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ABSTRACT
Biometric systems are getting integrated into our daily life as the

needs for authentication are increased rapidly. In smartphones fin-

gerprint and face identification are used already widely as a method

for user authentication. A relatively novel area of biometrics is the

usage of plantar biometrics, foot sole features, to verify human

identities. There are several approaches to utilise plantar biomet-

rics but most of the proposed approaches require bulky, obtrusive

or an immobile design. In this paper, we introduce a unobtrusive

biometric system based on a shoe wearable, which is able to authen-

ticate individuals with the assistance of Neural Network Classifier.

The implemented system is evaluated on 10 individuals achieving

94.3% accuracy with a loss of 1.87. Furthermore, the learning and

authentication part takes place on the edge which has numerous

benefits towards the performance but also the security aspects of

the system.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computer systems organization → Embedded sys-
tems; • Security and privacy → Biometrics.
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1 INTRODUCTION
Digitalization is the procedure to convert information in digital

form which is beneficial towards multiple applications. In business

and industry for instance, digitalization is applied to automate pro-

cesses, monitor the production and several other purposes which

will assist and increase the production [6]. Beside industry, dig-

italization started being integrated in daily life. Managing bank

accounts, paying monthly bills, daily money transactions that sub-

stitute paper and coin currency, travel documents, Covid-19 cer-

tificates and passports, all these examples can be managed using
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mobile devices but they have to authenticate the corresponding

user. The last years the fingerprint biometric and the face iden-

tification are used widely for authentication by mobile devices

and consequently for authenticating users for the aforementioned

examples.

A less common area of biometrics is the utilisation of foot bio-

metrics. The plantar pressure, gait pattern and other foot related

biomarkers adhere the main properties of biometrics, namely they

are characteristics that (almost) every user has, there is a unique-

ness in these characteristics [12, 19], they are quantifiable and they

are obtained without the user’s notice to avoid their influence. The

biometric systems, which are designed around foot biomarkers,

can be classified into three main classes: sole-based, mat-based

and photography-based. The first class includes biometric systems,

which use a set of sensors placed on carefully selected areas on the

foot sole or around the lower leg. These platforms are mobile, and

are to be carried by the user over the course of a workday. Sole-

based systems most of the times though are bulky and obtrusive.

Mat-based biometric systems use a pressure sensitive mat, often

placed at the entrance of a restricted area before allowing access.

They are immobile but have a more restrictive platform resulting in

better protection against physical tampering [5, 20]. Photography-

based approaches use feature extraction, rather than foot pressure,

to distinguish between data subjects. They are also immobile and

require the use of a (camera) sensor to capture the relevant pieces

of information [13, 15].

In this paper we propose a sole-based biometric system based

on a shoe wearable which is able to authenticate users using three

force sensors mounted under the shoe insole and an accelerometer

placed on the heel, from a common Arduino platform [2]. In most of

the sole-based approaches, the architecture is such that the obtained

raw data (plantar pressure, gait pattern) is transferred to another

entity where the authentication process takes place because of the

computational burden. The biometric system we propose incorpo-

rates the authentication process into the device, using a Neural

Network (NN) classifier designed for embedded systems. In that

way, the raw data is not compromised. The application scenarios

that motivate our approach are organisations and institutes that

require different levels of security. For instance, federal institutions,

medical research and development, military contractors. Using such

a biometric system besides allowing a user to access only authorised

regions, a proof authority can verify at any point that the user has

the authorisation to be the present region.

In traditional authentication, after a user has been authenticated

(using either user credentials, smartcard or biometrics) user au-

thentication is guaranteed only during the login point. Thus, there

is gap to ensure security during the period after login to logout

of a system. Continuous authentication (CA) [19] is an approach

able to guarantee user authentication during the whole period of

https://doi.org/10.1145/3539489.3539589
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using a system, by utilising biometric verification. Therefore, CA

is associated with foot biometrics as well and in this paper, we

illustrate how the proposed biometric system can incorporate this

approach.

The rest of the paper is organised as follows: Section 2 presents

the state of the art and how the introduced system is related to

them. Section 3 describes the system design, the implementation

and all the technical details around it. Section 4 illustrates a pilot

evaluation we conducted on 10 individuals and Section 5 concludes

the paper.

2 RELATEDWORK
This section focuses on sole-based biometric systems since this class

foot related biometrics is more related to the introduced approach.

Whilst most papers only focus on one type of verification meth-

ods and then expanding various iterations of this. However, a

small number focused more on biometrics in general, with a sub-

discussion on plantar biometrics. One example of this would be

Khoker and Singh’s survey [14], which focuses on the broader

scope of biometrics, herein plantar. This work sheds light on the

three types of biometric features, such as the physiological (face,

fingerprint, DNA, iris, etc.), the behavioural (voice, signature, key-

stroke patterns, etc.) and the "soft" features (height, weight, gender,

ethnicity, etc.). Along this approach, the survey goes on to discuss

a number of different areas of discourse within the field. Within

these expected subjects are the effects of age, the various methods

of extractions, and the prospects of multi-modality. Additionally,

the difficulties of user acceptance, an increasing societal reliance on

varying degrees of biometrics and ultimately, the very limitations

of the whole concept is also entertained. The survey rounds up

with a brief recap of the different methods, and finishes off with a

taste on some of the future prospects of plantar biometrics.

Appropriately titled "I Walk, Therefore I Am", Yeh et al. [19]

present a comprehensive overview of the problems typically associ-

ated with wearable Internet of Things (IoT) devices, their downsides,

and the need for changes in both typical policy and standards of

security within the field. They use this introduction to lead into

the concept of CA through IoT, and the effectiveness of several bio-

metric verification’s towards this approach. Using a Raspberry Pi II

and six pressure sensors, their platform used Naïve Bayes and Sup-

port Vector Machine (SVM) with Gaussian Radial Basis Function to

analyse the data and thereby ultimately generate an authentication

token for individual identification and verification. Whilst initial

results showed high degrees of verification accuracy (a low False

Rejection Rate), it also highlighted a potential for two individuals

to score high or even similar scores (a high False Acceptance Rate).

This was identified to be caused by the humans themselves, or envi-

ronment interference. A proposed data purification procedure was

implemented to avoid this, and much cleaner results was derived.

At worst, the true individual verification rate was 99.40% correct,

whilst the closest false individual verification rate was 80% at best.

Describing the concept of a Body Sensory Network (BSN), Ivanov

et al. [12] cite an expectation for growing need of biometric footwear

to help facilitate this. By using a segmented design, they propose a

two-part system, with one part being fastened to the shoe sole and

transmitting the data to a central processing system. The argument

is that this design allows for only minimal weight and equipment

being installed on the user. Using nine separate sensors and a prior

paper on the optimal placement of these [11], the authors investi-

gate four distinct neural network architectures using the previously

touched multimodal sensor insoles. They found evidence suggest-

ing that these multimodal sensor-enabled footwear could serve a

biometric purpose in the next generation of BSN. With a 70% seg-

mentation overlap, Ivanov et al. were able to reach a mean accuracy

of up to 93.3% ± 0.009 with some architectures. Taking a more

humble approach to the number of sensors and instead relying on

different parameters, Huang et al. [10] propose a different modu-

lar system design that only uses four individual force sensors. On

the other hand, they remedy this by adding peripheral parameters,

such as: the tilt angle, gyroscope readings, a bend sensor, and an

accelerometer. Whereas the previous papers solely focused on using

force sensors for acquiring their data sets, Huang’s team instead

focused on broadening their scope of possible data sources. Such

sensors can be many times smaller than a regular force sensor. This

approach would, after carefully extracting the most valuable data

using Principal Component Analysis (PCA) and a SVM to train and

classify the data, result in successful recognition rates of about 98%.

Having gone over the various dispositions and results of the

peer research, it is evident that they all show great success in au-

thenticating the user through various means. Most of the systems

transmit the raw data from the sensors to another entity to per-

form the authentication process. The potential for an adversary to

exploit and potentially infiltrate the systems is both substantial and

concerning. The system we propose performs the authentication

process onboard and the only data transmitting to another entity

is the results. Beside the security aspects, the onboard operation is

decreasing the cost and delay introduced by the transmission of the

raw data. Moreover, the mentioned approaches often necessitates

expensive equipment and materials, or the need for strapping cum-

bersome hardware onto the data subject. All the while, sacrificing

the individual’s privacy and ease of daily operations.

3 SYSTEM OVERVIEW

Figure 1: The shoe wearable biometric system, the Arduino
board it is attached on the heel of the shoe.

This section elaborates on the technical details of the proposed

biometric system. The main design principals is to conduct the

authentication process onboard while keeping the cost low using

commodity electronics by designing a unobtrusive Shoe-Wearable
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Biometric System (SWBS). The system is presented in two parts,

the hardware prototype and the NN classifier.

3.1 Prototype Design
A regular shoe was used to accommodate the rest of the system

components as it depicted in Figure 1. Then consulting the force

heat map of Keatsamarn [13] for inspiration, a total of three force

sensors (FSR 402 by Interlink [8]) was used to capture the plantar

pressure as it is presented in Figure 2. The Force sensors are attached

under the shoe insole and they are thin enough to not being noticed

by the user. The shoe we used, a typical athletic shoe, includes a

sole with a thickness of 35 mm approximately. The Force sensors

are attached on an Arduino Nano 33 BLE Sense [2], which is main

platform of the system responsible for all the computational tasks.

The Arduino board is mounted on the heel of the shoe and its

three-axis accelerometer is used to capture the gait pattern. To

power the system a battery should be included to this design or

utilising energy harvesting methods [16] can be also an option. The

system is supposed to authenticate a user and then transmit the

result to the proof authority using the Bluetooth Low Energy (BLE)

technology. Figure 3 depicts the system flow.

(a) Heat map of
plantar pressure

[13]

(b) Drafted sole
layout

(c) Implemented sole
layout

Figure 2: Chosen sole layout for force sensors used to capture
plantar pressure for biometric purposes.

Figure 3: The biometric system’s flow, sensors are obtaining
the data, then they are processed and then a NN classifier is
giving the output, an authenticated user or not.
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Figure 4: Raw data from the three-axis accelerometer.

3.2 Neural Network classifier
Developing a novel NN classifier tailored to the design requirements

was out of the scope of this paper. Therefore we use Edge Impulse

[7], a development platform for machine learning on edge devices

which specialises in bringing machine learning to a wider audience

of developers. Their platform allows for numerous processing plat-

forms to be used for both data gathering and model generation, as

well as varying degrees of control of the data processing and neural

architecture.

In order to generate sufficient data, we asked 10 individuals to

participate in our research following all the recommended regu-

lations about pseudonymization and data privacy by GDPR. The

volunteers were asked to walk casually outdoors for a specific dis-

tance, in their usual walking pattern along a flat distance. They

were to ignore the adjacent researcher walking behind them, with a

laptop collecting data. This included to avoid coordinating their gait

or speed to that of the researcher. Likewise, they were asked to note

if anything felt off, hurt, they would like a break, or if anything felt

uncomfortable otherwise. Each volunteer was given a designated

moniker to easily group their data, such as “Data Subject XX”, or

“DSXX” for short.

A data frequency of 50 Hertz was chosen. The six data points

(three axis accelerometer and three force sensors) were recorded for

between 100 to 300 seconds, resulting in between 30, 000 to 90, 000

data points captured for each data subject. A part of the obtained

raw data is illustrated in Figures 4 and 5. In addition, the system

beside raw data from the sensors is able to capture spatiotemporal

parameters like gait and stride speed for more complex models in

the future. A 80%/20% relationship between training and test data

was utilised for the models. Due to the only available shoe provided

for the project being a size 45 (EU standard), this imposed a minor

restriction on the data subjects eligible for data acquisition. All

10 data subjects who volunteered for the project were: biological

male, between 22 and 78 years of age, weighed between 70 and 105

kilograms, and between 170 and 195 centimetres tall.

The Edge Impulse defines a very specific operational framework.

Firstly, the acquired data is sent through a spectral analysis proce-

dure, used to extract frequency and power characteristics of the
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Figure 5: Raw data from the force sensors.

signals by scaling the raw input signal, applying a Butterworth

filter (a signal processing filter designed to make a frequency re-

sponse to be as flat as possible in the passband) and adding the

root mean square of the output to the features’ list. This simply

applies an additional scaling of the input axis. Next, the data is

forwarded into a Keras-based Neural Network architecture. Keras

is an open-source Python Library running on top of the learning

platform TensorFlow [18]. For the purpose of avoiding potentially

overfitting the model, a Learning rate of 0.00015 was chosen, over

the course of 100 training cycles using trial and error. The NN con-

sists of four layers, an input layer with 366 Features, before being

processed by another two hidden layers. Lastly, the output of these

are classified into 10 separate classes, one for each data subject.

4 PILOT EVALUATION
This section provides a pilot evaluation we did on 10 individuals

by reporting the F1 score of the NN classifier, reflecting on the

advantages and disadvantages of the proposed biometric system

and comparing it based on an amount of aspects important for

wearable biometric systems.

Edge Impulse allows for comparison of test data to the trained

model classes. A confusion matrix, as shown in Table 1, highlights

the performance of the model. A plausible argument may be that the

biometric system should only need to recognise a single individual.

In some ways, the model’s robustness and accuracy is put under

greater stress, than it would if only a single data subject were to

be recognised. Additionally, by presenting the data in a matrix and

organising it in this manner, it is easier to compare with the state

of the art [5, 19]. Overall, a 94.3% accuracy was achieved, with a

Loss of 1.87. Additionally, Edge Impulse reported a 27 millisecond

inference time, a peak ram usage of 2.3 KB and a flash memory

usage of 160.0 KB.

The results showed consistent recognition rate across the classi-

fications. Combined with a low inference time of just 27 ms, this

indicates that the system has a significant potential for implement-

ing a biometric system on the edge utilising the CA paradigm. The

data and the results also demonstrates how the system can be used

for a gradient-scale authentication scheme, to restrict user access

rights depending on the latest recognition score.

Whilst the results highlight the potential for a lightweight and

more affordable solution, there are a number of factors to consider.

Neither the algorithm nor the data was optimised beyond rudimen-

tary data processing, and inserted into a NN classifier (using Keras).

This was a preliminary design but a proper data processing and

optimisation should be planned in future designs. The volunteers all

shared a similar physiological stature. Additionally, the only shoe

available may have resulted in poor data acquisition due to slight

shoe size differences. No deep investigation on the topic of potential

overfitting of the model - this again was not the explicit purpose of

the paper, but rather something to note. In order to accommodate

the volunteers to the greatest extent, the data acquisition had to

be done close to their homes. This meant that the distance they

walked might not have been completely level and smooth.

On the other hand, for the short extent of the evaluation, the

proposed system presented some very encouraging features. The

data and subsequent NN for classification was made for a much

more complex scenario/model, than a likely implementation of

the system. As mentioned previously, the model only needs to be

certain of one individual’s identity, not to classify more than 10

different people. Very little data has been gathered. Between 100

and 300 seconds worth of data was acquired for each data subject. A

minuscule amount of data, in comparison to contemporary works.

This means that whilst the amount of data for training and testing

is very modest, the model had little to no issues achieving 100%

recognition rate for multiple data subjects. Despite only using 6

data vectors (three force sensors, three axis), of which 3 were largely

insignificant in the final result, very consistent and assured results

were produced.

In order to better analyse the proposed biometric system, aspects

such as price of the unit, weight, ergonomics, size, etc. are obvious

to look into. To provide a fair comparison between the introduced

biometric system and the state of the art, the most similar system(s)

will be used. These are the Raspberry Pi 2B-based system by Yeh

et al. [19], the custom board of Ivanov et al. [12] and Huang et al’s

microcontroller-based proposal. To quantify the different aspects of

the three systems, table 2 presents a number of differences between

the three.

System architecture:Only the introduced biometric system has

adopted a monolithic architecture (the authentication is carried out

onboard), whereas the other proposals use their wearable systems

as simple data loggers and transports. The design choice to go with

this type of system architecture has far-reaching consequences

for a number of the following characteristics. The outcomes for a

multitude of parameters is discussed below.

Sensory equipment: The number of force sensors utilized is the

minimum compare with the other approaches. We should mention

though that the introduced approach and Huang’s proposal [10]

use secondary sensors to compliment the primary force sensors.

Using less sensors contributes towards less power consumption,

less memory and less data complexity.

Power consumption: Another important aspect is the power

consumption. Whereas Ivanov’s minuscule data gathering proces-

sor board only draws 3 mA, the SWBS draws around 32 mA [17].

Huang did not disclose the system’s wattage, but somewhere around
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Tester/Classifier DS01 DS02 DS03 DS04 DS05 DS06 DS07 DS08 DS09 DS10
DS01 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

DS02 0% 87.5% 0% 0% 0% 0% 0% 6.3% 6.3% 0%

DS03 0% 0% 95% 0% 0% 0% 5% 0% 0% 0%

DS04 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%

DS05 0% 0% 0% 0% 94.7% 0% 0% 5.3% 0% 0%

DS06 0% 0% 0% 0% 0% 88.2% 2.0% 9.8% 0% 0%

DS07 0% 0% 1.9% 0% 1.9% 9.4% 86.8% 0% 0% 0%

DS08 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

DS09 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

DS10 0% 0% 0% 1.8% 0% 0% 0% 0% 1.8% 96.4%
F1 Score 1.00 0.93 0.95 0.97 0.96 0.89 0.91 0.91 0.98 0.98

Table 1: Confusion matrix showcasing the model’s recognition rate between the 10 classes of data subjects. The F1 Score rates
how successful the classifier is - it is the harmonic mean of precision and recall [4].

SWBS Yeh [19] Ivanov [12] Huang[10]
System architecture Monolithic Modular Modular Modular

Number of force sensors Three Six Nine Four

Physical shape
Secondary sensors Accelerometer None None Yes

Table 2: Simple comparison chart of the three systems proposed between this paper, Yet et al. [19], Ivanov et al. [12], and Huang
et al. [10]. Note how Yeh’s system utilises two data collectors, one for each foot.

those two points are to be expected. Meanwhile, Yeh’s Raspberry

Pi-based system draws between 320 to 450 mA [9]. Regarding the

communication SWBS, Yeh’s [19] and Ivanov platform [12] uses

BLE and Huang’s proposal [10] an older version of a Bluetooth

radio. The radio communication has been proven to consume the

most amount of power in IoT devices. Thus, sending just the result

to the proof authority instead of a series of raw data can decrease

the power consumption significantly. The sensors of course con-

sume a considerable amount of power. Hence, the relation between

number of sensors and power consumption is proportional.

Weight:All four platforms are very lightweight, making for only

a small potential impact on the wearer’s gait. Whilst Yeh’s platform

[19] may weigh somewhere around 55 grams, and the SWBS around

35 grams (excluding the battery), Ivanov’s smaller data collecting

unit [12] would undoubtedly weigh even less
1
. Huang’s work [10]

offered no details on this, but from the provided images, it should

be in the multitude of Yeh’s platform.

Costs:Whilst the complete cost of SWBS can be calculated for

around $52.00, assuming a cost of around $7.00 per sensor [1]2 at

1
No official weight was disclosed, estimate between 20 and 30 grams including a

CR2032 button battery.)

2
This price will be used for calculating the costs of the other systems as well.

the time of writing and a cost of around $31.00 for the Arduino

[3]. Meanwhile, Yeh’s system [19] would cost around $77.00, as-

suming a Raspberry pi cost of $35.00. The data processing server

is not counted as an expenditure, as the job can be taken up by a

workstation or server. Huang’s platform [10] with its four sensors

would be at least $28.00. Whilst there are no concrete details on the

specific sensors in use on the platform, a fair estimate would be be-

tween $20− $25 of additional costs, putting the platform up around

$48−$53. Lastly, whilst Ivanov’s processing board [12] only consists
of inexpensive components like a radio sender, a small battery and a

wireless proprietary System on a Chip (SoC), the amount of sensors

alone pushes the price for the system up to $63.00. In conjunction

with the necessary custom data logging system, Ivanov’s proposal

is the most expensive in terms of materials.

Security & Hardiness: Considering the security aspects of both
physical design and communication channels, SWBS has much

greater capacity for security built in, than its contemporaries. Both

Ivanov’s [12] and Yeh’s [19] platforms are exposed to outside phys-

ical tampering. Ivanov’s platform has a slight edge in comparison

to Yeh’s due to the Raspberry Pi’s many USB ports and physical

interfaces. However, both of these falls short in relation to the secu-

rity of the communication channels they employ. Ivanov’s platform
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have no mentioned methods of encryption or verification of mes-

sage integrity. Meanwhile, while Yeh’s platform does support this,

due to its UNIX kernel, there are no mentions on the possibilities

of hardening its data communications. Huang’s platform [10] de-

scribes a capacity to use Forward Error Correction (FEC) to help

reduce transmission error and improve the wireless communication

reliability. There are no other mentions of security measures on

board of the system. The proposed platform supports both encryp-

tion of the data on the chip (AES-128), usage of up to 16 separate

keys/certificates with Elliptical Curve Diffie-Hellman key exchange,

and integrity checks using SHA-256. Also worth mentioning is the

potential for a very small physical footprint. It is safe to assume

that the WBAS has much greater potential for secure and hardy

communications as the crypto chip ensures that no secrets are ever

exposed in plain-text [2].

Ease of installation: Ivanov’s proposal [12] is incorporated
directly into the shoe sole, and connects to the smallest and lightest

processing board. Both SWBS and Huang’s system [10] requires

only minimal gluing of sensors to a shoe sole and the processor

board to the shoe itself. The wires are short and kept minimal.

Lastly, Yeh’s proposal [19] is arguably themost fragile, withmultiple

dangling wires and a loose slipper as a platform. To top it off, the

processing board is tied to the data subject’s leg with a shoestring.

It should again be mentioned how none of the platforms was made

with this purpose in mind. It was however included, to debate the

prospects of the platforms.

Ergonomics: SWBS and Huang’s system [10] are both incorpo-

rated directly onto the shoe and beneath the shoe sole, resulting

into a less obtrusiveness wearable. Likewise, by having a shoe sole

with all the sensors directly embedded, the impact is virtually non-

existent. Lastly, while Yeh’s proposal [19] is kept light, the many

wires, the unfastened flipper and the usage of potentially unstable

securing of the processor may influence the data subject’s walking

pattern. We have to mention that we did not evaluate the weara-

bility and the user experience of SWBS but this is an interesting

aspect we plan to evaluate in the future. Nevertheless, no volun-

teers mentioned discomfort, requested a break, or otherwise voiced

apprehension with the overall process.

5 CONCLUSION
This paper introduced a shoe-wearable biometric system which is

able to perform the authentication process onboard. The design was

carried out to keep the cost low, use off-the-shelf electronics and

implement a unobtrusive wearable. The prototype is built based on

a regular shoe attaching three force sensors under the shoe sole

and a accelerometer on the heel. The computing platform we use is

an Arduino Nano 33 BLE Sense [2] and a NN classifier built and ex-

ecuted onboard with the support of Edge Impulse [7] development

platform. A pilot evaluation of 10 individuals demonstrates that the

proposed biometric system was able to authenticate each user with

94.3% with loss of 1.87. Unlike the state of the art approaches, the

proposed biometric system do not compromise the sensitive raw

data obtained by the sensors by transmitting them to another entity

since the authentication takes place on the edge. Furthermore, there

is not cost and delay overhead because of the same reason.

As future work we plan to propose a tailored learning model

and a more advanced data processing method to optimise further

the results. We also plan to have a proper evaluation with more

volunteers and also design several sizes of prototypes to have more

diverse group of volunteers. Furthermore we plan to increase the

evaluation time and include several activities (walking, standing,

climbing stairs) to evaluate further the efficiency of the proposed

biometric system.
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