!

Based on such a diagram, and modeling only one neighbouring group of a manager and the staff working for

that manager we get a system in which one manager, mgr, and many staff, stf, coexist or work concurrently,

i.e., in parallel. The mgr operates in a context and a state modeled by ψ . Each staff, stf(i) operates in a

context and a state modeled by sσ (i).

type

Msg, Ψ , Σ , Sx
SΣ = Sx →m Σ

channel

{ ms[ i ]:Msg | i:Sx }
value

sσ :SΣ , ψ :Ψ

sys: Unit→ Unit

sys() ≡ ‖ { stf(i)(sσ (i)) | i:Sx } ‖ mgr(ψ)

In this system the manager, mgr, (1) either broadcasts messages, m, to all staff via message channel ms[i].
The manager’s concoction, m out(ψ), of the message, msg, has changed the manager state. Or (2) is

willing to receive messages, msg, from whichever staff i the manager sends a message. Receipt of the

message changes, m in(i,m)(ψ), the manager state. In both cases the manager resumes work as from the
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new state. The manager chooses — in this model — which of thetwo things (1 or 2) to do by a so-called

non-deterministic internal choice (⌈⌉).

mg: Ψ → in,out {ms[ i ]|i:Sx} Unit

mgr(ψ) ≡
(1) let (ψ ′,m)=m out(ψ) in ‖ {ms[ i ]!m|i:Sx};mgr(ψ ′) end

⌈⌉
(2) let ψ ′ = ⌈⌉⌊⌋ {let m=ms[ i ]? in m in(i,m)(ψ) end|i:Sx} in mgr(ψ ′) end

m out: Ψ →Ψ × MSG,
m in: Sx × MSG→Ψ →Ψ

And in this system, staff i, stf(i), (1) either is willing to receive a message, msg, from the manager, and then

to change, st in(msg)(σ ), state accordingly, or (2) to concoct, st out(σ ), a message, msg (thus changing

state) for the manager, and send it ms[i]!msg. In both cases the staff resumes work as from the new state.

The staff member chooses — in this model — which of thetwo “things” (1 or 2) to do by a non-deterministic

internal choice (⌈⌉).

stf: i:Sx→ Σ → in,out ms[ i ] Unit

stf(i)(σ ) ≡
(1) let m = ms[ i ]? in stf(i)(stf in(m)(σ )) end

⌈⌉
(2) let (σ ′,m) = st out(σ ) in ms[ i ]!m; stf(i)(σ ′) end

st in: MSG→ Σ → Σ ,
st out: Σ → Σ × MSG

Both manager and staff processes recurse (i.e., iterate) over possibly changing states. The management

process non-deterministically, internal choice, “alternates” between “broadcast”-issuing orders to staff and

receiving individual messages from staff. Staff processes likewise non-deterministically, internal choice,

alternate between receiving orders from management and issuing individual messages to management.

The conceptual example also illustrates modeling stakeholder behaviours as interacting (here CSP-like)

processes.

Strategic, Tactical and Operations Management
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Example 106 We think of (i) strategic, (ii) tactic, and (iii) operational managers as well as (iv) super-

visors, (v) team leaders and the rest of the (vi) staff (i.e., workers) of a domain enterprise as functions.

Each category of staff, i.e., each function, works in state and updates that state according to schedules

and resource allocations — which are considered part of the state. To make the description simple we do

not detail the state other than saying that each category works on an “instantaneous copy” of “the” state.

Now think of six staff category activities, strategic managers, tactical managers, operational managers,

supervisors, team leaders and workers as six simultaneous sets of actions. Each function defines a step of

collective (i.e., group) (strategic, tactical, operational) management, supervisor, team leader and worker

work. Each step is considered “atomic”. Now think of an enterprise as the “repeated” step-wise simul-

taneous performance of these category activities. Six “next” states arise. These are, in the reality of the

domain, ameliorated, that is reconciled into one state. however with the next iteration, i.e., step, of work

having each category apply its work to a reconciled version of the state resulting from that category’s

previously yielded state and the mediated “global” state. Caveat: The below is not a mathematically

proper definition. It suggests one !

type

0. Σ , Σs,Σt ,Σo,Σu,Σe,Σw

value

1. str, tac, opr, sup, tea, wrk: Σ i → Σ i

2. stra, tact, oper, supr, team, work: Σ → (Σx1
×Σx2

×Σx3
×Σx4

×Σx5
)→ Σ

3. objective: (Σs×Σt×Σo×Σu×Σe×Σw)→ Bool

3. enterprise,ameliorate: (Σs×Σt×Σo×Σu×Σe×Σw)→ Σ
4. enterprise: (σs,σt ,σu,σe,σw) ≡
6. let σ ′s = stra(str(σ s))(σ

′
t ,σ
′
o,σ ′u,σ ′e,σ

′
w),

7. σ ′t = tact(tac(σ t))(σ
′
s,σ
′
o,σ ′u,σ ′e,σ

′
w),

8. σ ′o = oper(opr(σo))(σ ′s,σ
′
t ,σ
′
u,σ ′e,σ

′
w),

9. σ ′u = supr(sup(σu))(σ ′s,σ
′
t ,σ
′
o,σ ′e,σ

′
w),

10. σ ′e = team(tea(σ e))(σ
′
s,σ
′
t ,σ
′
o,σ ′u,σ ′w),

11. σ ′w = work(wrk(σw))(σ ′s,σ
′
t ,σ
′
o,σ ′u,σ ′e) in

12. if objective(σ ′s,σ
′
t ,σ
′
o,σ ′u,σ ′e,σ

′
w)

13. then ameliorate(σ ′s,σ
′
t ,σ
′
o,σ ′u,σ ′e,σ

′
w)

14. else enterprise(σ ′s,σ
′
t ,σ
′
o,σ ′u,σ ′e,σ

′
w)

15. end end

0. Σ is a further undefined and unexplained enterprise state space. The various enterprise players view

this state in their own way.

1. Six staff group operations, str, tac, opr, sup, tea and wrk, each act in the enterprise state such as

conceived by respective groups to effect a resulting enterprise state such as achieved by respective

groups.

2. Six staff group state amelioration functions, ame s,ame t, ame o, ame u, ame e and ame w,

each apply to the resulting enterprise states such as achieved by respective groups to yield a result

state such as achieved by that group.

3. An overall objective function tests whether a state summary reflects that the objectives of the enter-

prise has been achieved or not.

4. The enterprise function applies to the tuple of six group-biased (i.e., ameliorated) states. Initially

these may all be the same state. The result is an ameliorated state.

5. An iteration, that is, a step of enterprise activities, lines 5.–13. proceeds as follows:

6. strategic management operates

• in its state space, σs : Σ ;

• effects a next (un-ameliorated strategic management) state σ ′s;

• and ameliorates this latter state in the context of all the other player’s ameliorated result states.

7.–11. The same actions take place, simultaneously for the other players: tac, opr, sup, tea and wrk.

12. A test, has objectives been met, is made on the six ameliorated states.

13. If test is successful, then the enterprise terminates in an ameliorated state.

August 16, 2020, 11:41, A Foundation for Software Development © Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark



190 7 DOMAIN FACETS

14. Otherwise the enterprise recurses, that is, “repeats” itself in new states.

The above “function” definition is suggestive. It suggests that a solution to the fix-point 6-tuple of equa-

tions over “intermediate” states, σ ′x, where x is any of s, t,o,u,e,w, is achieveable by iteration over just

these 6 equations.

7.7.2 Requirements

Top-level, including strategic management tends to not be amenable to “automation”. Increasingly tactical

management tends to “divide” time between “bush-fire, stop-gap” actions – hardly automatable and formu-

lating, initiating and monitoring main operations. The initiation and monitoring of tactical actions appear

amenable to partial automation. Operational management – with its reliance on rules & regulations, scripts

and licenses – is where computer monitoring and partial control has reaped the richest harvests.

7.7.3 On Modeling Management and Organisation

Management and organisation basically spans entity, function, event and behaviour intensities and thus

typically require the full spectrum of modeling techniques and notations — summarised in Sect. 7.2.3.

7.8 Human Behaviour

• By domain human behaviour we shall understand any of a quality spectrum of carrying
out assigned work: from (i) careful, diligent and accurate, via (ii) sloppy dispatch, and (iii)
delinquent work, to (iv) outright criminal pursuit

Although we otherwise do not go into any depth with respect to the analysis & description of humans, we

shall momentarily depart from this “abstinence”.

7.8.1 Conceptual Analysis

To model human behaviour “smacks” like modeling human actors, the psychology of humans, etc. ! We

shall not attempt to model the psychological side of humans — for the simple reason that we neither know

how to do that nor whether it can at all be done. Instead we shall be focusing on the effects on non-human

manifest entities of human behaviour.

Banking — or Programming — Staff Behaviour

Example 107 Let us assume a bank clerk, “in ye olde” days, when calculating, say mortgage repay-

ments (cf. Example 96). We would characterise such a clerk as being diligent, etc., if that person
carefully follows the mortgage calculation rules, and checks and double-checks that calcula-
tions “tally up”, or lets others do so. We would characterise a clerk as being sloppy if that
person occasionally forgets the checks alluded to above. We would characterise a clerk as be-
ing delinquent if that person systematically forgets these checks. And we would call such a
person a criminal if that person intentionally miscalculates in such a way that the bank (and/or
the mortgage client) is cheated out of funds which, instead, may be diverted to the cheater.
Let us, instead of a bank clerk, assume a software programmer charged with implementing an automatic

routine for effecting mortgage repayments (cf. Example 96). We would characterise the programmer
as being diligent if that person carefully follows the mortgage calculation rules, and throughout
the development verifies and tests that the calculations are correct with respect to the rules. We
would characterise the programmer as being sloppy if that person forgets certain checks and
tests when otherwise correcting the computing program under development. We would charac-
terise the programmer as being delinquent if that person systematically forgets these checks
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and tests. And we would characterise the programmer as being a criminal if that person inten-
tionally provides a program which miscalculates the mortgage interest, etc., in such a way that
the bank (and/or the mortgage client) is cheated out of funds.

A Human Behaviour Mortgage Calculation

Example 108 Example 96 on Page 175 gave a semantics to the mortgage calculation request

(i.e., command) as would a diligent bank clerk be expected to perform it. To express, that is, to

model, how sloppy, delinquent, or outright criminal persons (staff?) could behave we must modify the

int Cmd(mkPM(c,a,m,p,d
′
))(ρ ,α,µ ,ℓ) definition.

int Cmd(mkPM(c,a,m,p,d))(ρ ,α,µ ,ℓ) ≡
let (b,d

′
) = ℓ(m) in

if q(α(a),p) [α(a)≤p∨α(a)=p∨α(a)≤p∨... ]
then

let i = f1(interest(mi,b,period(d,d
′
))),

ℓ′ = ℓ † [m7→f2(ℓ(m)−(p−i)) ],
α ′ = α † [a7→f3(α(a)−p),ai 7→f4(α(ai)+i),a“staff” 7→f“staff”(α(a“staff”)+i) ] in

((ρ ,α ′,µ ,ℓ′),ok) end

else

((ρ ,α ′,µ ,ℓ),nok)
end end

pre c ∈ dom µ ∧ m ∈ µ(c)

q: P × P
∼
→ Bool

f1,f2,f3,f4,f“staff”: P
∼
→ P [ typically: f“staff” = λp.p ]

The predicate q and the functions f1, f2, f3, f4 and f“staff” of Example 108 are deliberately left undefined.

They are being defined by the “staffer” when performing (incl., programming) the mortgage calculation

routine. The point of Example 108 is that one must first define the mortgage calculation script precisely

as one would like to see the diligent staff (programmer) to perform (incl., correctly program) it before one

can “pinpoint” all the places where lack of diligence may “set in”. The invocations of q, f1, f2, f3, f4 and

f“staff” designate those places. The point of Example 108 is also that we must first domain-define, “to

the best of our ability” all the places where human behaviour may play other than a desirable role. If we

cannot, then we cannot claim that some requirements aim at countering undesirable human behaviour.

Commensurate with the above, humans interpret rules and regulations differently, and, for some

humans, not always consistently — in the sense of repeatedly applying the same interpretations. Our

final specification pattern is therefore:

type

Action = Θ
∼
→ Θ -infset

value

hum int: Rule→ Θ → RUL-infset

action: Stimulus → Θ → Θ

hum beha: Stimulus × Rules→ Action→ Θ
∼
→ Θ -infset

hum beha(sy sti,sy rul)(α)(θ ) as θset
post

θset = α(θ ) ∧ action(sy sti)(θ ) ∈ θset
∧ ∀ θ ′:Θ •θ ′ ∈ θset⇒
∃ se rul:RUL•se rul ∈ hum int(sy rul)(θ )⇒se rul(θ ,θ ′)
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The above is, necessarily, sketchy: There is a possibly infinite variety of ways of interpreting some rules.

A human, in carrying out an action, interprets applicable rules and chooses one which that person believes

suits some (professional, sloppy, delinquent or criminal) intent. “Suits” means that it satisfies the intent,

i.e., yields true on the pre/post-configuration pair, when the action is performed — whether as intended by

the ones who issued the rules and regulations or not. We do not cover the case of whether an appropriate

regulation is applied or not.

The above-stated axioms express how it is in the domain, not how we would like it to be. For that we

have to establish requirements.

7.8.2 Requirements

Requirements in relation to the human behaviour facet is not requirements about software that “replaces”

human behaviour. Such requirements were hinted at in Sects. 7.5.2–7.7.2. Human behaviour facet require-

ments are about software that checks human behaviour; that its remains diligent; that it does not transgress

into sloppy, delinquent, let alone criminal behaviour. When transgressions are discovered, appropriate re-

medial actions may be prescribed.

7.8.3 On Modeling Human Behaviour

To model human behaviour is, “initially”, much like modeling management and organisation. But only ‘ini-

tially’. The most significant human behaviour modeling aspect is then that of modeling non-determinism

and looseness, even ambiguity. So a specification language which allows specifying non-determinism and

looseness (like CafeOBJ [157] and RSL [176]) is to be preferred. To prescribe requirements is to prescribe

the monitoring of the human input at the computer interface.

7.9 Summary

7.9.1 Method Principles, Techniques and Tools

Recall that by a method we shall understand a set of principles for selecting and applying a set of tech-
niques using a set of tools in order to construct an artefact.

7.9.1.1 Principles of Modelling Domain Facets

We shall just point out one applied principle, that of:

Conservative Extension :14 This principle of making sure that additional domain descriptions form

conservative extensions are applied throughout this chapter:

• Support Technologies, Sect. 7.3,

• Rules & Regulations, Sect. 7.4,

• Scripts, Sect. 7.5,

• License Languages, Sect. 7.6,

• Management & Organisation, Sect. 7.7 and

• Human Behaviour, Sect. 7.8.

The concepts of these six additional facets builds upon, i.e., extends, those of Intrinsics, that is, those

of Chapters 3–6.

Most of the principles mentioned in earlier chapters have also been applied.

14 We remind the reader of the definition of the concept of ‘conservative extension: An extension of a logical theory

is conservative, i.e., conserves, if every theorem expressible in the original theory is also derivable within the orig-

inal theory [en.wiktionary.org/wiki/conservative extension] [[ι 47,π 7]]. See also [341, 144, 100, 20, 243, 161] and

en.m.wikipedia.org/wiki/Extension by new constant and function names

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



7.9 Summary 193

7.9.1.2 Techniques of Modelling Domain Facets

We have already mentioned techniques that have been applied in this chapter’s “On Modelling ...” sec-

tions: Sects. 7.2.3 on Page 169, 7.3.3 on Page 173, 7.4.3 on Page 175, 7.5.3 on Page 177, 7.6.5 on

Page 186, 7.7.3 on Page 190 and 7.8.3 on the facing page. And shall leave it at that.

7.9.1.3 Tools of Modelling Domain Facets

The tools for modelling, i.e., analysing & describing domain facets have already been mentioned in this

chapters seven sections on the individual facets.

7.9.2 General Issues

7.9.2.1 Completion

Domain acquisition results in typically up to thousands of units of domain descriptions. Domain analysis

subsequently also serves to classify which facet any one of these description units primarily characterises.

But some such “compartmentalisations” may be difficult, and may be deferred till the step of “completion”.

It may then be, “at the end of the day”, that is, after all of the above facets have been modeled that some

description units are left as not having been described, not deliberately, but “circumstantially”. It then

behooves the domain engineer to fit these “dangling” description units into suitable parts of the domain

description. This “slotting in” may be simple, and all is fine. Or it may be difficult. Such difficulty may

be a sign that the chosen model, the chosen description, in its selection of entities, functions, events and

behaviours to model — in choosing these over other possible selections of phenomena and concepts is not

appropriate. Another attempt must be made. Another selection, another abstraction of entities, functions,

etc., may need be chosen. Usually however, after having chosen the abstractions of the intrinsic phenomena

and concepts, one can start checking whether “dangling” description units can be fitted in “with ease”.

7.9.2.2 Integrating Formal Descriptions

We have seen that to model the full spectrum of domain facets one needs not one, but several specification

languages. No single specification language suffices. It seems highly unlikely and it appears not to be desir-

able to obtain a single, “universal” specification language capable of “equally” elegantly, suitably abstractly

modeling all aspects of a domain. Hence one must conclude that the full modeling of domains shall deploy

several formal notations – including plain, good old mathematics in all its forms. The issues are then the

following which combinations of notations to select, and how to make sure that the combined specification

denotes something meaningful. The ongoing series of “Integrating Formal Methods” conferences [10] is a

good source for techniques, compositions and meanings.

7.9.2.3 The Impossibility of Describing Any Domain Completely

Domain descriptions are, by necessity, abstractions. One can never hope for any notion of complete domain

descriptions. The situation is no better for domains such as we define them than for physics. Physicists

strive to understand the manifest world around us – the world that was there before humans started creating

“their domains”. The physicists describe the physical world “in bits and pieces” such that large collections

of these pieces “fit together”, that is, are based on some commonly accepted laws and in some commonly

agreed mathematics. Similarly for such domains as will be the subject of domain science & engineering

such as we cover that subject in [78, 66] and in the present chapter and reports [75, 68]. Individual such

domain descriptions will be emphasizing some clusters of facets, others will be emphasizing other aspects.

7.9.2.4 Rôles for Domain Descriptions

We can distinguish between a spectrum of rôles for domain descriptions. Some of the issues brought for-

ward below may have been touched upon in [78, 66].
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7.9.2.4.1 Alternative Domain Descriptions:

It may very well be meaningful to avail oneself of a variety of domain models (i.e., descriptions) for any

one domain, that is, for what we may consider basically one and the same domain. In control theory (a

science) and automation (an engineering) we develop specific descriptions, usually on the form of a set of

differential equations, for any one control problem. The basis for the control problem is typically the science

of mechanics. This science has many renditions (i.e., interpretations). For the control problem, say that of

keeping a missile carried by a train wagon, erect during train movement and/or windy conditions, one may

then develop a “self-contained” description of the problem based on some mechanics theory presentation.

Similarly for domains. One may refer to an existing domain description. But one may re-develop a textually

“smaller” domain description for any one given, i.e., specific problem.

7.9.2.4.2 Domain Science:

A domain description designates a domain theory. That is, a bundle of propositions, lemmas and theorems

that are either rather explicit or can be proven from the description. So a domain description is the basis

for a theory as well as for the discovery of domain laws, that is, for a domain science. We have sciences of

physics (incl. chemistry), biology, etc. Perhaps it is about time to have proper sciences, to the extent one

can have such sciences for human-made domains.

7.9.2.4.3 Business Process Re-engineering:

Some domains manifest serious amounts of human actions and interactions. These may be found to not

be efficient to a degree that one might so desire. A given domain description may therefore be a basis

for suggesting other management & organisation structures, and/or rules & regulations than present ones.

Yes, even making explicit scripts or a license language which have hitherto been tacitly understood –

without necessarily computerising any support for such a script or license language. The given and the

resulting domain descriptions may then be the basis for operations research models that may show desired

or acceptable efficiency improvements.

7.9.2.4.4 Software Development:

[66] shows one approach to requirements prescription. Domain analysis & description, i.e., domain engi-

neering, is here seen as an initial phase, with requirements prescription engineering being a second phase,

and software design being a third phase. We see domain engineering as indispensable, that is, an absolute

must, for software development. [58, Domains: Their Simulation, Monitoring and Control ] further illus-

trates how domain engineering is a base for the development of domain simulators, demos, monitors and

controllers.

7.9.2.5 Grand Challenges of Informatics16

To establish a reasonably trustworthy and believable theory of a domain, say the transportation, or just

the railway domain, may take years, possibly 10–15 ! Similarly for domains such as the financial service

industry, the market (of consumers and producers, retailers, wholesaler, distribution cum supply chain),

health care, and so forth. The current author urges younger scientists to get going! It is about time.

7.10 Bibliographical Notes

To create domain descriptions, or requirements prescriptions, or software designs, properly, at least such

as this author sees it, is a joy to behold. The beauty of carefully selected and balanced abstractions, their

interplay with other such, the relations between phases, stages and steps, and many more conceptual con-

structions make software engineering possibly the most challenging intellectual pursuit today. For this and

more consult [39, 40, 41].

16 In the early-to-mid 2000s there were a rush of research foundations and scientists enumerating “Grand Challenges

of Informatics”

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



7.11 Exercise Problems 195

7.11 Exercise Problems

7.11.1 Research Problems

Exercise 38 A Research Challenge. Mathematical Explanation: The seven facets identified in

this chapter are not identified with respect to one another on the basis of some mathematical model. In

what [theoretical] computer science sense could one hold them out from one another ? If you have a solution

please present it.

Exercise 39 A Research Challenge. Other Facets?: In this chapter we have identified six facets

beyond the intrinsics. The research challenge here is to identify more facets and to give them a treatment

like in this chapter or even as suggested in the above exercise.

7.11.2 Term Projects

We continue the term projects of Sects. 3.23.3 on Page 82, 4.12.3 on Page 122 and 6.14.3 on Page 163.

The students are to identify and analyse & describe at least three distinct facets of their chosen domain,

that is:

• variations of intrinsics,

• support technology,

• rules & regulations,

• scripts,

• license language,

• management & organisation,

and

• human behaviour.

Exercise 40 An MSc Student Exercise. The Consumer Market, Facets: We refer to Exercises 4

on Page 83, 20 on Page 122, 31 on Page 163 and 40.

Exercise 41 An MSc Student Exercise. Financial Service Industry, Facets: We refer to Exer-

cises 5 on Page 83, 21 on Page 123 and 32 on Page 163.

Exercise 42 An MSc Student Exercise. Container Line Industry, Facets: We refer to Exercises 6

on Page 83, 22 on Page 123, and 33 on Page 163.

Exercise 43 An MSc Student Exercise. Railway Systems, Facets: We refer to Exercises 7 on

Page 83, 23 on Page 123, and 34 on Page 163.

Exercise 44 A PhD Student Problem. Part-Material Conjoins: Canals, Facets: We refer to Ex-

ercises 8 on Page 83, 24 on Page 123 and 35 on Page 163.

Exercise 45 A PhD Student Problem. Part-Materials Conjoins: Rum Production, Facets: We

refer to Exercises 9 on Page 83, 25 on Page 123 and 36 on Page 163.

Exercise 46 A PhD Student Problem. Part-Materials Conjoins: Waste Management, Facets:

We refer to Exercise 10 on Page 83, 26 on Page 123, and 37 on Page 163.

These exercise problems are continued in Sect. 8.9.2 on Page 243.
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REQUIREMENTS

In this chapter we show one approach to systematically, but, of course, not automatically, “derive”
requirements prescriptions from domain descriptions. We shall introduce and treat quite a vocabu-
lary of concepts (i) machine; (ii-iv) domain, interface and machine requirements; (v-ix) projection,
instantiation, determination, extension and fitting; and (x) derived requirements.
The approach we show is novel [44]. It does not replace conventional requirements engineering
[355]. Merely supplements it. The conventional approach is not founded on domain descriptions,
although frequent references are made, more-or-less implicitly, to domains. We therefore find it
justified to present the view of this chapter that requirement prescriptions can be rather systemati-
cally arrived at from a series of analyses & rewritings of domain descriptions.

8.1 Introduction

8.1.1 The Contribution of this Chapter

We claim that the present chapter contributes to our understanding and practice of software engineering
as follows: (1) it shows how the new phase of engineering, domain engineering, forms a prerequisite

for requirements engineering; (2) it endows the “classical” form of requirements engineering with a

structured set of development stages and steps: (a) first a domain requirements stage, (b) to be followed

by an interface requirements stage, and (c) to be concluded by a machine requirements stage; (3)

it further structures and gives a reasonably precise contents to the stage of domain requirements: (i) first a

projection step, (ii) then an instantiation step, (iii) then a determination step, (iv) then an extension
step, and (v) finally a fitting step — with these five steps possibly being iterated; and (4) it also structures

and gives a reasonably precise contents to the stage of interface requirements based on a notion of shared
entities, Each of the steps (i–v) open for the possibility of simplifications. Steps (a–c) and (i-v), we claim,

are new. They reflect a serious contribution, we claim, to a logical structuring of the field of requirements

engineering and its very many otherwise seemingly diverse concerns.

8.1.2 Some Comments

This chapter is, perhaps, unusual in the following respects: (i) It is a methodology chapter, hence there are

no “neat” theories about development, no succinctly expressed propositions, lemmas nor theorems, and

hence no proofs1. (ii) As a consequence the chapter is borne by many, and by extensive examples. (iii) The

examples of this chapter are all focused on a generic road transport net. (iv) To reasonably fully exemplify

the requirements approach, illustrating how our method copes with a seeming complexity of interrelated

method aspects, the full example of this chapter embodies very many description and prescription elements:

hundreds of concepts (types, axioms, functions). (v) This methodology chapter covers a “grand” area of

software engineering: Many textbooks and papers are written on Requirements Engineering. We postulate,

in contrast to all such books (and papers), that requirements engineering should be founded on domain
engineering . Hence we must, somehow, show that our approach relates to major elements of what the

Requirements Engineering books put forward. (vi) As a result, this chapter is long.

1 — where these proofs would be about the development theories. The example development of requirements do

imply properties, but formulation and proof of these do not constitute new contributions — so are left out.
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8.1.3 Structure of Chapter

The structure of the chapter is as follows: Section 8.2 provides a fair-sized, hence realistic example. Sec-

tions 8.3–8.5 covers our approach to requirements development. Section 8.3 overviews the issue of ‘require-

ments’; relates our approach (i.e., Sects. 8.4–8.5) to systems, user and external equipment and functional
requirements; and Sect. 8.3 also introduces the concepts of the machine to be requirements prescribed, the

domain, the interface and the machine requirements. Section 8.4 covers the domain requirements stages

of projection (Sect. 8.4.1), instantiation (Sect. 8.4.2), determination (Sect. 8.4.3), extension (Sect. 8.4.4)

and fitting (Sect. 8.4.5). Section 8.5 covers key features of interface requirements: shared phenomena
(Sect. 8.5.1.1), shared endurants (Sect. 8.5.1.2) and shared actions, shared eventsand shared behaviours

(Sect. 8.5.1.3). Section 8.5.1.3 further introduces the notion of derived requirements. Section 8.7 concludes

the chapter.

8.2 An Example Domain: Transport

We refer to the “Running Example” of Chapters 3–6
Chapters 3–6 brought a consolidated version of the “running” road transport system example

In order to exemplify the various stages and steps of requirements development we first bring a domain

description example.2 The example follows the steps of an idealised domain description. First we describe

the endurants, then we describe the perdurants. Endurant description initially focus on the composite and

atomic parts. Then on their “internal” qualities: unique identifications, mereologies, and attributes. The de-

scriptions alternate between enumerated, i.e., labeled narrative sentences and correspondingly “numbered”

formalisations. The narrative labels cum formula numbers will be referred to, frequently in the various

steps of domain requirements development.

8.2.1 Endurants

Since we have chosen a manifest domain, that is, a domain whose endurants can be pointed at, seen,

touched, we shall follow the analysis & description process as outlined in [70] and formalised in [62].

That is, we first identify, analyse and describe (manifest) parts, composite and atomic, abstract (Sect. 8.2.2)

or concrete (Sect. 8.2.2.1). Then we identify, analyse and describe their unique identifiers (Sect. 8.2.2.2),

mereologies (Sect. 8.2.2.3), and attributes (Sects. 8.2.2.4–8.2.2.4).
The example fragments will be presented in a small type-font.

8.2.2 Domain, Net, Fleet and Monitor

The root domain, ∆ , is that of a composite traffic sys-

tem (304a.) with a road net, (304b.) with a fleet of vehi-

cles and (304c.) of whose individual position on the road

net we can speak, that is, monitor.3

304 We analyse the traffic system into

a a composite road net,

b a composite fleet (of vehicles), and

c an atomic monitor.

type

304 ∆

304a N

304b F

304c M

value

304a obs N: ∆ → N

304b obs F: ∆ → F

304c obs M: ∆ → M

2 The example of this section is that of the “running example” of Chapters 3–6
3 The monitor can be thought of, i.e., conceptualised. It is not necessarily a physically manifest phenomenon.
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305 The road net consists of two composite parts,

a an aggregation of hubs and

b an aggregation of links.

type

305a HA

305b LA

value

305a obs HA: N→ HA

305b obs LA: N→ LA

8.2.2.1 Hubs and Links

306 Hub aggregates are sets of hubs.

307 Link aggregates are sets of links.

308 Fleets are set of vehicles.

type

306 H, HS = H-set

307 L, LS = L-set

308 V, VS = V-set

value

306 obs HS: HA→ HS

307 obs LS: LA→ LS

308 obs VS: F→ VS

309 We introduce some auxiliary functions.

a links extracts the links of a network.

b hubs extracts the hubs of a network.

value

309a links: ∆ → L-set

309a links(δ ) ≡ obs LS(obs LA(obs N(δ )))

309b hubs: ∆ → H-set

309b hubs(δ ) ≡ obs HS(obs HA(obs N(δ )))

8.2.2.2 Unique Identifiers

Applying observe unique identifier, the domain description prompt 7 on Page 86, to the observed

parts yields the following.

310 Nets, hub and link aggregates, hubs and links,

fleets, vehicles and the monitor all

a have unique identifiers

b such that all such are distinct, and

c with corresponding observers.

type

310a NI, HAI, LAI, HI, LI, FI, VI, MI
value

310c uid NI: N→ NI
310c uid HAI: HA→ HAI
310c uid LAI: LA→ LAI
310c uid HI: H→ HI

310c uid LI: L→ LI
310c uid FI: F→ FI
310c uid VI: V→ VI
310c uid MI: M→ MI
axiom

310b NI
⋂

HAI={}, NI
⋂

LAI={}, NI
⋂

HI={}, etc.

where axiom 310b is expressed semi-formally, in mathematics. We introduce some auxiliary functions:

311 xtr lis extracts all link identifiers of a traffic sys-

tem.

312 xtr his extracts all hub identifiers of a traffic

system.

313 Given an appropriate link identifier and a net

get link ‘retrieves’ the designated link.

314 Given an appropriate hub identifier and a net

get hub ‘retrieves’ the designated hub.
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value

311 xtr lis: ∆ → LI-set

311 xtr lis(δ ) ≡
311 let ls = links(δ ) in {uid LI(l)|l:L•l ∈ ls} end

312 xtr his: ∆ → HI-set

312 xtr his(δ ) ≡
312 let hs = hubs(δ ) in {uid HI(h)|h:H•k ∈ hs} end

313 get link: LI→ ∆
∼
→ L

313 get link(li)(δ ) ≡

313 let ls = links(δ ) in

313 let l:L • l ∈ ls ∧ li=uid LI(l) in l end end

313 pre: li ∈ xtr lis(δ )

314 get hub: HI→ ∆
∼
→ H

314 get hub(hi)(δ ) ≡
314 let hs = hubs(δ ) in

314 let h:H • h ∈ hs ∧ hi=uid HI(h) in h end end

314 pre: hi ∈ xtr his(δ )

8.2.2.3 Mereology

We cover the mereologies of all part sorts introduced so far. We decide that nets, hub aggregates, link aggre-

gates and fleets have no mereologies of interest. Applying observe mereology, the domain description

prompt 8 on Page 91, to hubs, links, vehicles and the monitor yields the following.

315 Hub mereologies reflect that they are connected to zero, one or more links.

316 Link mereologies reflect that they are connected to exactly two distinct hubs.

317 Vehicle mereologies reflect that they are connected to the monitor.

318 The monitor mereology reflects that it is connected to all vehicles.

319 For all hubs of any net it must be the case that their mereology designates links of that net.

320 For all links of any net it must be the case that their mereologies designates hubs of that net.

321 For all transport domains it must be the case that

a the mereology of vehicles of that system designates the monitor of that system, and that

b the mereology of the monitor of that system designates vehicles of that system.

value

315 obs mereo H: H→ LI-set

316 obs mereo L: L→ HI-set

axiom

316 ∀ l:L•card mereo L(l)=2
value

317 obs mereo V: V→ MI
318 obs mereo M: M→ VI-set

axiom

319 ∀ δ :∆ , hs:HS•hs=hubs(δ ), ls:LS•ls=links(δ ) •

319 ∀ h:H•h ∈ hs•mereo H(h)⊆xtr lis(δ ) ∧
320 ∀ l:L•l ∈ ls•mereo L(l)⊆xtr his(δ ) ∧
321a let f:F•f=obs F(δ )⇒
321a let m:M•m=obs M(δ ), vs:VS•vs=obs VS(f) in

321a ∀ v:V•v ∈ vs⇒uid V(v) ∈ mereo M(m) ∧ mereo M(m) = {uid V(v)|v:V•v ∈ vs}
321b end end

8.2.2.4 Attributes, I

We may not have shown all of the attributes mentioned below — so consider them informally introduced !

• Hubs: locations4 are considered static, hub states and hub state spaces are considered programmable;

• Links: lengths and locations are considered static, link states and link state spaces are considered

programmable;

• Vehicles: manufacturer name, engine type (whether diesel, gasoline or electric) and engine power
(kW/horse power) are considered static; velocity and acceleration may be considered reactive (i.e.,

a function of gas pedal position, etc.), global position (informed via a GNSS: Global Navigation

Satellite System) and local position (calculated from a global position) are considered biddable

4 By location we mean a geodetic position.
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Applying observe attributes, the domain description prompt 9 on Page 97, to hubs, links, vehicles

and the monitor yields the following.

First hubs.

322 Hubs

a have geodetic locations, GeoH,

b have hub states which are sets of pairs of identifiers of links connected to the hub5,

c and have hub state spaces which are sets of hub states6.

323 For every net,

a link identifiers of a hub state must designate links of that net, and

b every hub state of a net must be in the hub state space of that hub.

324 We introduce an auxiliary function: xtr lis extracts all link identifiers of a hub state.

type

322a GeoH
322b HΣ = (LI×LI)-set

322c HΩ = HΣ -set

value

322a attr GeoH: H→ GeoH
322b attr HΣ : H→ HΣ
322c attr HΩ : H→ HΩ
axiom

323 ∀ δ :∆ • let hs = hubs(δ ) in

323 ∀ h:H • h ∈ hs • xtr lis(h)⊆xtr lis(δ )
323b ∧ attr Σ (h) ∈ attr Ω (h)
323 end

value

324 xtr lis: H→ LI-set

324 xtr lis(h) ≡ {li | li:LI,(li
′
,li
′′
):LI×LI • (li

′
,li
′′
) ∈ attr HΣ (h) ∧ li ∈ {li

′
,li
′′
}}

Then links.

325 Links have lengths.

326 Links have geodetic location.

327 Links have states and state spaces:

a States modeled here as pairs, (hi′,hi′′), of identifiers the hubs with which the links are connected

and indicating directions (from hub h′ to hub h′′.) A link state can thus have 0, 1, 2, 3 or 4 such

pairs.

b State spaces are the set of all the link states that a link may enjoy.

type

325 LEN
326 GeoL
327a LΣ = (HI×HI)-set

327b LΩ = LΣ -set

value

325 attr LEN: L→ LEN
326 attr GeoL: L→ GeoL
327a attr LΣ : L→ LΣ
327b attr LΩ : L→ LΩ
axiom

327 ∀ n:N • let ls = xtr−links(n), hs = xtr hubs(n) in

5 A hub state “signals” which input-to-output link connections are open for traffic.
6 A hub state space indicates which hub states a hub may attain over time.
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327 ∀ l:L•l ∈ ls⇒
327a let lσ = attr LΣ (l) in

327a 0≤card lσ≤4
327a ∧ ∀ (hi

′
,hi
′′
):(HI×HI)•(hi

′
,hi
′′
) ∈ lσ ⇒ {hi

′
,hi
′′
}=mereo L(l)

327b ∧ attr LΣ (l) ∈ attr LΩ (l)
327 end end

Then vehicles.

328 Every vehicle of a traffic system has a position which is either ‘on a link’ or ‘at a hub’.

a An ‘on a link’ position has four elements: a unique link identifier which must designate a link of

that traffic system and a pair of unique hub identifiers which must be those of the mereology of

that link.

b The ‘on a link’ position real is the fraction, thus properly between 0 (zero) and 1 (one) of the length

from the first identified hub “down the link” to the second identifier hub.

c An ‘at a hub’ position has three elements: a unique hub identifier and a pair of unique link identi-

fiers — which must be in the hub state.

type

328 VPos = onL | atH
328a onL :: LI HI HI R
328b R = Real axiom ∀ r:R • 0≤r≤1
328c atH :: HI LI LI
value

328 attr VPos: V→ VPos
axiom

328a ∀ n:N, onL(li,fhi,thi,r):VPos •

328a ∃ l:L•l ∈obs LS(obs N(n))⇒ li=uid L(l)∧{fhi,thi}=mereo L(l),
328c ∀ n:N, atH(hi,fli,tli):VPos •

328c ∃ h:H•h ∈obs HS(obs N(n))⇒ hi=uid H(h)∧(fli,tli) ∈ attr LΣ (h)

329 We introduce an auxiliary function distribute.

a distribute takes a net and a set of vehicles and

b generates a map from vehicles to distinct vehicle positions on the net.

c We sketch a “formal” distribute function, but, for simplicity we omit the technical details that

secures distinctness — and leave that to an axiom !

330 We define two auxiliary functions:

a xtr links extracts all links of a net and

b xtr hub extracts all hubs of a net.

type

329b MAP = VI →m VPos
axiom

329b ∀ map:MAP • card dom map = card rng map
value

329 distribute: VS→ N→ MAP
329 distribute(vs)(n) ≡
329a let (hs,ls) = (xtr hubs(n),xtr links(n)) in

329a let vps = {onL(uid (l),fhi,thi,r) | l:L•l ∈ls∧{fhi,thi} ⊆mereo L(l)∧0≤r≤1}
329a ∪ {atH(uid H(h),fli,tli) | h:H•h ∈hs∧{fli,tli} ⊆mereo H(h)} in

329b [uid V(v) 7→vp|v:V,vp:VPos•v ∈vs∧vp∈vps ] end

329 end
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330a xtr links: N→ L-set

330a xtr links(n) ≡ obs LS(obs LA(n))
330b xtr hubs: N→ H-set

330a xtr hubs(n) ≡ obs H(obs HA∆ (n))

And finally monitors. We consider only one monitor attribute.

331 The monitor has a vehicle traffic attribute.

a For every vehicle of the road transport system the vehicle traffic attribute records a possibly empty

list of time marked vehicle positions.

b These vehicle positions are alternate sequences of ‘on link’ and ‘at hub’ positions

i such that any sub-sequence of ‘on link’ positions record the same link identifier, the same pair

of ‘’to’ and ‘from’ hub identifiers and increasing fractions,

ii such that any sub-segment of ‘at hub’ positions are identical,

iii such that vehicle transition from a link to a hub is commensurate with the link and hub mere-

ologies, and

iv such that vehicle transition from a hub to a link is commensurate with the hub and link mere-

ologies.

type

331 Traffic = VI →m (T × VPos)∗

value

331 attr Traffic: M→ Traffic

axiom

331b ∀ δ :∆ •

331b let m = obs M(δ ) in

331b let tf = attr Traffic(m) in

331b dom tf ⊆ xtr vis(δ ) ∧
331b ∀ vi:VI • vi ∈ dom tf •

331b let tr = tf(vi) in

331b ∀ i,i+1:Nat • {i,i+1}⊆dom tr •

331b let (t,vp)=tr(i),(t
′
,vp
′
)=tr(i+1) in

331b t<t
′

331(b)i ∧ case (vp,vp
′
) of

331(b)i (onL(li,fhi,thi,r),onL(li
′
,fhi
′
,thi
′
,r
′
))

331(b)i → li=li
′
∧fhi=fhi

′
∧thi=thi

′
∧r≤r

′
∧ li ∈ xtr lis(δ ) ∧ {fhi,thi} = mereo L(get link(li)(δ )),

331(b)ii (atH(hi,fli,tli),atH(hi
′
,fli
′
,tli
′
))

331(b)ii → hi=hi
′
∧fli=fli

′
∧tli=tli

′
∧ hi ∈ xtr his(δ ) ∧ (fli,tli) ∈ mereo H(get hub(hi)(δ )),

331(b)iii (onL(li,fhi,thi,1),atH(hi,fli,tli))

331(b)iii → li=fli∧thi=hi ∧ {li,tli} ⊆ xtr lis(δ ) ∧ {fhi,thi}=mereo L(get link(li)(δ ))

331(b)iii ∧ hi ∈ xtr his(δ ) ∧ (fli,tli) ∈ mereo H(get hub(hi)(δ )),

331(b)iv (atH(hi,fli,tli),onL(li
′
,fhi
′
,thi
′
,0))

331(b)iv → et cetera,

331b → false

331b end end end end end

8.2.3 Perdurants

Our presentation of example perdurants is not as systematic as that of example endurants. Give the simple

basis of endurants covered above there is now a huge variety of perdurants, so we just select one example

from each of the three classes of perdurants (as outline in [70]): a simple hub insertion action (Sect. 8.2.3.1),

a simple link disappearance event (Sect. 8.2.3.2) and a not quite so simple behaviour, that of road traffic

(Sect. 8.2.3.3).
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8.2.3.1 Hub Insertion Action

332 Initially inserted hubs, h, are characterised

a by their unique identifier which not one of any hub in the net, n, into which the hub is being

inserted,

b by a mereology, {}, of zero link identifiers, and

c by — whatever — attributes, attrs, are needed.

333 The result of such a hub insertion is a net, n′,

a whose links are those of n, and

b whose hubs are those of n augmented with h.

value

332 insert hub: H→ N→ N
333 insert hub(h)(n) as n

′

332a pre: uid H(h) < xtr his(n)
332b ∧ obs mereo H= {}
332c ∧ ...
333a post: obs Ls(n) = obs Ls(n′)
333b ∧ obs Hs(n) ∪ {h} = obs Hs(n′)

8.2.3.2 Link Disappearance Event

We formalise aspects of the link disappearance event:

334 The result net, n’:N’, is not well-formed.

335 For a link to disappear there must be at least one link in the net;

336 and such a link may disappear such that

337 it together with the resulting net makes up for the “original” net.

value

334 link diss event: N × N
′
× Bool

334 link diss event(n,n
′
) as tf

335 pre: obs Ls(obs LS(n)),{}
336 post: ∃ l:L•l ∈ obs Ls(obs LS(n))⇒
337 l < obs Ls(obs LS(n

′
))

337 ∧ n
′
∪ {l} = obs Ls(obs LS(n))

8.2.3.3 Road Traffic

The analysis & description of the road traffic behaviour is composed (i) from the description of the global

values of nets, links and hubs, vehicles, monitor, a clock, and an initial distribution, map, of vehicles,

“across” the net; (ii) from the description of channels between vehicles and the monitor; (iii) from the

description of behaviour signatures, that is, those of the overall road traffic system, the vehicles, and the

monitor; and (iv) from the description of the individual behaviours, that is, the overall road traffic system,

rts, the individual vehicles, veh, and the monitor, mon.

8.2.3.3.1 Global Values:

There is given some globally observable parts.

338 besides the domain, δ :∆ ,

339 a net, n:N,

340 a set of vehicles, vs:V-set,

341 a monitor, m:M, and
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342 a clock, clock, behaviour.

343 From the net and vehicles we generate an initial distribution of positions of vehicles.

The n:N, vs:V-set and m:M are observable from any road traffic system domain δ .

value

338 δ :∆
339 n:N = obs N(δ ),
339 ls:L-set=links(δ ),hs:H-set=hubs(δ ),
339 lis:LI-set=xtr lis(δ ),his:HI-set=xtr his(δ )
340 va:VS=obs VS(obs F(δ )),
340 vs:Vs-set=obs Vs(va),
340 vis:VI-set = {uid VI(v)|v:V•v ∈ vs},
341 m:obs M(δ ),
341 mi=uid MI(m),
341 ma:attributes(m)
342 clock: T→ out {clk ch[vi|vi:VI•vi ∈ vis ]} Unit

343 vm:MAP•vpos map = distribute(vs)(n);

8.2.3.3.2 Channels:

344 We additionally declare a set of vehicle-to-monitor-channels indexed

a by the unique identifiers of vehicles

b and the (single) monitor identifier.7

and communicating vehicle positions.

channel

344 {v m ch[vi,mi ]|vi:VI•vi ∈ vis}:VPos

8.2.3.3.3 Behaviour Signatures:

345 The road traffic system behaviour, rts, takes no arguments (hence the first Unit)8; and “behaves”, that

is, continues forever (hence the last Unit).

346 The vehicle behaviour

a is indexed by the unique identifier, uid V(v):VI,
b the vehicle mereology, in this case the single monitor identifier mi:MI,
c the vehicle attributes, obs attribs(v)
d and — factoring out one of the vehicle attributes — the current vehicle position.

e The vehicle behaviour offers communication to the monitor behaviour (on channel vm ch[vi]);
and behaves “forever”.

347 The monitor behaviour takes

a the monitor identifier,

b the monitor mereology,

c the monitor attributes,

d and — factoring out one of the vehicle attributes — the discrete road traffic, drtf:dRTF, being

repeatedly “updated” as the result of input communications from (all) vehicles;

e the behaviour otherwise behaves forever.

value

345 rts: Unit→ Unit

346 vehvi:VI : mi:MI→ vp:VPos→ out vm ch[vi,mi ] Unit

347 monmi:MI : vis:VI-set→ RTF→ in {v m ch[vi,mi ]|vi:VI•vi ∈ vis},clk ch Unit

7 Technically speaking: we could omit the monitor identifier.
8 The Unit designator is an RSL technicality.
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8.2.3.3.4 The Road Traffic System Behaviour:

348 Thus we shall consider our road traffic system, rts, as

a the concurrent behaviour of a number of vehicles and, to “observe”, or, as we shall call it, to

monitor their movements,

b the monitor behaviour.

value

348 rts() =
348a ‖ {vehuid VI(v)(mi)(vm(uid VI(v)))|v:V•v ∈ vs}
348b ‖ monmi(vis)([vi7→〈〉|vi:VI•vi ∈ vis ])

where, wrt, the monitor, we dispense with the mereology and the attribute state arguments and instead just

have a monitor traffic argument which records the discrete road traffic, MAP, initially set to “empty” traces

(〈〉, of so far “no road traffic”!).

In order for the monitor behaviour to assess the vehicle positions these vehicles communicate their

positions to the monitor via a vehicle to monitor channel. In order for the monitor to time-stamp these

positions it must be able to “read” a clock.

349 We describe here an abstraction of the vehicle behaviour at a Hub (hi).
a Either the vehicle remains at that hub informing the monitor of its position,

b or, internally non-deterministically,

i moves onto a link, tli, whose “next” hub, identified by thi, is obtained from the mereology of

the link identified by tli;
ii informs the monitor, on channel vm[vi,mi], that it is now at the very beginning (0) of the link

identified by tli, whereupon the vehicle resumes the vehicle behaviour positioned at the very

beginning of that link,

c or, again internally non-deterministically, the vehicle “disappears — off the radar” !

349 vehvi(mi)(vp:atH(hi,fli,tli)) ≡
349a v m ch[vi,mi ]!vp ; vehvi(mi)(vp)
349b ⌈⌉
349(b)i let {hi

′
,thi}=mereo L(get link(tli)(n)) in

349(b)i assert: hi
′
=hi

349(b)ii v m ch[vi,mi ]!onL(tli,hi,thi,0) ;
349(b)ii vehvi(mi)(onL(tli,hi,thi,0)) end

349c ⌈⌉ stop

350 We describe here an abstraction of the vehicle behaviour on a Link (ii). Either

a the vehicle remains at that link position informing the monitor of its position,

b or, internally non-deterministically, if the vehicle’s position on the link has not yet reached the hub,

i then the vehicle moves an arbitrary increment ℓε (less than or equal to the distance to the hub)

along the link informing the monitor of this, or

ii else,

1 while obtaining a “next link” from the mereology of the hub (where that next link could

very well be the same as the link the vehicle is about to leave),

2 the vehicle informs the monitor that it is now at the hub identified by thi, whereupon the

vehicle resumes the vehicle behaviour positioned at that hub.

c or, internally non-deterministically, the vehicle “disappears — off the radar” !

350 vehvi(mi)(vp:onL(li,fhi,thi,r)) ≡
350a v m ch[vi,mi ]!vp ; vehvi(mi,va)(vp)
350b ⌈⌉ if r + ℓε≤1
350(b)i then

350(b)i v m ch[vi,mi ]!onL(li,fhi,thi,r+ℓε ) ;
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350(b)i vehvi(mi)(onL(li,fhi,thi,r+ℓε ))
350(b)ii else

350(b)ii1 let li
′
:LI•li

′
∈ mereo H(get hub(thi)(n)) in

350(b)ii2 v m ch[vi,mi ]!atH(li,thi,li
′
);

350(b)ii2 vehvi(mi)(atH(li,thi,li
′
)) end end

350c ⌈⌉ stop

The Monitor Behaviour

351 The monitor behaviour evolves around

a the monitor identifier,

b the monitor mereology,

c and the attributes, ma:ATTR
d — where we have factored out as a separate arguments — a table of traces of time-stamped vehicle

positions,

e while accepting messages

i about time

ii and about vehicle positions

f and otherwise progressing “in[de]finitely”.

352 Either the monitor “does own work”

353 or, internally non-deterministically accepts messages from vehicles.

a A vehicle position message, vp, may arrive from the vehicle identified by vi.
b That message is appended to that vehicle’s movement trace – prefixed by time (obtained from the

time channel),

c whereupon the monitor resumes its behaviour —

d where the communicating vehicles range over all identified vehicles.

351 monmi(vis)(trf) ≡
352 monmi(vis)(trf)
353 ⌈⌉
353a ⌈⌉⌊⌋{let tvp = (clk ch?,v m ch[vi,mi ]?) in

353b let trf′ = trf † [vi 7→ trf(vi)̂ <tvp> ] in

353c monmi(vis)(trf′)
353d end end | vi:VI • vi ∈ vis}

We are about to complete a long, i.e., a 6.3 page example (!). We can now comment on the full example:

The domain, δ : ∆ is a manifest part. The road net, n : N is also a manifest part. The fleet, f : F , of vehicles,

vs : VS, likewise, is a manifest part. But the monitor, m : M, is a concept. One does not have to think of

it as a manifest “observer”. The vehicles are on — or off — the road (i.e., links and hubs). We know that

from a few observations and generalise to all vehicles. They either move or stand still. We also, similarly,

know that. Vehicles move. Yes, we know that. Based on all these repeated observations and generalisations

we introduce the concept of vehicle traffic. Unless positioned high above a road net — and with good

binoculars — a single person cannot really observe the traffic. There are simply too many links, hubs,

vehicles, vehicle positions and times. Thus we conclude that, even in a richly manifest domain, we can also

“speak of”, that is, describe concepts over manifest phenomena, including time !

8.2.4 Domain Facets

The example of this section, i.e., Sect. 8.2, focuses on the domain facet [52, 2008] of (i) intrinsic. It does

not reflect the other domain facets: (ii) domain support technologies, (iii) domain rules, regulations &

scripts, (iv) organisation & management, and (v) human behaviour. The requirements examples, i.e., the

rest of this chapter, thus builds only on the domain intrinsic. This means that we shall not be able to cover

principles, technique and tools for the prescription of such important requirements that handle failures

of support technology or humans. We shall, however point out where we think such, for example, fault

tolerance requirements prescriptions “fit in” and refer to relevant publications for their handling.
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8.3 Requirements

This and the next three sections, that is, Sects. 8.4–8.5., are the main sections of this chapter. Section 8.4.

is the most detailed and systematic section. It covers the domain requirements operations of projection ,

instantiation , determination , extension and, less detailed, fitting . Section 8.5. surveys the interface require-
ments issues of shared phenomena: shared endurants, shared actions, shared events and shared behaviour ,

and “completes” the exemplification of the detailed domain extension of our requirements into a road pric-
ing system. Section 8.5. also covers the notion of derived requirements. Sections 8.4.–8.5. covers initial
requirements. By initial requirements we shall, “operationally” speaking, understand the requirements

that are derived from the general principles outlined in these sections In contrast to these are the further

requirements that are typically derived either from the domain facet descriptions of intrinsic, the support
technology , the rules & regulations, the organisation & management , and the human behaviour facets [52]

— not covered in this chapter, and/or by more conventional means [134, 253, 380, 264, 256, 301, 355].

Definition: 75 Requirements (I): By a requirements we understand (cf., [245, IEEE Standard

610.12]): “A condition or capability needed by a user to solve a problem or achieve an objective”

The objective of requirements engineering is to create a requirements prescription: A requirements pre-
scription specifies observable properties of endurants and perdurants of the machine such as the re-

quirements stake-holders wish them to be The machine is what is required: that is, the hardware and

software that is to be designed and which are to satisfy the requirements A requirements prescription
thus (putatively) expresses what there should be. A requirements prescription expresses nothing about the

design of the possibly desired (required) software. But as the requirements prescription is presented in the

form of a model, one can base the design on that model. We shall show how a major part of a requirements

prescription can be “derived” from “its” prerequisite domain description.

Rule 1 The “Golden Rule” of Requirements Engineering: Prescribe only those requirements that

can be objectively shown to hold for the designed software
9 “Objectively shown” means that the designed software can either be tested, or be model checked, or

be proved (verified), to satisfy the requirements. Caveat: Since we do not illustrate formal tests, model

checking nor theorem proving, we shall, alas, not illustrate adherence to this rule.

Rule 2 An “Ideal Rule” of Requirements Engineering: When prescribing (including formalising)

requirements, also formulate tests and properties for model checking and theorems whose proof should

show adherence to the requirements

The rule is labelled “ideal” since such precautions will not be shown in this chapter. The rule is clear. It is

a question for proper management to see that it is adhered to. See the “Caveat” above !

Rule 3 Requirements Adequacy: Make sure that requirements cover what users expect

That is, do not express a requirement for which you have no users, but make sure that all users’ requirements

are represented or somehow accommodated. In other words: the requirements gathering process needs to

be like an extremely “fine-meshed net”: One must make sure that all possible stake-holders have been

involved in the requirements acquisition process, and that possible conflicts and other inconsistencies have

been obviated.

Rule 4 Requirements Implementability: Make sure that requirements are implementable

That is, do not express a requirement for which you have no assurance that it can be implemented. In

other words, although the requirements phase is not a design phase, one must tacitly assume, perhaps even

indicate, somehow, that an implementation is possible. But the requirements in and by themselves, may

stay short of expressing such designs. Caveat: The domain and requirements specifications are, in our

approach, model-oriented. That helps expressing ‘implementability’.

Definition: 76 Requirements (II): By requirements we shall understand a document which pre-

scribes desired properties of a machine: what endurants the machine shall “maintain”, and what the ma-

chine shall (must; not should) offer of functions and of behaviours while also expressing which events the

machine shall “handle”

9 marks the end of a rule.
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By a machine that “maintains” endurants we shall mean: a machine which, “between” users’ use of that

machine, “keeps” the data that represents these entities. From earlier we repeat:

Definition: 77 Machine: By machine we shall understand a, or the, combination of hardware and soft-

ware that is the target for, or result of the required computing systems development

So this, then, is a main objective of requirements development: to start towards the design of the hardware

+ software for the computing system.

Definition: 78 Requirements (III): To specify the machine

When we express requirements and wish to “convert” such requirements to a realisation, i.e., an imple-

mentation, then we find that some requirements (parts) imply certain properties to hold of the hardware on

which the software to be developed is to “run”, and, obviously, that remaining — probably the larger parts

of the — requirements imply certain properties to hold of that software.

• • •

Whereas domain descriptions may describe phenomena that cannot be computed, requirements prescrip-

tions must describe computable phenomena.

8.3.1 Some Requirements Aspects

We shall unravel requirements in two stages — (i) the first stage is sketchy (and thus informal) (ii) while

the last stage is systematic and both informal and formal. The sketchy stage consists of (i.1) a narrative

problem/objective sketch , (i.2) a narrative system requirements sketch , and (i.3) a narrative user & external
equipment requirements sketch . (ii) The narrative and formal stage consists of design assumptions and

design requirements. It is systematic, and mandates both strict narrative and formal prescriptions. And it is

“derivable” from the domain description. In a sense stage (i) is made superfluous once stage (ii) has been

completed. The formal, engineering design work is to based on stage (ii). The purpose of the two stages

(i–ii) is twofold: to gently lead the requirements engineer and the reader into the requirements problems

while leading the requirements engineer and reader to focus on the very requirements essentials.

8.3.1.1 Requirements Sketches

8.3.1.1.1 Problem, Solution and Objective Sketch

Definition: 79 Problem, Solution and Objective Sketch: By a problem, solution and objective

sketch we understand a narrative which emphasises what the problem to be solved is, outlines a possible

solution and sketches an objective of the solution

Requirements: Sketch of Objectives

Example 109 The problem is that of traffic congestion. The chosen solution is to [build and] operate a

toll-road system integrated into a road net and charge toll-road users a usage fee. The objective is there-

fore to create a road-pricing product. By a road-pricing product we shall understand an information

technology-based system containing computers and communications equipment and software that en-

ables the recording of vehicle movements within the toll-road and thus enables the owner of the road net

to charge the owner of the vehicles fees for the usage of that toll-road
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8.3.1.1.2 Systems Requirements

Definition: 80 System Requirements: By a system requirements narrative we understand a

narrative which emphasises the overall assumed and/or required hardware and software system equipment

Requirements: Road Pricing, A Narrative

Example 110 The requirements are based on the following constellation of system equipment: (i) there

is assumed a GNSS: a Global Navigation Satellite System; (ii) there are vehicles equipped with GNSS

receivers; (iii) there is a well-delineated road net called a toll-road net with specially equipped toll-gates

with vehicle identification sensors, exit barriers which afford (only specially equipped) vehicles to exit10

from the toll-road net; and (iv) there is a road-pricing calculator.

The system to be designed (from the requirements) is the road-pricing calculator. These four

system elements are required to behave and interact as follows: (a) The GNSS is assumed to continuously

offer vehicles information about their global position; (b) vehicles shall contain a GNSS receiver which

based on the global position information shall regularly calculate their timed local position and offer this

to the calculator — while otherwise cruising the general road net as well as the toll-road net, the latter

while carefully moving through toll-gates; (c) toll-gates shall register the identity of vehicles passing the

toll-road and offer this information to the calculator; and (d) the calculator shall accept all messages from

vehicles and gates and use this information to record the movements of vehicles and bill these whenever

they exit the toll-road. The requirements are therefore to include assumptions about [1] the GNSS satellite

and telecommunications equipment, [2] the vehicle GNSS receiver equipment, [3] the vehicle handling

of GNSS input and forwarding, to the road pricing system, of its interpretation of GNSS input, [4] the

toll-gate sensor equipment, [5] the toll-gate barrier equipment, [6] the toll-gate handling of entry, vehicle

identification and exit sensors and the forwarding of vehicle identification to the road pricing calculator, and

[7] the communications between toll-gates and vehicles, on “one side”, and the road pricing calculator, on

the “other side”. It is in this sense that the requirements are for an information technology-based system of

both software and hardware — not just hard computer and communications equipment, but also movement

sensors and electro-mechanical “gear”

8.3.1.1.3 User and External Equipment Requirements

Definition: 81 User and External Equipment Requirements: By a user and external equip-
ment requirements narrative we understand a narrative which emphasises assumptions about the

human user and external equipment interfaces to the system components

The user and external equipment requirements detail, and thus make explicit, the assumptions listed in

Example 110.

Requirements: Road Pricing, User and External Equipment, Narrative

Example 111 The human users of the road-pricing system are: (a) vehicle drivers, (b) toll-gate sensor,

actuator and barrier service staff, and (c) the road-pricing calculator service staff. The external equipment

are: (1) firstly, the GNSS satellites and the telecommunications equipment which enables communication

between (i) the GNSS satellites and vehicles, (ii) vehicles and the road-pricing calculator and (iii) toll-gates

and the road-pricing calculator. Moreover, the external equipment are (2) the toll-gates with their sen-

sors: entry, vehicle identity, and exit, and the barrier actuator. The external equipment are, finally, (3), the

vehicles !

That is, although we do indeed exemplify domain and requirements aspects of users and external equip-

ment, we do not expect to machine, i.e., to hardware or software design these elements; they are assumed
already implemented !
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8.3.1.2 The Narrative and Formal Requirements Stage

8.3.1.2.1 Assumption and Design Requirements

Definition: 82 Assumption and Design Requirements: By assumption and design require-
ments we understand precise prescriptions of the endurants and perdurants of the (to be designed) system

components and the assumptions which that design must rely upon

The specification principles, techniques and tools of expressing design and assumptions, upon which

the design can be relied, will be covered and exemplified, extensively, in Sects. 8.4–8.5.

8.3.2 The Three Phases of Requirements Engineering

There are, as we see it, three kinds of design assumptions and requirements: (i) domain requirements, (ii)

interface requirements and (iii) machine requirements. (i) Domain requirements are those requirements

which can be expressed sôlely using terms of the domain (ii) Interface requirements are those re-

quirements which can be expressed only using technical terms of both the domain and the machine (iii)

Machine requirements are those requirements which, in principle, can be expressed sôlely using terms

of the machine

Definition: 83 Verification Paradigm: Some preliminary designations: let D designate the the do-

main description; let R designate the requirements prescription, and let S designate the system design.

Now D ,S |= R shall be read: it must be verified that the S ystem design satisfies the Requirements

prescription in the context of the Domain description

The “in the context of D ...” term means that proofs of S oftware design correctness with respect to

Requirements will often have to refer to Domain requirements assumptions. We refer to [185, Gunter,

Jackson and Zave, 2000] for an analysis of a varieties of forms in which |= relate to variants of D , R and

S .

8.3.3 Order of Presentation of Requirements Prescriptions

The domain requirements development stage — as we shall see — can be sub-staged into: projection , in-
stantiation , determination , extension and fitting . The interface requirements development stage — can be

sub-staged into shared: endurant, action, event and behaviour developments, where “sharedness” pertains

to phenomena shared between, i.e., “present” in, both the domain (concretely, manifestly) and the machine

(abstractly, conceptually). These development stages need not be pursued in the order of the three stages

and their sub-stages. We emphasize that one thing is the stages and steps of development, as for example

these: projection, instantiation, determination, extension, fitting, shared endurants, shared actions, shared

events, shared behaviours, et cetera, another thing is the requirements prescription that results from these

development stages and steps. The further software development, after and on the basis of the requirements

prescription starts only when all stages and steps of the requirements prescription have been fully devel-

oped. The domain engineer is now free to rearrange the final prescription, irrespective of the order in which

the various sections were developed, in such a way as to give a most pleasing, pedagogic and cohesive

reading (i.e., presentation). From such a requirements prescription one can therefore not necessarily see in

which order the various sections of the prescription were developed.

8.3.4 Design Requirements and Design Assumptions

A crucial distinction is between design requirements and design assumptions. The design requirements
are those requirements for which the system designer has to implement hardware or software in order

satisfy system user expectations The design assumptions are those requirements for which the
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system designer does not have to implement hardware or software, but whose properties the designed

hardware, respectively software relies on for proper functioning

Requirements: Road Pricing, Design Requirements

Example 112 The design requirements for the road pricing calculator of this chapter are for the design

(ii) of that part of the vehicle software which interfaces the GNSS receiver and the road pricing calculator

(cf. Items 432–435), (iii) of that part of the toll-gate software which interfaces the toll-gate and the road

pricing calculator (cf. Items 440–442) and (i) of the road pricing calculator (cf. Items 471–484)

Requirements: Road Pricing, Design Assumptions

Example 113 The design assumptions for the road pricing calculator include: (i) that vehicles behave

as prescribed in Items 431–435, (ii) that the GNSS regularly offers vehicles correct information as to their

global position (cf. Item 432), (iii) that toll-gates behave as prescribed in Items 437–442, and (iv) that the

road net is formed and well-formed as defined in Examples 118 – 120

Requirements: Road Pricing, Toll-Gate System, Design Requirements

Example 114 The design requirements for the toll-gate system of this chapter are for the design of

software for the toll-gate and its interfaces to the road pricing system, i.e., Items 436–437

Requirements: Road Pricing, Toll-Gate System, Design Assumptions

Example 115 The design assumptions for the toll-gate system include (i) that the vehicles behave as

per Items 431–435, and (ii) that the road pricing calculator behave as per Items 471–484

8.3.5 Derived Requirements

In building up the domain, interface and machine requirements a number of machine concepts are intro-

duced. These machine concepts enable the expression of additional requirements. It is these we refer to as

derived requirements. Techniques and tools espoused in such classical publications as [134, 253, 380, 264,

355] can in those cases be used to advantage.

8.4 Domain Requirements

Domain requirements primarily express the assumptions that a design must rely upon in order that that de-

sign can be verified. Although domain requirements firstly express assumptions it appears that the software

designer is well-advised in also implementing, as data structures and procedures, the endurants, respectively

perdurants expressed in the domain requirements prescriptions. Whereas domain endurants are “real-life”

phenomena they are now, in domain requirements prescriptions, abstract concepts (to be represented by a

machine).

Definition: 84 Domain Requirements Prescription: A domain requirements prescription is

that subset of the requirements prescription whose technical terms are defined in a domain description

To determine a relevant subset all we need is collaboration with requirements, cum domain stake-holders.

Experimental evidence, in the form of example developments of requirements prescriptions from domain

descriptions, appears to show that one can formulate techniques for such developments around a few do-

main-description-to-requirements-prescription operations. We suggest these: projection , instantiation , de-
termination , extension and fitting . In Sect. 8.3.3 we mentioned that the order in which one performs these
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domain-description-to-domain-requirements-prescription operations is not necessarily the order in which

we have listed them here, but, with notable exceptions, one is well-served in starting out requirements

development by following this order.

8.4.1 Domain Projection

Definition: 85 Domain Projection: By a domain projection is meant a subset of the domain de-
scription, one which projects out all those endurants: parts, materials and components, as well as perdu-
rants: actions, events and behaviours that the stake-holders do not wish represented or relied upon by the
machine

The resulting document is a partial domain requirements prescription . In determining an appropriate subset

the requirements engineer must secure that the final “projection prescription” is complete and consistent

— that is, that there are no “dangling references”, i.e., that all entities and their internal properties that are

referred to are all properly defined.

8.4.1.1 Domain Projection — Narrative

We now start on a series of examples that illustrate domain requirements development.

Requirements: Domain Requirements, Projection – A Narrative Sketch

Example 116 We require that the road pricing system shall [at most] relate to the following domain enti-

ties – and only to these11: the net, its links and hubs, and their properties (unique identifiers, mereologies

and some attributes), the vehicles, as endurants, and the general vehicle behaviours, as perdurants. We

treat projection together with a concept of simplification. The example simplifications are vehicle positions

and, related to the simpler vehicle position, vehicle behaviours. To prescribe and formalise this we copy

the domain description. From that domain description we remove all mention of the hub insertion action,

the link disappearance event, and the monitor

As a result we obtain ∆P , the projected version of the domain requirements prescription12.

8.4.1.2 Domain Projection — Formalisation

The requirements prescription hinges, crucially, not only on a systematic narrative of all the projected,

instantiated, determinated, extended and fitted specifications, but also on their formalisation. In the formal

domain projection example we, regretfully, omit the narrative texts. In bringing the formal texts we keep

the item numbering from Sect. 8.2, where you can find the associated narrative texts.

Requirements: Domain Requirements, Projection

Example 117 Main Sorts

type

304 ∆P

304a NP

304b FP

value

304a obs NP : ∆P→NP

304b obs FP : ∆P→FP

type

305a HAP

305b LAP

value

305a obs HA: NP → HA
305b obs LA: NP → LA

Concrete Types

12 Restrictions of the net to the toll road nets, hinted at earlier, will follow in the next domain requirements steps.
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type

306 HP , HSP = HP -set

307 LP , LSP = LP -set

308 VP , VSP = VP -set

value

306 obs HSP : HAP → HSP

307 obs LSP : LAP → LSP

308 obs VSP : FP → VSP

309a links: ∆P → L-set

309a links(δP ) ≡ obs LSR(obs LAR (δR ))

309b hubs: ∆P → H-set

309b hubs(δP) ≡ obs HSP (obs HAP (δP ))

Unique Identifiers

type

310a HI, LI, VI, MI

value

310c uid HI: HP → HI

310c uid LI: LP → LI

310c uid VI: VP → VI

310c uid MI: MP → MI

axiom

310b HI
⋂

LI=Ø, HI
⋂

VI=Ø, HI
⋂

MI=Ø,

310b LI
⋂

VI=Ø, LI
⋂

MI=Ø, VI
⋂

MI=Ø

Mereology

value

315 obs mereo HP : HP → LI-set

316 obs mereo LP : LP → HI-set

316 axiom ∀ l:LP
• card mereo LP (l)=2

317 obs mereo VP : VP → MI

318 obs mereo MP : MP → VI-set

axiom

319 ∀ δP :∆P , hs:HS•hs=hubs(δ ), ls:LS•ls=links(δP )⇒
319 ∀ h:HP

•h ∈ hs⇒ mereo HP (h)⊆xtr his(δP ) ∧
320 ∀ l:LP

•l ∈ ls • mereo LP (l)⊆xtr lis(δP ) ∧
321a let f:FP

•f=obs FP (δP )⇒ vs:VSP
•vs=obs VSP (f) in

321a ∀ v:VP
•v ∈ vs⇒ uid VP (v) ∈ mereo MP (m)

321b ∧ mereo MP (m) = {uid VP (v)|v:V•v ∈ vs}
321b end

Attributes: We project attributes of hubs, links and vehicles.

First hubs:

type

322a GeoH

322b HΣP = (LI×LI)-sett

322c HΩP = HΣP -set

value

322b attr HΣP : HP → HΣP

322c attr HΩP : HP → HΩP

axiom

323 ∀ δP :∆P ,

323 let hs = hubs(δP ) in

323 ∀ h:HP
• h ∈ hs •

323a xtr lis(h)⊆xtr lis(δP )

323b ∧ attr ΣP (h) ∈ attr ΩP (h)

323 end

Then links:

type

326 GeoL

327a LΣP = (HI×HI)-set

327b LΩP = LΣP -set

value

326 attr GeoL: L→ GeoL

327a attr LΣP : LP → LΣP

327b attr LΩP : LP → LΩP

axiom

327a− 327b on Page 203.

Finally vehicles: For ‘road pricing’ we need vehicle positions. But, for “technical reasons”, we must abstain from

the detailed description given in Items 328–328c13 We therefore simplify vehicle positions.

354 A simplified vehicle position designates

a either a link

b or a hub,

type

354 SVPos = SonL | SatH
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354a SonL :: LI
354b SatH :: HI
axiom

328a’ ∀ n:N, SonL(li):SVPos •

328a’ ∃ l:L•l ∈obs LS(obs N(n))⇒ li=uid L(l)
328c’ ∀ n:N, SatH(hi):SVPos •

328c’ ∃ h:H•h ∈obs HS(obs N(n))⇒ hi=uid H(h)

Global Values

value

338 δP :∆P ,
339 n:NP = obs NP (δP ),
339 ls:LP -set = links(δP ),

339 hs:HP -set = hubs(δP ),
339 lis:LI-set = xtr lis(δP ),
339 his:HI-set = xtr his(δP )

Behaviour Signatures:We omit the monitor behaviour.

355 We leave the vehicle behaviours’ attribute ar-

gument undefined.

type

355 ATTR
value

345 trsP : Unit→ Unit

346 vehP : VI×MI×ATTR→ ... Unit

The System Behaviour: We omit the monitor behaviour.

value

348a trsP()=‖{vehP (uid VI(v),mereo V(v), ) | v:VP
•v ∈ vs}

The Vehicle Behaviour: Given the simplification of vehicle positions we simplify the vehicle behaviour given

in Items 349–350

349′ vehvi(mi)(vp:SatH(hi)) ≡
349a′ v m ch[vi,mi ]!SatH(hi) ; vehvi(mi)(SatH(hi))

349(b)i’ ⌈⌉ let li:LI•li ∈ mereo H(get hub(hi)(n)) in

349(b)ii′ v m ch[vi,mi ]!SonL(li) ; vehvi(mi)(SonL(li)) end

349c′ ⌈⌉ stop

350′ vehvi(mi)(vp:SonL(li))≡
350a′ v m ch[vi,mi ]!SonL(li) ; vehvi(mi)(SonL(li))

350(b)ii1′ ⌈⌉ let hi:HI•hi ∈ mereo L(get link(li)(n)) in

350(b)ii2′ v m ch[vi,mi ]!SatH(hi) ; vehvi(mi)(atH(hi)) end

350c′ ⌈⌉ stop

We can simplify Items 349′–350c′ further.

356 vehvi(mi)(vp) ≡

357 v m ch[vi,mi ]!vp ; vehvi(mi)(vp)

358 ⌈⌉ case vp of

358 SatH(hi)→

359 let li:LI•li ∈ mereo H(get hub(hi)(n)) in

360 v m ch[vi,mi ]!SonL(li) ; vehvi(mi)(SonL(li)) end,

358 SonL(li)→

361 let hi:HI•hi ∈ mereo L(get link(li)(n)) in

362 v m ch[vi,mi ]!SatH(hi) ; vehvi(mi)(atH(hi)) end end

363 ⌈⌉ stop

356 This line coalesces Items 349′ and 350′ .

357 Coalescing Items 349a′ and 350′ .

358 Captures the distinct parameters of Items 349′ and 350′ .

359 Item 349(b)i′ .
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360 Item 349(b)ii′ .

361 Item 350(b)ii1′ .

362 Item 350(b)ii2′ .

363 Coalescing Items 349c′ and 350c′ .

The above vehicle behaviour definition will be transformed (i.e., further “refined”) in Sect. 8.5.1.3’s Example 126; cf. Items 431– 435 on Page 228

8.4.1.3 Discussion

Domain projection can also be achieved by developing a “completely new” domain description — typically

on the basis of one or more existing domain description(s) — where that “new” description now takes the

rôle of being the project domain requirements.

8.4.2 Domain Instantiation

Definition: 86 Domain Instantiation: By domain instantiation we mean a refinement of the par-
tial domain requirements prescription (resulting from the projection step) in which the refinements aim
at rendering more concrete, more specific the endurants: parts and materials, as well as the perdurants:
actions, events and behaviours of the domain requirements prescription Instantiations usually render

these concepts less general.

Properties that hold of the projected domain shall also hold of the (therefrom) instantiated domain.

Refinement of endurants can be expressed (i) either in the form of concrete types, (ii) or of further

“delineating” axioms over sorts, (iii) or of a combination of concretisation and axioms. We shall exemplify

the third possibility. Example 118 express requirements that the road net (on which the road-pricing system

is to be based) must satisfy. Refinement of perdurants will not be illustrated (other than the simplification

of the vehicle projected behaviour).

8.4.2.1 Domain Instantiation

Requirements: Domain Requirements, Instantiation – Road Net 1/2

Example 118 We now require that there is, as before, a road net, nI :NI , which can be understood

as consisting of two, “connected sub-nets”. A toll-road net, trnI :TRNI , cf. Fig. 8.1 on the facing page,

and an ordinary road net, nP ′ . The two are connected as follows: The toll-road net, trnI , borders some

toll-road plazas, in Fig. 8.1 on the next page shown by white filled circles (i.e., hubs). These toll-road plaza

hubs are proper hubs of the ‘ordinary’ road net, n′
P

.

364 The instantiated domain, δI :∆I has just the

net, nI :NI being instantiated.
365 The road net consists of two “sub-nets”

a an “ordinary” road net, no:NP ′ and
b a toll-road net proper, trn:TRNI —
c “connected” by an interface hil:HIL:

i That interface consists of a number of

toll-road plazas (i.e., hubs), modeled

as a list of hub identifiers, hil:HI∗.
ii The toll-road plaza interface to the

toll-road net, trn:TRNI
14, has each

plaza, hil[i], connected to a pair of toll-

road links: an entry and an exit link:

(le:L, lx:L).
iii The toll-road plaza interface to the ‘or-

dinary’ net, no:NP ′ , has each plaza,

i.e., the hub designated by the hub

identifier hil[i], connected to one or

more ordinary net links, {li1 , li2 , · · · , lik}.

365b The toll-road net, trn:TRNI , consists of

three collections (modeled as lists) of links

and hubs:

i a list of pairs of toll-road entry/exit

links: 〈(le1
, lx1

), · · · ,(leℓ , lxℓ)〉,

ii a list of toll-road intersection hubs:

〈hi1 ,hi2 , · · · ,hiℓ 〉, and

iii a list of pairs of main toll-road (“up” and

“down”) links: 〈(mli1u
,mli1d

),(mi2u
,mi2d

),-
· · · ,(miℓu ,miℓd )〉.

d The three lists have commensurate lengths

(ℓ).
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ti1

l21

l12

l32

l23

tlj’

hj’
ljj’

lj’j lj’’j’

lj’j’’
hj

th1

tl1 tl2

h2

th2

hk

thk

lk

lnk

lkn

thn
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hn

lkk−1

lk−1k

hll(1) hll(2)

hll(1),hll(2)

hll(j) hll(j+1)

hll(j),hll(j+1)

hll(len hll)hll(len hll −1)

hll(len h −1),hll(len hll)

thj’

Fig. 8.1. A Toll Road

Requirements: Domain Requirements, Instantiation, Road Net 2/2

Example 118 (Continued) ℓ is the number of toll plazas, hence also the number of toll-road intersection

hubs and therefore a number one larger than the number of pairs of main toll-road (“up” and “down”) links

type

364 ∆I

365 NI = NP ′ × HIL × TRN

365a NP ′

365b TRNI = (L×L)∗×H∗×(L×L)∗

365c HIL = HI∗

axiom

365d ∀ nI :NI
•

365d let (n∆ ,hil,(exll,hl,lll)) = nI in

365d len hil = len exll = len hl = len lll + 1

365d end

We have named the “ordinary” net sort (primed) NP ′ . It is “almost” like (unprimed) NP — except that the

interface hubs are also connected to the toll-road net entry and exit links. The partial concretisation of the

net sorts, NP , into NI requires some additional well-formedness conditions to be satisfied.

366 The toll-road intersection hubs all15 have distinct identifiers.

366 wf dist toll road isect hub ids: H∗→Bool

366 wf dist toll road isect hub ids(hl) ≡ len hl = card xtr his(hl)

367 The toll-road links all have distinct identifiers.

367 wf dist toll road u d link ids: (L×L)∗→Bool

367 wf dist toll road u d link ids(lll) ≡ 2 × len lll = card xtr lis(lll)

368 The toll-road entry/exit links all have distinct identifiers.

368 wf dist e x link ids: (L×L)∗→Bool

368 wf dist e x link ids(exll) ≡ 2 × len exll = card xtr lis(exll)

369 Proper net links must not designate toll-road intersection hubs.

369 wf isoltd toll road isect hubs: HI∗×H∗→NI→Bool

369 wf isoltd toll road isect hubs(hil,hl)(nI ) ≡
369 let ls=xtr links(nI ) in

369 let his = ∪ {mereo L(l)|l:L•l ∈ ls} in

369 his ∩ xtr his(hl) = {} end end
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370 The plaza hub identifiers must designate hubs of the ‘ordinary’ net.

370 wf p hubs pt of ord net: HI∗→N′∆→Bool

370 wf p hubs pt of ord net(hil)(n’∆) ≡ elems hil ⊆ xtr his(n′∆ )

371 The plaza hub mereologies must each,

a besides identifying at least one hub of the ordi-

nary net,

b also identify the two entry/exit links with which

they are supposed to be connected.

371 wf p hub interf: N′∆→Bool

371 wf p hub interf(no,hil,(exll, , )) ≡
371 ∀ i:Nat • i ∈ inds exll⇒
371 let h = get H(hil(i))(n′∆) in

371 let lis = mereo H(h) in

371 let lis
′
= lis \ xtr lis(n

′
) in

371 lis
′
= xtr lis(exll(i)) end end end

372 The mereology of each toll-road intersection hub

must identify

a the entry/exit links

b and exactly the toll-road ‘up’ and ‘down’ links

c with which they are supposed to be connected.

372 wf toll road isect hub iface: NI→Bool

372 wf toll road isect hub iface( , ,(exll,hl,lll))≡
372 ∀ i:Nat • i ∈ inds hl⇒
372 mereo H(hl(i)) =
372a xtr lis(exll(i)) ∪

372 case i of

372b 1→ xtr lis(lll(1)),

372b len hl→ xtr lis(lll(len hl−1))

372b → xtr lis(lll(i)) ∪ xtr lis(lll(i−1))

372 end

373 The mereology of the entry/exit links must identify

exactly the

a interface hubs and the

b toll-road intersection hubs

c with which they are supposed to be connected.

373 wf exll: (L×L)∗×HI∗×H∗→Bool

373 wf exll(exll,hil,hl)≡
373 ∀ i:Nat • i ∈ len exll

373 let (hi,(el,xl),h) = (hil(i),exll(i),hl(i)) in

373 mereo L(el) = mereo L(xl)

373 = {hi} ∪ {uid H(h)} end

373 pre: len eell = len hil = len hl

374 The mereology of the toll-road ‘up’ and ‘down’

links must

a identify exactly the toll-road intersection hubs

b with which they are supposed to be connected.

374 wf u d links: (L×L)∗×H∗→Bool

374 wf u d links(lll,hl)≡
374 ∀ i:Nat • i ∈ inds lll⇒
374 let (ul,dl) = lll(i) in

374 mereo L(ul) = mereo L(dl) =
374a uid H(hl(i)) ∪ uid H(hl(i+1)) end

374 pre: len lll = len hl+1

We have used some additional auxiliary functions:

xtr his: H∗→HI-set

xtr his(hl) ≡ {uid HI(h)|h:H•h ∈ elems hl}
xtr lis: (L×L)→LI-set

xtr lis(l
′
,l
′′
) ≡ {uid LI(l

′
)}∪{uid LI(l

′′
)}

xtr lis: (L×L)∗− LI-set

xtr lis(lll) ≡
∪{xtr lis(l

′
,l
′′
)|(l
′
,l
′′
):(L×L)•(l

′
,l
′′
)∈ elems lll}

375 The well-formedness of instantiated nets is now the conjunction of the individual well-formedness predicates

above.

375 wf instantiated net: NI → Bool

375 wf instantiated net(n′∆ ,hil,(exll,hl,lll))

366 wf dist toll road isect hub ids(hl)

367 ∧ wf dist toll road u d link ids(lll)

368 ∧ wf dist e e link ids(exll)

369 ∧ wf isolated toll road isect hubs(hil,hl)(n
′
)

370 ∧ wf p hubs pt of ord net(hil)(n
′
)

371 ∧ wf p hub interf(n′∆ ,hil,(exll, , ))

372 ∧ wf toll road isect hub iface( , ,(exll,hl,lll))
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373 ∧ wf exll(exll,hil,hl)

374 ∧ wf u d links(lll,hl)

8.4.2.2 Domain Instantiation — Abstraction

Requirements: Domain Requirements, Instantiation of Road Net, Abstraction

Example 119 Domain instantiation has refined an abstract definition of net sorts, nP :NP , into a partially

concrete definition of nets, nI :NI . We need to show the refinement relation:

• abstraction(nI ) = nP .

value

376 abstraction: NI → NP

377 abstraction(n′∆ ,hil,(exll,hl,lll)) ≡

378 let nP :NP
•

378 let hs = obs HSP (obs HAP (n′
P

)),

378 ls = obs LSP (obs LAP (n′
P

)),

378 ths = elems hl,

378 eells = xtr links(eell), llls = xtr links(lll) in

379 hs∪ths=obs HSP (obs HAP (nP ))

380 ∧ ls∪eells∪llls=obs LSP (obs LAP (nP ))

381 nP end end

376 The abstraction function takes a concrete net, nI :NI , and yields an abstract net, nP :NP .

377 The abstraction function doubly decomposes its argument into constituent lists and sub-lists.

378 There is postulated an abstract net, nP :NP , such that

379 the hubs of the concrete net and toll-road equals those of the abstract net, and

380 the links of the concrete net and toll-road equals those of the abstract net.

381 And that abstract net, nP :NP , is postulated to be an abstraction of the concrete net.

8.4.2.3 Discussion

Domain descriptions, such as illustrated in [70, Manifest Domains: Analysis & Description] and in this

chapter, model families of concrete, i.e., specifically occurring domains. Domain instantiation, as exem-

plified in this section (i.e., Sect. 8.4.2), “narrow down” these families. Domain instantiation, such as it is

defined, cf. Definition 86 on Page 218, allows the requirements engineer to instantiate to a concrete in-

stance of a very specific domain, that, for example, of the toll-road between Bolzano Nord and Trento Sud
in Italy (i.e., n=7)16.

8.4.3 Domain Determination

Definition: 87 Determination: By domain determination we mean a refinement of the partial
domain requirements prescription, resulting from the instantiation step, in which the refinements aim at
rendering less non-determinate, more determinate the endurants: parts and materials, as well as the
perdurants: functions, events and behaviours of the partial domain requirements prescription

Determinations usually render these concepts less general. That is, the value space of endurants that are

made more determinate is “smaller”, contains fewer values, as compared to the endurants before determi-

nation has been “applied”.

16 Here we disregard the fact that this toll-road does not start/end in neither Bolzano Nord nor Trento Sud.
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8.4.3.1 Domain Determination: Example

We show an example of ‘domain determination’. It is expressed sôlely in terms of axioms over the concrete

toll-road net type.

Requirements: Domain Requirements, Determination – Toll-roads

Example 120 We focus only on the toll-road net. We single out only two ’determinations’: All Toll-road

Links are One-way Links:

382 The entry/exit and toll-road links
a are always all one way links,

b as indicated by the arrows of Fig. 8.1 on Page 219,

c such that each pair allows traffic in opposite directions.

382 opposite traffics: (L×L)∗ × (L×L)∗ → Bool

382 opposite traffics(exll,lll) ≡
382 ∀ (lt,lf):(L×L) • (lt,lf) ∈ elems exll̂ lll⇒
382a let (ltσ ,lfσ ) = (attr LΣ (lt),attr LΣ (lf)) in

382a′. attr LΩ (lt)={ltσ}∧attr LΩ (ft)={ftσ}
382a′′. ∧ card ltσ = 1 = card lfσ

382 ∧ let ({(hi,hi
′
)},{(hi

′′
,hi
′′′

)}) = (ltσ ,lfσ ) in

382c hi=hi
′′′
∧ hi

′
=hi

′′

382 end end

Predicates 382a′. and 382a′′ . express the same property.

All Toll-road Hubs are Free-flow

383 The hub state spaces are singleton sets of the toll-road hub states which always allow exactly these (and only

these) crossings:

a from entry links back to the paired exit links,

b from entry links to emanating toll-road links,

c from incident toll-road links to exit links, and

d from incident toll-road link to emanating toll-road links.

383 free flow toll road hubs: (L×L)∗×(L×L)∗→Bool

383 free flow toll road hubs(exl,ll) ≡
383 ∀ i:Nat•i ∈ inds hl⇒
383 attr HΣ (hl(i)) =
383a hσ ex ls(exl(i))

383b ∪ hσ et ls(exl(i),(i,ll))

383c ∪ hσ tx ls(exl(i),(i,ll))

383d ∪ hσ tt ls(i,ll)

383a: from entry links back to the paired exit links:

383a hσ ex ls: (L×L)→LΣ

383a hσ ex ls(e,x) ≡ {(uid LI(e),uid LI(x))}

383b: from entry links to emanating toll-road links:

383b hσ et ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ

383b hσ et ls((e, ),(i,ll)) ≡
383b case i of

383b 2 → {(uid LI(e),uid LI(em(ll(1))))},
383b len ll+1→ {(uid LI(e),uid LI(em(ll(len ll))))},
383b → {(uid LI(e),uid LI(em(ll(i−1)))),

383b (uid LI(e),uid LI(em(ll(i))))}
383b end
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The em and in in the toll-road link list (em:L×in:L)∗ designate selectors for emanating, respectively incident links.

383c: from incident toll-road links to exit links:

383c hσ tx ls: (L×L)×(Nat×(em:L×in:L)∗)→LΣ
383c hσ tx ls(( ,x),(i,ll)) ≡
383c case i of

383c 2 → {(uid LI(in(ll(1))),uid LI(x))},
383c len ll+1→ {(uid LI(in(ll(len ll))),uid LI(x))},
383c → {(uid LI(in(ll(i−1))),uid LI(x)),

383c (uid LI(in(ll(i))),uid LI(x))}
383c end

383d: from incident toll-road link to emanating toll-road links:

383d hσ tt ls: Nat×(em:L×in:L)∗→LΣ
383d hσ tt ls(i,ll) ≡
383d case i of

383d 2 → {(uid LI(in(ll(1))),uid LI(em(ll(1))))},
383d len ll+1→ {(uid LI(in(ll(len ll))),uid LI(em(ll(len ll))))},
383d → {(uid LI(in(ll(i−1))),uid LI(em(ll(i−1)))),

383d (uid LI(in(ll(i))),uid LI(em(ll(i))))}
383d end

The example above illustrated ‘domain determination’ with respect to endurants. Typically “endurant deter-

mination” is expressed in terms of axioms that limit state spaces — where “endurant instantiation” typically

“limited” the mereology of endurants: how parts are related to one another. We shall not exemplify domain

determination with respect to perdurants.

8.4.3.2 Discussion

The borderline between instantiation and determination is fuzzy. Whether, as an example, fixing the number

of toll-road intersection hubs to a constant value, e.g., n=7, is instantiation or determination, is really a

matter of choice !

8.4.4 Domain Extension

Definition: 88 Extension: By domain extension we understand the introduction of endurants (see
Sect. 8.4.4.1) and perdurants (see Sect. 8.5.2) that were not feasible in the original domain, but for which,
with computing and communication, and with new, emerging technologies, for example, sensors, actuators
and satellites, there is the possibility of feasible implementations, hence the requirements, that what is
introduced becomes part of the unfolding requirements prescription

8.4.4.1 Endurant Extensions

Definition: 89 Endurant Extension: By an endurant extension we understand the introduction

of one or more endurants into the projected, instantiated and determined domain DR resulting in domain

DR
′, such that these form a conservative extension of the theory, TDR

denoted by the domain requirements

DR (i.e., “before” the extension), that is: every theorem of TDR
is still a theorem of TDR

′ .

Usually domain extensions involve one or more of the already introduced sorts. In Example 121 on the

following page we introduce (i.e., “extend”) vehicles with GPSS-like sensors, and introduce toll-gates with

entry sensors, vehicle identification sensors, gate actuators and exit sensors. Finally road pricing calculators

are introduced.

Requirements: Domain Requirements, Endurant Extension 1/2
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Example 121 We present the extensions in several steps. Some of them will be developed in this section.

Development of the remaining will be deferred to Sect. 8.5.1.3. The reason for this deferment is that those

last steps are examples of interface requirements. The initial extension-development steps are: [a] vehicle

extension, [b] sort and unique identifiers of road price calculators, [c] vehicle to road pricing calculator

channel, [d] sorts and dynamic attributes of toll-gates, [e] road pricing calculator attributes, [f] “total” system

state, and [g] the overall system behaviour. This decomposition establishes system interfaces in “small,

easy steps”.

8.4.4.1.1 [a] Vehicle Extension:

384 There is a domain, δE :∆E , which contains
385 a fleet, fE :FE , that is,
386 a set, vsE :VSE , of
387 extended vehicles, vE :VE — their extension

amounting to
388 a dynamic reactive attribute, whose value, ti-

gpos:TiGpos, at any time, reflects that vehicle’s

time-stamped global position.17

389 The vehicle’s GNSS receiver calculates, loc pos,

its local position, lpos:LPos, based on these

signals.

390 Vehicles access these external attributes via

the external attribute channel, attr TiGPos ch.

type

384 ∆E

385 FE

386 VSE = VE -set

388 TiGPos = T × GPos

389 GPos, LPos

value

384 δE :∆E

385 obs FE : ∆E → FE ,

385 f = obs FE (δE )

386 obs VSE : FE → VSE ,

386 vs = obs VSE (f)

386 vis = xtr vis(vs)

388 attr TiGPos ch[vi ]?
389 loc pos: GPos→ LPos

channel

390 {attr TiGPos ch[vi ]|vi:VI•vi ∈ vis}:TiGPos

We define two auxiliary functions,

391 xtr vs, which given a domain, or a fleet, ex-
tracts its set of vehicles, and

392 xtr vis which given a set of vehicles gener-
ates their unique identifiers.

value

391 xtr vs: (∆E |FE |VSE )→ VE -set

391 xtr vs(arg) ≡

391 is ∆E (arg)→
391 obs VSE (obs FE (arg))
391 is FE (arg)→
391 obs VSE (arg),
391 is VSE (arg)→ arg
392 xtr vis: (∆E |FE |VSE )→ VI-set

392 xtr vis(arg) ≡ {uid VI(v)|v ∈ xtr vs(arg)}

8.4.4.1.2 [b] Road Pricing Calculator: Basic Sort and Unique Identifier:

393 The domain δE :∆E , also contains a pric-
ing calculator, c:CδE

, with unique identifier
ci:CI.

type

393 C, CI

value

393 obs C: ∆E → C
393 uid CI: C→ CI
393 c = obs C(δE )
393 ci = uid CI(c)

8.4.4.1.3 [c] Vehicle to Road Pricing Calculator Channel:

394 Vehicles can, on their own volition, offer the timed local position, viti-lpos:VITiLPos
395 to the pricing calculator, c:CE along a vehicles-to-calculator channel, v c ch.

type

394 VITiLPos = VI × (T × LPos)
channel
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395 {v c ch[vi,ci ]|vi:VI,ci:CI•vi∈vis∧ci=uid C(c)}:VITiLPos

8.4.4.1.4 [d] Toll-gate Sorts and Dynamic Types:

We extend the domain with toll-gates for vehicles entering and exiting the toll-road entry and exit links.

Figure 8.2 illustrates the idea of gates.

exit sensor
entry sensor

toll barrier

Vehicle linklink link link

Vehicle Identification

Fig. 8.2. Toll Gate

Requirements: Domain Requirements, Endurant Extension 2/2

Example 121 (Continued) Figure 8.2is intended to illustrate a vehicle entering (or exiting) a toll-road

arrival link. The toll-gate is equipped with three sensors: an arrival sensor, a vehicle identification sensor

and an departure sensor. The arrival sensor serves to prepare the vehicle identification sensor. The

departure sensor serves to prepare the gate for closing when a vehicle has passed. The vehicle identify

sensor identifies the vehicle and “delivers” a pair: the current time and the vehicle identifier. Once the

vehicle identification sensor has identified a vehicle the gate opens and a message is sent to the road

pricing calculator as to the passing vehicle’s identity and the identity of the link associated with the toll-

gate (see Items 412- 413 on the next page).

396 The domain contains the extended net, n:NE ,

397 with the net extension amounting to the toll-road net, TRNE , that is, the instantiated toll-road net,

trn:TRNI , is extended, into trn:TRNE , with entry, eg:EG, and exit, xg:XG, toll-gates.

From entry- and exit-gates we can observe

398 their unique identifier and

399 their mereology: pairs of entry-, respectively exit link and calculator unique identifiers; further

400 a pair of gate entry and exit sensors modeled as external attribute channels, (ges:ES,gls:XS), and

401 a time-stamped vehicle identity sensor modeled as external attribute channels.

type

396 NE

397 TRNE = (EG×XG)∗ × TRNI

398 GI

value

396 obs NE : ∆E → NE

397 obs TRNE : NE → TRNE

398 uid G: (EG|XG)→ GI

399 mereo G: (EG|XG)→ (LI×CI)

397 trn:TRNE = obs TRNE (δE )

channel

400 {attr entry ch[gi ]|gi:GI•xtr eGIds(trn)} `̀enter
′′

400 {attr exit ch[gi ]|gi:GI•xtr xGIds(trn)} `̀exit
′′
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401 {attr identity ch[gi ]|gi:GI•xtr GIds(trn)} TIVI

type

401 TIVI = T × VI

We define some auxiliary functions over toll-road nets, trn:TRNE :

402 xtr eGℓ extracts the ℓist of entry gates,

403 xtr xGℓ extracts the ℓist of exit gates,

404 xtr eGIds extracts the set of entry gate identifiers,

405 xtr xGIds extracts the set of exit gate identifiers,

406 xtr Gs extracts the set of all gates, and

407 xtr GIds extracts the set of all gate identifiers.

value

402 xtr eGℓ: TRNE → EG∗

402 xtr eGℓ(pgl, ) ≡ {eg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
403 xtr xGℓ: TRNE → XG∗

403 xtr xGℓ(pgl, ) ≡ {xg|(eg,xg):(EG,XG)•(eg,xg)∈ elems pgl}
404 xtr eGIds: TRNE → GI-set

404 xtr eGIds(pgl, ) ≡ {uid GI(g)|g:EG•g ∈ xtr eGs(pgl, )}
405 xtr xGIds: TRNE → GI-set

405 xtr xGIds(pgl, ) ≡ {uid GI(g)|g:EG•g ∈ xtr xGs(pgl, )}
406 xtr Gs: TRNE → G-set

406 xtr Gs(pgl, ) ≡ xtr eGs(pgl, ) ∪ xtr xGs(pgl, )

407 xtr GIds: TRNE → GI-set

407 xtr GIds(pgl, ) ≡ xtr eGIds(pgl, ) ∪ xtr xGIds(pgl, )

408 A well-formedness condition expresses

a that there are as many entry end exit gate pairs

as there are toll-plazas,

b that all gates are uniquely identified, and

c that each entry [exit] gate is paired with an en-

try [exit] link and has that link’s unique identi-

fier as one element of its mereology, the other

elements being the calculator identifier and the

vehicle identifiers.

The well-formedness relies on awareness of

409 the unique identifier, ci:CI, of the road pricing cal-

culator, c:C, and

410 the unique identifiers, vis:VI-set, of the fleet vehi-

cles.

axiom

408 ∀ n:NR3
, trn:TRNR3

•

408 let (exgl,(exl,hl,lll)) = obs TRNR3
(n) in

408a len exgl = len exl = len hl = len lll + 1

408b ∧ card xtr GIds(exgl) = 2 ∗ len exgl

408c ∧ ∀ i:Nat•i ∈ inds exgl•

408c let ((eg,xg),(el,xl)) = (exgl(i),exl(i)) in

408c mereo G(eg) = (uid U(el),ci,vis)

408c ∧ mereo G(xg) = (uid U(xl),ci,vis)

408 end end

8.4.4.1.5 [e] Toll-gate to Calculator Channels:

411 We distinguish between entry and exit gates.

412 Toll road entry and exit gates offers the road pric-

ing calculator a pair: whether it is an entry or an exit

gates, and pair of the passing vehicle’s identity and

the time-stamped identity of the link associated with

the toll-gate

413 to the road pricing calculator via a (gate to calcula-

tor) channel.

type

411 EE = `̀entry
′′
| `̀exit

′′

412 EEVITiLI = EE×(VI×(T×SonL))

channel

413 {g c ch[gi,ci ]|gi:GI•gi ∈ gis}:EETiVILI
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8.4.4.1.6 [f] Road Pricing Calculator Attributes:

414 The road pricing attributes include a programmable

traffic map, trm:TRM, which, for each vehicle in-

side the toll-road net, records a chronologically or-

dered list of each vehicle’s timed position, (τ,lpos),

and
415 a static (total) road location function, vplf:VPLF.

The vehicle position location f unction, vplf:VPLF,

which, given a local position, lpos:LPos, yields

either the simple vehicle position, svpos:SVPos,

designated by the GNSS-provided position, or yields

the response that the provided position is off the

toll-road net The vplf:VPLF function is constructed,

construct vplf,

416 from awareness, of a geodetic road map, GRM, of

the topology of the extended net, nE :NE , including

the mereology and the geodetic attributes of links

and hubs.

type

414 TRM = VI→m (T×SVPos)∗

415 VPLF = GRM→LPos→(SVPos|̀ òff N
′′
)

416 GRM

value

414 attr TRM: CE → TRM

415 attr VPLF: CE → VPLF

The geodetic road map maps geodetic locations into hub and link identifiers.

326 Geodetic link locations represent the set of point lo-

cations of a link.

322a Geodetic hub locations represent the set of point lo-

cations of a hub.

417 A geodetic road map maps geodetic link locations

into link identifiers and geodetic hub locations into

hub identifiers.

418 We sketch the construction, geo GRM, of geodetic

road maps.

type

417 GRM = (GeoL →m LI)
⋃

(GeoH →m HI)

value

418 geo GRM: N→ GRM

418 geo GRM(n) ≡

418 let ls = xtr links(n), hs = xtr hubs(n) in

418 [attr GeoL(l) 7→uid LI(l)|l:L•l ∈ ls ]
418 ∪
418 [attr GeoH(h) 7→uid HI(h)|h:H•h ∈ hs ] end

419 The obtain SVPos function obtains a simple ve-

hicle position, svpos, from a geodetic road map,

grm:GRM, and a local position , lpos:

value

419 obtain SVPos: GRM→ LPos→ SVPos

419 obtain SVPos(grm)(lpos) as svpos

419 post: case svpos of

419 SatH(hi) → within(lpos,grm(hi)),

419 SonL(li) → within(lpos,grm(li)),

419 `̀off N
′′
→ true end

where within is a predicate which holds if its first argument, a local position calculated from a GNSS-generated

global position, falls within the point set representation of the geodetic locations of a link or a hub. The design of the

obtain SVPos represents an interesting challenge.

8.4.4.1.7 [g] “Total” System State:

Global values:

420 There is a given domain, δE :∆E ;

421 there is the net, nE :NE , of that domain;

422 there is toll-road net, trnE :TRNE , of that net;

423 there is a set, egsE :EGE -set, of entry gates;

424 there is a set, xgsE :XGE -set, of exit gates;

425 there is a set, gisE :GIE -set, of gate identifiers;

426 there is a set, vsE :VE -set, of vehicles;

427 there is a set, visE :VIE -set, of vehicle identifiers;

428 there is the road-pricing calculator, cE :CE and

429 there is its unique identifier, ciE :CI.

value

420 δE :∆E

421 nE :NE = obs NE (δE )

422 trnE :TRNE = obs TRNE (nE )

423 egsE :EG-set = xtr egs(trnE )

424 xgsE :XG-set = xtr xgs(trnE )

425 gisE :XG-set = xtr gis(trnE )

426 vsE :VE -set = obs VS(obs FE (δE ))
427 visE :VI-set = {uid VI(vE )|vE :VE

•vE ∈ vsE }
428 cE :CE = obs CE (δE )

429 ciE :CIE = uid CI(cE )

In the following we shall omit the cumbersome E subscripts.
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8.4.4.1.8 [h] “Total” System Behaviour:

The signature and definition of the system behaviour is sketched as are the signatures of the vehicle, toll-gate and

road pricing calculator. We shall model the behaviour of the road pricing system as follows: we shall not model

behaviours nets, hubs and links; thus we shall model only the behaviour of vehicles, veh, the behaviour of toll-gates,

gate, and the behaviour of the road-pricing calculator, calc, The behaviours of vehicles and toll-gates are presented

here. But the behaviour of the road-pricing calculator is “deferred” till Sect. 8.5.1.3 since it reflects an interface

requirements.

430 The road pricing system behaviour, sys, is ex-

pressed as
a the parallel, ‖, (distributed) composition of the

behaviours of all vehicles,
b with the parallel composition of the parallel

(likewise distributed) composition of the be-

haviours of all entry gates,

c with the parallel composition of the parallel

(likewise distributed) composition of the be-

haviours of all exit gates,

d with the parallel composition of the behaviour

of the road-pricing calculator,

value

430 sys: Unit→ Unit

430 sys() ≡

430a ‖ {vehuid V (v)(mereo V(v))|v:V•v ∈ vs}

430b ‖ ‖ {gateuid EG(eg)(mereo G(eg),”entry”)|eg:EG•eg ∈ egs}

430c ‖ ‖ {gateuid XG(xg)(mereo G(xg),”exit”)|xg:XG•xg ∈ xgs}

430d ‖ calcuid C(c)(vis,gis)(rlf)(trm)

431 vehvi: (ci:CI×gis:GI-set) → in attr TiGPos[vi ] out v c ch[vi,ci ] Unit

437 gategi: (ci:CI×VI-set×LI)×ee:EE →

437 in attr entry ch[gi,ci ],attr id ch[gi,ci ],attr exit ch[gi,ci ]

437 out attr barrier ch[gi ],g c ch[gi,ci ] Unit

471 calcci: (vis:VI-set×gis:GI-set)×VPLF→TRM→

471 in {v c ch[vi,ci ]|vi:VI•vi ∈ vis},{g c ch[gi,ci ]|gi:GI•gi ∈ gis} Unit

We consider ”entry” or ”exit” to be a static attribute of toll-gates. The behaviour signatures were determined as per

the techniques presented in Chapters 3–6.

Vehicle Behaviour: We refer to the vehicle behaviour, in the domain, described in Sect. 8.2’s The Road Traffic

System Behaviour Items 349 and Items 350, Page 208 and, projected, Page 217.

431 Instead of moving around by explicitly expressed internal non-determinism18 vehicles move around

by unstated internal non-determinism and instead receive their current position from the global posi-

tioning subsystem.

432 At each moment the vehicle receives its time-stamped global position, (τ,gpos):TiGPos,

433 from which it calculates the local position, lpos:VPos
434 which it then communicates, with its vehicle identification, (vi,(τ,lpos)), to the road pricing subsys-

tem —

435 whereupon it resumes its vehicle behaviour.

value

431 vehvi: (ci:CI×gis:GI-set)→
431 in attr TiGPos ch[vi ] out v c ch[vi,ci ] Unit

431 vehvi(ci,gis) ≡
432 let (τ,gpos) = attr TiGPos ch[vi ]? in

433 let lpos = loc pos(gpos) in

434 v c ch[vi,ci ] ! (vi,(τ,lpos)) ;

435 vehvi(ci,gis) end end

431 pre vi ∈ vis

The vehicle signature has attr TiGPos ch[vi ] model an external vehicle attribute and v c ch[vi,ci ] the

embedded attribute sharing [70, Sect. 4.1.1 and 4.5.2] between vehicles (their position) and the price cal-

culator’s road map. The above behaviour represents an assumption about the behaviour of vehicles. If
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we were to design software for the monitoring and control of vehicles then the above vehicle behaviour

would have to be refined in order to serve as a proper interface requirements. The refinement would in-

clude handling concerns about the drivers’ behaviour when entering, passing and exiting toll-gates, about

the proper function of the GNSS equipment, and about the safe communication with the road price calcu-

lator. The above concerns would already have been addressed in a model of domain facets such as human
behaviour, technology support, proper tele-communications scripts, et cetera. We refer to Chapter 7.

Gate Behaviour: The entry and the exit gates have “vehicle enter”, “vehicle exit” and “timed vehicle

identification” sensors. The following assumption can now be made: during the time interval between a

gate’s vehicle “entry” sensor having first sensed a vehicle entering that gate and that gate’s “exit” sensor

having last sensed that vehicle leaving that gate that gate’s vehicle time and “identify” sensor registers the

time when the vehicle is entering the gate and that vehicle’s unique identification. We sketch the toll-gate

behaviour:

436 We parameterise the toll-gate behaviour as ei-

ther an entry or an exit gate.

437 Toll-gates operate autonomously and cycli-

cally.

438 The attr enter ch event “triggers” the be-

haviour specified in formula line Item 439–441

starting with a ”Raise” barrier action.

439 The time-of-passing and the identity of the

passing vehicle is sensed by attr passing ch
channel events.

440 Then the road pricing calculator is informed of

time-of-passing and of the vehicle identity vi
and the link li associated with the gate – and

with a ”Lower” barrier action.

441 And finally, after that vehicle has left the entry

or exit gate the barrier is again ”Lower”ered

and

442 that toll-gate’s behaviour is resumed.

type

436 EE = ”enter” | ”exit”
value

437 gategi: (ci:CI×VI-set×LI)×ee:EE→
437 in attr enter ch[gi ],attr passing ch[gi ],attr leave ch[gi ]
437 out attr barrier ch[gi ],g c ch[gi,ci ] Unit

437 gategi((ci,vis,li),ee) ≡
438 attr enter ch[gi ] ? ; attr barrier ch[gi ] ! ”Lower”
439 let (τ,vi) = attr passing ch[gi ] ? in assert vi ∈ vis
440 (attr barrier ch[gi ] ! ”Raise”
440 ‖ g c ch[gi,ci ] ! (ee,(vi,(τ,SonL(li))))) ;
441 attr leave ch[gi ] ? ; attr barrier ch[gi ] ! ”Lower”
442 gategi((ci,vis,li),ee)
437 end

437 pre li ∈ lis

The gate signature’s attr enter ch[gi ], attr passing ch[gi ], attr barrier ch[gi ] and attr leave ch[gi ] model

respective external attributes [70, Sect. 4.1.1 and 4.5.2] (the attr barrier ch[gi ] models reactive (i.e., out-

put) attribute), while g c ch[gi,ci ] models the embedded attribute sharing between gates (their identifi-

cation of vehicle positions) and the calculator road map. The above behaviour represents an assumption

about the behaviour of toll-gates. If we were to design software for the monitoring and control of toll-

gates then the above gate behaviour would have to be refined in order to serve as a proper interface

requirements. The refinement would include handling concerns about the drivers’ behaviour when enter-

ing, passing and exiting toll-gates, about the proper function of the entry, passing and exit sensors, about

the proper function of the gate barrier (opening and closing), and about the safe communication with the

road price calculator. The above concerns would already have been addressed in a model of domain facets

such as human behaviour, technology support, proper tele-communications scripts, et cetera
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We shall define the calculator behaviour in Sect. 8.5.1.3 on Page 235. The reason for this deferral is that

it exemplifies interface requirements.

8.4.4.2 Discussion

The requirements assumptions expressed in the specifications of the vehicle and gate behaviours assume

that these behave in an orderly fashion. But they seldom do ! The attr TiGPos ch sensor may fail. And

so may the attr enter ch, attr passing ch, and attr leave ch sensors and the attr barrier ch actuator.

These attributes represent support technology facets. They can fail. To secure fault tolerance one must

prescribe very carefully what counter-measures are to be taken and/or the safety assumptions. We refer to

[380, 256, 301]. They cover three alternative approaches to the handling of fault tolerance. Either of the

approaches can be made to fit with our approach. First one can pursue our approach to where we stand

now. Then we join the approaches of either of [380, 256, 301]. [256] likewise decompose the requirements

prescription as is suggested here.

8.4.5 Requirements Fitting

Often a domain being described “fits” onto, is “adjacent” to, “interacts” in some areas with, another domain:

transportation with logistics, health-care with insurance, banking with securities trading and/or insurance,

and so on. The issue of requirements fitting arises when two or more software development projects are

based on what appears to be the same domain. The problem then is to harmonise the two or more software

development projects by harmonising, if not too late, their requirements developments.

We thus assume that there are n domain requirements developments, dr1
, dr2

, . . . , drn , being consid-

ered, and that these pertain to the same domain — and can hence be assumed covered by a same domain

description.

Definition: 90 Requirements Fitting: By requirements fitting we mean a harmonisation of n > 1

domain requirements that have overlapping (shared) not always consistent parts and which results in n

partial domain requirements’, pdr1
, pdr2

, . . . , pdrn
, and m shared domain requirements, sdr1

, sdr2
, . . . , sdrm

,

that “fit into” two or more of the partial domain requirements The above definition pertains to the result

of ‘fitting’. The next definition pertains to the act, or process, of ‘fitting’.

Definition: 91 Requirements Harmonisation: By requirements harmonisation we mean a

number of alternative and/or co-ordinated prescription actions, one set for each of the domain require-

ments actions: Projection, Instantiation, Determination and Extension. They are – we assume n separate

software product requirements: Projection: If the n product requirements do not have the same projections,

then identify a common projection which they all share, and refer to it as the common projection. Then de-

velop, for each of the n product requirements, if required, a specific projection of the common one. Let

there be m such specific projections, m ≤ n. Instantiation: First instantiate the common projection, if any

instantiation is needed. Then for each of the m specific projections instantiate these, if required. Determi-
nation: Likewise, if required, “perform” “determination” of the possibly instantiated common projection,

and, similarly, if required, “perform” “determination” of the up to m possibly instantiated projections. Ex-
tension: Finally “perform extension” likewise: First, if required, of the common projection (etc.), then, if

required, on the up m specific projections (etc.). These harmonization developments may possibly interact

and may need to be iterated

By a partial domain requirements we mean a domain requirements which is short of (that is, is miss-

ing) some prescription parts: text and formula By a shared domain requirements we mean a

domain requirements By requirements fitting m shared domain requirements texts, sdrs, into n par-

tial domain requirements we mean that there is for each partial domain requirements, pdri, an identified,

non-empty subset of sdrs (could be all of sdrs), ssdrsi, such that textually conjoining ssdrsi to pdri, i.e.,

ssdrsi⊕ pdri can be claimed to yield the “original” dri
, that is, M (ssdrsi⊕ pdri)⊆M (dri

), where M is a

suitable meaning function over prescriptions
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8.4.6 Discussion

Facet-oriented Fittings: An altogether different way of looking at domain requirements may be

achieved when also considering domain facets — not covered in neither the example of Sect. 8.2 nor in

this section (i.e., Sect. 8.4) nor in the following two sections. We refer to [52].

Requirements: Domain Requirements, Fitting

Example 122 Example 121 hints at three possible sets of interface requirements: (i) for a road
pricing [sub-]system, as will be illustrated in Sect. 8.5.1.3; (ii) for a vehicle monitoring and control
[sub-]system, and (iii) for a toll-gate monitoring and control [sub-]system. The vehicle monitor-
ing and control [sub-]system would focus on implementing the vehicle behaviour, see Items 431-
435 on Page 228. The toll-gate monitoring and control [sub-]system would focus on implement-
ing the calculator behaviour, see Items 437- 442 on Page 229. The fitting amounts to (a) making
precise the narrative and formal texts specific to each of of the three (i–iii) separate sub-system
requirements are kept separate; (b) ensuring that meaning-wise shared texts that have different
names for meaning-wise identical entities have these names renamed appropriately; (c) that
these texts are subject to commensurate and ameliorated further requirements development; et
cetera

8.5 Interface and Derived Requirements

We remind the reader that interface requirements can be expressed only using terms from both the

domain and the machine Users are not part of the machine. So no reference can be made to users,

such as “the system must be user friendly”, and the like !19 By interface requirements we [also] mean

requirements prescriptions which refines and extends the domain requirements by considering those re-
quirements of the domain requirements whose endurants (parts, materials) and perdurants (actions, events
and behaviours) are “shared” between the domain and the machine (being requirements prescribed)
The two interface requirements definitions above go hand–in–hand, i.e., complement one-another.

By derived requirements we mean requirements prescriptions which are expressed in terms of the
machine concepts and facilities introduced by the emerging requirements

8.5.1 Interface Requirements

8.5.1.1 Shared Phenomena

By sharing we mean (a) that some or all properties of an endurant is represented both in the domain and

“inside” the machine, and that their machine representation must at suitable times reflect their state in the

domain; and/or (b) that an action requires a sequence of several “on-line” interactions between the ma-

chine (being requirements prescribed) and the domain, usually a person or another machine; and/or (c)

that an event arises either in the domain, that is, in the environment of the machine, or in the machine,

and need be communicated to the machine, respectively to the environment; and/or (d) that a behaviour

is manifested both by actions and events of the domain and by actions and events of the machine So a

systematic reading of the domain requirements shall result in an identification of all shared endurants, parts

and materials; and perdurants actions, events and behaviours. Each such shared phenomenon shall then be

individually dealt with: endurant sharing shall lead to interface requirements for data initialisation and

refreshment as well as for access to endurant attributes; action sharing shall lead to interface require-

ments for interactive dialogues between the machine and its environment; event sharing shall lead to

interface requirements for how such event are communicated between the environment of the machine and

the machine; and behaviour sharing shall lead to interface requirements for action and event dialogues

between the machine and its environment.

19 So how do we cope with the statement:“the system must be user friendly” ? We refer to Sect. 8.5.3.2 on Page 239

for a discussion of this issue.
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8.5.1.1.1 Environment–Machine Interface:

Domain requirements extension, Sect. 8.4.4, usually introduce new endurants into (i.e., ‘extend’ the) do-

main. Some of these endurants may become elements of the domain requirements. Others are to be pro-

jected “away”. Those that are let into the domain requirements either have their endurants represented,

somehow, also in the machine, or have (some of) their properties, usually some attributes, accessed by the

machine. Similarly for perdurants. Usually the machine representation of shared perdurants access (some

of) their properties, usually some attributes. The interface requirements must spell out which domain ex-

tensions are shared. Thus domain extensions may necessitate a review of domain projection, instantiations

and determination. In general, there may be several of the projection–eliminated parts (etc.) whose dynamic

attributes need be accessed in the usual way, i.e., by means of attr XYZ ch channel communications (where

XYZ is a projection–eliminated part attribute).

Requirements: Interface Requirements, Projected Extensions

Example 123 We refer to Fig. 8.2 on Page 225.We do not represent the GNSS system in the ma-
chine: only its “effect”: the ability to record global positions by accessing the GNSS attribute
(channel):

channel

390 {attr TiGPos ch[vi ]|vi:VI•vi ∈ xtr VIs(vs)}: TiGPos

And we do not really represent the gate nor its sensors and actuator in the machine. But we do give an

idealised description of the gate behaviour, see Items 437–442 Instead we represent their dynamic gate

attributes:

(400) the vehicle entry sensors (leftmost s),

(400) the vehicle identity sensor (center ), and

(401) the vehicle exit sensors (rightmost s)

by channels — we refer to Example 121 (Sect. 8.5.1.3, Page 225):

channel

400 {attr entry ch[gi ]|gi:GI•xtr eGIds(trn)} `̀enter
′′

400 {attr exit ch[gi ]|gi:GI•xtr xGIds(trn)} `̀exit
′′

401 {attr identity ch[gi ]|gi:GI•xtr GIds(trn)} TIVI

8.5.1.2 Shared Endurants

Requirements: Interface Requirements, Shared Endurants

Example 124 The main shared endurants are the vehicles, the net (hubs, links, toll-gates) and the price

calculator. As domain endurants hubs and links undergo changes, all the time, with respect to the values

of several attributes: length, geodetic information, names, wear and tear (where-ever applicable), last/next

scheduled maintenance (where-ever applicable), state and state space, and many others. Similarly for

vehicles: their position, velocity and acceleration, and many other attributes. We then come up with some-

thing like hubs and links are to be represented as tuples of relations; each net will be represented by a

pair of relations a hubs relation and a links relation; each hub and each link may or will be represented by

several tuples; et cetera. In this database modeling effort it must be secured that “standard” operations on

nets, hubs and links can be supported by the chosen relational database system

8.5.1.2.1 Data Initialisation:

In general, one must prescribe data initialisation, that is provision for an interactive user interface dialogue

with a set of proper display screens, one for establishing net, hub or link attributes names and their types,
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and, for example, two for the input of hub and link attribute values. Interaction prompts may be prescribed:

next input, on-line vetting and display of evolving net, etc. These and many other aspects may therefore

need prescriptions.

Requirements: Interface Requirements, Shared Endurant Initialisation

Example 125 The domain is that of the road net, n:N. By ‘shared road net initialisation’ we mean the “ab

initio” establishment, “from scratch”, of a data base recording the properties of all links, l:L, and hubs, h:H,

their unique identifications, uid L(l) and uid H(h), their mereologies, mereo L(l) and mereo H(h), the initial

values of all their static and programmable attributes and the access values, that is, channel designations

for all other attribute categories.

443 There are rl and rh “recorders” recording link, respectively hub properties – with each
recorder having a unique identity.

444 Each recorder is charged with the recording of a set of links or a set of hubs according to
some partitioning of all such.

445 The recorders inform a central data base, net db, of their recordings (ri,hol,(u j,m j,attrs j))
where

446 ri is the identity of the recorder,
447 hol is either a hub or a link literal,
448 u j = uid L(l) or uid H(h) for some link or hub,
449 m j = mereo L(l) or mereo H(h) for that link or hub and
450 attrs j are attributes for that link or hub — where attributes is a function which “records” all

respective static and dynamic attributes (left undefined).

type

443 RI
value

443 rl,rh:NAT axiom rl>0 ∧ rh>0
type

445 M = RI×`̀link
′′
×LNK | RI×`̀hub

′′
×HUB

445 LNK = LI × HI-set × LATTRS
445 HUB = HI × LI-set × HATTRS

value

444 partitioning: L-set→Nat→(L-set)∗

444 | H-set→Nat→(H-set)∗

444 partitioning(s)(r) as sl
444 post: len sl = r ∧ ∪ elems sl = s
444 ∧ ∀ si,sj:(L-set|H-set) •

444 si,{}∧sj,{}∧{si,sj}⊆elems ss⇒si ∩ sj={}

451 The rl + rh recorder behaviours interact with the one net db behaviour

channel

451 r db: RI×(LNK|HUB)
value

451 link rec: RI→ L-set→ out r db Unit

451 hub rec: RI→ H-set→ out r db Unit

451 net db: Unit→ in r db Unit

452 The data base behaviour, net db, offers to receive messages from the link and hub recorders.

453 The data base behaviour, net db, deposits these messages in respective variables.

454 Initially there is a net, n : N,
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455 from which is observed its links and hubs.

456 These sets are partitioned into rl , respectively rh length lists of non-empty links and hubs.

457 The ab-initio data initialisation behaviour, ab initio data, is then the parallel composition of link

recorder, hub recorder and data base behaviours with link and hub recorder being allotted appropriate

link, respectively hub sets.

458 We construct, for technical reasons, as the reader will soon see, disjoint lists of link, respectively hub

recorder identities.

value

452 net db:
variable

453 lnk db: (RI×LNK)-set

453 hub db: (RI×HUB)-set

value

454 n:N
455 ls:L-set = obs Ls(obs LS(n))
455 hs:H-set = obs Hs(obs HS(n))
456 lsl:(L-set)∗ = partitioning(ls)(rl)
456 lhl:(H-set)∗ = partitioning(hs)(rh)
458 rill:RI∗ axiom len rill = rl = card elems rill
458 rihl:RI∗ axiom len rihl = rh = card elems rihl
457 ab initio data: Unit→ Unit

457 ab initio data() ≡
457 ‖ {lnk rec(rill[ i ])(lsl[ i ])|i:Nat•1≤i≤rl} ‖
457 ‖ {hub rec(rihl[ i ])(lhl[ i ])|i:Nat•1≤i≤rh}
457 ‖ net db()

459 The link and the hub recorders are near-identical behaviours.

460 They both revolve around an imperatively stated for all ... do ... end. The selected link (or hub) is

inspected and the “data” for the data base is prepared from

461 the unique identifier,

462 the mereology, and

463 the attributes.

464 These “data” are sent, as a message, prefixed the senders identity, to the data base behaviour.

465 We presently leave the . . . unexplained.

value

451 link rec: RI→ L-set→ Unit

459 link rec(ri,ls) ≡
460 for ∀ l:L•l ∈ ls do uid L(l)
461 let lnk = (uid L(l),
462 mereo L(l),
463 attributes(l)) in

464 rdb ! (ri,̀ l̀ink
′′
,lnk);

465 ... end

460 end

451 hub rec: RI × H-set→ Unit

459 hub rec(ri,hs) ≡
460 for ∀ h:H•h ∈ hs do uid H(h)
461 let hub = (uid L(h),
462 mereo H(h),
463 attributes(h)) in
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464 rdb ! (ri,̀ h̀ub
′′
,hub);

465 ... end

460 end

466 The net db data base behaviour revolves around a seemingly “never-ending” cyclic process.

467 Each cycle “starts” with acceptance of some,

468 either link or hub data.

469 If link data then it is deposited in the link data base,

470 if hub data then it is deposited in the hub data base.

value

466 net db() ≡
467 let (ri,hol,data) = r db ? in

468 case hol of

469 `̀ link
′′
→ ... ; lnk db := lnk db ∪ (ri,data),

470 `̀hub
′′
→ ... ; hub db := hub db ∪ (ri,data)

468 end end ;
466′ ... ;
466 net db()

The above model is an idealisation. It assumes that the link and hub data represent a well-formed net.

Included in this well-formedness are the following issues: (a) that all link or hub identifiers are commu-

nicated exactly once, (b) that all mereologies refer to defined parts, and (c) that all attribute values lie

within an appropriate value range. If we were to cope with possible recording errors then we could, for

example, extend the model as follows: (i) when a link or a hub recorder has completed its recording then it

increments an initially zero counter (say at formula Item 465); (ii) before the net data base recycles it tests

whether all recording sessions has ended and then proceeds to check the data base for well-formedness

issues (a–b–c) (say at formula Item 466′)

The above example illustrates the ‘interface’ phenomenon: In the formulas, for example, we show both

manifest domain entities, viz., n, l,h etc., and abstract (required) software objects, viz., (ui,me,attrs).

8.5.1.2.2 Data Refreshment:

One must also prescribe data refreshment: an interactive user interface dialogue with a set of proper dis-

play screens one for selecting the updating of net, of hub or of link attribute names and their types and,

for example, two for the respective update of hub and link attribute values. Interaction-prompts may be

prescribed: next update, on-line vetting and display of revised net, etc. These and many other aspects may

therefore need prescriptions.

8.5.1.3 Shared Perdurants

We can expect that for every part in the domain that is shared with the machine and for which there is

a corresponding behaviour of the domain there might be a corresponding process of the machine. If a

projected, instantiated, ‘determinated’ and possibly extended domain part is dynamic, then it is definitely

a candidate for being shared and having an associated machine process.

We now illustrate the concept of shared perdurants via the domain requirements extension example of

Sect. 8.4.4, i.e. Example 121 Pages 224–229.

Requirements: Interface Requirements, Shared Behaviours

Example 126 Road Pricing Calculator Behaviour:

471 The road-pricing calculator alternates between offering to accept communication from
472 either any vehicle
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473 or any toll-gate.

471 calc: ci:CI×(vis:VI-set×gis:GI-set)→RLF→TRM→
472 in {v c ch[ci,vi ]|vi:VI•vi ∈ vis},
473 {g c ch[ci,gi ]|gi:GI•gi ∈ gis} Unit

471 calc(ci,(vis,gis))(rlf)(trm)≡
472 react to vehicles(ci,(vis,gis))(rlf)(trm)
471 ⌈⌉⌊⌋
473 react to gates(ci,(vis,gis))(rlf)(trm)
471 pre ci = ciE ∧ vis = visE ∧ gis = gisE

The calculator signature’s v c ch[ci,vi ] and g c ch[ci,gi ] model the embedded attribute sharing between

vehicles (their position), respectively gates (their vehicle identification) and the calculator road map [70,

Sect. 4.1.1 and 4.5.2].

474 If the communication is from a vehicle inside the toll-road net

475 then its toll-road net position, vp, is found from the road location function, rlf,
476 and the calculator resumes its work with the traffic map, trm, suitably updated,

477 otherwise the calculator resumes its work with no changes.

472 react to vehicles(ci,(vis,gis),vplf)(trm) ≡
472 let (vi,(τ,lpos)) = ⌈⌉⌊⌋{v c ch[ci,vi ]?|vi:VI•vi∈ vis} in

474 if vi ∈ dom trm
475 then let vp = vplf(lpos) in

476 calc(ci,(vis,gis),vplf)(trm†[vi7→trm 〈̂(τ,vp)〉 ]) end

477 else calc(ci,(vis,gis),vplf)(trm) end end

478 If the communication is from a gate,

479 then that gate is either an entry gate or an exit gate;

480 if it is an entry gate

481 then the calculator resumes its work with the vehicle (that passed the entry gate) now recorded, afresh,

in the traffic map, trm.

482 Else it is an exit gate and

483 the calculator concludes that the vehicle has ended its to-be-paid-for journey inside the toll-road net,

and hence to be billed;

484 then the calculator resumes its work with the vehicle now removed from the traffic map, trm.

473 react to gates(ci,(vis,gis),vplf)(trm) ≡
473 let (ee,(τ,(vi,li))) = ⌈⌉⌊⌋ {g c ch[ci,gi ]?|gi:GI•gi∈ gis} in

479 case ee of

480 ”Enter”→
481 calc(ci,(vis,gis),vplf)(trm∪[vi7→〈(τ,SonL(li))〉 ]),
482 ”Exit” →
483 billing(vi,trm(vi)̂ 〈(τ,SonL(li))〉);
484 calc(ci,(vis,gis),vplf)(trm\{vi}) end end

The above behaviour is the one for which we are to design software
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8.5.2 Derived Requirements

Definition: 92 Derived Perdurant: By a derived perdurant we shall understand a perdurant which

is not shared with the domain, but which focus on exploiting facilities of the software or hardware of the

machine

“Exploiting facilities of the software”, to us, means that requirements, imply the presence, in the machine,

of concepts (i.e., hardware and/or software), and that it is these concepts that the derived requirements
“rely” on. We illustrate all three forms of perdurant extensions: derived actions, derived events and derived

behaviours.

8.5.2.1 Derived Actions

Definition: 93 Derived Action: By a derived action we shall understand (a) a conceptual action

(b) that calculates a usually non-Boolean valued property from, and possibly changes to (c) a machine

behaviour state (d) as instigated by some actor

Requirements: Domain Requirements, Derived Action – Tracing Vehicles

Example 127 The example is based on the Road Pricing Calculator Behaviour of Example 126 on

Page 235. The “external” actor, i.e., a user of the Road Pricing Calculator system wishes to trace specific

vehicles “cruising” the toll-road. That user (a Road Pricing Calculator staff), issues a command to the

Road Pricing Calculator system, with the identity of a vehicle not already being traced. As a result the

Road Pricing Calculator system augments a possibly void trace of the timed toll-road positions of vehicles.

We augment the definition of the calculator definition Items 471–484, Pages 235–236.

485 Traces are modeled by a pair of dynamic attributes:
a as a programmable attribute, tra:TRA, of the set of identifiers of vehicles being traced,

and
b as a reactive attribute, vdu:VDU20, that maps vehicle identifiers into time-stamped se-

quences of simple vehicle positions, i.e., as a subset of the trm:TRM programmable
attribute.

486 The actor-to-calculator begin or end trace command, cmd:Cmd, is modeled as an au-
tonomous dynamic attribute of the calculator.

487 The calculator signature is furthermore augmented with the three attributes mentioned
above.

488 The occurrence and handling of an actor trace command is modeled as a non-deterministic
external choice and a react to trace cmd behaviour.

489 The reactive attribute value (attr vdu ch ?) is that subset of the traffic map (trm) which
records just the time-stamped sequences of simple vehicle positions being traced (tra).

type

485a TRA = VI-set

485b VDU = TRM
486 Cmd = BTr | ETr
486 BTr :: VI
486 ETr :: VI

value

487 calc: ci:CI×(vis:VI-set×gis:GI-set)→ RLF→ TRM→ TRA

472,473 in {v c ch[ci,vi ]|vi:VI•vi ∈ vis},
472,473 {g c ch[ci,gi ]|gi:GI•gi ∈ gis},
488,489 attr cmd ch,attr vdu ch Unit

471 calc(ci,(vis,gis))(rlf)(trm)(tra)≡
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472 react to vehicles(ci,(vis,gis),)(rlf)(trm)(tra)

473 ⌈⌉⌊⌋ react to gates(ci,(vis,gis))(rlf)(trm)(tra)

488 ⌈⌉⌊⌋ react to trace cmd(ci,(vis,gis))(rlf)(trm)(tra)

471 pre ci = ciE ∧ vis = visE ∧ gis = gisE

489 axiom � attr vdu ch[ci ]? = trm|tra

The 488,489 attr cmd ch,attr vdu ch of the calculator signature models the calculator’s external command and

visual display unit attributes.

490 The react to trace cmd alternative behaviour is either a ”Begin” or an ”End” request which identifies

the affected vehicle.

491 If it is a ”Begin” request

492 and the identified vehicle is already being traced then we do not prescribe what to do !

493 Else we resume the calculator behaviour, now recording that vehicle as being traced.

494 If it is an ”End” request

495 and the identified vehicle is already being traced then we do not prescribe what to do !

496 Else we resume the calculator behaviour, now recording that vehicle as no longer being traced.

490 react to trace cmd(ci,(vis,gis))(vplf)(trm)(tra) ≡
490 case attr cmd ch[ci ]? of

mkBTr(vi)→
491 if vi ∈ tra
492 then chaos

493 else calc(ci,(vis,gis))(vplf)(trm)(tra ∪ {vi}) end

mkETr(vi)→
494 if vi < tra
495 then chaos

496 else calc(ci,(vis,gis))(vplf)(trm)(tra\{vi}) end

490 end

The above behaviour, Items 471–496, is the one for which we are to design software

Example 127 exemplifies an action requirement as per definition 93: (a) the action is conceptual, it has no

physical counterpart in the domain; (b) it calculates (489) a visual display (vdu); (c) the vdu value is based

on a conceptual notion of traffic road maps (trm), an element of the calculator state; (d) the calculation is

triggered by an actor (attr cmd ch).

8.5.2.2 Derived Events

Definition: 94 Derived Event: By a derived event we shall understand (a) a conceptual event, (b)

that calculates a property or some non-Boolean value (c) from a machine behaviour state change

Requirements: Domain Requirements, Derived Event, Current Maximum Flow

Example 128 The example is based on the Road Pricing Calculator Behaviour of Examples 127

and 126 on Page 235. By “the current maximum flow” we understand a time-stamped natural number,

the number representing the highest number of vehicles which at the time-stamped moment cruised or

now cruises around the toll-road net. We augment the definition of the calculator definition Items 471–496,

Pages 235–238.

497 We augment the calculator signature with

498 a time-stamped natural number valued dynamic programmable attribute, (t:T,max:Max).
499 Whenever a vehicle enters the toll-road net, through one of its [entry] gates,

a it is checked whether the resulting number of vehicles recorded in the road traffic map is higher

than the hitherto max imum recorded number.
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b If so, that programmable attribute has its number element “upped” by one.

c Otherwise not.

500 No changes are to be made to the react to gates behaviour (Items 473–484 Page 236) when a vehicle

exits the toll-road net.

type

498 MAX = T × NAT

value

487,497 calc: ci:CI×(vis:VI-set×gis:GI-set)→ RLF→ TRM→ TRA→ MAX

472,473 in {v c ch[ci,vi ]|vi:VI•vi ∈ vis}, {g c ch[ci,gi ]|gi:GI•gi ∈ gis}, attr cmd ch,attr vdu ch Unit

473 react to gates(ci,(vis,gis))(vplf)(trm)(tra)(t,m)≡
473 let (ee,(τ,(vi,li))) = ⌈⌉⌊⌋{g c ch[ci,gi ]|gi:GI•gi∈ gis} in

479 case ee of

499 ”Enter”→
499 calc(ci,(vis,gis))(vplf)(trm∪[vi 7→〈(τ,SonL(li))〉 ])
499 (tra)(τ,if card dom trm=m then m+1 else m end),

500 ”Exit”→
500 billing(vi,trm(vi)̂ 〈(τ,SonL(li))〉);
500 calc(ci,(vis,gis))(vplf)(trm\{vi})(tra)(t,m) end

479 end

The above behaviour, Items 471 on Page 235 through 499c, is the one for which we are to design software

Example 128 exemplifies a derived event requirement as per Definition 94: (a) the event is conceptual, it

has no physical counterpart in the domain; (b) it calculates (499b) the max value based on a conceptual

notion of traffic road maps (trm), (c) which is an element of the calculator state.

8.5.2.3 No Derived Behaviours

There are no derived behaviours. The reason is as follows. Behaviours are associated with parts. A possibly

‘derived behaviour’ would entail the introduction of an ‘associated’ part. And if such a part made sense it

should – in all likelihood – already have been either a proper domain part or become a domain extension.

If the domain–to-requirements engineer insist on modeling some interface requirements as a process then

we consider that a technical matter, a choice of abstraction.

8.5.3 Discussion

8.5.3.1 Derived Requirements

Formulation of derived actions or derived events usually involves technical terms not only from the domain

but typically from such conceptual ‘domains’ as mathematics, economics, engineering or their visualisa-

tion. Derived requirements may, for some requirements developments, constitute “sizable” requirements

compared to “all the other” requirements. For their analysis and prescription it makes good sense to first

having developed “the other” requirements: domain, interface and machine requirements. The treatment of

the present chapter does not offer special techniques and tools for the conception, &c., of derived require-

ments. Instead we refer to the seminal works of [134, 264, 355].

8.5.3.2 Introspective Requirements

Humans, including human users are, in this chapter, considered to never be part of the domain for which a

requirements prescription is being developed. If it is necessary to involve humans in the domain description

or the requirements prescription then their prescription is to reflect assumptions upon whose behaviour the

machine rely. It is therefore that we, above, have stated, in passing, that we cannot accept requirements of

the kind: “the machine must be user friendly”, because, in reality, it means “the user must rely upon the
machine being ‘friendly’ ” whatever that may mean. We are not requirements prescribing humans, nor their

sentiments !
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8.6 Machine Requirements

Other than listing a sizable number of machine requirement facets we shall not cover machine requirements

in this chapter. The reason for this is as follows. We find, cf. [41, Sect. 19.6], that when the individual

machine requirements are expressed then references to domain phenomena are, in fact, abstract references,

that is, they do not refer to the semantics of what they name. Hence machine requirements “fall” outside

the scope of this chapter with that scope being “derivation” of requirements from domain specifications
with emphasis on derivation techniques that relate to various aspects of the domain.

(A) There are the technology requirements of (1) performance and (2) dependability . Within depend-
ability requirements there are (a) accessibility , (b) availability , (c) integrity , (d) reliability , (e) safety , (f)

security and (g) robustness requirements. A proper treatment of dependability requirements need a care-

ful definition of such terms as failure, error, fault, and, from these dependability. (B) And there are the

development requirements of (i) process, (ii) maintenance, (iii) platform , (iv) management and (v) docu-
mentation requirements. Within maintenance requirements there are (ii.1) adaptive, (ii.2) corrective, (ii.3)

perfective, (ii.4) preventive, and (ii.5) extensional requirements. Within platform requirements there are

(iii.1) development , (iii.2) execution , (iii.3) maintenance, and (iii.4) demonstration platform requirements.

We refer to [41, Sect. 19.6] for an early treatment of machine requirements.

8.7 Summary

8.7.1 Method Principles, Techniques and Tools

Recall that by a method we shall understand a set of principles for selecting and applying a set of tech-
niques using a set of tools in order to construct an artefact.

8.7.1.1 Principles of Requirements

Some of the principles applied in “deriving” requirements prescriptions from domain descriptions are:

Divide & Conquer : The separation into

• domain, • interface and • machine

requirements is an example of ‘divide & conquer’, as is their treatment in the order listed.

Refinement : “By and large” we see the ‘transformation’ of domain descriptions into requirements pre-

scriptions as a refinement though with some exceptional ‘deviations’. Instantiation is not a refinement.

Determination is. When we say ‘by and large’ we mean “when everything about a situation is consid-

ered together”. That is, not all the transformations of this chapter are refinements.

Conservative Extension : The extension(s), in our examples, in this chapter is/are an example of con-

servative extension(s), But there could be other forms of domain extensions which would not be con-

servative.

8.7.1.2 Techniques of Requirements

The basic technique, in all steps of domain and interface requirements, involve reconsidering the domain

sorts and types, then their well-formedness, then their mereologies, et cetera. Further techniques, i.e., sub-

techniques derive from that.

8.7.1.3 Tools of Requirements

The tools are the usual ones: informal, but disciplined narratives that are ‘fitted’ closely to the formalisa-

tions.
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8.7.2 Concluding Review

We conclude by briefly reviewing what has been achieved, present shortcomings & possible research chal-

lenges, and a few words on relations to “classical requirements engineering”.

8.7.2.1 What has been Achieved ?

We have shown how to systematically “derive” initial aspects of requirements prescriptions from domain

descriptions. The stages21 and steps22 of this “derivation”23 are new. We claim that current requirements

engineering approaches, although they may refer to a or the ‘domain’, are not really ‘serious’ about

this: they do not describe the domain, and they do not base their techniques and tools on a reasoned

understanding of the domain. In contrast we have identified, we claim, a logically motivated decomposition

of requirements into three phases, cf. Footnote 21., of domain requirements into five steps, cf. Footnote 22

(Page 241), and of interface requirements, based on a concept of shared entities, tentatively into (α) shared

endurants, (β ) shared actions, (γ) shared events, and (δ ) shared behaviours (with more research into the

(α-δ ) techniques needed).

8.7.2.2 Present Shortcomings and Research Challenges

We see three shortcomings: (1) The “derivation” techniques have yet to consider “extracting” requirements

from domain facet descriptions. Only by including domain facet descriptions can we, in “deriving” require-
ments prescriptions, include failures of, for example, support technologies and humans, in the design of

fault-tolerant software. (2) The “derivation” principles, techniques and tools should be given a formal

treatment. (3) There is a serious need for relating the approach of the present chapter to that of the seminal

text book of [355, Axel van Lamsweerde]. [355] is not being “replaced” by the present work. It tackles a

different set of problems. We refer to the penultimate paragraph before the Acknowledgment closing.

8.7.2.3 Comparison to “Classical” Requirements Engineering:

Except for a few, represented by two, we are not going to compare the contributions of the present chapter

with published journal or conference papers on the subject of requirements engineering. The reason for this

is the following. The present chapter, rather completely, we claim, reformulates requirements engineering,

giving it a ‘foundation’, in domain engineering , and then developing requirements engineering from there,

viewing requirements prescriptions as “derived” from domain descriptions. We do not see any of the papers,

except those reviewed below [256] and [134], referring in any technical sense to ‘domains’ such as we

understand them.

8.7.2.3.1 [256, Deriving Specifications for Systems That Are Connected to the Physical
World]

The paper that comes closest to the present chapter in its serious treatment of the [problem] domain as

a precursor for requirements development is that of [256, Jones, Hayes & Jackson]. A purpose of [256]

(Sect. 1.1, Page 367, last §) is to see “how little can one say” (about the problem domain) when expressing

assumptions about requirements. This is seen by [256] (earlier in the same paragraph) as in contrast to our

form of domain modeling. [256] reveals assumptions about the domain when expressing rely guarantees in

tight conjunction with expressing the guarantee (requirements). That is, analysing and expressing require-

ments, in [256], goes hand-in-hand with analysing and expressing fragments of the domain. The current

chapter takes the view that since, as demonstrated in [70], it is possible to model sizable aspects of domains,

then it would be interesting to study how one might “derive” — and which — requirements prescriptions

from domain descriptions; and having demonstrated that (i.e., the “how much can be derived”) it seems of

21 (a) domain, (b) interface and (c) machine requirements
22 For domain requirements: (i) projection, (ii) instantiation, (iii) determination, (iv) extension and (v) fitting; etc.
23 We use double quotation marks: “. . . ” to indicate that the derivation is not automatable.
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scientific interest to see how that new start (i.e., starting with a priori given domain descriptions or starting

with first developing domain descriptions) can be combined with existing approaches, such as [256]. We

do appreciate the “tight coupling” of rely–guarantees of [256]. But perhaps one looses understanding the

domain due to its fragmented presentation. If the ‘relies’ are not outright, i.e., textually directly expressed

in our domain descriptions, then they obviously must be provable properties of what our domain descrip-

tions express. Our, i.e., the present, chapter — with its background in Chapters 3–6 and [70, Sect. 4.7] —

develops — with a background in [252, M.A. Jackson] — a set of principles and techniques for the ac-

cess of attributes. The “discovery” of the CM and SG channels of [256] and of the type of their messages,

seems, compared to our approach, less systematic. Also, it is not clear how the [256] case study “scales” up

to a larger domain. The sluice gate of [256] is but part of a large (‘irrigation’) system of reservoirs (water

sources), canals, sluice gates and the fields (water sinks) to be irrigated. We obviously would delineate such

a larger system and research & develop an appropriate, both informal, a narrative, and formal domain de-

scription for such a class of irrigation systems based on assumptions of precipitation and evaporation. Then

the users’ requirements, in [256], that the sluice gate, over suitable time intervals, is open 20% of the time

and otherwise closed, could now be expressed more pertinently, in terms of the fields being appropriately

irrigated.

8.7.2.3.2 [134, Goal-directed Requirements Acquisition]

outlines an approach to requirements acquisition that starts with fragments of domain description. The

domain description is captured in terms of predicates over actors, actions, events, entities and (their) rela-
tions. Our approach to domain modeling differs from that of [134] as follows: Agents, actions, entities and

relations are, in [134], seen as specialisations of a concept of objects. The nearest analogy to relations, in

[70], as well as in this chapter, is the signatures of perdurants. Our ‘agents’ relate to discrete endurants, i.e.,

parts, and are the behaviours that evolve around these parts: one agent per part ! [134] otherwise include de-

scribing parts, relations between parts, actions and events much like [70] and this chapter does. [134] then

introduces a notion of goal . A goal, in [134], is defined as ′′a nonoperational objective to be achieved
by the desired system. Nonoperational means that the objective is not formulated in terms of objects and
actions “available” to some agent of the system 24′′ [134] then goes on to exemplify goals. In this, the

current chapter, we are not considering goals, also a major theme of [355].25 Typically the expression of

goals of [134, 355], are “within” computer & computing science and involve the use of temporal logic.26

′′Constraints are operational objectives to be achieved by the desired (i.e., required) system, . . . , formulated
in terms of objects and actions “available” to some agents of the system. . . . Goals are made operational
through constraints. . . . A constraint operationalising a goal amounts to some abstract “implementation”
of this goal ′′ [134]. [134] then goes on to express goals and constraints operationalising these. [134] is a

fascinating paper27 as it shows how to build goals and constraints on domain description fragments.

• • •

These papers, [256] and [134], as well as the current chapter, together with such seminal monographs as

[380, 301, 355], clearly shows that there are many diverse ways in which to achieve precise requirements

24 We have reservations about this definition: Firstly, it is expressed in terms of some of the “things” it is not ! (To

us, not a very useful approach.) Secondly, we can imagine goals that are indeed formulated in terms of objects

and actions ‘available’ to some agent of the system. For example, wrt. the ongoing library examples of [134], the

system shall automate the borrowing of books, et cetera. Thirdly, we assume that by “ ‘available’ to some agent of

the system” is meant that these agents, actions, entities, etc., are also required.
25 An example of a goal — for the road pricing system — could be that of shortening travel times of motorists, reducing

gasoline consumption and air pollution, while recouping investments on toll-road construction. We consider tech-

niques for ensuring the above kind of goals “outside” the realm of computer & computing science but “inside” the

realm of operations research (OR) — while securing that the OR models are commensurate with our domain models.
26 In this chapter we do not exemplify goals, let alone the use of temporal logic. We cannot exemplify all aspects of

domain description and requirements prescription, but, if we were, would then use the temporal logic of [380, The

Duration Calculus].
27 — that might, however, warrant a complete rewrite.
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prescriptions. The [380, 301] monographs primarily study the D ,S |= R specification and proof tech-

niques from the point of view of the specific tools of their specification languages28. Physics, as a natural

science, and its many engineering ‘renditions’, are manifested in many separate sub-fields: Electricity, me-

chanics, statics, fluid dynamics — each with further sub-fields. It seems, to this author, that there is a need

to study the [380, 301, 355] approaches and the approach taken in this chapter in the light of identifying

sub-fields of requirements engineering. The title of the present chapter suggests one such sub-field.

8.8 Bibliographical Notes

I have thought about domain engineering for more than 20 years. But serious, focused writing only started

to appear since [41, Part IV] — with [37, 34] being exceptions: [43] suggests a number of domain science

and engineering research topics; [52] covers the concept of domain facets; [82] explores compositionality

and Galois connections. [44, 81] show how to systematically, but, of course, not automatically, “derive”

requirements prescriptions from domain descriptions; [56] takes the triptych software development as a

basis for outlining principles for believable software management; [48, 61] presents a model for Stanisław

Leśniewski’s [115] concept of mereology; [53, 57] present an extensive example and is otherwise a precur-

sor for the present chapter; [58] presents, based on the TripTych view of software development as ideally

proceeding from domain description via requirements prescription to software design, concepts such as

software demos and simulators; [59] analyses the TripTych, especially its domain engineering approach,

with respect to [276, 277, Maslow]’s and [313, Peterson’s and Seligman’s]’s notions of humanity: how can

computing relate to notions of humanity; the first part of [62] is a precursor for [70] with the second part

of [62] presenting a first formal model of the elicitation process of analysis and description based on the

prompts more definitively presented in the current chapter; and with [63] focus on domain safety criticality.

8.9 Exercise Problems

8.9.1 Research Problems

Exercise 1. A Research Challenge. Bridge to The Hayes-Jackson-JonesApproach: We refer to

Pages 241–242. Study [256, Hayes, Jackson and Jones] and related papers. Then suggest ways and means

to incorporate their, the HJJ approach, with that of ours. Let either the HJJ be determining the approach

sequence or that of ours.

Exercise 2. A Research Challenge. Bridge to The LamsweerdeApproach: We refer to Pages 242–

242. Study [134, van Lamsweerde et al.] and related papers. Then suggest ways and means to incorporate

their, the KAOS approach, with that of ours. Let either the KAOS be determining the approach sequence or

that of ours.

Exercise 3. A Research Challenge. Bridge to Cyber-Physical Computing Systems: Study [301,

Olderog and Dierks] and related papers. Then suggest ways and means to incorporate their, the Olderog

et al. approach, with that of ours. Let either the Olderog et al. be determining the approach sequence

or that of ours.

8.9.2 Term Projects

We continue the term projects of Sects. 3.23.3 on Page 82, 4.12.3 on Page 122, 6.14.3 on Page 163,

and 7.11.2 on Page 195.

The students are to identify and analyse & describe at least three distinct requirements aspects of their

chosen domain:

28 The Duration Calculus [DC], respectively DC, Timed Automata and Z
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• domain requirements:

⋄⋄ projections,

⋄⋄ instantiations,

⋄⋄ determinations and

⋄⋄ extension; and

• interface requirements.

Exercise 47 An MSc Student Exercise. The Consumer Market, Requirements: We refer to

Exercise 4 on Page 83, 20 on Page 122, 31 on Page 163, and 40 on Page 195.

Exercise 48 An MSc Student Exercise. Financial Service Industry, Requirements: We refer

to Exercise 5 on Page 83, 21 on Page 123, 32 on Page 163, and 41 on Page 195.

Exercise 49 An MSc Student Exercise. Container Line Industry, Requirements: We refer to

Exercise 6 on Page 83, 22 on Page 123, 33 on Page 163, and 42 on Page 195.

Exercise 50 An MSc Student Exercise. Railway Systems, Requirements: We refer to Exercise 7

on Page 83, 23 on Page 123, 34 on Page 163, and 43 on Page 195.

Exercise 51 An MSc Student Exercise. Part-Material Conjoins: Pipelines, Requirements:

We refer to Appendix Chapter A.

Exercise 52 A PhD Student Problem. Part-Material Conjoins: Canals, Requirements: We

refer to Exercise 8 on Page 83, 24 on Page 123, 35 on Page 163, and 44 on Page 195.

Exercise 53 A PhD Student Problem. Part-Materials Conjoins: Rum Production, Require-
ments: We refer to Exercises 9 on Page 83, 25 on Page 123, 36 on Page 163 and 45 on Page 195.

Exercise 54 A PhD Student Problem. Part-Materials Conjoins: Waste Management, Re-
quirements: We refer to Exercise 10 on Page 83, 26 on Page 123, 37 on Page 163, and 46 on Page 195.
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9

DEMOS, SIMULATORS, MONITORS AND CONTROLLERS

In this chapter1 we muse over concepts of demos, simulators, monitors and controllers.

9.1 Introduction

We sketch some observations of the concepts of domain, requirements and modeling – where abstract inter-

pretations of these models cover both a priori, a posteriori and real-time aspects of the domain as well as 1–1

(i.e., real-time), microscopic and macroscopic simulations, real-time monitoring and real-time monitoring

& control of that domain. The reference frame for these concepts are domain models: carefully narrated and

formally described domains. On the basis of a familiarising example2 of a domain description, we survey

more-or-less standard ideas of verifiable software developments and conjecture software product families

of demos, simulators, monitors and monitors & controllers – but now these “standard ideas” are recast in

the context of core requirements prescriptions being “derived” from domain descriptions. A background

setting for this chapter is the concern for (α) professionally developing the right software, i.e., software

which satisfies users expectations, and (ω) software that is right: i.e., software which is correct with respect

to user requirements and thus has no “bugs”, no “blue screens”. The present chapter must be seen on the

background of a main line of experimental research around the topics of domain science & engineering

and requirements engineering and their relation. We refer to earlier chapters of this monograph.

9.1.0.0.1 “Confusing Demos”:

This author has had the doubtful honour, on his many visits to computer science and software engineering

laboratories around the world, to be presented, by his colleagues’ aspiring PhD students, so-called demos

of “systems” that they were investigating. There always was a tacit assumption, namely that the audience,

i.e., me, knew, a priori, what the domain “behind” the “system” being “demo’ed” was. Certainly, if there

was such an understanding, it was brutally demolished by the “demo” presentation. My questions, such as

“what are you demo’ing” (et cetera) went unanswered. Instead, while we were waiting to see “something

interesting” to be displayed on the computer screen we were witnessing frantic, sometimes failed, input

of commands and data, “nervous” attempts with “mouse” clickings, etc. – before something intended was

displayed. After a, usually 15 minute, grace period, it was time, luckily, to proceed to the next “demo”.

9.1.0.0.2 Aims & Objectives:

The aims of this chapter is to present (a) some ideas about software that either “demo”, simulate, monitor

or monitor & control domains; (b) some ideas about “time scaling”: demo and simulation time versus

domain time; and (c) how these kinds of software relate. The (undoubtedly very naı̈ve) objectives of the

chapter is also to improve the kind of demo-presentations, alluded to above, so as to ensure that the basis

for such demos is crystal clear from the very outset of research & development, i.e., that domains be well-

described. The chapter, we think, tackles the issue of so-called “model-oriented (or model-based) software

development” from altogether different angles than usually promoted.

1 This chapter is an edited rendition of [58]
2 – take that of Chapter 3
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9.1.0.0.3 An Exploratory Chapter:

The chapter is exploratory. There will be no theorems and therefore there will be no proofs. We are present-

ing what might eventually emerge into (α) a theory of domains, i.e., a domain science and (β ) a software

development theory of domain engineering versus requirements engineering.

The chapter is not a “standard” research chapter: it does not compare its claimed achievements with

corresponding or related achievements of other researchers – simply because we do not claim “achieve-

ments” which have been reasonably well formalised. But we would suggest that you might find some of

the ideas of the chapter (in Sect. 9.2) worthwhile. Hence the “divertimento” suffix to the chapter title.

9.1.0.0.4 Structure of Chapter:

The structure of the chapter is as follows. In Sect. 9.2 we then outline a series of interpretations of do-

main descriptions. These arise, when developed in an orderly, professional manner, from requirements pre-

scriptions which are themselves orderly developed from the domain description. The essence of Sect. 9.2

is (i) the (albeit informal) presentation of such tightly related notions as demos (Sect. 9.2.1), simula-
tors (Sect. 9.2.2 on the next page), monitors (Sect. 9.2.3.1 on Page 252) and monitors & controllers
(Sect. 9.2.3.2 on Page 252) (these notions can be formalised), and (ii) the conjectures on a product family

of domain-based software developments (Sect. 9.2.5 on Page 253). A notion of script-based simulation
extends demos and is the basis for monitor and controller developments and uses. The scripts used in our

examples are related to time, but one can define non-temporal scripts – so the “carrying idea” of Sect. 9.2

extends to a widest variety of software. We claim that Sect. 9.2 thus brings these new ideas: a tightly related

software engineering concept of demo-simulator-monitor-controller machines, and an extended notion of

reference models for requirements and specifications [185].

9.2 Interpretations

In this main section of the chapter we present a number of interpretations of rôles of domain descriptions.

9.2.1 What Is a Domain-based Demo?

A domain-based demo is a software system which “present” endurants and perdurants: actions, events

and behaviours of a domain. The “presentation” abstracts these phenomena and their related concepts in

various computer generated forms: visual, acoustic, etc.

9.2.1.1 Examples

There are two main examples. One was given in Chapter 3. The other is summarised below. It is from

Chapter 8 on “deriving requirements prescriptions from domain descriptions”. The summary follows.

The domain description of Sect. 8.2 outlines an abstract concept of transport nets (of hubs [street inter-

sections, train stations, harbours, airports] and links [road segments, rail tracks, shipping lanes, air-lanes]),

their development, traffic [of vehicles, trains, ships and aircraft], etc. We shall assume such a transport

domain description below.

Endurants are, for example, presented as follows: (a) transport nets by two dimensional (2D) road,

railway or air traffic maps, (b) hubs and links by highlighting parts of 2D maps and by related photos –

and their unique identifiers by labeling hubs and links, (c) routes by highlighting sequences of paths (hubs

and links) on a 2D map, (d) buses by photographs and by dots at hubs or on links of a 2D map, and (e) bus

timetables by, well, indeed, by showing a 2D bus timetable.

Actions are, for example, presented as follows: ( f ) The insertion or removal of a hub or a link by

showing “instantaneous” triplets of “before”, “during” and “after” animation sequences. (g) The start or

end of a bus ride by showing flashing animations of the appearance, respectively the flashing disappearance

of a bus (dot) at the origin, respectively the destination bus stops.
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Events are, for example, presented as follows: (h) A mudslide [or fire in a road tunnel, or collapse of a

bridge] along a (road) link by showing an animation of part of a (road) map with an instantaneous sequence

of (α) the present link , (β ) a gap somewhere on the link, (γ) and the appearance of two (“symbolic”) hubs

“on either side of the gap”. (i) The congestion of road traffic “grinding to a halt” at, for example, a hub, by

showing an animation of part of a (road) map with an instantaneous sequence of the massive accumulation

of vehicle dots moving (instantaneously) from two or more links into a hub.

Behaviours are, for example, presented as follows: (k) A bus tour: from its start, on time, or “there-

abouts”, from its bus stop of origin, via (all) intermediate stops, with or without delays or advances in

times of arrivals and departures, to the bus stop of destination (ℓ) The composite behaviour of “all bus

tours”, meeting or missing connection times, with sporadic delays, with cancellation of some bus tours,

etc. – by showing the sequence of states of all the buses on the net.

We say that behaviours (( j)–(ℓ)) are script-based in that they (try to) satisfy a bus timetable ((e)).

9.2.1.2 Towards a Theory of Visualisation and Acoustic Manifestation

The above examples shall serve to highlight the general problem of visualisation and acoustic manifesta-

tion. Just as we need sciences of visualising scientific data and of diagrammatic logics, so we need more
serious studies of visualisation and acoustic manifestation — so amply, but, this author thinks, inconsis-
tently demonstrated by current uses of interactive computing media.

9.2.2 Simulations

“Simulation is the imitation of some real thing, state of affairs, or process; the act of simulating something
generally entails representing certain key characteristics or behaviours of a selected physical or abstract
system” [Wikipedia] for the purposes of testing some hypotheses usually stated in terms of the model

being simulated and pairs of statistical data and expected outcomes.

9.2.2.1 Explication of Figure 9.1

Figure 9.1 on the next page attempts to indicate four things: (i) Left top: the rounded edge rectangle labeled

“The Domain” alludes to some specific domain (“out there”). (ii) Left middle: the small rounded rectangle

labeled “A Domain Description” alludes to some document which narrates and formalises a description

of “the domain”. (iii) Left bottom: the medium sized rectangle labeled “A Domain Demo based on the
Domain Description” (for short “Demo”) alludes to a software system that, in some sense (to be made

clear later) “simulates” “The Domain.” (iv) Right: the large rectangle (a) shows a horisontal time axis

which basically “divides” that large rectangle into two parts: (b) Above the time axis the “fat” rounded

edge rectangle alludes to the time-wise behaviour, a domain trace, of “The Domain” (i.e., the actual, the

real, domain). (c) Below the time axis there are eight “thin” rectangles. These are labels S1, S2, S3, S4,
S5, S6, S7 and S8. (d) Each of these denote a “run”, i.e., a time-stamped “execution”, a program trace,

of the “Demo”. Their “relationship” to the time axis is this: their execution takes place in the real time as

related to that of “The Domain” behaviour.

A trace (whether a domain or a program execution trace) is a time-stamped sequence of states: domain

states, respectively demo, simulator, monitor and monitor & control states.

From Fig. 9.1 on the following page and the above explication we can conclude that “executions” S4
and S5 each share exactly one time point, t, at which “The Domain” and “The Simulation” “share” time,

that is, the time-stamped execution S4 and S5 reflect a “Simulation” state which at time t should reflect

(some abstraction of) “The Domain” state.

Only if the domain behaviour (i.e., trace) fully “surrounds” that of the simulation trace, or, vice-versa

(cf. Fig. 9.1[S4,S5]), is there a “shared” time. Only if the ‘begin’ and ‘end’ times of the domain behaviour

are identical to the ‘start’ and ‘finish’ times of the simulation trace, is there an infinity of shared 1–1 times.

Only then do we speak of a real-time simulation.

In Fig 9.2 on Page 251 we show “the same” “Domain Behaviour” (three times) and a (1) simulation, a

(2) monitoring and a (3) monitoring & control, all of whose ‘begin/start’ (b/β ) and ‘end/finish’ (e/ε) times
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Fig. 9.1. Simulations

coincide. In such cases the “Demo/Simulation” takes place in real-time throughout the ‘begin· · · · · ·end’

interval.

Let β and ε be the ‘start’ and ‘finish’ times of either S4 or S5. Then the relationship between t,β ,ε ,

b and e is t−b
e-t = t−β

ε−t
— which leads to a second degree polynomial in t which can then be solved in the

usual, high school manner.

9.2.2.2 Script-based Simulation

A script-based simulation is the behaviour, i.e., an execution, of, basically, a demo which, step-by-step,

follows a script: that is a prescription for highlighting endurants, actions, events and behaviours.

Script-based simulations where the script embodies a notion of time, like a bus timetable, and unlike

a route, can be thought of as the execution of a demos where “chunks” of demo operations take place in

accordance with “chunks”3 of script prescriptions. The latter (i.e., the script prescriptions) can be said to

represent simulated (i.e., domain) time in contrast to “actual computer” time. The actual times in which the

script-based simulation takes place relate to domain times as shown in Simulations S1 to S8 in Fig. 9.1

and in Fig. 9.2(1–3). Traces Fig. 9.2(1–3) and S8 Fig. 9.1 are said to be real-time: there is a one-to-

one mapping between computer time and domain time. S1 and S4 Fig. 9.1 are said to be microscopic:
disjoint computer time intervals map into distinct domain times. S2, S3, S5, S6 and S7 are said to be

macroscopic: disjoint domain time intervals map into distinct computer times.

In order to concretise the above “vague” statements let us take the example of simulating bus traffic

as based on a bus timetable script. A simulation scenario could be as follows. Initially, not relating to any

domain time, the simulation “demos” a net, available buses and a bus timetable. The person(s) who are

requesting the simulation are asked to decide on the ratio of the domain time interval to simulation time

interval. If the ratio is 1 a real-time simulation has been requested. If the ratio is less than 1 a microscopic

simulation has been requested. If the ratio is larger than 1 a microscopic simulation has been requested. A

chosen ratio of, say 48 to 1 means that a 24 hour bus traffic is to be simulated in 30 minutes of elapsed

simulation time. Then the person(s) who are requesting the simulation are asked to decide on the starting

domain time, say 6:00am, and the domain time interval of simulation, say 4 hours – in which case the

simulation of bus traffic from 6am till 10am is to be shown in 5 minutes (300 seconds) of elapsed simulation

time. The person(s) who are requesting the simulation are then asked to decide on the “sampling times” or

“time intervals” : If ‘sampling times’ 6:00 am, 6:30 am, 7:00 am, 8:00 am, 9:00 am, 9:30 am and 10:00 am

are chosen, then the simulation is stopped at corresponding simulation times: 0 sec., 37.5 sec., 75 sec.,

150 sec., 225 sec., 262.5 sec. and 300 sec. The simulation then shows the state of selected endurants and

actions at these domain times. If ‘sampling time interval’ is chosen and is set to every 5 min., then the

3 We deliberately leave the notion of chunk vague so as to allow as wide an spectrum of simulations.

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



9.2 Interpretations 251

simulation shows the state of selected endurants and actions at corresponding domain times. The simulation

is resumed when the person(s) who are requesting the simulation so indicates, say by a “resume” icon click.

The time interval between adjacent simulation stops and resumptions contribute with 0 time to elapsed

simulation time – which in this case was set to 5 minutes. Finally the requestor provides some statistical

data such as numbers of potential and actual bus passengers, etc.

Then two clocks are started: a domain time clock and a simulation time clock. The simulation proceeds

as driven by, in this case, the bus time table. To include “unforeseen” events, such as the wreckage of a bus

(which is then unable to complete a bus tour), we allow any number of such events to be randomly sched-

uled. Actually scheduled events “interrupts” the “programmed” simulation and leads to thus unscheduled

stops (and resumptions) where the unscheduled stop now focuses on showing the event.

9.2.2.3 The Development Arrow

The arrow, , between a pair of boxes (of Fig. 9.1 on the facing page) denote a step of development: (i)

from the domain box to the domain description box, , it denotes the development of a domain description

based on studies and analyses of the domain; (ii) from the domain description box to the domain demo box,

, it denotes the development of a software system — where that development assumes an intermediate

requirements box which has not been show; (iii) from the domain demo box to either of a simulation

traces, , it denotes the development of a simulator as the related demo software system, again depending

on whichever special requirements have been put to the simulator.

9.2.3 Monitoring & Control

Figure 9.2 shows three different kinds of uses of software systems where (2) [Monitoring] and (3)

[Monitoring & Control] represent further developments from the demo or simulation software system

mentioned in Sect. 9.2.1 and Sect. 9.2.2.2 on the facing page. We have added some (three) horisontal and

q

p p

q

mi mj mi mj mk

r r

cx cy

mk

p

q
r

Real−time

Simulation

(1)

p

q

r

p
r
q

Real−time
Monitoring

(2) Real−time
Monitoring & Control

(3)

Legend: mi,mj,...,mk: monitorings; cx,...,cy: controls

Fig. 9.2. Simulation, Monitoring and Monitoring & Control

labeled (p, q and r) lines to Fig. 9.2(1,2,3) (with respect to the traces of Fig. 9.1 on the facing page). They

each denote a trace of a endurant, an action or an event, that is, they are traces of values of these phenomena

or concepts. A (named) endurant value entails a description of the endurant, whither atomic (‘hub’, ‘link’,

‘bus timetable’) or composite (‘net’, ‘set of hubs’, etc.): of its unique identity, its mereology and a selection
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of its attributes. A (named) action value could, for example, be the pair of the before and after states of the

action and some description of the function (‘insertion of a link’, ‘start of a bus tour’) involved in the action.

A (named) event value could, for example, be a pair of the before and after states of the endurants causing,

respectively being effected by the event and some description of the predicate (‘mudslide’, ‘break-down of

a bus’) involved in the event. A cross section, such as designated by the vertical lines (one for the domain

trace, one for the “corresponding” program trace) of Fig. 9.2 on the previous page(1) denotes a state: a

domain, respectively a program state.

Figure 9.2(1) attempts to show a real-time demo or simulation for the chosen domain. Figure 9.2(2) pur-

ports to show the deployment of real-time software for monitoring (chosen aspects of) the chosen domain.

Figure 9.2(3) purports to show the deployment of real-time software for monitoring as well as controlling

(chosen aspects of) the chosen domain.

9.2.3.1 Monitoring

By domain monitoring we mean “to be aware of the state of a domain”, its endurants, actions, events and

behaviour. Domain monitoring is thus a process, typically within a distributed system for collecting and

storing state data. In this process “observation” points — i.e., endurants, actions and where events may oc-

cur — are identified in the domain, cf. points p, q and r of Fig. 9.2. Sensors are inserted at these points. The

“downward” pointing vertical arrows of Figs. 9.2(2–3), from “the domain behaviour” to the “monitoring”

and the “monitoring & control” traces express communication of what has been sensed (measured, pho-

tographed, etc.) [as directed by and] as input data (etc.) to these monitors. The monitor (being “executed”)

may store these “sensings” for future analysis.

9.2.3.2 Control

By domain control we mean “the ability to change the value” of endurants and the course of actions and

hence behaviours, including prevention of events of the domain. Domain control is thus based on domain

monitoring. Actuators are inserted in the domain “at or near” monitoring points or at points related to

these, viz. points p and r of Fig. 9.2 on the preceding page(3). The “upward” pointing vertical arrows

of Fig. 9.2 on the previous page(3), from the “monitoring & control” traces to the “domain behaviour”

express communication, to the domain, of what has been computed by the controller as a proper control

reaction in response to the monitoring.

9.2.4 Machine Development

9.2.4.1 Machines

By a machine we shall understand a combination of hardware and software. For demos and simulators
the machine is “mostly” software with the hardware typically being graphic display units with tactile in-

struments. For monitors the “main” machine, besides the hardware and software of demos and simulators,

additionally includes sensors distributed throughout the domain and the technological machine means of

communicating monitored signals from the sensors to the “main” machine and the processing of these sig-

nals by the main machine. For monitors & controllers the machine, besides the monitor machine, further

includes actuators placed in the domain and the machine means of computing and communicating control

signals to the actuators.

9.2.4.2 Requirements Development

Essential parts ofRequirements to aMachine can be systematically “derived” from aDomain description.

These essential parts are the domain requirements and the interface requirements. Domain requirements

are those requirements which can be expressed, say in narrative form, by mentioning technical terms only

of the domain. These technical terms cover only phenomena and concepts (endurants, actions, events and
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behaviours) of the domain. Some domain requirements are projected, instantiated, made more determinis-
tic and extended 4. We bring examples that are taken from Sect. 8.2, cf. Sect. 9.2.1.1 on Page 248 of the

present chapter. (a) By domain projection we mean a sub-setting of the domain description: parts are left

out which the requirements stake-holders, collaborating with the requirements engineer, decide is of no rel-

evance to the requirements. For our example it could be that our domain description had contained models

of road net attributes such as “the wear & tear” of road surfaces, the length of links, states of hubs and

links (that is, [dis]allowable directions of traffic through hubs and along links), etc. Projection might then

omit these attributes. (b) By domain instantiation we mean a specialisation of endurants, actions, events

and behaviours, refining them from abstract simple entities to more concrete such, etc. For our example it

could be that we only model freeways or only model road-pricing nets – or any one or more other aspects.

(c) By domain determination we mean that of making the domain description cum domain requirements

prescription less non-deterministic, i.e., more deterministic (or even the other way around !). For our exam-

ple it could be that we had domain-described states of street intersections as not controlled by traffic signals

– where the determination is now that of introducing an abstract notion of traffic signals which allow only

certain states (of red, yellow and green). (d) By domain extension we basically mean that of extending the

domain with phenomena and concepts that were not feasible without information technology. For our ex-

amples we could extend the domain with bus mounted GPS gadgets that record and communicate (to, say

a central bus traffic computer) the more-or-less exact positions of buses – thereby enabling the observation

of bus traffic. Interface requirements are those requirements which can be expressed, say in narrative form,

by mentioning technical terms both of the domain and of the machine. These technical terms thus cover

shared phenomena and concepts, that is, phenomena and concepts of the domain which are, in some sense,

also (to be) represented by the machine. Interface requirements represent (i) the initialisation and “on-the-

fly” update of machine endurants on the basis of shared domain endurants; (ii) the interaction between

the machine and the domain while the machine is carrying out a (previous domain) action; (iii) machine

responses, if any, to domain events — or domain responses, if any, to machine events cum “outputs”; and

(iv) machine monitoring and machine control of domain phenomena. Each of these four (i–iv) interface

requirement facets themselves involve projection, instantiation, determination, extension and fitting. Ma-

chine requirements are those requirements which can be expressed, say in narrative form, by mentioning

technical terms only of the machine. (An example is: visual display units.)

9.2.5 Verifiable Software Development

9.2.5.1 An Example Set of Conjectures

We illustrate some conjectures.

(A) From a domain, D , one can develop a domain description D. D cannot be [formally] verified. It

can be [informally] validated “against” D . Individual properties, PD, of the domain description D and

hence, purportedly, of the domain, D , can be expressed and possibly provedD |= PD and these may be

validated to be properties of D by observations in (or of) that domain.

(B) From a domain description, D, one can develop requirements, RDE , for, and from RDE one can

develop a domain demo machine specificationMDE such thatD,MDE |= RDE. The formulaD,M |= R
can be read as follows: in order to prove that theMachine satisfies the Requirements, assumptions about

theDomain must often be made explicit in steps of the proof.

(C) From a domain description, D, and a domain demo machine specification, SDE, one can develop

requirements,RSI , for, and from such aRSI one can develop a domain simulator machine specificationMSI

such that (D;MDE),MSI |= RSI . We have “lumped” (D;MDE) as the two constitute the extended domain

for which we, in this case of development, suggest the next stage requirements and machine development

to take place.

(D) From a domain description,D, and a domain simulator machine specification,MSI , one can develop

requirements, RMO , for, and from such a RMO one can develop a domain monitor machine specification

MMO such that (D;MSI),MMO |= RMO .

4 We omit consideration of fitting.
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(E) From a domain description,D, and a domain monitor machine specification,MMO , one can develop

requirements, RMC , for, and from such a RMC one can develop a domain monitor & controller machine

specificationMMC such that (D;MMO),MMC |= RMC .

9.2.5.2 Chains of Verifiable Developments

The above illustrated just one chain (A–E) of developments. There are others. All are shown in Fig. 9.3.
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Legend:D domain, R requirements,M machine

DE:DEMO, SI: SIMULATOR, MO: MONITOR, MC: MONITOR & CONTROLLER

Fig. 9.3. Chains of Verifiable Developments

Figure 9.3 can also be interpreted as prescribing a widest possible range of machine cum software products

[105, 317] for a given domain. One domain may give rise to many different kinds of DEmo machines,

SImulators, MOnitors and Monitor & Controllers (the unprimed versions of the MT machines (where T

ranges over DE, SI, MO, MC)). For each of these there are similarly, “exponentially” many variants of

successor machines (the primed versions of the MT machines). What does it mean that a machine is a

primed version? Well, here it means, for example, thatM′SI embodies facets of the demo machineMDE,

and thatM′′′MC embodies facets of the demo machineMDE, of the simulatorM′SI , and the monitorM′′MO .

Whether such requirements are desirable is left to product customers and their software providers [105, 317]

to decide.

9.3 Summary

Our divertimento is almost over. It is time to conclude.

9.3.1 What Have We Achieved

We have characterised a spectrum of strongly domain-related as well as strongly inter-related (cf. Fig. 9.3)

software product families: demos, simulators, monitors and monitor & controllers. We ave indicated vari-

eties of these: simulators based on demos, monitors based on simulators, monitor & controllers based on

monitors, in fact any of the latter ones in the software product family list as based on any of the earlier ones.

We have sketched temporal relations between simulation traces and domain behaviours: a priori, a poste-
riori, macroscopic and microscopic, and we have identified the real-time cases which lead on to monitors

and monitor & controllers.
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9.3.2 What Have We Not Achieved — Some Conjectures

We have not characterised the software product family relations other than by the D,M |= R and

(D;MXYZ),M |= R clauses. That is, we should like to prove conjectured type theoretic inclusion rela-

tions like:

℘([[MXmod ext.
]])⊒℘([[M

′...′

Xmod ext.
]]), ℘([[M

′...′

Xmod ext.
]])⊒℘([[M

′′....′

Xmod ext.
]])

where X and Y range appropriately, where [[M ]] expresses the meaning of M , where ℘([[M ]]) denote the

space of all machine meanings and where ℘([[Mxmod ext.
]]) is intended to denote that space modulo (“free

of”) the y facet (here ext., for extension).

That is, it is conjectured that the set of more specialised, i.e., n primed, machines of kind x is type

theoretically “contained” in the set of m primed (unprimed) x machines (0≤ m < n).

There are undoubtedly many such interesting relations between the DEMO, SIMULATOR, MONITOR

and MONITOR & CONTROLLER machines, unprimed and primed.

9.3.3 What Should We Do Next ?

This chapter has the subtitle: A Divertimento of Ideas and Suggestions. It is not a proper theoretical chapter.

It tries to throw some light on families and varieties of software, i.e., their relations. It focuses, in particular,

on so-called DEMO, SIMULATOR, MONITOR and MONITOR & CONTROLLER software and their relation

to the “originating” domain, i.e., that in which such software is to serve, and hence that which is being

extended by such software, cf. the compounded ‘domain’ (D;Mi) of in (D;Mi),M j |=D. These notions

should be studied formally. All of these notions: requirements projection, instantiation, determination and

extension can be formalised. The specification language, in the form used here (without CSP processes,

[238]) has a formal semantics and a proof system So the various notions of development, (D;Mi),M j |=R
and ℘(M) can be formalised.
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WINDING UP

We briefly (i) summarise key concepts of the intrinsics of domain analysis & description, domain
facets, requirements engineering; (ii) put forward a number of diverse observations; (iii) and finally
quote Tony Hoare’s observations on domain engineering.

10.1 Programming Languages and Domains

In the quest for precise understanding of programming languages one studies formal syntax and formal

semantics for and of these. A programming language is a ‘language’ “spoken” by and “written in” by

programmers. The domain analysis & description that we have here pursued has been done so in a quest

to understand the language spoken amongst professionals of the domain being modelled. In that sense

the two endeavours ‘parallel’. The IBM Vienna Labor, from around the mid 1960s to a little beyond

the mid 1970s, was a unique center for the study and practice of programming language semantics. One

early achievement is reflected in the first conference on Formal Language Description Languages [350].

Subsequent achievements were [23, 24, 25, 22]. This author was only there for a short period of two

years, 1973–1975. They have determined, to this day, my professional, scientific and engineering focus

and direction. I am deeply indebted to colleagues such as the late Peter Lucas, to Kurt Walk, and to Cliff
Jones.

10.2 Summary of Chapters 3–6

We refer to the main, the full endurant/perdurant ontology, diagram, Fig. 3.1 on Page 44.

Now re-explain what is going on, method-wise, with respect to that diagram, including how the internal

qualities glue it all together.

10.2.1 Chapter 3: External Qualities

The left side of the diagram, labeled external qualities, takes up a sizable area of the whole. It designates

our tackling the analysis of the external qualities of endurants first. The aim of that analysis is to uncover

the entire collection of all observable endurants of a domain. One does so by asking questions of inspected

entities as suggested by the analysis prompts. And when this analysis end up with

• atomic,

• composite,

• part-materials,

• material-parts,

• part-parts conjoins and

• material

endurants, one applies a description prompt and starts all over again with analysis and description till

all endurants have been external quality-analysed and described, and one is ready to analyse & describe

internal qualities.



258 10 WINDING UP

10.2.2 Chapter 4: Internal Qualities

The bottom side of Fig. 3.1 on Page 44, labeled internal qualities, takes up a not so visible area of the

whole. But it reflects every bit as an important aspect of domain science & engineering. It designates our

tackling the analysis of the internal qualities of endurants in the order unique identifiers, mereologies and

attributes in the order, “strictly” (!). The internal qualities is what gives “meaning” to endurants.

10.2.3 Chapter 5: Transcendentality

Transcendentality represents a new way of looking at domain description. Before, we claim, there were

endurants and perdurants; with no “obvious connection”. Now, we claim, perdurants are transcendentally

related to endurants; and strongly so.

10.2.4 Chapter 6: Perdurants

The deduction of behaviours from parts marks a major contribution of domain analysis & description. The

deduction of behaviour signature and definition elements such as channels from mereologies, values from

static attributes, state variables in the form of “update-able” parameters from programmable attributes,

and part variables and their access (and possible update) from other dynamic attributes, marks another

contribution of domain analysis & description.

10.3 A Final Summary of Triptych Concepts

The “near exhaustive” summary listings that now follow serve the purpose of reminding the reader of the

rather large, perhaps even “exhausting” set of new terms, each to be appropriated thoroughly and now

applied !

10.3.1 The Intrinsics of Domain Analysis & Description

This is a summary of the calculi of Chapters 3–6. There are the following issues to be dealt with in an anal-

ysis & description of the intrinsics of domain analysis & description, and in the transcendental deduction

of parts into behaviours.

• External qualities: Chapter 3, pp. 39–42

⋄⋄ The Analysis Prompts:
◦◦ Entities Sect. 3.5, pp. 43–46

◦◦ Endurants and Perdurants Sect. 3.6, pp. 47–48

◦◦ Endurants: Discrete and Continuous Sect. 3.7, pp. 48–49

◦◦ Discrete Endurants: Physical Parts, Structures and Living Species Sect. 3.8, pp. 49–51

◦◦ Physical Parts: Natural Parts and Artefacts Sect. 3.9, pp. 51–52

◦◦ Physical Parts: Structures Sect. 3.10, pp. 52–53

◦◦ Physical Parts: Living Species – Plants and Animals Sect. 3.11, pp. 53–54

◦◦ Continuous Endurants: Materials Sect. 3.12, pp. 55–55

◦◦ Natural Parts and Artefacts: Atomic, Composite, Concrete and Conjoins Sect. 3.13, pp. 55–61

⋄⋄ The Description Prompts:
◦◦ Endurant Observers Sect. 3.16, pp. 65–73

• Internal Qualities: Chapter 4, pp. 85–85

⋄⋄ Unique Identifiers Sect. 4.2, pp. 85–89

⋄⋄ Mereology Sect. 4.3, pp. 89–95

⋄⋄ Attributes Sect. 4.4, pp. 95–111

⋄⋄ Intentionality Sect. 4.5, pp. 112–115

• Transcendental Deduction Chapter 5, pp. 125–126
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• Perdurants: Chapter 6, pp. 127–127

⋄⋄ States and Time Sect. 6.2, pp. 127–128

⋄⋄ Actors, Actions, Events and Behaviours Sect. 6.3, pp. 129–130

⋄⋄ Channels and Communication Sect. 6.5, pp. 135–138

⋄⋄ Perdurant Signatures Sect. 6.6, pp. 138–142

⋄⋄ Discrete Behaviour Signatures Sect. 6.7, pp. 142–147

⋄⋄ Discrete Behaviour Definitions Sect. 6.3.4, pp. 129–154

⋄⋄ Discrete Actions Sect. 6.10, pp. 154–157

⋄⋄ Discrete Events Sect. 6.11, pp. 157–158

10.3.2 Domain Facets

This is a summary of Chapter 7. We have not put forward any kind of calculi for the analysis & description

of domain facets; the facets have emerged empirically.

• Domain Facets: Chapter 7, pp. 165–166

⋄⋄ Intrinsics Sect. 7.2, pp. 166–169

⋄⋄ Support Technologies Sect. 7.3, pp. 169–173

⋄⋄ Rules & Regulations Sect. 7.4, pp. 173–175

⋄⋄ Scripts Sect. 7.5, pp. 175–177

⋄⋄ License Languages Sect. 7.6, pp. 177–186

⋄⋄ Management & Organisation Sect. 7.7, pp. 186–190

⋄⋄ Human Behaviour Sect. 7.8, pp. 190–192

10.3.3 Requirements

This is a summary of Chapter 8. There are the following issues to be dealt with when using this monograph’s

approach to requirements engineering.

• Requirements Chapter 8, pp. 199–200, pp. 210–214

⋄⋄ Domain Requirements Sect. 8.4, pp. 214–214

◦◦ Domain Projection Sect. 8.4.1, pp. 215–218

◦◦ Domain Instantiation Sect. 8.4.2, pp. 218–221

◦◦ Domain Determination Sect. 8.4.3, pp. 221–223

◦◦ Domain Extension Sect. 8.4.4, pp. 223–230

◦◦ Requirements Fitting Sect. 8.4.5, pp. 230–230

⋄⋄ Interface and Derived Requirements Sect. 8.5, pp. 231–239

⋄⋄ Machine Requirements Sect. 8.6, pp. 240–240

The 10 page example of Sect. 8.2 (pp. 200–209), is “only” a backdrop for the examples of the specific

requirements sections; as such it does not reveal any requirements issues.

10.4 Systems Development

We see computing systems development as comprising the development of hardware and software. For

software that comprises the development of, or reliance on existing, appropriate domain descriptions; the

development of requirements prescriptions based on these domain models – including but not shown in this

monograph, the analysis and prescription of unchanged or changed business processes also known as

business process re-engineering [198, 197, 244, 250]. In the context of formal requirements development

we refer to [41, Sect. 19.3: Business Process Reengineering Requirements]. There is a whole new di-

mension, we claim, to business process engineering and re-engineering (BPE&BPR) in the light of domain
analysis & description. Yes, we suggest that someone reviews the possible foundation for BPE&BPR.
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10.5 On How to Conduct a Domain Analysis & Description Project

We have established a scientific & engineering discipline of domain analysis & description, part II, and of

domain requirements, Chapter 8. We have shown, in the very many examples of this monograph and in

quite a collection of experimental studies [80], that that discipline can be applied; but can it be applied just

because the reader has now studied that discipline ? What is not covered in this monograph is the practical

aspects of carrying out the “theory & practice” of constructing domain models. We shall, in itemized form,

suggest an approach that we have applied for over 50 years, since the 1973–1975 PL/I compiler project

at the IBM Vienna Laboratory; in the CHILL [193] and Ada [91, 92, 127, 300] compiler development

projects at The Dansk Datamatik Center, DDC in the 1980s and more.

• It is assumed that you have a team of, for example, 5–7 professional software engineers, persons well-

versed1 in the concepts and method of for example [39, 40, 41] as well, now, of this monograph.

• First you set aside a month-long, preliminary study of the domain at hand: not a study where you

neither analyse nor describe the domain, just a simple literature study, using, for example also the

Internet.

• Then you conduct, say over a three month period, an experimental domain analysis & description.

⋄⋄ One purpose of this experiment is to test whether an assumed set of analysis & description prompts

“will do the trick”, or whether the project must revise the upper ontology for that domain.

⋄⋄ Another purpose is to structure the project group. During the experiment some first thoughts on

major endurants should emerge – and the project group structured accordingly: one project member

per major, often composite, part to be responsible for all aspects of the analysis & description of

that part – and its composites. On a rotating shift basis other project members shall act as reviewers

of each others’ work.

• Then the project can enter its application stage.2

⋄⋄ The external qualities step of the domain analysis & description mainly consists of the Endurant

Observers , Sect. 3.16 step. It is the first serious step. It is to be followed by the next steps in strict

order.

◦◦ The unique identifier step, Sect. 4.2, in which unique identifiers for all relevant endurant cate-

gories are settled.

◦◦ The mereology step, Sect. 4.3, in which the mereology for all relevant endurant categories are

settled. This is a crucial step. Care must be taken. This step requires intensive interaction be-

tween project members. We advice that each project member “play around” with mereology

invariants.

◦◦ The attributes step, Sect. 4.4, in which attributes for all relevant endurant categories are settled.

This step is less interaction-intensive – although those attributes which shall later form the basis

for work on intentionalities do require some interaction.

◦◦ The intentionality step, Sect. 4.5, has an as yet not fully understood element of engineering

research. It completes the first iteration of work on internal qualities.

⋄⋄ The first iteration of work on both external and internal qualities will usually be followed by several

further such iterations – in between the next steps.

⋄⋄ These next steps are those of transcendental deductive work on perdurants – also to be pursued in

“strict order”.

◦◦ In the states step, see Sect. 6.2, we value define states of all invariants, ... .

◦◦ In the channels and communication , see Sect. 6.5,

◦◦ In the perdurant signatures, Sect. 6.6,

◦◦ In the discrete behaviour definitions, see Sect. 6.3.4,

◦◦ In the discrete action behaviour definitions, see Sect. 6.10,

◦◦ In the discrete event behaviour definitions, see Sect. 6.11,

1 That is: they have a reasonably qualified knowledge of this monograph, can apply this knowledge, have a reasonably

qualified knowledge of discrete mathematics, of mathematical logic for computing scientists, formal methods, func-

tional, logic, imperative and parallel programming, and posses both analytic skills and master their mother tongue

and English, if it is not their mother tongue.
2 We refer to this study, experiment, apply triplet as SEA.
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◦◦ And in a final channel message type step we secure that all channel declarations and messages

are properly typed.

• Work on the above phases and steps form a major part of domain analysis & description projects.

10.6 On Domain Specific Languages

Definition: 95 Domain Specific Language: A domain specific language is a language whose

semantic domains are analysed & described in a domain analysis & description

The semantic domains of a formal language are the types of the meaning of that language’s combinators,

operators, etc.

That is, to define a domain specific language, a DSL, we need first analyse & describe that domain

in sufficient generality; then identify such core combinators and operators on which to base a language

design. We refer to Sect. 7.6.3 for examples of fragments of DSLs.

The literature on DSL is, to us, large and confused, so we omit bringing references. We did, however,

bring an analysis of some of the DSL in [70, Sect. 5.3.1 item 5].

10.7 Some Concluding Observations

We dispense of a few observations.

10.7.0.0.0.1 Fuzzy Characterisations and Definitions: The delineations between ’principles’ (Item 43

on Page 7), ’techniques’ (Item 44 on Page 7), and ’tools’ (Item 45 on Page 7) are not fully satisfactory.

We have, however, maintained and, as best we could, followed our definition of ’method’. In the various

chapters method summary sections we have then, by example, exemplified these three, the principle, the

technique and the tool definitions. More generally we distinguish between a definition and a characterisa-

tion, and between formal and informal definitions. The definitions of all analysis and description prompts

were informal. There is not much else we could have done. The target of the domain analysis & descrip-

tion inquiry is, by necessity, informal in the sense that there are no a priori established domain theories —

unlike when computer scientists inquire of their “domain” the computing devices, algorithms, languages

for which they have, or do set up precise mathematical models, at their own will.

10.7.0.0.0.2 Narration versus Formalisation: The narration and formalisation paradigm exhibits the

characterisation, informal and formal definition issue mentioned just above. To make narratives precise

seems to be an art. There is an interplay between the processes of narration and formalisation. A good

outcome is achieved when a beautiful formalisation helps make the narrative precise and beautiful.

10.7.0.0.0.3 Modularisation: By a text module we shall, informally mean a clearly delineated text

which denotes a simple complex quantity such as an endurant part with all its external and internal quali-

ties and the corresponding perdurant behaviour. So far our domain specifications have been one big, “flat

unstructured” list of type and value definitions, and channel and variable declarations. We could

have availed ourselves of RSL’s schema, class and object text structuring facility. But, except for one

example, Example 87 on Page 166, we have not !

10.8 Tony Hoare’s Reaction to ‘Domain Modelling’

We close this monograph as we opened it: As the first item of this monograph Item 1 on Page 3, we

quoted Tony Hoare. It is likewise fitting to bring as final text also a quote from his hand. In a 2006 e-

mail, in response, undoubtedly to my steadfast – perhaps conceived as stubborn – insistence, on domain

engineering, Tony Hoare summed up his reaction to domain engineering as follows, and I quote3:

“There are many unique contributions that can be made by domain modelling.

3 E-Mail to Dines Bjørner, July 19, 2006
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262 10 WINDING UP

• The models describe all aspects of the real world that are relevant for any good software design in the
area.They describe possible places to define the system boundary for any particular project.

• They make explicit the preconditions about the real worldthat have to be made in any embedded soft-
ware design,especially one that is going to be formally proved.

• They describe the whole range of possible designs for the software,and the whole range of technologies
available for its realisation.

• They provide a framework for a full analysis of requirements,which is wholly independent of the tech-
nology of implementation.

• They enumerate and analyse the decisions that must be taken earlier or later in any design project,and
identify those that are independent and those that conflict. Late discovery of feature interactions can be
avoided.”

Whether they will be made — these contributions — is up to reader !

• • •
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5. Alvis Brāzma. Deductive Synthesis of Dot Expressions. In Baltic Computer Science, volume 502 of

Lecture Notes in Computer Science, pages 156–212. Springer, 17–21 May 1991. See [19].

6. Yamine Aı̈t Ameur, J. Paul Gibson, and Dominique Méry. On implicit and explicit semantics: Integration
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378. Xia Yong and Chris George. An operational semantics for timed RAISE. In Jim Woodcock, Jim Davies,

and Jeannette M. Wing, editors, FM’99 - Formal Methods, World Congress on Formal Methods in the

Development of Computing Systems, Toulouse, France, September 20-24, 1999, Proceedings, Volume

II, volume 1709 of Lecture Notes in Computer Science, pages 1008–1027. Springer, 1999.

379. Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965. cs.berkeley.edu/ zadeh/pa-

pers/Fuzzy Sets-Information and Control-1965.pdf Archived 2015-08-13 at the Wayback Machine.

380. Chao Chen Zhou and Michael R. Hansen. Duration Calculus: A Formal Approach to Real–time Sys-

tems. Monographs in Theoretical Computer Science. An EATCS Series. Springer–Verlag, 2004.

381. E. Zierau. Use of the Formal Method RAISE in Practice. In Proceedings of SAFECOMP ’94, 1994.

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



Part V

APPENDICES





A

Appendix: A PIPELINES DOMAIN – ENDURANTS

In this appendix we present an example description of the endurants of a domain of pipelines.
Thus the example illustrates major aspects of a domain of conjoins. The various sections slavishly
follow the steps of domain analyser & describer: endurants, Sect. A.1 unique identifiers, Sect. A.2
mereologies, Sect. A.3 attributes. Sect. A.4

A.1 Parts and Material

A.1.1 Flow Net Parts

The concept of a flow net1 is illustrated in, for example, oil pipelines. See Figure A.1.
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Fig. A.1. Top row: oil unit graphics; diagram of a simple oil pipeline. Bottom row: a pump; a valve; map of the

Trans-Alaska Pipeline System (TAPS); photo of TAPS.

A.1.1.1 Narrative

501 There is the pipeline system pl:PL.

502 From a pipeline system we choose to observe a pipeline aggregate of conjoined pipe elements,

pla:PLA.

1 – of conjoined parts and materials
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503 The pipeline aggregate of conjoined pipe elements is modelled here as a set of conjoined pipe elements,

cps:CPs.

By a conjoined pipe element, pe:PE, we here mean

504 the conjoined pipe element, i.e., pe:PE,

from which we choose to observe

505 one material, m:M, here the oil.

A conjoined pipe element2, 504, is either a

506 a well (a volume from which material is pumped),

507 a pump (which moves the fluids, (m:M), by mechanical action),

508 a pipe (along which material can move),

509 a valve (which is either fully open, or fully closed, or at some position in-between thus facilitating to

a full degree or some partial degree, or hinder the flow of, in this case, oil),

510 a fork (which “diverts” [in this example] a single flow into two flows),

511 a join (which “merges” [in this example] two flows into a single flow), or

512 a sink (a volume into which material is “spilled”.).

A.1.1.2 Formalisation

type

501. PL
502. PLA
503. cPEs = PE-set

504. PE == We|Pu|Pi|Va|Fo|Jo|Si
505. M
506. We :: Well
507. Pu :: Pump
508. Pi :: Pipe

509. Va :: Valve
510. Fo :: Fork
511. Jo :: Join
512. Si :: Sink
type

502. obs PLA: PL→ PLA
503. obs cPEs: PLA→ cPEs
505. obs M: PE→ M

A.1.2 Pipeline States

A.1.2.1 Narrative

513 Given a pipeline, pl:PL, we can calculate the set of all its pipe elements.

A.1.2.2 Formalisation

value

513. all pipeline units: PL→ PE-set

513. all pipeline units(pl) ≡ obs cPEs(obs PLS(pl))

A.2 Unique Identifiers

514 There is a set of identifiers, UI.
515 Each pipe unit is endowed with such an identifier.

516 All such identifiers of pipe elements of a pipeline are distinct, i.e., unique: no two pipe elements are

endowed with identical such identifiers.

2 We ignore join-fork and redirect units.
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type

514. UI
value

515. uid PE: PE→ UI
axiom

516. ∀ pl:PL •

516. ∀ pei,pe j:PE •

516. {pei,pe j}∈ all pipeline units(pl)
516. ⇒ pei,pei ≡ uid PE(pei),uid PE(pe j)

A.3 Mereologies

A.3.1 The Pipeline Unit Mereology

Pipeline units serve to conduct fluid or gaseous material. The flow of these occur in only one direction:

from so-called input to so-called output.

517 Wells have exactly one connection to an output unit.

518 Pipes, pumps, valves and redirectors have exactly one connection from an input unit and one connection

to an output unit.

519 Forks have exactly one connection from an input unit and exactly two connections to distinct output

units.

520 Joins have exactly two connections from distinct input units and one connection to an output unit.

521 Sinks have exactly one connection from an input unit.

522 Thus we model the mereology of a pipeline unit as a pair of disjoint sets of unique pipeline unit

identifiers.

type

522 PM′=(UI-set×UI-set), PM={|(iuis,ouis):PM′•iuis ∩ ouis={}|}
value

522 mereo PE: PE→ PM

A.3.2 Partial Wellformedness of Pipelines, 0

The well-formedness inherent in narrative lines 517–521 are formalised:

axiom [Well−formedness of Pipeline Systems, PL (0) ]
∀ pl:PL,pe:PE • pe ∈ all pipeline uits(pl)⇒

let (iuis,ouis)=mereo PE(pe) in

case (card iuis,card ouis) of

517 (0,1)→ is We(pe),
518 (1,1)→ is Pi(pe)∨is Pu(pe)∨is Va(pe),
519 (1,2)→ is Fo(pe),
520 (2,1)→ is Jo(pe),
521 (1,0)→ is Si(pe), → false

end end

A.3.3 Partial Well-formedness of Pipelines, 1

To express full well-formedness we need express that pipeline nets are acyclic. To do so we first define a

function which calculates all routes in a net.
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A.3.3.1 Shared Connectors

Two pipeline units, pei with unique identifier πi, and pe j with unique identifier π j, that are connected,

such that an outlet marked π j of pi “feeds into” inlet marked πi of p j, are said to share the connection

(modeled by, e.g., {(πi,π j)})

A.3.3.2 Routes

523 The observed pipeline units of a pipeline system define a number of routes (or pipelines):

Basis Clauses:
524 The null sequence, 〈〉, of no units is a route.

525 Any one pipeline unit, pe, of a pipeline system forms a route, 〈pe〉, of length one.

Inductive Clauses:
526 Let rî〈pei〉 and 〈pe j 〉̂ r j be two routes of a pipeline system.

527 Let peiui
and pe jui

be the unique identifiers pei, respectively pe j.

528 If one of the output connectors of pei is peiui

529 and one of the input connectors of pe j is pe jui
,

530 then ri 〈̂pei, pe j 〉̂ r j is a route of the pipeline system.

Extremal Clause:
531 Only such routes which can be formed by a finite number of applications of the clauses form a route.

type

523. R = PEω

value

523 routes: PL
∼
→ R

523 routes(ps) ≡
523 let cpes = pipeline units(pl) in

524 let rs = {〈〉}
525 ∪ {〈pe〉|pe:PE•pe ∈ cpes} ∪
530 ∪ {rî 〈pe i〉̂ 〈pe j〉̂ rj | pei,pej:PE • {pe i,pe j}⊆cpes
526 ∧ rî 〈pe i〉,〈pe j〉̂ rj:R • {rî 〈pe i〉,〈pe j〉̂ rj}⊆rs
527,528 ∧ pe i ui = uid PE(pe i) ∧ pe i ui ∈ xtr oUOs(pe i)
527,529 ∧ pe j ui = uid PE(pe j) ∧ pe j ui ∈ xtr iUIs(pe j)} in

531 rs end end

xtr iUIs: PE→ UI-set, xtr iUIs(u) ≡ let (iuis, )=mereo PE(pe) in iuis end

xtr oUIs: PE→ UI-set, xtr oUIs(u) ≡ let ( ,ouis)=mereo PE(pe) in ouis end

A.3.3.3 Wellformed Routes

532 The observed pipeline units of a pipeline system forms a net subject to the following constraints:

a unit output connectors, if any, are connected to unit input connectors;

b unit input connectors, if any, are connected to unit output connectors;

c there are no cyclic routes;

d nets has all their connectors connected, that is, “starts” with wells

e and “ends” with sinks.

value

532. wf Net: PL→ Bool

532. wf Net(pl) ≡
532. let cpes = all pipeline units{pl} in

532. ∀ pe:PE • pe ∈ cpes⇒ let (iuis,ouis) = mereo PE(pe) in

532. axiom 517.–521.
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532a. ∧ ∀ pe :UI•pe ui ∈ iuis⇒
532a. ∃ pe

′
:PE•pe

′
,pe∧pe

′
isin cpes∧uid PE(pe

′
)=pe ui∧pe ui∈xtr iUIs(pe

′
)

532b. ∧ ∀ pe ui:UI•pe ui ∈ ouis⇒
532b. ∃ pe

′
:PE•pe

′
,pe∧pe

′
isin cpes∧uid PE(pe

′
)=pe ui∧pe ui∈xtr oUIs(pe

′
)

532c. ∧ ∀ r:R•r ∈ routes(pl)⇒
532c. ∼∃ i,j:Nat•i,j∧{i,j}∈ inds r∧r(i)=r(j)
532d. ∧ ∃ we:We • we ∈ us ∧ r(1) = mkWe(we)
532e. ∧ ∃ si:Si • si ∈ us ∧ r(len r) = mkSi(si)
523. end end

A.4 Attributes

We speak of four kinds of attributes: Geometric Unit Attributes, Spatial Unit Attributes, Unit Ac-
tion Attributes and Flow Attributes.

A.4.1 Geometric Unit Attributes

533 Common static unit attributes are Diameters and Lengths.

534 Well units have one output “Diameter”; pipe, Valve, Pump and Redirector units have Diameter; and

Sink units have one input “Diameter”.

535 Pipe, valve and pumps units have Length.

536 Fork units have one input Diameter, two output Diameters: iD, oD1, oD2, and Lengths from input to a

fork center, and from that to the two outputs: iL, oL1, oL2.

537 Join units have the “reverse”: one output Diameter, two input Diameters: oD, iD1, iD2, and Lengths

from the two inputs to a join center, and from that to the single output: iL1, iL2, oL.

538 Redirector units have Lengths from the input to a “center” (where the unit redirection can be said to be

“centered”), and from that center to the output: iL, oL.

type

533. D, L
value

534. attr D: (We|Pi|Va|Pu|Rd|Si) → D
535. attr L: (Pi|Va|Pu)→ L
536. attr Ds: Fo→ (D×(D×D))
536. attr Ls: Fo→ (L×(L×L))
537. attr Ds: Jo→ ((D×D)×D)
537. attr Ls: Jo→ ((L×L)×L)
538. attr Ls: Rd→ L×L

We omit detailing the angles with which the two segments emanate from the input segment of fork, the two

segments are incident upon the put segment of a join, and a redirector deviates the output segment from its

input segment. The oil unit graphics of Fig. A.1 hints at these angles.

A.4.2 Spatial Unit Attributes

Pipelines are laid down in flat and hilly, even mountainous terrains. Any one pipeline unit has spatial

locations. We shall refrain from detailing (let alone formalising) the spatial attributes of units. But we can

suggest the following: Every unit has some spatial attributes: As material flow in units is one-directional

we can associate with any unit a unique point. With pumps, valves, forks and joins we may associate

that point with “the middle, center” of the unit. With wells and sinks we may associate that point with the

point of the well, respectively the sink, where oil is delivered, respectively accepted from the pipeline. With

pipes we suggest to associate that point with the mid-point, “halfway along the pipe”. Similarly we can
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associate a length with some units. Pumps, valves, forks and joins we suggest to have length 0. So only

pipes have lengths. We suggest that the length of a pipe is the actual, perhaps, curved, length between its

two end-points. We bring this example as an illustration of the use of analysis and description prompts,

and not as an example of a full-fledged pipeline domain description, we shall refrain from systematically

narrating and formalising these spatial unit attributes and the consequences of doing so3.

A.4.3 Unit Action Attributes

539 Valve units are either 100% open, or 100% closed. 4

540 Pump units are either pumping, or not pumping.5

type

539. OC ==
′′
open

′′
|
′′
closed

′′

540. PS ==
′′
pumping

′′
|
′′
not_pumping

′′

value

539. attr OC: Va→ OC
540. attr PS: Pu→ PS

A.4.4 Flow Attributes

A.4.4.1 Flows and Leaks

We now wish to examine the flow of liquid (or gaseous) material in pipeline units. So we postulate a unit

attribute Flow. We use two types

541 type Flow, Leak = Flow.

Productive flow, Flow, and wasteful leak, Leak, is measured, for example, in terms of volume of material

per second. We then postulate the following unit attributes “measured” at the point of in- or out-flow or in

the interior of a unit.

542 current flow of material into a unit input connector,

543 maximum flow of material into a unit input connector while maintaining laminar flow,

544 current flow of material out of a unit output connector,

545 maximum flow of material out of a unit output connector while maintaining laminar flow,

546 current leak of material at a unit input connector,

547 maximum guaranteed leak of material at a unit input connector,

548 current leak of material at a unit input connector,

549 maximum guaranteed leak of material at a unit input connector,

550 current leak of material from “within” a unit, and

551 maximum guaranteed leak of material from “within” a unit.

type

541 Flow, Leak = Flow
value

542 attr cur iFlow: PE→ UI→ Flow
543 attr max iFlow: PE→ UI→ Flow
544 attr cur oFlow: PE→ UI→ Flow
545 attr max oFlow: PE→ UI→ Flow
546 attr cur iLeak: PE→ UI→ Leak
547 attr max iLeak: PE→ UI→ Leak

3 The ‘consequences’ alluded to are those of the spatial well-formedness of pipelines.
4 Without loss of generality we do not model fractional open/closed status.
5 Without loss of generality we do not model fractional pumping status.
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548 attr cur oLeak: PE→ UI→ Leak
549 attr max oLeak: PE→ UI→ Leak
550 attr cur Leak: PE→ Leak
551 attr max Leak: PE→ Leak

The maximum flow attributes are static attributes and are typically provided by the manufacturer as indi-

cators of flows below which laminar flow can be expected. The current flow attributes may be considered

either reactive or biddable attributes.

It may be difficult or costly, or both, to ascertain flows and leaks in materials-based domains. But

one can certainly speak of these concepts. This casts new light on domain modeling . That is in contrast to

incorporating such notions of flows and leaks in requirements modeling where one has to show implement-

ability. Modeling flows and leaks is important to the modeling of materials-based domains.

552 For every unit of a pipeline system, except the well and the sink units, the following law apply.

553 The flows into a unit equal

a the leak at the inputs

b plus the leak within the unit

c plus the flows out of the unit

d plus the leaks at the outputs.

axiom [Well−formedness of Pipeline Systems, PL (2) ]
552 ∀ pl:PL,b:B\We\Si,pe:PE •

552 b ∈ mereo Bs(pl)∧u=mereo (b)⇒
552 let (iuis,ouis) = mereo PE(pe) in

553 sum cur iF(u)(iuis) =
553a sum cur iL(u)(iuis)
553b ⊕ attr cur Leak(pe)
553c ⊕ sum cur oFlow(pe)(ouis)
553d ⊕ sum cur oLeak(pe)(ouis)
552 end

A.4.4.2 Intra Unit Flow and Leak Law

554 The sum cur iFlow (cf. Item 553) sums current input flows over all input connectors.

555 The sum cur iLeak (cf. Item 553a) sums current input leaks over all input connectors.

556 The sum cur oFlow (cf. Item 553c) sums current output flows over all output connectors.

557 The sum cur oLeak (cf. Item 553d) sums current output leaks over all output connectors.

554 sum cur iFlow: PE→ UI-set→ Flow
554 sum cur iFlow(u)(iuis) ≡ ⊕ {attr cur iFlow(u)(ui)|ui:UI•ui ∈ iuis}
555 sum cur iLeak: PE→ UI-set→ Leak
555 sum cur iLeak(u)(iuis) ≡ ⊕ {attr cur iLeak(u)(ui)|ui:UI•ui ∈ iuis}
556 sum cur oFlow: PE→ UI-set→ Flow
556 sum cur oFlow(u)(ouis) ≡ ⊕ {attr cur iFlow(u)(ui)|ui:UI•ui ∈ ouis}
557 sum cur oLeak: PE→ UI-set→ Leak
557 sum cur oLeak(u)(ouis) ≡ ⊕ {attr cur iLeak(u)(ui)|ui:UI•ui ∈ ouis}

⊕: (Flow|Leak) × (Flow|Leak)→ Flow

where ⊕ is both an infix and a distributed-fix function which adds flows and or leaks

A.4.4.3 Inter Unit Flow and Leak Law

558 For every pair of connected units of a pipeline system the following law apply:

a the flow out of a unit directed at another unit minus the leak at that output connector
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b equals the flow into that other unit at the connector from the given unit plus the leak at that con-

nector.

axiom [Well−formedness of Pipelines, PL (3) ]
558 ∀ pl:PL, pe,pe

′
:PE •

558 {pe,pe
′
}⊆all pipeline units(pl)

558 ∧pe,pe
′

558 ∧ let (iuis,ouis)=mereo PE(pe), (iuis
′
,ouis

′
)=mereo PE(pe

′
),

558 ui=uid PE(pe), ui
′
=mereo PE(pe

′
) in

558 ui ∈ iuis ∧ ui
′
∈ ouis

′
⇒

558a attr cur oFlow(pe
′
)(ui

′
) − attr leak oFlow(pe

′
)(ui

′
)

558b = attr cur iFlow(pe)(ui) + attr leak iFlow(pe)(ui)
558 end

558 comment: b
′
precedes b

From the above two laws one can prove the theorem: what is pumped from the wells equals what is leaked

from the systems plus what is output to the sinks.

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



“





B

MEREOLOGY, A MODEL

We first present informal examples of mereologies. Then an axiom system for mereology. Then a model of

mereology. And finally we sketch a proof that the model satisfies the axioms.

B.1 Examples of Illustrating Aspects of Mereology

We present six examples of systems illustrating the concept of mereology.

B.1.1 Air Traffic

Ground
Control
Tower

Aircraft

Control
Tower

Continental

Control ControlControl

Control Control
Continental

TowerTower

Ground
Control

1..k..t 1..m..r

1..n..c 1..n..c

1..j..a

1..i..g 1..m..r 1..k..t 1..i..g

ac/ca[k,n]:AC|CA

cc[n,n’]:CC

rc/cr[m,n]:RC|CR
ac/ca[k,n]:AC|CA

rc/cr[m,n]:RC|CR

ga/ag[i,j]:GA|AG ga/ag[i,j]:GA|AG

at/ta[k,j]:AT|TA at/ta[k,j]:AT|TA

gc/cg[i,n]:GC|CG

ar/ra[m,j]:AR|RA ar/ra[m,j]:AR|RA

gc/cg[i,n]:GC|CG

Terminal TerminalAreaArea

Centre Centre

CentreCentre

This right 1/2 is a "mirror image" of left 1/2 of the figure

Fig. B.1. A schematic air traffic system

Figure B.1 shows nine adjacent (9) boxes and eighteen adjacent (18) lines. Boxes and lines are parts.

The line parts “neighbours” the box parts they “connect”. Individually boxes and lines represent adjacent

parts of the composite air traffic “whole”. The rounded corner boxes denote buildings. The sharp corner

box denote aircraft. Lines denote radio telecommunication. The “overlap” between neigbouring line and

box parts are indicated by “connectors”. Connectors are shown as small filled, narrow, either horisontal

or vertical “filled” rectangle1 at both ends of the double-headed-arrows lines, overlapping both the line

arrows and the boxes. The index ranges shown attached to, i.e., labeling each unit, shall indicate that there

are a multiple of the “single” (thus representative) box or line unit shown. These index annotations are

what makes the diagram of Fig. B.1 schematic. Notice that the ‘box’ parts are fixed installations and that

the double-headed arrows designate the ether where radio waves may propagate. We could, for example,

1 There are 36 such rectangles in Fig. B.1.
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assume that each such line is characterised by a combination of location and (possibly encrypted) radio

communication frequency. That would allow us to consider all lines for not overlapping. And if they were

overlapping, then that must have been a decision of the air traffic system.

B.1.2 Buildings

A
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C
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Installation

Room
(1 Unit)

Sub−room of Room
Sharing walls
(1 Unit)

Adjacent Rooms
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(2 Units)
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κ
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ω
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ω

Door Connection

κιο

κιο

ωιο

Fig. B.2. A building plan with installation

Figure B.2 shows a building plan — as a composite part. The building consists of two buildings, A and

H. The buildings A and H are neighbours, i.e., shares a common wall. Building A has rooms B, C, D and E,

Building H has roomsI, J and K; Rooms L and M are within K. Rooms F and G are within C. The thick lines

labeled N, O, P, Q, R, S, and T models either electric cabling, water supply, air conditioning, or some such

“flow” of gases or liquids. Connection κιo provides means of a connection between an environment, shown

by dashed lines, and B or J, i.e. “models”, for example, a door. Connections κ provides “access” between

neighbouring rooms. Note that ‘neighbouring’ is a transitive relation. Connection ωιo allows electricity

(or water, or oil) to be conducted between an environment and a room. Connection ω allows electricity (or

water, or oil) to be conducted through a wall. Et cetera. Thus “the whole” consists of A and H. Immediate

sub-parts of A are B, C, D and E. Immediate sub parts of C are G and F. Et cetera.

B.1.3 A Financial Service Industry

Figure B.3 on the next page is rather rough-sketchy! It shows seven (7) larger boxes [6 of which are shown

by dashed lines], six [6] thin lined “distribution” boxes, and twelve (12) double-arrowed lines. Boxes and

lines are parts. (We do not described what is meant by “distribution”.) Where double-arrowed lines touch

upon (dashed) boxes we have connections. Six (6) of the boxes, the dashed line boxes, are composite parts,

five (5) of them consisting of a variable number of atomic parts; five (5) are here shown as having three

atomic parts each with bullets “between” them to designate “variability”. Clients, not shown, access the

outermost (and hence the “innermost” boxes, but the latter is not shown) through connections, shown by

bullets, •.

B.1.4 Machine Assemblies

Figure B.4 on the facing page shows a machine assembly. Square boxes designate either composite or

atomic parts. Black circles or ovals show connections. The full, i.e., the level 0, composite part consists
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Fig. B.3. A Financial Service Industry

Connection
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Power Supply
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Valve 1 Valve 2Reservoir
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Bellows

Air Supply

Unit

Unit

Unit Unit Unit

Unit

Air Load
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2 Units

Connection

Unit: Atomic Part

Composite Part

Fig. B.4. An air pump, i.e., a physical mechanical system

of four immediate parts and three internal and three external connections. The Pump is an assembly of

six (6) immediate parts, five (5) internal connections and three (3) external connectors. Et cetera. Some

connections afford “transmission” of electrical power. Other connections convey torque. Two connections

convey input air, respectively output air.

B.1.5 Oil Industry

B.1.5.1 “The” Overall Assembly

Figure B.5 on the next page shows a composite part consisting of fourteen (14) composite parts, left-to-

right: one oil field, a crude oil pipeline system, two refineries and one, say, gasoline distribution network,

two seaports, an ocean (with oil and ethanol tankers and their sea lanes), three (more) seaports, and three,

say gasoline and ethanol distribution networks. Between all of the neighbouring composite parts there are

connections, and from some of these composite parts there are connections (to an external environment).

The crude oil pipeline system composite part will be concretised next.
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Port

Port
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Connection (external)
Composite Part The "Whole"

Fig. B.5. A Schematic of an Oil Industry

B.1.5.2 A Concretised Composite Pipeline

Figure B.6 shows a pipeline system. It consists of 32 atomic parts: fifteen (15) pipe units (shown as directed

arrows and labeled p1–p15), four (4) input node units (shown as small circles, ◦, and labeled ini–inℓ), four

(4) flow pump units (shown as small circles, ◦, and labeled fpa–fpd ), five (5) valve units (shown as small

circles, ◦, and labeled vx–vw), three (3) join units (shown as small circles, ◦, and labeled jb–jc), two (2)

fork units (shown as small circles, ◦, and labeled fb–fc), one (1) combined join & fork unit (shown as

small circles, ◦, and labeled jafa), and four (4) output node units (shown as small circles, ◦, and labeled

onp–ons).

fpb

fpa fpc

fpd

p1

p2

p3

p4
p5

p7

p6

p10

p11

p12

p8

p9

p13

p14

p15

inj

inl

onr

ons

ini

ink

onp

onq

may connect to oil field

may be left dangling

may connect to refinery

may be left "dangling"

Connector       

Node unit

Connection (between pipe units and node units)

Pipe unit

v: valve f: forkfp: pump j: join jf: join & fork

jb
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fc

Fig. B.6. A Pipeline System

In this example the routes through the pipeline system start with node units and end with node units,

alternates between node units and pipe units, and are connected as shown by fully filled-out dark coloured

disc connections. Input and output nodes have input, respectively output connections, one each, and shown

as lighter coloured connections. In [60] we present a description of a class of abstracted pipeline systems.

B.1.6 Railway Nets

The left of Fig. B.7 on the next page [L] diagrams four rail units, each with two, three or four connectors

shown as narrow, somewhat “longish” rectangles. Multiple instances of these rail units can be assembled
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(i.e., composed) by their connectors as shown on Fig. B.7 [L] into proper rail nets. The right of Fig. B.7

[L]

Track / Line / Segment

/ Switch Unit

Switchable Crossover

Connectors − in−between are Units

Simple Crossover Unit

/ Linear
Turnout / 

/ Rigid Crossing Unit / Double Slip

Unit
Point

Connector Connection

Linear Unit

SwitchTrack

Siding

Station

Switchable Crossover

Line

Station

Crossover

[R]

Fig. B.7. Railway Concepts. To the left: Four rail units.To the right: A “model” railway net:

An Assembly of four Assemblies: two stations and two lines.

Lines here consist of linear rail units.

Stations of all the kinds of units shown to the left.

There are 66 connections and four “dangling” connectors

[R] diagrams an example of a proper rail net. It is assembled from the kind of units shown in Fig. B.7 [L].

In Fig. B.7 [R] consider just the four dashed boxes: The dashed boxes are assembly units. Two designate

stations, two designate lines (tracks) between stations. We refer to the caption four line text of Fig. B.7

for more “statistics”. We could have chosen to show, instead, for each of the four “dangling’ connectors, a

composition of a connection, a special “end block” rail unit and a connector.

B.1.7 Discussion

We have brought these examples only to indicate the issues of a “whole” and atomic and composite parts,

adjacency, within, neighbour and overlap relations, and the ideas of attributes and connections. We shall

make the notion of ‘connection’ more precise in the next section.

B.2 An Axiom System for Mereology

Classical axiom systems for mereology focus on just one sort of “things”, namely Parts. Leśniewski had

in mind, when setting up his mereology to have it supplant set theory. So parts could be composite and

consisting of other, the sub-parts — some of which would be atomic; just as sets could consist of elements

which were sets — some of which would be empty.

B.2.1 Parts and Attributes

In our axiom system for mereology we shall avail ourselves of two sorts: Parts, and A ttributes.2

• type P,A

A ttributes are associated with Parts. We do not say very much about attributes: We think of attributes of

parts to form possibly empty sets. So we postulate a primitive predicate, ∈, relating Parts and A ttributes.

• ∈: A ×P→ Bool.

Please be open-minded ! Do not think of “parts” P being “robust” in the sense of being rigid bodies.

Think, more of them as point space sets. Of course, parts P are really what the below axioms expresses.

Allow two or more of these parts to share points, i.e., to “protrude” into one-another; then the axioms are

easier, we find, to comprehend.

2 Identifiers P and A stand for model-oriented types (parts and atomic parts), whereas identifiers P and A stand for

property-oriented types (parts and attributes).
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B.2.2 The Axioms

The axiom system to be developed in this section is a variant of that in [115]. We introduce the following

relations between parts:

part of: P : P×P → Bool Page 298

proper part of: PP : P×P → Bool Page 298

overlap: O : P×P → Bool Page 298

underlap: U : P×P → Bool Page 298

over crossing: OX : P×P → Bool Page 298

under crossing: UX : P×P → Bool Page 299

proper overlap: PO : P×P → Bool Page 299

proper underlap: PU : P×P → Bool Page 299

Part-hood, P, expresses that px is part of py as P(px, py).
3

Part px is part of itself (reflexivity) (B.1).

If a part px is part py and, vice versa, part py is part of px, then px = py (anti-symmetry) (B.2).

If a part px is part of py and part py is part of pz, then px is part of pz (transitivity) (B.3).

∀px : P •P(px, px) (B.1)

∀px, py : P • (P(px, py)∧P(py, px))⇒px = py (B.2)

∀px, py, pz : P • (P(px, py)∧P(py, pz))⇒P(px, pz) (B.3)

Proper Part-hood, PP, expresses px is a proper part of py as PP(px, py).
PP can be defined in terms of P.

PP(px, py) holds if px is part of py, but py is not part of px.

PP(px, py)
△
= P(px, py)∧¬P(py, px) (B.4)

Overlap, O, expresses a relation between parts.

Two parts are said to overlap if they have “something” in common.

In classical mereology that ‘something’ is parts.

To us parts are spatial entities and these cannot “overlap”.

Instead they can ‘share’ attributes.

O(px, py)
△
= ∃a : A • a ∈ px∧a ∈ py (B.5)

Underlap,U, expresses a relation between parts.

Two parts are said to underlap if there exists a part pz of which px is a part and of which py is a part.

U(px, py)
△
= ∃pz : P •P(px, pz)∧P(py, pz) (B.6)

Think of the underlap pz as an “umbrella” which both px and py are “under”.

Over-cross, OX, px and py are said to over-cross if px and py overlap and px is not part of py.

OX(px, py)
△
=O(px, py)∧¬P(px, py) (B.7)

Under-cross,UX, px and py are said to under cross if px and py underlap and py is not part of px.

3 Our notation now is not RSL but a conventional first-order predicate logic notation.
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UX(px, py)
△
= U(px, pz)∧¬P(py, px) (B.8)

Proper Overlap, PO, expresses a relation between parts.

px and py are said to properly overlap if px and py over-cross and if py and px over-cross.

PO(px, py)
△
= OX(px, py)∧OX(py, px) (B.9)

Proper Underlap, PU, px and py are said to properly underlap if px and py under-cross and py and px

under-cross.

PU(px, py)
△
= UX(px, py)∧UX(py, px) (B.10)

B.3 An Abstract Model of Mereologies

B.3.1 Parts and Sub-parts

559 We distinguish between atomic and composite parts.
560 Atomic parts do not contain separately distinguishable parts.

561 Composite parts contain at least one separately distinguishable part.

type

559. P == AP | CP4

560. AP :: mkAP(...)5

561. CP :: mkCP(...,s sps:P-set)6 axiom ∀ mkCP( ,ps):CP • ps,{}

It is the domain analyser who decides what constitutes “the whole”, that is, how parts relate to one another,

what constitutes parts, and whether a part is atomic or composite. We refer to the proper parts of a composite

part as sub-parts. Figure B.8 illustrates composite and atomic parts. The slanted sans serif uppercase

identifiers of Fig. B.8 A1, A2, A3, A4, A5, A6 and C1, C2, C3 are meta-linguistic, that is. they stand for

the parts they “decorate”; they are not identifiers of “our system”.

Atomic parts

A3A2

A6
A5 A4

A1

C3

C1

C2

Composite parts

Part w: The whole!

Fig. B.8. Atomic and Composite Parts

4 In the RAISE [179] Specification Languge, RSL [176], writing type definitions X == Y|Z means that Y and Z are to

be disjoint types. In Items 560.–561. the identifiers mkAP and mkCP are distinct, hence their types are disjoint.
5 Y :: mkY(...): y values (...) are marked with the “make constructor” mkY, cf. [279, 280].
6 In Y :: mkY(s w:W,...) s w is a “selector function” which when applied to an y, i.e., s w(y) identifies the W

element, cf. [279, 280].
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B.3.2 No “Infinitely” Embedded Parts

The above syntax, Items 559–561, does not prevent composite parts, p, to contain composite parts, p′,

“ad-infinitum” ! But we do not wish such “recursively” contained parts !

562 To express the property that parts are finite we introduce a notion of part derivation .

563 The part derivation of an atomic part is the empty set.

564 The part derivation of a composite part, p, mkC(...,ps) where ... is left undefined, is the set ps of

sub-parts of p.

value

562. pt der: P→ P-set

563. pt der(mkAP(...)) ≡ {}
564. pt der(mkCP(...,ps)) ≡ ps

565 We can also express the part derivation, pt der(ps) of a set, ps, of parts.

566 If the set is empty then pt der({}) is the empty set, {}.
567 Let mkA(pq) be an element of ps, then pt der({mkA(pq)}∪ps′) is ps′.
568 Let mkC(pq,ps′) be an element of ps, then pt der(ps′∪ps) is ps′.

565. pt der: P-set→ P-set

566. pt der({}) ≡ {}
567. pt der({mkA(..)}∪ps) ≡ ps
568. pt der({mkC(..,ps’)}∪ps) ≡ ps’∪ps

569 Therefore, to express that a part is finite we postulate

570 a natural number, n, such that a notion of iterated part set derivations lead to an empty set.

571 An iterated part set derivation takes a set of parts and part set derive that set repeatedly, n times.

572 If the result is an empty set, then part p was finite.

value

569. no infinite parts: P→ Bool

570. no infinite parts(p) ≡
570. ∃ n:Nat • it pt der({p})(n)={}
571. it pt der: P-set→ Nat→ P-set

572. it pt der(ps)(n) ≡
572. let ps

′
= pt der(ps) in

572. if n=1 then ps
′
else it pt der(ps

′
)(n−1) end end

B.3.3 Unique Identifications

Each physical part can be uniquely distinguished for example by an abstraction of its properties at a time

of origin. In consequence we also endow conceptual parts with unique identifications.

573 In order to refer to specific parts we endow all parts, whether atomic or composite, with unique

identifications.

574 We postulate functions which observe these unique identifications, whether as parts in general or as

atomic or composite parts in particular.

575 such that any to parts which are distinct have unique identifications.

type

573. UI
value

574. uid UI: P→ UI
axiom

575. ∀ p,p
′
:P • p,p

′
⇒ uid UI(p),uid UI(p

′
)
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A model for uid UI can be given. Presupposing subsequent material (on attributes and mereology) —

“lumped” into part qualities, pq:PQ, we augment definitions of atomic and composite parts:

type

560. AP :: mkA(s pq:(s uid:UI,...))
561. CP :: mkC(s pq:(s uid:UI,...),s sps:P-set)
value

574. uid UI(mkA((ui,...))) ≡ ui
574. uid UI(mkC((ui,...)),...) ≡ ui

Figure B.9 illustrates the unique identifications of composite and atomic parts.

ci1

ai5 ai4

ai1

ci3

ai2

ci2

ai3

ai6

Fig. B.9. ai j: atomic part identifiers, cik: composite part identifiers

No two parts have the same unique identifier.

576 We define an auxiliary function, no prts uis, which applies to a[ny] part, p, and yields a pair: the

number of sub-parts of the part argument, and the set of unique identifiers of parts within p.

577 no prts uis is defined in terms of yet an auxiliary function, sum no pts uis.

value

576. no prts uis: P→ (Nat × UI-set)→ (Nat × UI-set)
576. no pts uis(mkA(ui,...))(n,uis) ≡ (n+1,uis∪{ui})
576. no pts uis(mkC((ui,...),ps))(n,uis) ≡
576. let (n

′
,uis

′
) = sum no pts uis(ps) in

576. (n+n
′
,uis∪uis’) end

576. pre: no infinite parts(p)
577. sum no pts uis: P-set→ (Nat × UI-set)→ (Nat × UI-set)
577. sum no pts uis(ps)(n,uis) ≡
577. case ps of

577. {}→(n,uis),
577. {mkA(ui,...)}∪ps’→sum no pts uis(ps

′
)(n+1,uis∪{ui}),

577. {mkC((ui,...),ps
′
)}∪ps”→

577. let (n
′′
,uis

′′
)=sum no pts uis(ps

′
)(1,{ui}) in

577. sum no pts uis(ps
′′
)(n+n

′′
,uis∪uis”) end

577. end

577. pre: ∀ p:P•p ∈ ps⇒ no infinite parts(p)

578 That no two parts have the same unique identifier can now be expressed by demanding that the number

of parts equals the number of unique identifiers.

axiom

578. ∀ p:P • let (n,uis)=no prts uis(0,{}) in n=card uis end
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B.3.4 Attributes

B.3.4.1 Attribute Names and Values

579 Parts have sets of named attribute values, attrs:ATTRS.

580 One can observe attributes from parts.

581 Two distinct parts may share attributes:

a For some (one or more) attribute name that is among the attribute names of both parts,

b it is always the case that the corresponding attribute values are identical.

type

579. ANm, AVAL, ATTRS = ANm→m AVAL
value

580. attr ATTRS: P→ ATTRS
581. share: P×P→ Bool

581. share(p,p
′
) ≡

581. p,p
′
∧ ∼trans adj(p,p

′
) ∧

581a. ∃ anm:ANm • anm ∈ dom attr ATTRS(p) ∩ dom attr ATTRS(p
′
)⇒

581b. � (attr ATTRS(p))(anm) = (attr ATTRS(p
′
))(anm)

The function trans adj is defined in Sect. B.4.4 on Page 304.

B.3.4.2 Attribute Categories

We define some auxiliary functions:

582 SA applies to attrs:ATTRS and yields a grouping (sa1,sa2,...,sans)
7, of static attribute values.

583 CA applies to attrs:ATTRS and yields a grouping (ca1,ca2,...,canc)8 of controllable attribute values.

584 EA applies to attrs:ATTRS and yields a set, {eA1,eA2,...,eAne}
9 of external attribute names.

type

SA,CA = AVAL∗

EA = ANm−st
value

582. SA : ATTRS→ SA
583. CA : ATTRS→ CA
584. EA : ATTRS→ EA

The attribute names of static, controllable and external attributes do not overlap and together make up the

attribute names of attrs.

B.3.5 Mereology

In order to illustrate other than the within and adjacency part relations we introduce the notion of mereol-

ogy. Figure B.10 on the next page illustrates a mereology between parts. A specific mereology-relation is,

visually, a •—• line that connects two distinct parts.

585 The mereology of a part is a set of unique identifiers of other parts.

type

585. ME = UI-set

We may refer to the connectors by the two element sets of the unique identifiers of the parts they connect.

For example with respect to Fig. B.10 on the facing page:

7 – where {sa1,sa2,...,sans
}⊆rng attrs

8 – where {ca1,ca2,...,cans
}⊆rng attrs

9 – where {eA1,eA2,...,eAne
}⊆dom attrs

© Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark Domain Science & Engineering August 16, 2020, 11:41



B.4 Some Part Relations 303

ai6
ai5 ai4

ai1
ai3ai2

ci1

ci3

ci2

Fig. B.10. Mereology: Relations between Parts

• {ci1,ci3},
• {ai2,ai3},

• {ai6,ci1},
• {ai3,ci1},

• {ai6,ai5} and

• {ai1,ci1}.

B.3.6 The Model

586 The “whole” is a part.

587 A part value has a part sort name and is either the value of an atomic part or of an abstract composite

part.

588 An atomic part value has a part quality value.

589 An abstract composite part value has a part quality value and a set of at least of one or more part values.

590 A part quality value consists of a unique identifier, a mereology, and a set of one or more attribute

named attribute values.

586 W = P
587 P = AP | CP
588 AP :: mkA(s pq:PQ)
589 CP :: mkC(s pq:PQ,s ps:P-set)
590 PQ = UI×ME×(ANm→m AVAL)
We now assume that parts are not “recursively infinite”, and that all parts have unique identifiers

B.4 Some Part Relations

B.4.1 ‘Immediately Within’

591 One part, p, is said to be immediately within, imm within(p,p′), another part, if p′ is a composite part

and p is observable in p′.

value

591. imm within: P × P→ Bool

591. imm within(p,p
′
) ≡

591. case p
′
of

591. ( ,mkA( ,ps))→ p ∈ ps,
591. ( ,mkC( ,ps))→ p ∈ ps,
591. → false

591. end
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B.4.2 ‘Transitive Within’

We can generalise the ‘immediate within’ property.

592 A part, p, is transitively within a part p′, trans within(p,p′),
a either if p, is immediately within p′

b or

c if there exists a (proper) composite part p′′ of p′ such that trans within(p′′,p).

value

592. trans within: P × P→ Bool

592. trans within(p,p
′
) ≡

592a. imm within(p,p
′
)

592b. ∨
592c. case p

′
of

592c. ( ,mkC( ,ps))→ p ∈ ps ∧
592c. ∃ p

′′
:P• p

′′
∈ ps ∧ trans within(p

′′
,p),

592c. → false

592. end

B.4.3 ‘Adjacency’

593 Two parts, p,p′, are said to be immediately adjacent, imm adj(p,p′)(c), to one another, in a composite

part c, such that p and p′ are distinct and observable in c.

value

593. imm adj: P × P→ P→ Bool

593. imm adj(p,p
′
)(mkA( ,ps)) ≡ p,p

′
∧ {p,p

′
}⊆ps

593. imm adj(p,p
′
)(mkC( ,ps)) ≡ p,p

′
∧ {p,p

′
}⊆ps

593. imm adj(p,p
′
)(mkA( )) ≡ false

B.4.4 Transitive ‘Adjacency’

We can generalise the immediate ‘adjacent’ property.

594 Two parts, p′,p′′, of a composite part, p, are trans adj(p′, p′′) in p
a either if imm adj(p′,p′′)(p),
b or if there are two p′′′ and p′′′′ such that

i p′′′ and p′′′′ are immediately adjacent parts of p and

ii p is equal to p′′′ or p′′′ is properly within p and p′ is equal to p′′′′ or p′′′′ is properly within p′

We leave the formalisation to the reader.

B.5 Satisfaction

We shall sketch a proof that the model of Sect. B.3, satisfies, i.e., is a model of, the axioms of Sect. B.2.
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B.5.1 A Proof Sketch

We assign

595 P as the meaning of P

596 ATR as the meaning of A ,

597 imm within as the meaning of P,

598 trans within as the meaning of PP,

599 ∈: ATTR×ATTRS-set→Bool as the meaning of ∈: A ×P→Bool and

600 sharing as the meaning of O.

With the above assignments it is now easy to prove that the other axiom-operatorsU, PO, PU, OX and

UX can be modeled by means of imm within, within, ATTR×ATTRS-set→Bool and sharing.
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C

FOUR LANGUAGES

In this appendix we recall the four language tools of the domain analysis & description: (i)
the calculi of analysis and description prompts; (ii) the ‘language’ of explaining domain analysis
& description; (iii) the RSL: Raise Specification Language, and (iv) the ‘language’ of domains.

Usually mathematics, in many of its shades and forms are deployed in describing properties of nature, as

when pursuing physics, Usually the formal specification languages of computer & computing science have

a precise semantics and a consistent proof system. To have these properties those languages must deal with

computable objects. Domains are not computable.

C.1 The Domain Analysis & Description Calculi

We separate the calculi into two: the analysis functions, and the description functions. None of these

are computable functions as they have no formal basis. They are tools in helping us to achieve a formal,

computable basis on which to understand the analysed & described domains.

C.1.1 The Analysis Calculus

Use of the analysis language is not written down. It consists of a number of single, usually is or has , pre-

fixed domain analysis prompt and domain description prompt names. The domain analysis prompts
are:

The Analysis Predicate Prompts

is alternative sorts set, 58

is animal, 54

is arte factual composite, 56

is artefactual atomic, 56

is artefact, 51

is atomic, 56

is composite structure, 53

is composite, 57

is compound, 56

is conjoin, 59

is continuous, 49

is discrete, 48

is endurant, 47

is entity, 43

is human, 54

is living species, 51

is material parts parts conjoin, 60

is material, 49

is natural atomic, 56

is natural composite, 56

is natural part, 51

is part materials conjoin, 59

is part parts conjoin, 61

is perdurant, 48

is physical part, 50

is plant, 54

is set structure, 53

is set, 57

is single sort set, 58

is structure, 50

has monitorable attributes, 128

is physical attribute, 223, 109
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The Analysis Function Prompts

analyse alternative sorts part set, 64

analyse attribute types, 96

analyse composite parts, 63

analyse intentionality, 113

analyse material parts parts, 64

analyse part materials, 64

analyse part parts, 65

analyse single sort part set, 63

calc parts, 120, 74

calculate all unique identifiers, 87

type name, type of, is , 66, 70–72, 87

analyse abs phys attr, 224, 109

analyse conc phys attr, 225, 109

analyse intentionality, 113

analyse phys attr scale, 226, 109

is , 87

is , 70–72

obs AbsPhysUnit Attr, 220, 108

obs ConcPhysUnit Attr, 221, 108

obs PhysScale Attr, 222, 108

possible variable declaration, 128

type

name, 66

of, 66

type name, 66

type of, 66

They apply to phenomena in the domain, that is, to “the world out there” ! Except for the analyse · · · and

attribute types functions, these queries result in truth values; the analyse · · · result in the domain
scientist cum engineer noting down, in memory or in typed form, suggestive names [of endurant sorts];

and attribute types results in suggestive names [of attribute types]. The truth-valued queries directs,

as we shall see, the domain scientist cum engineer to either further analysis or to “issue” some domain
description prompts.

C.1.2 The Description Calculus

The ‘name’-valued queries help the human analyser to formulate the result of domain description
prompts:

The Description Prompts

calculate alternative sort part sorts, 69

calculate composite parts sorts, 66

calculate material parts parts sorts, 71

calculate part materials sorts, 70

calculate part parts sorts, 72

calculate single sort parts, 68

describe attributes, 97

describe mereology, 91

describe unique identifier, 86

name and sketch universe of discourse,

41

Again they apply to phenomena in the domain, that is, to “the world out there” ! In this case they result in

RSL-Text !

The description language is RSL+. It is a basically applicative subset of RSL [176], that is: no

assignable variables. Also we omit RSL’s elaborate scheme, class, object notions.

Al
The Description Language Primitives

• Endurants:

⋄⋄ obs Ei, dfn. 1, [o] pg. 66, dfn. 1, [s] pg. 66

• Unique Identifiers:

⋄⋄ uid P, dfn. 7, [u] pg. 86

• Mereologies:

⋄⋄ mereo P, dfn. 8, [m] pg. 91

• Attributes:

⋄⋄ attr Ai, dfn. 9, [a] pg. 97
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We refer, generally, to all these functions as observer functions. They are defined by the analyser cum

describer when “applying” description prompts. That is, they should be considered user-defined. In our

examples we use the non-bold-faced observer function names.

C.2 The Language of Explaining Domain Analysis & Description

English, Philosophy and Discrete Mathematics Notation

In explaining the analysis & description prompts we use a natural language which contains terms and

phrases typical of (i) the technical language of computer & computing science, and (ii) the language of

philosophy , more specifically ontology , and discrete mathematics notation. The reason for the former

should be obvious. The reason for the latter is given as follows: We are, on one hand, dealing with real,

actual segments of domains characterised by their basis in nature, in economics, in technologies, etc., that

is, in informal “worlds”, and, on the other hand, we aim at a formal understanding of those “worlds”. There

is, in other words, the task of explaining how we observe those “worlds”, and that is what brings us close

to some issues well-discussed in philosophy .

C.3 The RSL: Raise Specification Language

RSL is the target language into which the domain description prompts express their results.

The author has been involved in both the development, research into and extensive use of both VDM and

RAISE/RSL. He instigated the mainly UK/Danish project that led to RAISE/RSL. From around 1993 he has

used RSL on an almost daily basis.

The RAISE Specification Language is basically a model-oriented specification language. Bases for RSL

are VDM [88, 89, 154], discrete mathematics, and CSP [238]. For initial specifications, like, e.g., domain

descriptions, we advice to focus on the functional, i.e., the applicative aspects of RSL.

The prime references to the RAISEMethod and the RSL, Raise Specification Language, are [179, 176].

Short introductions to RAISE and RSL are [177, 168, 172, George et al.].

Early publications: [118, 131, 240, 132, 275, 133, 145, 183, 381, 146, Dandanell et al.]; theoretical

investigations [290, 291, Milner]; case studies [180, 2001]; and by the current author [39, 40, 41, Bjørner].

Chris W. George, is one of the masterminds, since the mid-to-late 1980s, of RAISE, focusing very much

on correctness issues, is the prime author of most of these papers: [162, 296, 298, 163, 164, 216, 165, 169,

378, 265, 175, 166, 171, 167, 2, 135, 84, 3, 311, 168, 174, 168, 357, 173, 356, 119, 120, 120, 312, 140,

Chris W. George et al.].

Klaus Havelund, who was with the RAISE project at the Danish industrial partner, CR, in its early days,

besides co-authoring [176, 179], was a prime author of many of the RAISE project technical reports – as

well of these early publications: [297, 170, 86, 201].

Anne Elisabeth Haxthausen, who was with the RAISE project at the Danish industrial partner, CR, in

its early days, besides co-authoring [176, 179], is a prime author of several very relevant RAISE/RSL (etc.)

papers: [221, 216, 206, 232, 203, 222, 305, 233, 267, 223, 233, 224, 202, 226, 225, 218, 84, 266, 307, 178,

217, 308, 227, 173, 214, 208, 207, 231, 215, 209, 210, 219, 306, 211, 228, 205, 213, 212, 363, 361, 362,

364, 229, 365, 148, 220, 365, 151, 273, 150, 360, 159, 149, 309, 204, 160, 182].

There are some Web pages: RAISE Tools: https://raisetools.github.io/ and a RAISE Repository:

https://github.com/raisetools. From here one should be able to download the RAISE Tools.

C.4 The Language of Domains

We consider a domain through the semiotic looking glass of its syntax and its semantics; we shall not

consider here its possible pragmatics. By “its syntax” we shall mean the form and “contents”, i.e., the
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external and internal qualities of the endurants of the domain, i.e., those entities that endure. By “its
semantics” we shall, by a transcendental deduction , mean the perdurants: the actions, the events, and the

behaviours that center on the the endurants and that otherwise characterise the domain.
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D

AN RSL PRIMER

This is an ultra-short introduction to the RAISE Specification Language, RSL.

D.1 Types

The reader is kindly asked to study first the decomposition of this section into its sub-parts and sub-sub-

parts.

D.1.1 Type Expressions

Type expressions are expressions whose value are type, that is, possibly infinite sets of values (of “that”

type).

D.1.1.1 Atomic Types

Atomic types have (atomic) values. That is, values which we consider to have no proper constituent (sub-

)values, i.e., cannot, to us, be meaningfully “taken apart”.

RSL has a number of built-in atomic types. There are the Booleans, integers, natural numbers, reals,

characters, and texts.

D.1.1.1.0.1 Basic Types:

type

[1 ] Bool

[2 ] Int

[3 ] Nat

[4 ] Real

[5 ] Char

[6 ] Text

D.1.1.2 Composite Types

Composite types have composite values. That is, values which we consider to have proper constituent

(sub-)values, i.e., can, to us, be meaningfully “taken apart”.

From these one can form type expressions: finite sets, infinite sets, Cartesian products, lists, maps, etc.

Let A, B and C be any type names or type expressions, then:
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D.1.1.2.0.1 Composite Type Expressions:

[7 ] A-set

[8 ] A-infset

[9 ] A × B × ... × C
[10 ] A∗

[11 ] Aω

[12 ] A →m B
[13 ] A→ B

[14 ] A
∼
→ B

[15 ] A | B | ... | C
[16 ] mk id(sel a:A,...,sel b:B)
[17 ] sel a:A ... sel b:B

The following are generic type expressions:

1 The Boolean type of truth values false and true.

2 The integer type on integers ..., –2, –1, 0, 1, 2, ... .

3 The natural number type of positive integer values 0, 1, 2, ...

4 The real number type of real values, i.e., values whose numerals can be written as an integer, followed

by a period (“.”), followed by a natural number (the fraction).

5 The character type of character values
′′
a
′′
,
′′
bb
′′
, ...

6 The text type of character string values
′′
aa
′′
,
′′
aaa

′′
, ...,

′′
abc

′′
, ...

7 The set type of finite cardinality set values.

8 The set type of infinite and finite cardinality set values.

9 The Cartesian type of Cartesian values.

10 The list type of finite length list values.

11 The list type of infinite and finite length list values.

12 The map type of finite definition set map values.

13 The function type of total function values.

14 The function type of partial function values.

15 The postulated disjoint union of types A, B, . . . , and C.
16 The record type of mk id-named record values mk id(av,...,bv), where av, . . . , bv, are values of re-

spective types. The distinct identifiers sel a, etc., designate selector functions.

17 The record type of unnamed record values (av,...,bv), where av, . . . , bv, are values of respective types.

The distinct identifiers sel a, etc., designate selector functions.

D.1.2 Type Definitions

D.1.2.1 Concrete Types

Types can be concrete in which case the structure of the type is specified by type expressions:

D.1.2.1.0.1 Type Definition:

type

A = Type expr

Some schematic type definitions are:
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D.1.2.1.0.2 Variety of Type Definitions:

[1 ] Type name = Type expr /∗ without | s or subtypes ∗/
[2 ] Type name = Type expr 1 | Type expr 2 | ... | Type expr n
[3 ] Type name ==

mk id 1(s a1:Type name a1,...,s ai:Type name ai) |
... |
mk id n(s z1:Type name z1,...,s zk:Type name zk)

[4 ] Type name :: sel a:Type name a ... sel z:Type name z
[5 ] Type name = {| v:Type name

′
• P(v) |}

where a form of [2–3] is provided by combining the types:

D.1.2.1.0.3 Record Types:

Type name = A | B | ... | Z
A == mk id 1(s a1:A 1,...,s ai:A i)
B == mk id 2(s b1:B 1,...,s bj:B j)
...
Z == mk id n(s z1:Z 1,...,s zk:Z k)

Types A, B, ..., Z are disjoint, i.e., shares no values, provided all mk id k are distinct and due to the use of

the disjoint record type constructor ==.

axiom

∀ a1:A 1, a2:A 2, ..., ai:Ai •

s a1(mk id 1(a1,a2,...,ai))=a1 ∧ s a2(mk id 1(a1,a2,...,ai))=a2 ∧
... ∧ s ai(mk id 1(a1,a2,...,ai))=ai ∧

∀ a:A • let mk id 1(a1
′
,a2
′
,...,ai

′
) = a in

a1
′
= s a1(a) ∧ a2

′
= s a2(a) ∧ ... ∧ ai

′
= s ai(a) end

Note: Values of type A, where that type is defined by A::B×C×D, can be expressed A(b,c,d) for b:B, c:D,
d:D.

D.1.2.2 Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by means of predicates. The set of

values b which have type B and which satisfy the predicate P , constitute the subtype A:

D.1.2.2.0.1 Subtypes:

type

A = {| b:B • P(b) |}

D.1.2.3 Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

D.1.2.3.0.1 Sorts:

type

A, B, ..., C

D.2 The RSL Predicate Calculus

D.2.1 Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values (true or false [or chaos]).

Then:
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D.2.1.0.0.1 Propositional Expressions:

false, true

a, b, ..., c ∼a, a∧b, a∨b, a⇒b, a=b, a,b

are propositional expressions having Boolean values. ∼, ∧, ∨, ⇒, =, , and � are Boolean connectives

(i.e., operators). They can be read as: not, and, or, if then (or implies), equal and not equal.

D.2.2 Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., c designate Boolean values, let x, y, ..., z (or term

expressions) designate non-Boolean values and let i, j, . . ., k designate number values, then:

D.2.2.0.0.1 Simple Predicate Expressions:

∀ x:X • P(x)
∃ y:Y • Q(y)
∃ ! z:Z • R(z)

are quantified expressions — also being predicate expressions.

They are “read” as: For all x (values in type X) the predicate P(x) holds; there exists (at least) one y

(value in type Y ) such that the predicate Q(y) holds; and there exists a unique z (value in type Z) such that

the predicate R(z) holds.

D.3 Concrete RSL Types: Values and Operations

D.3.1 Arithmetic

D.3.1.0.0.1 Arithmetic:

type

Nat, Int, Real

value

+,−,∗: Nat×Nat→Nat | Int×Int→Int | Real×Real→Real

/: Nat×Nat
∼
→Nat | Int×Int

∼
→Int | Real×Real

∼
→Real

<,≤,=,,,≥,> (Nat|Int|Real)→ (Nat|Int|Real)

D.3.2 Set Expressions

D.3.2.1 Set Enumerations

Let the below a’s denote values of type A, then the below designate simple set enumerations:

D.3.2.1.0.1 Set Enumerations:

{{}, {a}, {e1,e2,...,en}, ...} ∈ A-set

{{}, {a}, {e1,e2,...,en}, ..., {e1,e2,...}} ∈ A-infset

D.3.2.2 Set Comprehension

The expression, last line below, to the right of the≡, expresses set comprehension. The expression “builds”

the set of values satisfying the given predicate. It is abstract in the sense that it does not do so by following

a concrete algorithm.
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D.3.2.2.0.1 Set Comprehension:

type

A, B
P = A→ Bool

Q = A
∼
→ B

value

comprehend: A-infset × P × Q→ B-infset

comprehend(s,P,Q) ≡ { Q(a) | a:A • a ∈ s ∧ P(a)}

D.3.3 Cartesian Expressions

D.3.3.1 Cartesian Enumerations

Let e range over values of Cartesian types involving A, B, . . ., C, then the below expressions are simple

Cartesian enumerations:

D.3.3.1.0.1 Cartesian Enumerations:

type

A, B, ..., C
A × B × ... × C

value

(e1,e2,...,en)

D.3.4 List Expressions

D.3.4.1 List Enumerations

Let a range over values of type A, then the below expressions are simple list enumerations:

D.3.4.1.0.1 List Enumerations:

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ...} ∈ A∗

{〈〉, 〈e〉, ..., 〈e1,e2,...,en〉, ..., 〈e1,e2,...,en,... 〉, ...} ∈ Aω

〈 a i .. a j 〉

The last line above assumes ai and a j to be integer-valued expressions. It then expresses the set of integers

from the value of ei to and including the value of e j. If the latter is smaller than the former, then the list is

empty.

D.3.4.2 List Comprehension

The last line below expresses list comprehension.

D.3.4.2.0.1 List Comprehension:

type

A, B, P = A→ Bool, Q = A
∼
→ B

value

comprehend: Aω × P × Q
∼
→ Bω

comprehend(l,P,Q) ≡
〈 Q(l(i)) | i in 〈1..len l〉 • P(l(i))〉

August 16, 2020, 11:41, A Foundation for Software Development © Dines Bjørner 2020, Fredsvej 11, DK–2840 Holte, Denmark



316 D AN RSL PRIMER

D.3.5 Map Expressions

D.3.5.1 Map Enumerations

Let (possibly indexed) u and v range over values of type T 1 and T2, respectively, then the below expressions

are simple map enumerations:

D.3.5.1.0.1 Map Enumerations:

type

T1, T2
M = T1 →m T2

value

u,u1,u2,...,un:T1, v,v1,v2,...,vn:T2
[ ], [u7→v ], ..., [u17→v1,u27→v2,...,un7→vn ] ∀ ∈ M

D.3.5.2 Map Comprehension

The last line below expresses map comprehension:

D.3.5.2.0.1 Map Comprehension:

type

U, V, X, Y
M = U →m V

F = U
∼
→ X

G = V
∼
→ Y

P = U→ Bool

value

comprehend: M×F×G×P→ (X →m Y)
comprehend(m,F,G,P) ≡

[ F(u) 7→ G(m(u)) | u:U • u ∈ dom m ∧ P(u) ]

D.3.6 Set Operations

D.3.6.1 Set Operator Signatures

D.3.6.1.0.1 Set Operations:

value

18 ∈: A × A-infset→ Bool

19 <: A × A-infset→ Bool

20 ∪: A-infset × A-infset→ A-infset

21 ∪: (A-infset)-infset→ A-infset

22 ∩: A-infset × A-infset→ A-infset

23 ∩: (A-infset)-infset→ A-infset

24 \: A-infset × A-infset→ A-infset

25 ⊂: A-infset × A-infset→ Bool

26 ⊆: A-infset × A-infset→ Bool

27 =: A-infset × A-infset→ Bool

28 ,: A-infset × A-infset→ Bool

29 card: A-infset
∼
→ Nat
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D.3.6.2 Set Examples

D.3.6.2.0.1 Set Examples:

examples

a ∈ {a,b,c}
a < {}, a < {b,c}
{a,b,c} ∪ {a,b,d,e} = {a,b,c,d,e}
∪{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} ∩ {c,d,e} = {c}
∩{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} ⊂ {a,b,c}
{a,b,c} ⊆ {a,b,c}
{a,b,c} = {a,b,c}
{a,b,c} , {a,b}
card {} = 0, card {a,b,c} = 3

D.3.6.3 Informal Explication

18 ∈: The membership operator expresses that an element is a member of a set.

19 <: The nonmembership operator expresses that an element is not a member of a set.

20 ∪: The infix union operator. When applied to two sets, the operator gives the set whose members are

in either or both of the two operand sets.

21 ∪: The distributed prefix union operator. When applied to a set of sets, the operator gives the set whose

members are in some of the operand sets.

22 ∩: The infix intersection operator. When applied to two sets, the operator gives the set whose members

are in both of the two operand sets.

23 ∩: The prefix distributed intersection operator. When applied to a set of sets, the operator gives the set

whose members are in some of the operand sets.

24 \: The set complement (or set subtraction) operator. When applied to two sets, the operator gives the

set whose members are those of the left operand set which are not in the right operand set.

25 ⊆: The proper subset operator expresses that all members of the left operand set are also in the right

operand set.

26 ⊂: The proper subset operator expresses that all members of the left operand set are also in the right

operand set, and that the two sets are not identical.

27 =: The equal operator expresses that the two operand sets are identical.

28 ,: The nonequal operator expresses that the two operand sets are not identical.

29 card: The cardinality operator gives the number of elements in a finite set.

D.3.6.4 Set Operator Definitions

The operations can be defined as follows (≡ is the definition symbol):

D.3.6.4.0.1 Set Operation Definitions:

value

s
′
∪ s

′′
≡ { a | a:A • a ∈ s

′
∨ a ∈ s

′′
}

s
′
∩ s

′′
≡ { a | a:A • a ∈ s

′
∧ a ∈ s

′′
}

s
′
\ s
′′
≡ { a | a:A • a ∈ s

′
∧ a < s

′′
}

s
′
⊆ s

′′
≡ ∀ a:A • a ∈ s

′
⇒ a ∈ s

′′

s
′
⊂ s

′′
≡ s

′
⊆ s

′′
∧ ∃ a:A • a ∈ s

′′
∧ a < s

′

s
′
= s

′′
≡ ∀ a:A • a ∈ s

′
≡ a ∈ s

′′
≡ s⊆s

′
∧ s

′
⊆s

s
′
, s

′′
≡ s

′
∩ s

′′
, {}
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card s ≡
if s = {} then 0 else

let a:A • a ∈ s in 1 + card (s \ {a}) end end

pre s /∗ is a finite set ∗/
card s ≡ chaos /∗ tests for infinity of s ∗/

D.3.7 Cartesian Operations

D.3.7.0.0.1 Cartesian Operations:

type

A, B, C
g0: G0 = A × B × C
g1: G1 = ( A × B × C )
g2: G2 = ( A × B ) × C
g3: G3 = A × ( B × C )

value

va:A, vb:B, vc:C, vd:D

(va,vb,vc):G0,
(va,vb,vc):G1
((va,vb),vc):G2
(va3,(vb3,vc3)):G3

decomposition expressions

let (a1,b1,c1) = g0,
(a1

′
,b1
′
,c1
′
) = g1 in .. end

let ((a2,b2),c2) = g2 in .. end

let (a3,(b3,c3)) = g3 in .. end

D.3.8 List Operations

D.3.8.1 List Operator Signatures

D.3.8.1.0.1 List Operations:

value

hd: Aω ∼
→ A

tl: Aω ∼
→ Aω

len: Aω ∼
→ Nat

inds: Aω → Nat-infset

elems: Aω → A-infset

.(.): Aω × Nat
∼
→ A

:̂ A∗ × Aω → Aω

=: Aω × Aω → Bool

,: Aω × Aω → Bool

D.3.8.2 List Operation Examples

D.3.8.2.0.1 List Examples:

examples

hd〈a1,a2,...,am〉=a1
tl〈a1,a2,...,am〉=〈a2,...,am〉
len〈a1,a2,...,am〉=m
inds〈a1,a2,...,am〉={1,2,...,m}
elems〈a1,a2,...,am〉={a1,a2,...,am}
〈a1,a2,...,am〉(i)=ai
〈a,b,c〉̂ 〈a,b,d〉 = 〈a,b,c,a,b,d〉
〈a,b,c〉=〈a,b,c〉
〈a,b,c〉 , 〈a,b,d〉
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D.3.8.3 Informal Explication

• hd: Head gives the first element in a nonempty list.

• tl: Tail gives the remaining list of a nonempty list when Head is removed.

• len: Length gives the number of elements in a finite list.

• inds: Indices give the set of indices from 1 to the length of a nonempty list. For empty lists, this set is

the empty set as well.

• elems: Elements gives the possibly infinite set of all distinct elements in a list.

• ℓ(i): Indexing with a natural number, i larger than 0, into a list ℓ having a number of elements larger

than or equal to i, gives the i th element of the list.

• :̂ Concatenates two operand lists into one. The elements of the left operand list are followed by the

elements of the right. The order with respect to each list is maintained.

• =: The equal operator expresses that the two operand lists are identical.

• ,: The nonequal operator expresses that the two operand lists are not identical.

The operations can also be defined as follows:

D.3.8.4 List Operator Definitions

D.3.8.4.0.1 List Operator Definitions:

value

is finite list: Aω → Bool

len q ≡
case is finite list(q) of

true→ if q = 〈〉 then 0 else 1 + len tl q end,
false→ chaos end

inds q ≡
case is finite list(q) of

true→ { i | i:Nat • 1 ≤ i ≤ len q },
false→ { i | i:Nat • i,0 } end

elems q ≡ { q(i) | i:Nat • i ∈ inds q }

q(i) ≡
if i=1

then

if q,〈〉
then let a:A,q

′
:Q • q=〈a〉̂ q

′
in a end

else chaos end

else q(i−1) end

fq ̂ iq ≡
〈 if 1 ≤ i ≤ len fq then fq(i) else iq(i − len fq) end

| i:Nat • if len iq,chaos then i ≤ len fq+len end 〉
pre is finite list(fq)

iq
′
= iq

′′
≡

inds iq
′
= inds iq

′′
∧ ∀ i:Nat • i ∈ inds iq

′
⇒ iq

′
(i) = iq

′′
(i)

iq
′
, iq

′′
≡ ∼(iq

′
= iq

′′
)
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D.3.9 Map Operations

D.3.9.1 Map Operator Signatures and Map Operation Examples

Map Operations

value

m(a): M→ A
∼
→ B, m(a) = b

dom: M→ A-infset [domain of map ]
dom [a17→b1,a27→b2,...,an7→bn ] = {a1,a2,...,an}

rng: M→ B-infset [ range of map ]
rng [a17→b1,a27→b2,...,an7→bn ] = {b1,b2,...,bn}

†: M × M→ M [override extension ]
[a7→b,a

′
7→b

′
,a
′′
7→b

′′
] † [a

′
7→b

′′
,a
′′
7→b

′
] = [a7→b,a

′
7→b

′′
,a
′′
7→b

′
]

∪: M × M→ M [merge ∪ ]
[a7→b,a

′
7→b

′
,a
′′
7→b

′′
] ∪ [a

′′′
7→b

′′′
] = [a7→b,a

′
7→b

′
,a
′′
7→b

′′
,a
′′′
7→b

′′′
]

\: M × A-infset→ M [ restriction by ]
[a7→b,a

′
7→b

′
,a
′′
7→b

′′
]\{a} = [a

′
7→b

′
,a
′′
7→b

′′
]

/: M × A-infset→ M [ restriction to ]
[a7→b,a

′
7→b

′
,a
′′
7→b

′′
]/{a

′
,a
′′
} = [a

′
7→b

′
,a
′′
7→b

′′
]

=,,: M × M→ Bool

◦: (A →m B) × (B →m C)→ (A →m C) [composition ]
[a7→b,a

′
7→b

′
] ◦ [b7→c,b

′
7→c

′
,b
′′
7→c

′′
] = [a7→c,a

′
7→c

′
]

D.3.9.2 Map Operation Explication

• m(a): Application gives the element that a maps to in the map m.

• dom: Domain/Definition Set gives the set of values which maps to in a map.

• rng: Range/Image Set gives the set of values which are mapped to in a map.

• †: Override/Extend. When applied to two operand maps, it gives the map which is like an override of

the left operand map by all or some “pairings” of the right operand map.

• ∪: Merge. When applied to two operand maps, it gives a merge of these maps.

• \: Restriction. When applied to two operand maps, it gives the map which is a restriction of the left

operand map to the elements that are not in the right operand set.

• /: Restriction. When applied to two operand maps, it gives the map which is a restriction of the left

operand map to the elements of the right operand set.

• =: The equal operator expresses that the two operand maps are identical.

• ,: The nonequal operator expresses that the two operand maps are not identical.

• ◦: Composition. When applied to two operand maps, it gives the map from definition set elements of

the left operand map, m1, to the range elements of the right operand map, m2, such that if a is in the

definition set of m1 and maps into b, and if b is in the definition set of m2 and maps into c, then a, in

the composition, maps into c.

D.3.9.3 Map Operation Redefinitions

The map operations can also be defined as follows:
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D.3.9.3.0.1 Map Operation Redefinitions:

value

rng m ≡ { m(a) | a:A • a ∈ dom m }

m1 † m2 ≡
[ a7→b | a:A,b:B •

a ∈ dom m1 \ dom m2 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a) ]

m1 ∪ m2 ≡ [ a7→b | a:A,b:B •

a ∈ dom m1 ∧ b=m1(a) ∨ a ∈ dom m2 ∧ b=m2(a) ]

m \ s ≡ [ a7→m(a) | a:A • a ∈ dom m \ s ]
m / s ≡ [ a7→m(a) | a:A • a ∈ dom m ∩ s ]

m1 = m2 ≡
dom m1 = dom m2 ∧ ∀ a:A • a ∈ dom m1⇒ m1(a) = m2(a)

m1 , m2 ≡ ∼(m1 = m2)

m◦n ≡
[ a7→c | a:A,c:C • a ∈ dom m ∧ c = n(m(a)) ]
pre rng m ⊆ dom n

D.4 λ -Calculus + Functions

D.4.1 The λ -Calculus Syntax

D.4.1.0.0.1 λ -Calculus Syntax:

type /∗ A BNF Syntax: ∗/
〈L〉 ::= 〈V〉 | 〈F〉 | 〈A〉 | ( 〈A〉 )
〈V〉 ::= /∗ variables, i.e. identifiers ∗/
〈F〉 ::= λ 〈V〉 • 〈L〉
〈A〉 ::= ( 〈L〉〈L〉 )

value /∗ Examples ∗/
〈L〉: e, f, a, ...
〈V〉: x, ...
〈F〉: λ x • e, ...
〈A〉: f a, (f a), f(a), (f)(a), ...

D.4.2 Free and Bound Variables

D.4.2.0.0.1 Free and Bound Variables: Let x,y be variable names and e, f be λ -expressions.

• 〈V〉: Variable x is free in x.

• 〈F〉: x is free in λ y •e if x , y and x is free in e.

• 〈A〉: x is free in f (e) if it is free in either f or e (i.e., also in both).

D.4.3 Substitution

In RSL, the following rules for substitution apply:
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D.4.3.0.0.1 Substitution:

• subst([N/x]x)≡ N;

• subst([N/x]a)≡ a,

for all variables a, x;

• subst([N/x](P Q)) ≡ (subst([N/x]P) subst([N/x]Q));
• subst([N/x](λ x•P)) ≡ λ y•P;

• subst([N/x](λ y•P)) ≡ λ y• subst([N/x]P),
if x,y and y is not free in N or x is not free in P;

• subst([N/x](λy•P)) ≡ λz•subst([N/z]subst([z/y]P)),
if y,x and y is free in N and x is free in P
(where z is not free in (N P)).

D.4.4 α-Renaming and β -Reduction

D.4.4.0.0.1 α and β Conversions:

• α-renaming: λx•M
If x, y are distinct variables then replacing x by y in λx•M results in λy•subst([y/x]M). We can rename

the formal parameter of a λ -function expression provided that no free variables of its body M thereby

become bound.

• β -reduction: (λx•M)(N)
All free occurrences of x in M are replaced by the expression N provided that no free variables of N
thereby become bound in the result. (λx•M)(N) ≡ subst([N/x]M)

D.4.5 Function Signatures

For sorts we may want to postulate some functions:

D.4.5.0.0.1 Sorts and Function Signatures:

type

A, B, C
value

obs B: A→ B,
obs C: A→ C,
gen A: B×C→ A

D.4.6 Function Definitions

Functions can be defined explicitly:

D.4.6.0.0.1 Explicit Function Definitions:

value

f: Arguments→ Result
f(args) ≡ DValueExpr

g: Arguments
∼
→ Result

g(args) ≡ ValueAndStateChangeClause
pre P(args)

Or functions can be defined implicitly:
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D.4.6.0.0.2 Implicit Function Definitions:

value

f: Arguments→ Result
f(args) as result
post P1(args,result)

g: Arguments
∼
→ Result

g(args) as result
pre P2(args)
post P3(args,result)

The symbol
∼
→ indicates that the function is partial and thus not defined for all arguments. Partial functions

should be assisted by preconditions stating the criteria for arguments to be meaningful to the function.

D.5 Other Applicative Expressions

D.5.1 Simple let Expressions

Simple (i.e., nonrecursive) let expressions:

D.5.1.0.0.1 Let Expressions:

let a = Ed in Eb(a) end

is an “expanded” form of:

(λa.Eb(a))(Ed)

D.5.2 Recursive let Expressions

Recursive let expressions are written as:

D.5.2.0.0.1 Recursive let Expressions:

let f = λa:A • E(f) in B(f,a) end

is “the same” as:

let f = YF in B(f,a) end

where:

F ≡ λg•λa•(E(g)) and YF = F(YF)

D.5.3 Predicative let Expressions

Predicative let expressions:

D.5.3.0.0.1 Predicative let Expressions:

let a:A • P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a) for evaluation in the body

B(a).
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D.5.4 Pattern and “Wild Card” let Expressions

Patterns and wild cards can be used:

D.5.4.0.0.1 Patterns:

let {a} ∪ s = set in ... end

let {a, } ∪ s = set in ... end

let (a,b,...,c) = cart in ... end

let (a, ,...,c) = cart in ... end

let 〈a〉̂ ℓ = list in ... end

let 〈a, ,b〉̂ ℓ = list in ... end

let [a7→b ] ∪ m = map in ... end

let [a7→b, ] ∪ m = map in ... end

D.5.5 Conditionals

Various kinds of conditional expressions are offered by RSL:

D.5.5.0.0.1 Conditionals:

if b expr then c expr else a expr
end

if b expr then c expr end ≡ /∗ same as: ∗/
if b expr then c expr else skip end

if b expr 1 then c expr 1
elsif b expr 2 then c expr 2
elsif b expr 3 then c expr 3
...
elsif b expr n then c expr n end

case expr of

choice pattern 1→ expr 1,
choice pattern 2→ expr 2,
...
choice pattern n or wild card→ expr n

end

D.5.6 Operator/Operand Expressions

D.5.6.0.0.1 Operator/Operand Expressions:

〈Expr〉 ::=
〈Prefix Op〉 〈Expr〉
| 〈Expr〉 〈Infix Op〉 〈Expr〉
| 〈Expr〉 〈Suffix Op〉
| ...

〈Prefix Op〉 ::=
− | ∼ | ∪ | ∩ | card | len | inds | elems | hd | tl | dom | rng

〈Infix Op〉 ::=
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= | , | ≡ | + | − | ∗ | ↑ | / | < | ≤ | ≥ | > | ∧ | ∨ | ⇒
| ∈ | < | ∪ | ∩ | \ | ⊂ | ⊆ | ⊇ | ⊃ | ̂ | † | ◦

〈Suffix Op〉 ::= !

D.6 Imperative Constructs

D.6.1 Statements and State Changes

Often, following the RAISE method, software development starts with highly abstract-applicative con-

structs which, through stages of refinements, are turned into concrete and imperative constructs. Imperative

constructs are thus inevitable in RSL.

D.6.1.0.0.1 Statements and State Change:

Unit

value

stmt: Unit→ Unit

stmt()

• Statements accept no arguments.

• Statement execution changes the state (of declared variables).

• Unit→ Unit designates a function from states to states.

• Statements, stmt, denote state-to-state changing functions.

• Writing () as “only” arguments to a function “means” that () is an argument of type Unit.

D.6.2 Variables and Assignment

D.6.2.0.0.1 Variables and Assignment:

0. variable v:Type := expression
1. v := expr

D.6.3 Statement Sequences and skip

Sequencing is expressed using the ‘;’ operator. skip is the empty statement having no value or side-effect.

D.6.3.0.0.1 Statement Sequences and skip:

2. skip

3. stm 1;stm 2;...;stm n

D.6.4 Imperative Conditionals

D.6.4.0.0.1 Imperative Conditionals:

4. if expr then stm c else stm a end

5. case e of: p 1→S 1(p 1),...,p n→S n(p n) end

D.6.5 Iterative Conditionals

D.6.5.0.0.1 Iterative Conditionals:

6. while expr do stm end

7. do stmt until expr end
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D.6.6 Iterative Sequencing

D.6.6.0.0.1 Iterative Sequencing:

8. for e in list expr • P(b) do S(b) end

D.7 Process Constructs

D.7.1 Process Channels

Let A and B stand for two types of (channel) messages and i:KIdx for channel array indexes, then:

D.7.1.0.0.1 Process Channels:

channel c:A
channel { k[ i ]:B • i:Idx }
channel { k[ i,j,...,k ]:B • i:Idx,j:Jdx,...,k:Kdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of communicating values of the desig-

nated types (A and B).

D.7.2 Process Composition

Let P and Q stand for names of process functions, i.e., of functions which express willingness to engage in

input and/or output events, thereby communicating over declared channels. Let P() and Q stand for process

expressions, then:

D.7.2.0.0.1 Process Composition:

P ‖ Q Parallel composition
P ⌈⌉⌊⌋ Q Nondeterministic external choice (either/or)
P ⌈⌉ Q Nondeterministic internal choice (either/or)
P –‖ Q Interlock parallel composition

express the parallel (‖) of two processes, or the nondeterministic choice between two processes: either

external (⌈⌉⌊⌋) or internal (⌈⌉). The interlock (–‖) composition expresses that the two processes are forced to

communicate only with one another, until one of them terminates.

D.7.3 Input/Output Events

Let c, k[i] and e designate channels of type A and B, then:

D.7.3.0.0.1 Input/Output Events:

c ?, k[ i ] ? Input
c ! e, k[ i ] ! e Output

expresses the willingness of a process to engage in an event that “reads” an input, respectively “writes” an

output.

D.7.4 Process Definitions

The below signatures are just examples. They emphasise that process functions must somehow express, in

their signature, via which channels they wish to engage in input and output events.
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D.7.4.0.0.1 Process Definitions:

value

P: Unit→ in c out k[ i ]
Unit

Q: i:KIdx→ out c in k[ i ] Unit

P() ≡ ... c ? ... k[ i ] ! e ...
Q(i) ≡ ... k[ i ] ? ... c ! e ...

The process function definitions (i.e., their bodies) express possible events.

D.8 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemas, classes, and objects, as is often

done in RSL. An RSL specification is simply a sequence of one or more types, values (including functions),

variables, channels and axioms:

D.8.0.0.0.1 Simple RSL Specifications:

type

...
variable

...
channel

...
value

...
axiom

...

D.9 RSL Module Specifications

D.9.1 Modules

Modules are clusters of one or more declarations:

Id =
class

declaration 1
declaration 2
...
declaration n

end

where declarations are either

• types

• values

• axioms

• variables

• channels

• modules

By a class we mean a possibly infinite set of one or more mathematical entities satisfying the declarations.
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D.9.2 Schemes

scheme Id =
class

declaration 1
declaration 2
...
declaration n

end

By a scheme we mean a named possibly infinite set of one or more mathematical entities satisfying the

declarations.

D.9.3 Module Extension

Id = extend Id 1,Id 2,...,Id m with

class

declaration 1
declaration 2
...
declaration n

end

Usually we make sure that the extensions are conservative [341, 144, 100, 20, 243, 161].

Etcetera !
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INDEXES

E.1. Definitions 329

E.2. Examples 332

E.3. Method Hints 334

E.4. Analysis Predicate Prompts 334

E.5. Analysis Function Prompts 335

E.6. Attribute Categories 335

E.8. Description Prompts 335

E.9. Endurant to Perdurant Translation Schemas 336

E.10. RSL Symbols 336

E.1 Definitions

Chapter 1 introduces 48 concepts and Chapters 2–10 introduce 95 definitions.

Chapter 1 Concepts

Abstraction, 3, 7

Divide and Conquer, 8

Operational, 8

Representational, 8

Algebraic Semantics, 6

Axiomatic Semantics, 6

Computer, 3

Computer Science, 3

Computing Science, 4

Conservative Extension, 7

Denotational Semantics, 6

Divide and Conquer, Abstraction, 8

Domain Engineering, 4

Domain Requirements, 4

Domain/ Machine Interface, 4

Engineering, 4

of Domain, 4

of Requirements, 5

of Software, 6

Epistemology, 4

Formal Method:, 4

Formalisation, Narration, 8

Hardware, 4

Informatics, 9

Information Technology, 9

Intentional Pull, 8

Interface of Domain/ Machine, 4

Invariant, 8

Language, 4

Linguistics, 4

Machine, 4

Machine Requirements, 4

Mathematics, 4

Mereology, 5

Metaphysics, 5

Method, 5, 7

Principle, 7

Technique, 7

Tool, 7

Methodology, 5

Model, 5

Modelling, 5

Narration Formalisation, 8

Nondeterminism, 8

Ontology, 5

Operational Abstraction, 8

Philosophy, 5
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Pragmatics, 5

Principle

of a Method, 7

Pull, Intentional, 8

Refinement, 8

Representational Abstraction, 8

Requirements, 5

Engineering, 5

Prescription, 6

Specification, 6

Science, 6

of Computers, 3

Semantics, 6

and Syntax, 8

Semiotics, 6

Software, 6

Design, 6

Development, 6

Engineering, 6

Syntax, 7

and Semantics, 8

Names, 8

Taxonomy, 7

Technique

of a Method, 7

Technology, 7

Technology, Information, 9

Tool

of a Method, 7

Triptych, 7

Chapters 2–10 Definitions
1. Transcendental, I, 12

10. Axioms and Axiom System, 18

11. Proof, 18

12. Interpretation, 18

13. Satisfiability, 18

14. Validity, 18

15. Model, 18

16. Type, 19

17. Sort, 19

18. Function, 20

19. Signature, 20

2. Transcendental Deduction, I, 12

20. Total Function, 20

21. Partial Function, 20

22. Predicate, 20

23. Indefinite Space, 22

24. Definite Space, 22

25. Indefinite Time, 25

26. Definite Time, 25

27. Domain, 39

28. Domain Description, 40

29. External Quality, 42

3. Necessarily True Assertions, 13

30. Entity, 43

31. Endurant, 47

32. Perdurant, 47

33. Discrete Endurant, 48

34. Continuous Endurant, 49

35. Compound Endurants, 49

36. Root, 49

37. Sibling, 49

38. Physical Parts, 50

39. Endurant Structure, 50

4. Possibly True Assertions, 13

40. Living Species, I, 51

41. Natural Parts, 51

42. Man-made Parts: Artefacts, 51

43. Composite Structure, 53

44. Set Structure, 53

45. Living Species, II, 53

46. Animal, 54

47. Human, 54

48. Material, 55

49. Atomic Part, 56

5. Space, 14

50. Compound Part, 56

51. Composite Part, 57

52. Set Part, 57

53. Simple One-Sort Sets, 58

54. Alternative Sorts Sets, 58

55. Conjoin, 58

56. Part-Materials Conjoin, 59

57. Material-Parts-Parts Conjoin, 60

58. State, 73

59. Formal Context, 77

6. Time, 14

60. Qualities Common to a Set of Entities, 77

61. Entities Common to a Set of Qualities, 77

62. Formal Concept, 77

63. Mereology, 89

64. Fixed Mereology, 93

65. Varying Mereology, 93

66. Transcendental, II, 125

67. Transcendental Deduction, II, 125

68. Transcendentality, 125

69. Actor, 129

7. Logic, 17

70. Discrete Action, 129

71. Event, 129

72. Discrete Behaviour, 129

73. Function Signature, 138

74. Function Type Expression, 138

75. Requirements (I), 210

76. Requirements (II), 210

77. Machine, 211

78. Requirements (III), 211
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79. Problem, Solution and Objective Sketch,

211

8. Mathematical Logic, 18

80. System Requirements, 212

81. User and External Equipment Require-

ments, 212

82. Assumption and Design Requirements, 213

83. Verification Paradigm, 213

84. Domain Requirements Prescription, 214

85. Domain Projection, 215

86. Domain Instantiation, 218

87. Determination, 221

88. Extension, 223

89. Endurant Extension, 223

9. Inference Rules, 18

90. Requirements Fitting, 230

91. Requirements Harmonisation, 230

92. Derived Perdurant, 237

93. Derived Action, 237

94. Derived Event, 238

95. Domain Specific Language, 261

Miscellaneous “in-line” Definitions, 17

actively mobile, 117

animals

intentionality, 112

animate entities

intentionality, 112

attributes

Attributes

Fuzzy, 111–112

Attributes

of Conjoins, 110–111

Behaviour

Definitions, 142–153

Signatures, 142–148

Business

Process

Engineering, 259

Re-engineering, 259

causality

intentionality, 112

compound

endurant, 49

confusion

of endurants, 118

conjoin

dispose, 94

endurant, 55

flow net, 94

pipe, 94

process, 94

pump, 94

supply, 94

transport, 94

treatment, 94

valve, 94

Conjoin

Attributes, 110–111

CSP

event, 157

dispose

conjoin, 94

domain

event, 157

Duration Formula, DC, 32

Duration Term, DC, 32

Duration, DC, 32

endurant

compound, 49

confusion, 118

conjoin, 55

junk, 118

root, 49

sibling, 49

event

domain, 157

event

CSP, 157

flow

net of conjoins, 94

Fuzzy

Attribute

types, 112

values, 112

Attributes, 111–112

Sets and Fuzzy Logic, 111

Galois

Connection, 116–117

intentionality, 117

Galois connection, 116

humans

consciousness and learning

intentionality, 112

Identity, 34

intentional

pull, 113

humans

consciousness and learning, 112

intentional

pull, 113
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Intentionality, 112–117

intentionality

animals, 112

animate entities, 112

causality of purpose, 112

knowledge, 113

language, 113

living species, 112

responsibility, 113

junk

wrt. endurants, 118

knowledge

intentionality, 113

language

intentionality, 113

living species

intentionality, 112

MATTER, 33, 107

Mereology, 34–35, 293–305

method

principle, 75, 118, 158

technique, 75, 118, 158

tools, 75, 118, 158

mobile

active, 117

passive, 117

passively mobile, 117

pipe

conjoin, 94

process

conjoin, 94

pull

intentional, 113

pump

conjoin, 94

quotes, 22

quoting, 22

responsibility

intentionality, 113

root

endurant, 49

Roots, 131

sibling

endurant, 49

Siblings, 131

SPACE, 17

SPACE, 22–24

State Assertion, DC, 32

State Expression, DC, 32

substance ofMATTER, 107

supply

conjoin, 94

System

Development, 259

TIME, 17

TIME, 24–33

transport

conjoin, 94

treatment

conjoin, 94

valve

conjoin, 94

E.2 Examples

There are 128 examples.

A Casually Described Bank Script, 175

A Conjoin Canal Lock, 146

A Formally Described Bank Script, 176

A Human Behaviour Mortgage Calculation, 191

A Road Transport Domain

I: Composite, 66

III: Part-Parts, 72

A Road Transport Domain, I, 41

A Road Transport Domain, I: Composite, 66

A Road Transport Domain, III: Part-Parts, 72

A Road Transport System, II: Abstract External

Qualities, 42

A Road Transport System, II: Manifest External

Qualities, 42

A Rough Sketch Domain Endurant Description, 50

Action and Event Attributes, 104

Actors and Actions, 183

Alternative Rail Units, 68

Alternative Sorts Sets, 58

An Aspect of Comprehensivess of Internal Quali-

ties, 114

An Intrinsics of Documents, 168

Animals, 54

Artefactual Parts: Financial Service Industry, 52
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Atomic and Conjoin Parts, 56

Atomic Road Net Parts, 56

Automobile Behaviour, 149

Autonomous Attributes, 98

Banking — or Programming — Staff Behaviour,

190

Behaviours, 129

Buses and Bus Companies, 131

Civil Engineering: Consultants and Contractors, 116

Composite Automobile Parts, 57

Constants and States, 74

Container

Terminal Port, 117

Container Terminal Port, 117

Credit Card

Shopping System, 117

Credit Card Shopping System, 117

Critical Resource Sharing, 132

Digital Media, 179

Discrete Endurants, 48

Document Artefactual Attributes, 109

Documents, 180

Domain Events, 157

Endurants, 47

Fixed and Varying Mereology, 93

Further Behaviours of a Road Transport System,

150

General Hospital System, 117

Hard Real-Time Models Expressed in “Ordinary”

RSL Logic, 29

Health-care, 180

Inert Attribute, 98

Inescapable Meaning Assignment, Formalisation,

12

Inescapable Meaning Assignment, Narrative, 11

Initial System, 153

Intentional Pull, I, 113

Intentional Pull, II, 115

Intents, 115

Intrinsics of Switches, 167

Invariance of Road Net Traffic States, 100

Invariance of Road Nets, 91

LEGO Blocks, 116

Licensors and Licensees, 182

Material and Parts of Transports, 65

Materials, 49

Mereology of a Road Net, 91

Natural and Man-made Materials, 55

Natural Parts: River Systems, 51

Part-Material Conjoins: Canals with Locks, I, 59

Part-Material Conjoins: Pipelines, I, 59

Part-Materials Conjoins: Waste Management, I, 60

Part-Parts Conjoin: Container Terminal Ports, 61

Passenger and Goods Transport, 181

Perdurants, 48

Physical Parts, 51

Pipeline Attributes, 100

Pipeline Mereology, 95

Pipeline Parts and Material, 71

Pipeline Unique Identifiers, 89

Plants, 54

Possible Consequences of a Road Net Mereology,

92

Probabilistic Rail Switch Unit State Transitions, 170

Programmable Attribute, 99

Rail Net Mereology, 93

Rail Net Unique Identifiers, 89

Railway Management and Organisation: Train Mon-

itoring, II, 186

Railway Net Intrinsics, 166

Railway Optical Gates, 172

Railway Support Technology, 169

Reactive Attributes, 98

Requirements:

Domain Requirements,

Derived Action – Tracing Vehicles, 237

Derived Event, Current Maximum Flow, 238

Determination – Toll-roads, 222

Endurant Extension 1/2, 223

Endurant Extension 2/2, 225

Fitting, 231

Instantiation – Road Net 1/2, 218

Instantiation of Road Net, Abstraction, 221

Instantiation, Road Net 2/2, 219

Projection, 215

Projection – A Narrative Sketch, 215

Interface Requirements,

Projected Extensions, 232

Shared Behaviours, 235

Shared Endurant Initialisation, 233

Shared Endurants, 232

Road Pricing,

A Narrative, 212

Design Assumptions, 214

Design Requirements, 214

Toll-Gate System, Design Assumptions, 214

Toll-Gate System, Design Requirements,

214
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User and External Equipment, Narrative,

212

Requirements: Sketch of Objectives, 211

Road Net, 107

Road Net Artefactual Attributes, 109

Road Net Attributes, 99

Road Transport Behaviour Signatures, 147

Road Transport: Further Attributes, 100

Road Transport: Unique Identifier Auxiliary Func-

tions, 87

Set Part Examples, 57

Shopping System

Credit Card, 117

Simple One-Sort Sets, 58

Soft Real-Time Models Expressed in “Ordinary”

RSL Logic, 29

Some Transcendental Deductions, 125

State Values versus State Variables, 128

Static Attributes, 98

Strategic, Tactical and Operations Management, 188

Structures versus Composites, 52

Temporal Notions of Endurants, 25

Terminal Port

Container, 117

Traffic Signals, 170

Train Monitoring, I, 186

Trains Along Lines, 173

Trains at Stations, 173

Transcendentality, 125

Transport System Structures, 52

Unique Identifier Constants, 88

Unique Identifiers, 87

Uniqueness of Road Net Identifiers, 89

Universes of Discourse, 40

E.3 Method Hints

We have made 8 explicit method hints.

1 Select Domain of Interest, 41

2 External Qualities, 42

3 ‘‘What can be Described’’, 43

4 Initial Focus is on Endurants, 47

5 Discrete versus Continuous, 49

6 From Analysis to Description, 61

7 Domain State, 75

8 Sequential Analysis & Description of

Internal Qualities, 85

E.4 Analysis Predicate Prompts

There are 25 analysis predicates.

is alternative sorts set, 58

is animal, 54

is arte factual composite, 56

is artefactual atomic, 56

is artefact, 51

is atomic, 56

is composite structure, 53

is composite, 57

is compound, 56

is conjoin, 59

is continuous, 49

is discrete, 48

is endurant, 47

is entity, 43

is human, 54

is living species, 51

is material parts parts conjoin, 60

is material, 49

is natural atomic, 56

is natural composite, 56

is natural part, 51

is part materials conjoin, 59

is part parts conjoin, 61

is perdurant, 48

is physical part, 50

is plant, 54

is set structure, 53

is set, 57

is single sort set, 58

is structure, 50

has monitorable attributes, 128

is physical attribute, 223, 109
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E.5 Analysis Function Prompts

There are 13 analysis functions.

analyse alternative sorts part set,

64

analyse attribute types, 96

analyse composite parts, 63

analyse intentionality, 113

analyse material parts parts, 64

analyse part materials, 64

analyse part parts, 65

analyse single sort part set, 63

calc parts, 120, 74

calculate all unique identifiers, 87

type name, type of, is , 66, 70–72, 87

analyse abs phys attr, 224, 109

analyse conc phys attr, 225, 109

analyse intentionality, 113

analyse phys attr scale, 226, 109

is , 87

is , 70–72

obs AbsPhysUnit Attr, 220, 108

obs ConcPhysUnit Attr, 221, 108

obs PhysScale Attr, 222, 108

possible variable declaration, 128

type

name, 66

of, 66

type name, 66

type of, 66

E.6 Attribute Categories

There are 9 attribute categories.

is active attribute, 98

is autonomous attribute, 98

is biddable attribute, 98

is dynamic attribute, 98

is inert attribute, 98

is monitorable only attribute, 99

is programmable attribute, 99

is reactive attribute, 98

is static attribute , 97

E.7 Perdurant Calculations

calc all chn dcls, Item 261a, 141

calc chn refs, Item 260a, 141

calc i o chn refs, Item 259, 141

declaring all monitorable variables, Item 247, 128

moni attr types, Item 201, 102

moni attr vals, Item 204, 103

prgr attr types, Item 202, 102

prgr attr vals, Item 206, 103

stat attr types, Item 200, 102

stat attr vals, Item 204, 103

Translate Endurant, 142

E.8 Description Prompts

There are 9 description prompts.

calculate alternative sort part

sorts, 69

calculate composite parts sorts, 66

calculate material parts parts sorts,

71

calculate part materials sorts, 70

calculate part parts sorts, 72
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calculate single sort parts, 68

describe attributes, 97

describe mereology, 91

describe unique identifier, 86

name and sketch universe of discourse,

41

E.9 Endurant to Perdurant Translation Schemas

There are 11 perdurant schemas.

possible variable declaration, 128

Translate Alternative Sorts Set, 145

Translate Atomic, 143

Translate Composite, 144

Translate Conjoin, 145

Translate Endurant, 128

Translate Material-Parts, 146

Translate Part-Materials, 145

Translate Part-Parts, 146

Translate Single Sort Set, 144

Translate Structure, 145

E.10 RSL Symbols

Literals , 318–327

Unit, 327

chaos, 318, 319

false, 312, 314

true, 312, 314

Arithmetic Constructs, 314

ai*a j, 314

ai+a j, 314

ai/a j, 314

ai=a j, 314

ai≥a j, 314

ai>a j, 314

ai≤a j, 314

ai<a j, 314

ai,a j, 314

ai−a j, 314

�, 314

⇒, 314

=, 314

,, 314

∼, 314

∨, 314

∧, 314

Cartesian Constructs, 315, 318

(e1,e2,...,en) , 315

Combinators, 323–326

... elsif ... , 324

case be of pa1→ c1, ... pan→ cn end , 324, 325

do stmt until be end , 325

for e in listexpr • P(b) do stm(e) end , 326

if be then cc else ca end , 324, 325

let a:A • P(a) in c end , 323

let pa = e in c end , 323

variable v:Type := expression , 325

while be do stm end , 325

v := expression , 325

Function Constructs, 322–323

post P(args,result), 322, 323

pre P(args), 322, 323

f(args) as result, 322, 323

f(a), 321

f(args) ≡ expr, 322

f(), 325

List Constructs, 315, 318–319

<Q(l(i))|i in<1..lenl> •P(a)> , 315

<> , 315

ℓ(i) , 318

ℓ′= ℓ′′ , 318

ℓ′ , ℓ′′ , 318

ℓ′̂ℓ′′ , 318

elems ℓ , 318

hd ℓ , 318

inds ℓ , 318

len ℓ , 318

tl ℓ , 318

e1 <e2,e2,...,en > , 315

Logic Constructs, 313–314

bi ∨ b j , 314

∀ a:A • P(a) , 314

∃! a:A • P(a) , 314
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∃ a:A • P(a) , 314

∼ b , 314

false, 312, 314

true, 312, 314

bi⇒ b j , 314

bi ∧ b j , 314

Map Constructs, 316, 320–321

mi \m j , 320

mi ◦ m j , 320

mi / m j , 320

dom m , 320

rng m , 320

mi † m j , 320

mi =m j , 320

mi ∪m j , 320

mi ,m j , 320

m(e) , 320

[ ] , 316

[u1 7→v1,u2 7→v2,...,un 7→vn] , 316

[F(e) 7→G(m(e))|e:E•e∈domm∧P(e)] , 316

Modules, 327–328

Id extend Id 1,Id 2,...,ID m with class ... end, 328

class ... end, 327

scheme Id = class ... end, 328

module, 327

Process Constructs, 326–327

channel c:T , 326

channel {k[i]:T•i:Idx} , 326

c ! e , 326

c ? , 326

k[i] ! e , 326

k[i] ? , 326

pi⌈⌉⌊⌋p j , 326

pi⌈⌉p j , 326

pi‖p j , 326

pi–‖p j , 326

P: Unit→ in c out k[i] Unit , 327

Q: i:KIdx → out c in k[i] Unit, 327

Set Constructs, 314–318

∩{s1,s2,...,sn} , 316

∪{s1,s2,...,sn} , 316

card s , 316

e∈s , 316

e<s , 316

si=s j , 316

si∩s j , 316

si∪s j , 316

si⊂s j , 316

si⊆s j , 316

si,s j , 316

si\s j , 316

{} , 314

{e1,e2, ...,en} , 314

{Q(a)|a:A•a∈s∧P(a)} , 315

Type Expressions, 311–312

(T1×T2×... ×Tn) , 312

Bool, 311

Char, 311

Int, 311

Nat, 311

Real, 311

Text, 311

Unit, 325

mk id(s1:T1,s2:T2,...,sn:Tn) , 312

s1:T1 s2:T2 ... sn:Tn , 312

T∗ , 312

Tω , 312

T1 × T2 × ... × Tn , 312

T1 | T2 | ... | T1 | Tn , 312

Ti →m T j , 312

Ti
∼
→T j , 312

Ti→T j , 312

T-infset, 312

T-set, 312

Type Definitions, 312–313

T = Type Expr, 312

T={| v:T′• P(v)|} , 313

T==TE1 | TE2 | ... | TEn , 313
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