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Abstract— Robots and autonomous vehicles have been inte-
grated in our life and utilized in a plethora of application sce-
narios, including intelligent transportation, industrial automa-
tion and smart agriculture. Several of the these applications
might be functioning in environments where cellular network
coverage is low or non-existent. In a case like this, lower
bandwidth networks and vehicle-to-vehicle communication can
be used to keep the application operating safely, even with
less active features. In such settings, disconnection events can
be avoided if deteriorating communication links are detected
early so that prevention measures can be taken. In this paper
we investigate how we can predict if a communication link will
be terminated in the near future based on the recent trend
of the signal. We propose a deep neural network framework
which is executed onboard and we evaluate its performance
based on simulation and real word data. The results show that
we can predict the termination of a link up to 7 seconds into
the future with 72.38% accuracy and 86.38% recall.

I. INTRODUCTION

In the last decade, Internet of Things (IoT) technology
has been enabling numerous industrial applications such as
intelligent transportation [1], Industry 4.0 [2], and smart
agriculture [3]. In parallel, several of those application
domains has been enhanced by advancements in robotics
technology. In agriculture, for instance, collaborating fleets of
autonomous agricultural vehicles (e.g. autonomous tractors)
have been proposed as means for improving the productivity
and efficiency of agricultural processes [4]. The synergies
and challenges of integrating robots within the IoT ecosystem
is recently investigated as part of the Internet of Robotic
Things (IoRT) [5], [6].

Several of the aforementioned use cases are safety-critical,
especially when they involve mobile systems that have the
potential to harm people. Autonomous tractors, for example,
pose a potential danger to people and animals that may co-
exist in the field. For this reason, the existence of reliable
wireless connectivity from a mobile robot to other robots in
the fleet and/or a human operator at a control centre is vital
safety feature and often a regulatory requirement [7].

Wireless networking solutions that are designed for safety-
critical industrial applications achieve high reliability by em-
ploying techniques, including time synchronisation, sched-
uled communication with time slot allocation, and channel
hopping, to combat interference and avoid collisions [8]. The
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challenge, however, is that schedule distribution and joining
a network are time consuming, making the network inflexible
to sudden changes. As a result, industrial wireless networking
solutions struggle to yield high reliability in mobile networks
where mobile nodes move out of coverage [9]. This results
to packet loss when the mobile node is out of coverage and
significant overhead and further packet loss during the re-
connection process [10].

Autonomous vehicles, like sensor networks, are cyber-
physical systems that depend on traditional (e.g., [11]) and
nontraditional sensors (e.g., [12]) to perceive the environment
and act to optimise their application objectives. In contrast
to wearable sensors, where the device has no control of the
mobility of the user, autonomous vehicles have the ability
to adjust their mobility to maximise other objectives, e.g.,
planning based on energy consumption estimates [13], [14].
In similar spirit, we argue that a vehicle can also monitor
the state of the wireless communication link and adjust its
behaviour, so that the application objectives are optimised
without compromising the wireless connectivity.

To this end, we propose a framework that is able to predict
if a wireless connection will break in the near future based
on the recent trend of the link’s signal. The idea is that the
output of this framework can be used as an alarm and trigger
some action, such as speed or path adaptation, that would
prevent a disconnection event from occurring in the first
place. The main challenges in this endeavour are that the
prediction should be computed on-board, in real-time, and
with the potentially limited resources of a mobile embedded
system. An additional challenge is the practical difficulty and
cost associated with collecting large datasets from real-world
mobile systems for training the model. Indeed, capturing
real-world disconnection events is especially difficult, if not
impossible, in scenarios where connectivity is a regulatory
requirement. To address this challenge, in this paper, we
propose the use of artificial data (obtained from a simulator)
augmented with real-world noise. Our results suggest that
the model trained with the augmented data significantly
outperforms a model trained with artificial data without
the enhancements, yielding performance comparable to the
model trained on real-world data.

II. RELATED WORK

In wireless networking, various metrics that are based
on the strength of the received signal have been used to
estimate the quality of the link. The most common one is the
widely available RSSI (Received Signal Strength Indicator),
but also include the more vendor-specific LQI (Link Quality



Indicator) and the SNR (Signal-to-Noise Ratio) [15], [16],
[17], [18], [19], [20]. These metrics, however, focus on
estimating the current quality of a wireless link; instead,
our interest is in predicting how the quality of the link will
develop in the near future.

More recent works use the same metrics as input to train
models that predict the future link quality. In [21], the authors
use the SNR to predict the expected signal strength targeting
people moving in buildings. This is done by creating a
signal strength map of the building and correlating the real-
time measurements to that map. The main drawback of
this technique is that it expects substantial data collection
on the deployment environment which is assumed to be
relative constant. Similarly, in [22] the authors design models
that predict whether the next packet transmission will be
successful. They experiment with several prediction models,
and conclude in employing logistic regression for is pre-
dictive performance and relatively low processing cost. The
work relies on a static network with constant environmental
conditions that cannot be assumed in mobile scenarios.

In [23] and [24], the authors propose TALENT: an link
quality predictor for making routing decisions. Rather than
relying on past measurements, the proposed method employs
online learning using a logistic regression classifier with
stochastic gradient decent to predict the link quality in 1
second in the future. The key disadvantages of the proposed
scheme is that it relies on high data rates and outputs esti-
mates that are only valid for 1 second, providing insufficient
time for vehicle to react to prevent the link failure.

Lastly, in [25], the authors consider a mobile robot moving
indoors and use an infrastructure of multiple static receivers
to predict the RSSI profile of the mobile link. While their
scenario shares a lot of similarities with the one we focus
on this paper, the reliance on multiple static receiver nodes
makes it inapplicable to outdoor settings where such infras-
tructure does not exist, such as agricultural scenarios.

III. DATASET

For the purpose of this work, we generated three datasets,
namely artificial data, artificial data enhanced with real
measurements and real world data. The data are raw RSSI
values while the nodes are moving to capture how a signal
strength trend can be used to predict a disconnect event. The
capture rate is 1 packet per second.

The artificial data is generated by using Cooja simulator
[26] and unit disk graph medium with path loss. Two nodes
are included, a static one, a mobile one and the mobility
pattern of the later is illustrated in Fig. [T} The static node
acts like a transmitter and the mobile node as a receiver.
The mobile node always starts close to the static one, to be
within its coverage and during the type 1 pattern it can move
via the x-axis and then the y-axis or vice versa. Path type
2 can be described by moving diagonal. The probability of
selecting each path, is equal. The mobile node also picks
a random speed value between 1,2,3 m/s. The size of the
area was 160 m? resulting in a maximum distance of 40
m between the two nodes. In the simulator there is no
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Fig. 1. The path types the mobile node can move on the evaluated scenarios.

interference, the noise floor is static, the simulated antennae
are omnidirectional and it is assumed line of sight all the
time. The total amount of simulation time to obtain the
artificial data was approximately 950 minutes.

The real-world data obtained using two CC2650 radios
[27], a static and a mobile which was following a mobility
pattern similar to the one in Fig. [T} The minimum and max-
imum distance was 10 cm and 60 m. The mobility patterns
were composed by moving at different speeds between 0.3
to 1.3 m/s. The transmission power varied between —21 to
5 dBm as we were trying to make a link to drop within
the available distance. The data was collected in soft ground
like dirt or grass, and not a hard one which can influence the
range of the transmissions. The total amount of data is around
250 minutes of transmissions which is available onlind'|

The data from the simulator was much smoother than the
real-world data. Aiming for a scalable solution that does
not depend on real-world data, which in some cases might
be impossible to collect due to regulatory requirements,
some randomness was added to the artificial data to mimic
the real-world data. The artificial data enhanced by real
measurements were generated by using two CC2650 radios
and making some observations. More specifically, two static
nodes, a transmitter and a receiver, transmitting a packet
every second, were used to obtain the Mean Squared Error
(MSE) of the received signal. The transmission power was 0
dB and we used multiple distance values, namely 30, 20, 10
m, for 70 seconds each time. The results are presented in
Fig. [3] Incorporating this error into the data was done by
introducing a random offset to each measurement point from
—2 dB to +2 dB, with both values included, which over a
long time results in a MSE of 2 dB approximately. The effect
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Fig. 3. The Mean Squared Error at different distances which was used to The model expects 4 RSSI values as input, obtained by 4

enhance the artificial data.

of this can be seen in Fig. 2]

IV. MODEL DESIGN AND DATA PRE-PROCESSING

This section discusses the selected model as all the major
design choices along with the pre-processing pipeline. The
overall framework is summarised in Fig. f]

The designing process was inspired by previous research
[28], [15], [29]. The final design of the current model, shown
in Fig.[3] is based on a feed-forward network which consists
of 10 layers where each layer includes between 5 to 300
neurons, beside the output which includes only 1. All layers
are fully connected (not displayed in Fig. [5). The activation
function in the input and hidden layers is a Leaky ReLU
while the output activation function is a sigmoid function.
There are 4 features given as input to the network and the
output is either 1 or 0 denoting the likelihood of an upcoming
disconnect event or not.

One of the challenges was to select an RSSI value which
indicates that a signal is fading out and the Packet Reception
Rate (PRR) starts to drop and use it for labelling the data.
We consulted the literature [16], [20], [15], [30] and selected
the value of —87 dB. The results from the literature are
based on the CC2420 radio which has similar sensitivity
(=95 dBm) to CC2650 radio (—97 dBm) which is the one
we used. Note that in approaches with a different radio this
value should be reconsidered as well as other parameters
such as environmental conditions. The neural network is
regularized with the dropout method to reduce overfitting.

consecutive packets. These packets should be sampled one
packet per second with as even spacing as possible. This was
done to decouple the data rate from the algorithm. Thus, it
is possible to sample from the packet stream in cases with
higher data rate and keep the model lightweight to complete
the computation before the model is scheduled to run again.

Fig. [6] presents the two buffers we used to label our data.
The first buffer represents the packets that have arrived and
has a size of 4 packets, the fourth packet with the arrow
represents the packet received most recently. This is the “pre”
buffer. Then the prediction or the “post” buffer has a size of 7
packets. Missing values in the input data were replaced with
the value of —100 dB representing a very weak signal. Each
RSSI value in the post buffer is checked and if any value is
below the threshold (which is —87 dBm), we label the pre-
buffer data as 1, meaning that they will produce a disconnect
event or as 0 if there is no value below the threshold meaning
that the connection is maintained. This process is the same
for all the classes of data. The example in Fig. [f] illustrates
that the data in pre buffer will produce a disconnect event
since packets with RSSI below the threshold follow in the
post buffer.

Based on the data classification we train three different
models, one with the artificial data, one with the enhanced
artificial data and another one with the real world data. For
training purposes we divided each class of data to 75% for
training and 15% for validating. For evaluation, all models
were tested on 10% of the real world data. As shown in
Fig. |7} our datasets suffer from class imbalance. Following
previous works [32], we adopt weights in the loss function
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Fig. 5. The architecture of the Neural Network, all the nodes are fully
connected using the activation function specified in each node.
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Fig. 6. The pre and post buffers used to label the data. In this particular
example the received packets in the pre buffer will be labeled as 1 meaning
that they will produce a disconnect event because there are two packets
bellow the threshold in the post buffer.

to further penalize misclassifications of the underrepresented
class.

V. MODEL EVALUATION

Table [lists the confusion matrices of the three models we
evaluate. More specifically the Artificial Model refers to the
model generated from artificial data, the Enhanced Model to
the model generated from the artificial data enhanced with
real measurements and the Real-World Model to the model
generated from real-world data. Since the output from the
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Fig. 7. Class imbalance among different data sets used to train and evaluate
the model.

model is a confidence value, it was decided to tune the
models to have a similar percentage of False Positives (FPs)
and True Positives (TPs). This was done since the main goal
of our use case is to capture as many cases of the disconnect
events as possible.

TABLE I
CONFUSION MATRICES

Artificial Model Ground Truth

Disconnection | No Disconnection
Prediction Disconnection 74.65% 51.15%
No Disconnection 25.35% 48.85%

Enhanced Model Ground Truth

Disconnection | No Disconnection
Prediction Disconnection 84.98% 45.66%
No Disconnection 15.02% 54.34%

Real-World Model Ground Truth

Disconnection | No Disconnection
Prediction Disconnection 86.38% 30.27%
No Disconnection 13.62% 69.73%

Observing the results at Table [l we see that the perfor-
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mance is improved when we enhanced the artificial data by
introducing some noise (Enhanced Model). Specifically the
reduction of FPs from 51.15% down to 45.46% and False
Negatives (FNs) from 25.35% to 15.02%. The reduction in
FNs is very important in a safety critical case, as missing a
disconnecting event might be crucial. The reduction in FPs
does reduce the noise produced by the system from false
alarms. We observe also that the Real-World Model has the
best performance.

For further evaluation, Fig. |§| includes two benchmark
models, one that predicts with 50% probability between the
false and true class (Random) and one that predicts just the
false class (False Only). The False Only model scores the
highest accuracy since there is a heavy imbalance in favour
of the false class. The model with the best accuracy after
the false only is the real world model with 72.4% accuracy.
The low accuracy can be explained by the large number
FPs. The accuracy can be increased but that would assume
an increase on the FNs and the goal is to minimize FNs
with an acceptable level of FPs. Regarding the recall metric,
which does not taking into account the FPs, the three models
have similar scores as expected since they were tuned to get
a similar number of TPs. The highest score is marginally
in favour of the Real-World Model which with 86.3%. The
recall for the Random Model is 52.6% which is in line with
randomly guessing while the False Only Model is 0%. Fig. |§|
depicts the false alarm rate and the Real-World Model again
presents the lowest rate with 30.3%.

The Receiver Operating Characteristics (ROC) curve for
all the models is presented in Fig. [I0] The threshold values
selected are 0.2 for the Real-World Model, 0.17 for the
Enhanced Model, 0.15 for the Artificial Model and 0.5 for
the Random Model and the False Only Model. Those values
result in the models giving a similar number of TPs while
the TNs differ between the models. The only model without
a curve is the False Only Model which is expected as the
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Fig. 10. ROC curves for all models including the benchmark models. The
markers represent the threshold values used during testing.

true positive rate and the false positive rate is 0% for all
threshold values. The curve for the Random Model follows an
almost straight diagonal line which is expected if the random
function uniformly distributes the values. By moving the
threshold up, the model stops only predicting one class and
starts predicting both classes until the maximum threshold
value is reached again where it starts only predicting the
other class resulting in the maximum true positive rate and
false positive rate.

The threshold value chosen for the Real-World Model is
close to optimal for maximising TPs while still letting as
few FPs. The same goes for both the other models but they
perform worse in the majority. If the threshold is changed to
0.4 the accuracy rises to 86.22% due to the increase rate of
TNs which is higher than the decrease rate of the TPs. This
is again due to the imbalance of the classes in the dataset.



There are indeed much fewer FNs but when we look at
the recall it drops down to 38.97% which is a significant
decrease. If the threshold is lowered on the other hand the
opposite happens. When the threshold is at 0.1 the recall is
100% but the accuracy is only at 26.58% due to most of the
classifications being FPs.

VI. CONCLUSION

Various autonomous vehicles applications, such as fleets
of connected autonomous agricultural vehicles, have safety
requirements that deem necessary the avoidance of wireless
disconnection events. In this paper, we present a framework
for predicting that a disconnection event is about to happen
seconds before it actually happens. The idea is that this
prediction shall initiate a proactive action, such as adjusting
the velocity or trajectory of the vehicle, to prevent the
disconnection from happening. In this context, we collect
data and train three models: one on data obtained from a
simulator, one on real-world data, and one the simulator
data augmented with real-world noise. The results demon-
strate that the model trained on augmented data outperforms
the model trained on simulated data, yielding performance
comparable to the model trained on real-world data. This
is particularly valuable in scenarios where collecting real-
world disconnection events is costly or even impossible due
to regulatory requirements.
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