
Integration of AI andmobile gateways in LoRa
Networks
Master Thesis

DTU Compute
Department of Applied Mathematics and Computer Science

Approval
This thesis has been prepared over 5½months at the Department of Applied Mathematics
and Computer Science, at the Technical University of Denmark, DTU, in partial fulfilment
for the degree Master of Science in Engineering, MSc Eng.

It is assumed that the reader has a basic knowledge in the areas of statistics andComputer
Science.

Simon Kristoffer Janum - s194609

Signature

Date

August Falck Kreinert Valentin - s194802

Signature

Date

Integration of AI and mobile gateways in LoRa Networks iii

Abstract
The growing demand for Low-Power Wide Area Networks (LPWANs) in Internet of Things
(IoT) applications, such as sensor nodes in agriculture or devices in smart cities, has
highlighted scalability challenges for technologies like LoRa. Traditional solutions, such
as stationary gateways, often face logistical and financial constraints. This thesis explores
the use of Reinforcement Learning (RL) to improve the scalability and performance of
LoRa networks using RL-driven mobile gateways.

Using Objective Modular Network Testbed in C++ (OMNeT++) for network simulation and
Stable-Baselines3 (SB3) for custom RL environment training, we investigate the perfor-
mance of an RL-driven mobile gateway compared to stationary gateways and simple mo-
bility models. Packet Delivery Ratio (PDR) and Jain’s Fairness Index are used as network
metrics to quantify performance.

We show that a model trained in SB3 can be successfully transferred to OMNeT++, main-
taining both its behavior and performance. Furthermore, evaluations highlight that, in
cases with sufficient time between transmissions, a single RL-driven gateway provides
performance comparable to that of four stationary gateways.

Our evaluations show that RL-driven mobility achieves a near-perfect PDR and fairness in
near-ideal simulation environments, where node placement and transmission intervals al-
low sufficient time for adaptation, demonstrating advantages in adaptability over stationary
solutions. Static mobility models, like circular motion, perform well in specific scenarios
but are less adaptable compared to RL-driven gateways. However, challenges remain in
complex decision-making, particularly with high transmission rates or faulty nodes, which
can reduce performance.

This thesis demonstrates the potential of RL for scaling LoRa networks dynamically and
suggests future work to refine decision-making strategies and improve robustness for
real-world applications.

iv Integration of AI and mobile gateways in LoRa Networks

Acknowledgements
We would like to express our deepest gratitude to our supervisors, Assistant Professor
Charalampos ’Haris’ Orfanidis and Professor Xeno ’Fontas’ Fafoutis, for their invaluable
guidance, support, and encouragement throughout the course of this thesis. Their ex-
pertise and insights have not only shaped the direction of this work but also significantly
enhanced our knowledge and understanding of the field and we are truly thankful for the
opportunity to learn from them. We would also like to extend our sincere thanks to Fabian
Fernando Jurado Lasso for his guidance and insights into Reinforcement Learning. His
expertise in the area played a crucial role in driving this work forward and was instrumental
in helping us reach this stage of the thesis.

We would also like to thank our respective families and girlfriends for their unwavering
love, support, and encouragement. Thank you for believing in each of us and for always
being there, whether it was through moments of doubt or triumph. Your support has been
a constant source of strength, and we could not have completed this journey without each
of you.

Integration of AI and mobile gateways in LoRa Networks v

vi Integration of AI and mobile gateways in LoRa Networks

Contents

Preface . iii
Abstract . iv
Acknowledgements . v

1 Introduction 6
1.1 Motivation . 6
1.2 Main Objective . 6
1.3 Structure . 7

2 Background 8
2.1 LoRa . 8
2.2 LoRaWAN . 10
2.3 OMNeT++ . 12
2.4 INET . 12
2.5 FLoRa . 12
2.6 Neural Networks . 13
2.7 Reinforcement Learning . 17
2.8 Stable-Baselines3 (SB3) . 23

3 Related Works 25
3.1 LoRa Literature . 25
3.2 Mobility for LoRa Literature . 25
3.3 Reinforcement Learning Literature . 26
3.4 Reward Shaping Literature . 28

4 Methodology 29
4.1 Setup . 29
4.2 Custom Environment in Stable-Baselines3 29
4.3 Policy . 32
4.4 Credit Assignment . 34
4.5 Integrating OMNeT++ for Model Evaluation 34
4.6 Experiments . 37
4.7 Evaluation method . 37

5 Evaluation 41
5.1 Scenario 1 . 43
5.2 Scenario 2 . 53
5.3 Scenario 3 . 56
5.4 Scenario 4 . 63
5.5 Scenario 5 . 71

6 Discussion and Feasibility 80

Integration of AI and mobile gateways in LoRa Networks vii

7 Conclusion 82

8 Future works 83

Bibliography 84

Appendices 87

Appendix A Direct Training from OMNeT++ simulations 88

Appendix B OMNeT++ custom component diagram 89

Appendix C Scenario 2 - Gateway Distances to Nodes 90

Appendix D Scenario 3.A - Gateway Distances to Nodes 92

Appendix E Validation Model Conversion Script 94

viii Integration of AI and mobile gateways in LoRa Networks

List of Figures

2.1 LoRa illustration of chirps [4] . 8
2.2 Coding Rate 5/7 [7] . 9
2.3 Spectrogram of different Spreading Factors [8] 10
2.4 Star-of-stars LoRa topology . 11
2.5 Neural Network Visualization [11] . 13
2.6 Residual learning: a building block[13]. 16
2.7 Stable-Baselines3 policy network architecture [17] 24

4.1 Custom environment in SB3 . 30
4.2 Distribution of transmission interval at 1500 steps with a standard deviation

of 5 . 31
4.3 Packet Reception Propability . 32

5.1 S1 Fairness during training for final model 44
5.2 S1 PDR during training for final model . 44
5.3 S1 Performance box plot for final model . 45
5.4 S1 Performance bar plot for final model . 45
5.5 S1.A Heatmap of episode . 46
5.6 S1.A Fairness during training . 47
5.7 S1.A PDR during training . 47
5.8 S1.B Fairness during training . 48
5.9 S1.B PDR during training . 48
5.10 S1.B: Fairness with a 86400 normalization value for expected time 50
5.11 S1.B Fairness with residuals and a 86400 normalization value for expected

time . 50
5.12 S1.B PDR with a 86400 normalization value for expected time 51
5.13 S1.B PDR with residuals and a 86400 normalization value for expected time 51
5.14 S1.C Fairness and PDR during training using DQN 52
5.15 S2 Environments in SB3 and OMNeT++. 53
5.16 S2 Performance bar plot in SB3 . 54
5.17 S2 Performance box plot in SB3 . 54
5.18 S2 PDR and Fairness box plots in OMNeT++ 55
5.19 S2 Performance bar plot in OMNeT++ . 56
5.20 S3 Performance bar plot (no faulty node) 57
5.21 S3.A Performance bar plot . 58
5.22 S3.A Heatmap of gateway in an episode . 59
5.23 S3.B Performance bar plot . 60
5.24 S3.B Disance for node 3 over an episode 60
5.25 S3.B Heatmap for gateay in an episode . 61
5.26 S3.C Performance bar plot . 62
5.27 S3.C Heatmap of Gateway . 62
5.28 S4.A Initial positions of LoRaWAN units. 64

Integration of AI and mobile gateways in LoRa Networks 1

5.29 S4.A PDR box plot . 65
5.30 S4.A Fairness box plot . 65
5.31 S4.A Performance bar plot . 66
5.32 S4.B Initial positions of LoRaWAN units. 67
5.33 S4.B PDR and Fairness box plots . 68
5.34 S4.B Performance bar plot . 68
5.35 S4.C Initial positions of LoRaWAN units. 69
5.36 S4.C PDR and Fairness box plots . 70
5.37 S4.C Performance bar plot . 71
5.38 S5.A Initial positions of LoRaWAN units. 73
5.39 S5.A PDR and Fairness bar plots . 73
5.40 S5.A Performance bar plot . 74
5.41 S5.B Initial positions of LoRaWAN units. 75
5.42 S5.B PDR and Fairness box plots . 75
5.43 S5.B Performance bar plot . 76
5.44 S5.C Initial positions of LoRaWAN units. 78
5.45 S5.C PDR and Fairness box plots . 78
5.46 S5.C Performance bar plot . 79

A.1 System flow for training in OMNeT++ directly 88

B.1 Diagram of the relation between custom components in OMNeT++ 89

C.1 S2 Gateways distance to node 0 over steps 90
C.2 S2 Gateways distance to node 1 over steps 90
C.3 S2 Gateways distance to node 2 over steps 91
C.4 S2 Gateways distance to node 3 over steps 91

D.1 S3.A Gateways distance to node 0 over steps 92
D.2 S3.A Gateways distance to node 1 over steps 92
D.3 S3.A Gateways distance to node 2 over steps 93
D.4 S3.A Gateways distance to node 3 over steps 93

List of Tables

2.1 SB3 PPO compatibility for different space types 24
2.2 SB3 DQN compatibility for different space types 24

5.1 Default simulation parameters for OMNeT++ 42
5.2 Default simulation parameters for SB3 . 42
5.3 S1 Learning parameters . 43
5.4 S2 SB3 scenario parameters . 53
5.5 S2 OMNeT++ scenario parameters . 53
5.6 S3 Scenario parameters . 57
5.7 S4.A OMNeT++ Parameters . 64
5.8 S4.B OMNeT++ parameters . 67

2 Integration of AI and mobile gateways in LoRa Networks

5.9 S4.C OMNeT++ Parameters . 69
5.10 S5.A OMNeT++ Parameters . 72
5.11 S5.A Circular motion parameters . 72
5.12 S5.B OMNeT++ Parameters . 74
5.13 S5.B Circular motion parameters . 74
5.14 S5.C OMNeT++ parameters . 76
5.15 S5.C Circular motion parameters . 77

Integration of AI and mobile gateways in LoRa Networks 3

Acronyms
A2C Advantage Actor Critic. 27

ACER Actor Critic and Experience Replay. 26

ACuTE Automatic Curriculum Transfer from Simple to Complex Environments. 27, 28

ADR Adaptive Data Rate. 11, 12

AI Artificial intelligence. 6, 29, 41

BW Bandwidth. 8, 10, 27

CR Coding Rate. 9, 10, 42

CSS Chirp Spread Spectrum. 8

CTDE Centralized Training, Decentralized Execution. 27

DQN Deep-Q-Network. 19–21, 23–27, 41, 43, 52, 82

FLoRa Framework for LoRa. 6, 12, 25, 34, 35

HF High-Fidelity. 53, 82

IoT Internet of Things. iv, 6, 10, 12

LF Low-Fidelity. 82

LiteRT Lite Runtime. 23

LoRa Long Range. iv, 6–10, 12, 25–27, 29, 34, 41, 80, 82, 83

LoRaWAN Long Range Wide Area Network. 9–12, 25, 42, 81

LPWANs Low-Power Wide Area Networks. iv, 6, 26

LSTM Long Short-Term Memory. 16

MAC Media Access Control. 10

MAPPO Multi-Agent Proximal Policy Optimization. 27

MDP Markov Decision Process. 18, 28

NED Network Description. 12

OMNeT++ Objective Modular Network Testbed in C++. iv, 6, 12, 29, 34, 35, 37, 39,
41–43, 49, 53, 55, 63, 71, 82, 88

PDR Packet Delivery Ratio. iv, 6, 37–40, 43, 45, 46, 49, 52, 55, 57, 58, 61, 73, 75, 76,
78

4 Integration of AI and mobile gateways in LoRa Networks

PoC Proof-of-Concept. 29

PPO Proximal Policy Optimization. 20, 21, 23–27, 41, 43, 52, 82

RL Reinforcement Learning. iv, v, 6, 7, 17, 19–21, 26–29, 41–43, 63, 71, 73–78, 80, 82,
83

RNNs Recurrent Neural Networks. 16

SB3 Stable-Baselines3. iv, 1, 6, 23, 24, 29, 30, 34, 35, 37–43, 45, 49, 53, 55–57, 82, 83

SF Spreading Factor. 8–10, 27, 81

TCP Transmission Control Protocol. 12

TF TensorFlow. 35

TFLite TensorFlow Lite. 35

TFLite Micro TensorFlow Lite Micro. 35

ToA Time on Air. 9, 42

TP Transmission Power. 8, 27, 81

UAV Unmanned Aerial Vehicle. 26, 27, 80

UDP User Datagram Protocol. 12

Integration of AI and mobile gateways in LoRa Networks 5

1 Introduction
1.1 Motivation
Low-Power Wide Area Networks (LPWANs) is a growing topic, as it is expanding through-
out the field of Internet of Things (IoT), with countless applications, such as agriculture
or smart cities. Scenarios include monitoring soil conditions [1], air pollution [2] and traf-
fic management [3]. Since the emergence of LoRa in IoT, researchers has focused on
investigating its scalability and other physical characteristics like the achievable range.
Scalability is still an issue and researchers try to solve it with adding more LoRa gate-
ways or making the gateway mobile.

Expanding networks with more gateways to cover the range of all clients consists of lo-
gistical and financial challenges. To combat these issues, a mobile gateway can serve
a larger area by traversing between landmarks. However, the introduction of mobility
leads to new research questions, such as the optimal paths and speed of the gateway,
to optimize network metrics. These problems are however categorically difficult to solve
optimally, as clients can be placed in various locations with individual range and transmis-
sion times. Therefore, studying the use of Reinforcement Learning (RL), to find suitable
mobility configurations in real-time will provide useful insight into mobile gateways. To this
a high-fidelity network simulator is used, which will be modified to support RL driven mo-
bility. The project will also contain the use of separate learning environments for training,
and have the model be transferred and used in the network simulator for evaluation.

1.2 Main Objective
The main goal of this thesis is to investigate the use of Reinforcement Learning (RL) for
scaling LoRa networks. This has been done with the use of OMNeT++, a network simula-
tor which includes the Framework for LoRa (FLoRa), and Stable-Baselines3 (SB3) for the
Reinforcement Learning which will be transferred to OMNeT++. This thesis addresses
the problem where the environment has distant nodes, e.g. in agriculture where sensor
nodes can have large distances between each other. A common solution is to try and
place a minimal amount of stationary gateways in the best possible positions to cover
and serve all nodes. Instead we propose a mobile gateway, instead of adding new ones.
More specifically we introduce a mobile gateway which operates under a Reinforcement
Learning Policy, and explore how this will perform compared to both multiple stationary
gateways and naive mobility implementations.

This however also comes with its own problems, as neither FLoRa or INET directly sup-
ports mobility driven by an AI model. To this we propose TFLite Micro together with custom
modules, to perform inference during OMNeT++ simulations. This essentially consists of
training a model in a custom Stable-Baselines3 (SB3) environment, to then export into
OMNeT++ for evaluation. Therefore a rather large portion of the project also dealt with
setting up the framework to make an AI model suitable and comparable with OMNeT++,
and how to effectively train such a model. For evaluation, Packet Delivery Ratio (PDR)
and Jain’s Fairness Index are used as performance metrics to provide an objective com-
parison between the results.

All related code can be accessed through the project’s GitHub1 repository.
1https://github.com/yconsj/AI_Lora_Mobility

6 Integration of AI and mobile gateways in LoRa Networks

https://github.com/yconsj/AI_Lora_Mobility

1.3 Structure
This thesis is organized according to the work carried out during the MSc project in the
winter semester of 2024-2025. The thesis focuses on the final selected frameworks and
tools rather than on an exhaustive list of all the options tested and investigated.

Chapter 2 provides the necessary background information, covering the theoretical foun-
dations of LoRa and Reinforcement Learning. Understanding these concepts is essential
for interpreting the terminology and ideas presented in this thesis. Chapter 3 presents a
review of related works, highlighting research on LoRa and Reinforcement Learning that
is relevant to the context of this project.

Chapter 4 outlines the methodology, including the decisions made during the project, the
setup of the framework for model training, and the experiments carried out. It also dis-
cusses the structure of the simulation environment and the evaluation metrics used.

Chapter 5 presents the results of the experiments described in Chapter 4, along with an
evaluation of the results and the methodology used throughout the project.

Chapter 6 presents a discussion of the feasibility of the project and its potential real-
world applications. This section focuses on how the project could be applied in practice
and identifies any modifications or considerations that may be necessary for real-world
implementation.

Finally, Chapter 7 provides a conclusion based on the results of the project, followed by
a discussion of ideas for future work in the subsequent chapter.

Integration of AI and mobile gateways in LoRa Networks 7

2 Background
2.1 LoRa
LoRa, which stands for Long Range, is a physical radio communication technique. It was
developed by Cycleo in 2014 and later acquired by Semtech, and is developed to enable
low data rate communication over long distances. The technique to achieve this takes
roots from Chirp Spread Spectrum (CSS) technology. LoRa transmits data through ra-
dio waves by generating frequency-modulated chirps and encoding them into symbols
that represent information. Up-chirps refer to frequency changes from a low point to a
high point, while down-chirps describe frequency changes from high to low. Figure 2.1
illustrates the different types of chirps used in LoRa. First, a series of identical preamble
up-chirps alerts receivers. This is followed by two down-chirps, which are used to syn-
chronize communication and allow the receiver to adjust its reception window in case of
misalignment. After synchronization, data symbols are transmitted. Due to its use of CSS
modulation, LoRa is highly robust against interference and resistant to Doppler effects,
making it suitable for applications involving mobility.

Figure 2.1: LoRa illustration of chirps [4]

There are 3 variables that can be tweaked for data rates: Spreading Factor (SF), Band-
width (BW), Transmission Power (TP) [5].
Bandwidth (BW)
Bandwidth (BW) is the range of frequency in the transmission band, hence its the width of
the transmission signal. A large bandwidth will result in higher data rate, but also makes
the sensitivity lower which reduces range as the signal is harder to detect. LoRa can
use channels with a bandwidth of 125kHz, 250kHz, or 500kHz and is constrained by the
region and frequency plan.
Transmission Power
Transmission Power (TP) is the amount of power that the transmitter produces when
outputting. An increase in transmission power will increase the signal strength for the
receiver, making the success of the transmission more likely.

LoRa transmits on the license-free sub-GHz spectrum, i.e. 915 MHz, 868 MHz and 433
MHz. It is also documented that it can operate on the 2.4 GHz band, trading off range for
a higher data rate [6]. The 868 MHz frequency band is used in Europe with a limit of 14
dBm as the max transmission power.

8 Integration of AI and mobile gateways in LoRa Networks

Time on Air (ToA) refers to total duration it takes for a device to transmit a complete packet
over the air. The duty cycle is the fraction of time a device spends transmitting relative to
a given period, typically expressed as a percentage:

Duty Cycle =

(
ToA

Total Time Period

)
× 100 (2.1)

LoRaWAN enforces a strict duty cycle constraint ranging from 0.1% to 1%, depending on
the channel used. This means that with a 1% duty cycle, if a message takes 200 ms to
transmit (Time on Air), the device must wait for:

(
1

1%
− 1

)
× 200 ms = 19.8 s (2.2)

before transmitting a new message. This requirement helps mitigate network congestion
and inherently conserves energy.
Coding Rate (CR)
Coding Rate (CR) refers to the proportion of bits in the data stream that carry data, where
the rest of the bits are used for Forward Error Correction. There are 4 code rates used for
LoRaWAN; 4/5, 4/6, 5/7 or 4/8. e.g. a Coding Rate of 5/7, will have 5 bits for data, and 2
bits for error correction. Different Coding Rate exist to balance the data transmission effi-
ciency and reliability. The choice of coding rate affects error correction, data throughput,
and Time on Air.

Figure 2.2: Coding Rate 5/7 [7]

Spreading Factor (SF):
The Spreading Factor (SF) controls the chirp rate, which directly affects the data transmis-
sion rate. A lower SF results in a higher chirp rate, leading to a higher data rate, and vice
versa for higher SF. The chirp rate is inversely related to the transmission range: longer
chirps are more resistant to noise and interference, making higher SF values preferable
for long-range communication, although this comes at the cost of lower data throughput.
LoRa supports six spreading factors, ranging from SF7 to SF12, where the number rep-
resents the number of bits sent per symbol. For example, SF7 corresponds to 7 bits per
symbol. Each increase in SF doubles the symbol duration, which results in a lower data
rate.

The symbol period Ts represents the time required to transmit a single symbol. It is given
by:

Ts =
2SF

BW
(2.3)

where:

Integration of AI and mobile gateways in LoRa Networks 9

• SF is the spreading factor (7 to 12).

• BW is the bandwidth in Hz.

A larger spreading factor increases Ts, meaning each symbol takes longer to transmit,
thereby reducing the data rate.

The nominal bit rateRb, which represents the rate at which useful data bits are transmitted
over the LoRa network, is given as:

Rb = SF · CR

Ts
bits/sec (2.4)

or
Rb =

CR · SF ·BW

2SF
bits/sec (2.5)

where:

• SF is the spreading factor.

• BW is the bandwidth in Hz.

• CR is the error correction coding rate.

• Ts is the symbol duration.

A higher spreading factor results in a lower bit rate, as each symbol takes longer to trans-
mit. However, this trade-off increases resilience to interference and improves range. A
spectrogram of different Spreading Factors can be seen in Figure 2.3.

Figure 2.3: Spectrogram of different Spreading Factors [8]

2.2 LoRaWAN
Long Range Wide Area Network (LoRaWAN) is the Media Access Control (MAC) layer
protocol, that is used on top of LoRa. It is developed by the LoRa Alliance and they allow
other companies to create their own IoT networks that are based on their specifications.

This allows for quick setup of the networks anywhere, as long as the hardware and
software requirements are met. The most common application of LoRaWAN is moving
sensor-data from end-nodes to a database.

10 Integration of AI and mobile gateways in LoRa Networks

LoRaWAN networks are constructed in a way such that each end devices communicate
with a gateway. Gateways are designated devices, equipped with hardware that makes
them capable of reception and transmission to multiple frequencies at once. A single Lo-
RaWAN network can have many gateways, where each gateway may service potentially
hundreds of nodes. These gateways are then responsible for transmitting the data fur-
ther up to a network server. This topology is referred to as ”star-of-stars”, with the network
server being the primary star.

Figure 2.4: Star-of-stars LoRa topology

This type of wireless connection is highly valuable in today’s world, where data collection
and real-time information are crucial in many fields, such as agriculture and healthcare.
LoRaWAN is ideal for many use cases due to its design, which emphasizes reliable, low
data-rate transmissions over distances of up to 20km, and low power consumption.

LoRaWAN networks are structured similarly to cellular networks, with a mast-mounted
LoRa antenna. End devices do not need to remain constantly active; they only need to
power on when communication with the gateway is required. This approach significantly
extends battery life while enabling the network to function at a large scale by minimizing
interference.

Additionally, LoRaWAN networks can be configured to use Adaptive Data Rate (ADR).
ADR is a mechanism managed by the network server, which dynamically adjusts the
parameters of the LoRaWAN end-nodes to optimize transmission performance. Depend-
ing on the LoRaWAN implementation, the specifics of ADR may vary. For example, in
the open-source LoRaWAN network stack “The Things Network,” the ADR mechanism
optimizes parameters such as spreading factor, bandwidth, and transmission power to
balance data rates, airtime, and energy consumption [9].

Integration of AI and mobile gateways in LoRa Networks 11

LoRaWAN specifies 3 classes which a device can take when using LoRaWAN; class A,
B and C. These classes have their own protocol for receive windows, where class A is
mandatory and class B and C are optional additions to class A:

• Class A (All) is for battery powered devices, where each uplink to a gateway is
followed by two short slots for downlinks from the gateway.

• Class B (Beacon) is like class A, but devices of this class periodically sends beacons
to the gateway, enabling extra down link windows.

• Class C (Continuous) is like class A, but devices of this class have their radio con-
stantly open to listen. Hence this class it the one that uses the most power and class
C devices are often powered by mains.

2.3 OMNeT++
Objective Modular Network Testbed in C++ (OMNeT++) is a component-based C++ sim-
ulation library and framework, which uses discrete events. OMNeT++ is primarily used
for building network simulations, and has a strong component architecture for models.
This makes the framework great for creating specific simulations, as components can be
modified, reused or build upon. OMNeT++ provides a high-level language (NED) for as-
sembling components into models.
OMNeT++ also has extensive GUI support, and the simulation kernel is standard C++,
which means it can run on pretty much all platforms with a modern C++ compiler.

2.4 INET
The INET Framework is an open-source model library for OMNeT++. INET provides pro-
tocols and other models for researchers and students working with communication net-
works. INET states it is especially useful when designing and validating new protocols
or scenarios. INET, like OMNeT++, is built around the concept of modules, which then
communicate through message passing, allowing for combinations of modules to create
routers, servers and other networking devices.
INET contains models for the internet stack (TCP, UDP, IPv4, IPv6, etc.), wired and wire-
less link-layer protocols. As well as support for mobility, which allows for moving devices
based on different mobility models, which is an important component for this thesis.

2.5 FLoRa
Framework for LoRa (FLoRa) created by Mariusz Slabicki and Gopika Premsankar, is
a simulation framework which is based on OMNeT++ and uses components from INET.
The simulation framework is used for end-to-end simulations for LoRa networks. This
includes modules for LoRa nodes, gateways and network server. The FLoRa framework
was developed as part of a research in adaptive configuration of LoRa networks for dense
IoT deployments [10], the study also describes the development of FLoRa, and how it
was validated against experimental results. The network server can be connected to
application logic which is deployed as independent modules. Dynamic management of
configuration parameters is supported for nodes and network server through Adaptive
Data Rate (ADR), and energy consumption statistics are collected for all nodes. However,
neither thes energy consumption statistics nor Adaptive Data Rate (ADR) are used in this
thesis.

12 Integration of AI and mobile gateways in LoRa Networks

2.6 Neural Networks
Neural networks are a technology within the field of machine learning, inspired by the
structure and function of the human brain. These networks consist of layers of intercon-
nected nodes, called neurons, which process input data to generate outputs. This allows
them to recognize patterns, make decisions based on data, and generate predictions.
Typically, a neural network consists of an input layer, one or more hidden layers, and an
output layer, with the hidden layers serving as intermediate stages of data processing.

Figure 2.5: Neural Network Visualization [11]

2.6.1 Forward Propagation
Forward propagation is the process used to calculate the output value, or prediction, that
a model produces when given an input. During forward propagation, the input is passed
sequentially through each layer of the network.

Each neuron in a layer receives a partial input from the output of the previous neurons,
multiplied by their respective weights. The total input to a neuron, often referred to as the
net input or weighted sum, is the sum of all partial inputs plus a bias term. The final output
of the neuron, also called its activation, is obtained by applying an activation function to
the net input.

More formally, the activation of a neuron i’s in layer L is computed as follows:

a
(L)
i = f

b[i] +

|L−1|∑
j=0

a
(L−1)
j · wji

 (2.6)

Where:

• |L| and |L− 1| are the sizes of layers L and L− 1, respectively.

• a
(L−1)
j represents the activation of neuron j in layer L− 1.

• wji is the weight connecting neuron j in layer L− 1 to neuron i in layer L.

• b[i] is the bias term for neuron i in layer L.

Integration of AI and mobile gateways in LoRa Networks 13

• f is the activation function applied to the net input.

This process allows the network to compute the prediction for the given input by propa-
gating values forward through its structure as seen in Figure 2.5.

2.6.2 Activation functions
Many activation functions are used and evaluated in neural networks, each with its own
characteristics and applications. Non-linearity is a desirable property in activation func-
tions, as it enables the model to learn complex relationships between inputs and outputs.
It is also common for different layers within a neural network to use different activation
functions, depending on their role in the architecture. Some of the common activation
functions and their characteristics are:

• ReLU:

f(x) =

{
x, if x > 0

0, if x ≤ 0
(2.7)

ReLU is one of themost widely used activation functions for training deep neural net-
works. It is simple to implement and computationally efficient, as negative inputs out-
put zero. This makes gradient computation during backpropagation straightforward,
with gradients being either 1 or 0. Additionally, ReLU helps mitigate the vanishing
gradient problem, a common issue with other activation functions, where gradients
become extremely small and effectively disappear, slowing down learning.

• Sigmoid:

σ(x) =
1

1 + e−x
(2.8)

Sigmoid ranges between 0 and 1, making it normalized and creates non-linearity.
This is also nice as it is bound between values, meaning the activation will not be
able to output absurd large values. However it is prone to vanishing gradients as
the range is small, it is also more computational heavy as it uses an exponential.
Sigmoid is also not a zero centered function, which can make gradient updates
biased to one direction and therefore make optimization harder.

• Tanh:
tanh(x) = ex − e−x

ex + e−x
(2.9)

Tanh ranges from -1 and 1, and is also non-linear and has many of the same proper-
ties as sigmoid, as it also normalizes, have bound values and also has a the problem
of vanishing gradients. Tanh is however a zero-centered function, which makes it
preferable over sigmoid in many cases.

• Linear:
f(x) = x (2.10)

The Linear activation function is also known as the ”no activation function”, as the
output is always identical to the input. It can be used for models that needs only to
solve very simple tasks, but does not perform well for most tasks. It is commonly
used on the last layer in a givenmodel, even complex, as it serves as a ”no activation
function” to output the actual prediction of the neural network.

• Softmax:
σ(z)i =

ezi∑N
j=1 e

zj
(2.11)

14 Integration of AI and mobile gateways in LoRa Networks

Softmax is a function that calculates the distribution of probabilities for a vector of
raw scores. This activation function is most commonly used in the last layer, as they
are commonly used in multi-class clarification problems or other problems that has
a discrete output space.

2.6.3 Backward Propagation
Backpropagation is a method used in neural networks to propagate errors backward from
the predicted output, employing the chain rule to compute partial derivatives. The chain
rule allows us to calculate the derivative of the composition of two differentiable functions
as the product of their individual derivatives:

d

dx
[f(g(x))] =

df

dg
· dg
dx

Backpropagation is essential for calculating the gradients of neurons, weights, and biases
based on the model’s performance, making it a core component of the training process.
It is commonly used with gradient descent to optimize weights and biases. The training
process involves backpropagating errors over many iterations of data, making small ad-
justments to the weights and biases for each sample. This iterative process gradually
“nudges” the network in the right direction, improving performance over time.

2.6.4 Other Neural Network mechanisms
Neural networks may also include other mechanisms. These mechanisms are employed
either to enable solving certain kinds of learning problems, or to improve training efficiency
by reducing the time required for the model to converge. Below is a non-exhaustive list
of such mechanisms.
Dropout
Dropout is an effective regularization technique used to prevent neural networks from
overfitting [12]. Overfitting occurs when a neural network learns the training data so thor-
oughly that it struggles to generalize to new, unseen data. Dropout addresses this by
randomly deactivating (or ”dropping out”) a subset of neurons during each training itera-
tion, effectively creating a reduced or so called thinned version of the network. For each
training episode a new thinned network is then sampled and trained on a trained on a
batch of data.

At test time, the full network (without any dropout) is used to make predictions. To ensure
consistency between training and testing, the weights of the network are scaled down
proportionally to the dropout probability during training. This scaling compensates for the
missing neurons during training, ensuring that the expected outputs remain consistent.

By introducing randomness during training and reducing reliance on specific neurons,
dropout significantly lowers the risk of overfitting. It achieves this by forcing the network
to learn more robust and generalized features, ultimately decreasing the generalization
error and improving performance on unseen data.
Residuals
Residuals are a technique designed to address the problem of vanishing gradients, which
was discussed earlier. Residual networks (ResNets) were first introduced in the com-
puter vision research paper titled ”Deep Residual Learning for Image Recognition” [13].
This issue frequently arises in deeper neural networks, where increasing depth leads to
accuracy saturation and eventual degradation. The technique involves adding a shortcut
(or skip) connection that bypasses one or more layers by directly linking the input to the
output, as illustrated in Figure 2.6.

Integration of AI and mobile gateways in LoRa Networks 15

Figure 2.6: Residual learning: a building block[13].

The key idea behind residual learning is to reformulate the learning objective of the neural
network. Instead of learning the desired mapping H(x) directly, the network learns a
residual function F (x) = H(x) − x. This reformulation simplifies the learning process,
particularly for deeper networks, as the residual F (x), is often easier to optimize than the
entire mapping H(x). Once the residual function F (x) is learned, the original mapping
can be reconstructed as H(x) = F (x) + x. The shortcut connection ensures that the
identity mapping x is readily available, allowing the network to propagate input information
forward with minimal effort and thus avoid vanishing gradients, making residual learning
highly effective for training deeper networks.
Memory
In many machine learning problems, the current state is often sufficient to make accu-
rate predictions or take effective actions. For example, in Pac-Man, knowing the current
positions of Pac-Man, the ghosts, and the pellets may be enough to compute an optimal
move. However, there are scenarios where the immediate state alone does not capture
the full context required for decision-making or predictions.

In such cases, memory mechanisms become essential. These mechanisms allowmodels
to retain and utilize information from previous states - this is particularly relevant for se-
quential data involving temporal dependencies, such as speech recognition or time-series
forecasting.

Recurrent Neural Networks (RNNs) address the issue of needing memory by introducing
loops within the network, enabling information to persist over time. In this way, the RNNs
maintains a hidden state which is used alongside the conventional input. The hidden state
is then updated after each inference. However, traditional RNNs often suffer from issues
such as vanishing and exploding gradients, which hinder their ability to retain long-term
dependencies. To address these limitations, Long Short-Term Memory (LSTM) networks
were introduced. LSTM is a specialized type of RNNs that incorporate ’gates’: input,
output, and forget gates. These gates are used to control the flow of information, by
allowing the LSTM to selectively remember or forget information, making them highly
effective for tasks requiring long-term memory. This means the LSTM can function, even
given long delays between important events. An alternative to RNNs and LSTM is a
technique known as frame stacking. Rather than introducing memory into the model,
frame stacking transforms the input state by incorporating a sequence of consecutive
inputs. For instance, a single input state x becomes [x1, x2, ..xn], where n is the number
of stacked frames.

While frame stacking does not explicitly provide memory, it gives the model additional
context by embedding temporal information into each input state. This method is espe-

16 Integration of AI and mobile gateways in LoRa Networks

cially useful in tasks like video recognition, where stacking frames allows the model to
infer motion from consecutive images.

2.7 Reinforcement Learning
Reinforcement Learning (RL) is a machine learning category that is neither supervised or
unsupervised, but is in its own category of learning. The three categories are distinct and
each used for their own type of application.

2.7.1 Supervised learning
Supervised learning leverages labeled datasets to train models that can predict outcomes
and recognize patterns. These datasets consist of input-output pairs, enabling the model
to learn the correct mapping between inputs and outputs. The primary objective is for the
model to generalize this learned mapping so that it can accurately predict outputs for new,
unseen inputs. Common applications of supervised learning include classification tasks
(e.g., identifying spam emails) and regression tasks (e.g., predicting house prices).

2.7.2 Unsupervised learning
Unsupervised learning does not use labeled data. Instead, the objective is to identify
patterns, groupings, or underlying structures within the dataset. The model learns from
the inherent structure of the data without guidance on any ”right” answer. Common tech-
niques in unsupervised learning include clustering (e.g., grouping similar customers for
targeted marketing) or dimensionality reduction (e.g., simplifying data for visualization or
processing).

2.7.3 Reinforcement learning
Reinforcement Learning (RL) involves an agent that learns by interacting with an envi-
ronment. Instead of using preexisting datasets, the agent explores the environment and
receives feedback in the form of rewards or penalties based on the actions it takes. The
goal is for the agent to maximize its cumulative reward over time by learning an effective
policy (often represented by a neural network) that dictates which actions to take in vari-
ous situations. Reinforcement learning is used in applications such as robotics, game AI,
or autonomous driving.

For this thesis, we will focus solely on reinforcement learning as is the most suited for
this application, since there are no applicable datasets. Each episode corresponds to
a simulation run, where the gateway gets to explore and and try and receive the most
packets. There are many reinforcement learning algorithms, each with their own benefits
and suitable application.
Training
Generally, an algorithm for training a model using RL will use the following procedure,
split into a series of steps. Different RL algorithms may diverge in various ways from the
process.:

• Collect data from an episode: Interact with the environment using the current policy
to record states, actions, and rewards.

• Process rewards: Evaluate and, if necessary, transform the collected rewards to
account for credit assignment or long-term objectives.

• Calculate the policy update: Compute how the policy should change to improve
future performance.

• Update the policy: Adjust the policy parameters based on the calculated update.

Integration of AI and mobile gateways in LoRa Networks 17

These steps are repeated until the policy performs well enough in the environment or a
predefined number of episodes are completed.
Collecting data for an episode
The agent collects data by interacting with the environment using its current policy. This
includes tracking the sequence of states visited, actions taken, and rewards received.
Determine the rewards for the episode
During data collection, rewards are assigned based on the state and actions. However,
at the end of an episode, these rewards are often processed using a discounting mecha-
nism. This emphasizes long-term rewards by attributing future outcomes back to earlier
decisions, enabling the policy to learn from delayed consequences.
Policy Update calculation
Policy updates depend on estimating how to adjust the policy to improve performance.
Most algorithms calculate a gradient that reflects how the expected return changes with
respect to the policy parameters. For example, the update direction often involves terms
like the policy’s sensitivity to actions (∇θ logπθ(a|s)) and the associated reward signal.
Monte Carlo methods or other sampling approaches are typically used to approximate
these updates.
Update the policy
The policy parameters are updated using the calculated gradient or its equivalent. A
common update rule is:

θt+1 = θt + α∇θJ(θ) (2.12)

Here, θt represents the current policy parameters, α is the learning rate, and J(θ) is the
policy objective. Some algorithms instead minimize a loss function, often related to the
expected reward, such as the negative advantage or value function error.

2.7.4 Types of RL Algorithms
Reinforcement Learning algorithms have 3 categories to distinguish them. They are
model-based vs Model-free, On-policy vs off-policy, and On-line policy vs Off-line policy.
Model-based:
Model-based Reinforcement Learning trains a model that learns the transition probability
of states. In other words, it builds a model of the environment by learning the transition
dynamics and reward function. The environment is represented as a Markov Decision
Process (MDP), defined by states S, actions A, transition function P (s′|s, a), and reward
function R(s, a). By approximating these, the agent can simulate experiences and im-
prove decision-making efficiently.

Example: A chess-playing AI can use a model-based approach by building an internal
model of the game. It simulates possible futuremoves and their outcomes before selecting
the best move, improving decision-making efficiency.
Model-free:
Model-Free Reinforcement Learning optimizes behavior through trial-and-error without
learning transition dynamics. It includes value-based methods like Q-Learning and policy-
based methods like Policy Gradient. These approaches are typically less sample efficient
but excel in complex environments.

Example: Deep Q-Networks (DQN) learn to play Atari games by directly mapping pixels
to actions without modeling the game environment.
On-line policy:
On-line means the algorithm continually gathers new data during training and uses it to
learn. When the policy is updated, new data can be gathered and the changes can be

18 Integration of AI and mobile gateways in LoRa Networks

evaluated. If a policy algorithm is strictly online, then it only learns from each data point
once before discarding it.

Example: A robot learning to walk updates its walking strategy in real-time based on
sensor feedback.
Off-line policy:
Off-line policy means the algorithm uses pre-collected data from a fixed dataset to train the
model. This means the policy does not interact with the environment during training. As
such, off-line policy algorithms closely resembles supervised learning. If a policy algorithm
is strictly off-line, then it must be re-run from start whenever the dataset is changed.

Example: Training a self-driving car policy using a large dataset of recorded driving sce-
narios without real-time interaction.
On-Policy:
On-Policy means the algorithm only has a single policy π at any time, and gathers only
data using π that is being trained. This means the algorithm evaluates and improve the
policy iteratively, so the data reflects the most current version of the policy.

Example: PPO updates its policy by collecting experiences, then adjusting the policy
gradually using a clipping mechanism to ensure stable learning without large changes.
Off-Policy:
Off-policy means the algorithm trains using data gathered by a different model than the
currently trained one. Commonly 2 policies are in use at a time, but sometimes more.
These policies are called target policy π and the behavior policy. The behavior policy is
used to generate the data, and the target policy is trained based on these observation. If
there is too much deviation between the 2 policies, this will slow the learning.

This allows the algorithm to use mechanisms such as ”experience replay”. This allows
the agent to store experiences (state, action, reward, next state) and sample from this
memory to update its policy. This improves learning and avoid ”catastrophic forgetting”.

Example: Q-Learning learns an optimal policy while using an exploratory behavior policy
to collect diverse experiences.

2.7.5 Deep Q-Network (DQN)
Deep-Q-Network (DQN) is a Reinforcement Learning algorithm that combines Q-learning
with deep neural networks to handle high-dimensional state spaces, such as raw pixel
data from games. Q-learning is a value-based algorithm that teaches an agent by assign-
ing values to each action taken in a given state, ultimately learning a function Q(s, a) (the
Q-function), which estimates the cumulative reward for taking an action a in a state s.

DQN is a model-free and off-policy algorithm, meaning it does not require a model of the
environment. The learning process does not directly take place from experiences as they
occur. Instead, the agent stores experiences in an experience replay buffer and samples
from it for learning. The Q-network is trained by minimizing a series of loss functions (as
defined in Equation 2.13) [14].

Li(θi) = E(s,a,r,s′)∼U(D)

[
(yi −Q(s, a; θi))

2
]

(2.13)

where the target value yi is now defined as:

yi = rt + γmax
a′

Q(st+1, a
′; θ−i) (2.14)

Integration of AI and mobile gateways in LoRa Networks 19

In these equations:

• E(s,a,r,s′)∼U(D) denotes the expectation over state-action-reward-next-state tuples
(s, a, r, s′) sampled uniformly from the experience replay buffer D.

• Q(s, a; θi) is the predicted Q-value for the state-action pair (s, a), as calculated by
the Q-network using the current network parameters θi.

• yi represents the target value used in the loss function, which is computed using the
Bellman backup equation.

• rt is the immediate reward obtained at time step t.

• γ is the discount factor that determines the importance of future rewards.

• maxa′ Q(st+1, a
′; θ−i) represents the maximum Q-value for the next state st+1, which

is computed using the target network parameters θ−i .

A key limitation of DQN is that it requires a discrete action space, because:

• The Q-function must assign a value to each possible action.

• If the action space were continuous, there would be an infinite number of possible
actions, making it impossible to evaluate all of them.

For continuous action spaces, policy-based methods such as Proximal Policy Optimiza-
tion (PPO) are more suitable.

2.7.6 Proximal Policy Optimization (PPO)
Proximal Policy Optimization (PPO) is a model-free and on-policy RL algorithm. The algo-
rithm is widely used for training agents in continuous and high-dimensional action spaces.
Unlike DQN, PPO uses policy gradients to learn, instead of Q-learning. It does so by trying
to optimize a policy function π(a|s), which is the probability distribution over actions a for a
state s, and aims to maximize the expected cumulative rewards. The goal is to maximize
the expected cumulative rewards by learning a policy that maps states to actions, rather
than estimating value functions as in Q-learning.

PPO achieves this by using a surrogate objective function, which depends on both the old
and new policy parameters as well as the advantage estimate. The advantage estimate is
typically derived from a value network (Another neural network) that predicts the expected
return starting from a given state. This surrogate objective serves as the loss function and
is minimized to optimize the policy. The function can be seen in equation 2.14 [15].

To ensure stable training, PPO also employs clipping, which restricts large updates to the
policy. By preventing drastic policy changes, clipping helps maintain training stability and
sample efficiency.

LPPO(θ) = Et

[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(2.14 [15])

• Et refers to the expectation over time steps t in the trajectory. This expectation is
taken over a distribution of states, actions, and rewards from the agent’s experience.

• πθ(a|s): The probability of taking action a in state s, according to the current policy
with parameters θ.

• πθold(a|s): The probability of taking action a in state s, according to the old policy with
parameters θold (used for clipping).

20 Integration of AI and mobile gateways in LoRa Networks

• rt(θ): The probability ratio between the new policy and the old policy, defined as:

rt(θ) =
πθ(at|st)
πθold(at|st)

(2.15)

• ϵ: The clipping parameter that controls how far the new policy is allowed to deviate
from the old policy.

• Ât: The advantage estimate, representing howmuch better an action at is compared
to the expected action at state st. This is typically calculated as:

Ât = δt + γδt+1 + γ2δt+2 + . . . (2.16)

where δt is the temporal-difference error, and the advantage is calculated using the
value network.

PPO is categorized as an actor-critic algorithm. This means it consists of two main
components:

• Actor: The actor is responsible for selecting actions based on the current policy. It
is typically represented by a policy network, which outputs a probability distribution
over actions given a state. This allows the agent to take actions according to its
learned policy.

• Critic: The critic evaluates the actions taken by the actor. It provides feedback on
the quality of the actions, usually in the form of value estimates. The critic can be
represented by a value function, such as a state-value function V (s), which esti-
mates the expected return (future rewards) starting from a particular state.

In PPO, the actor is the policy network, which decides which actions to take based on
the observed state, while the critic is typically a value network that estimates the value of
the current state. The critic helps the actor by providing feedback that improves the policy
over time.

A good analogy for DQN and PPO could be where the agent is a child on a playground,
and the goal is to help the child figure out how to maximize their fun. In this analogy,
DQN acts like a guide who helps the child build a list of possible actions, but instead of
suggesting what to do, the guide gives the child the tools to figure out for themselves
which activity is the best based on past experience. The child goes on the swing and the
guide says, “You had this much fun,” and then the child tries the slide, and the guide says,
“This was better (or worse).”

The same ”child on playground” analogy can be done with PPO. The PPO approach is
like the coach refining the child’s policy (deciding which activities to do based on the state
of the playground) through feedback, ensuring that they have fun in a stable, efficient
manner. The coach’s feedback helps the child decide what to do next, but it allows room
for a little randomness in their decisions, encouraging the child to try new things while
gradually learning what activities are the most fun.

2.7.7 Credit Assignment Problem
One of the biggest challenges in Reinforcement Learning) is the credit assignment prob-
lem, which focuses on how to allocate rewards and penalties to an agent. The way these
credits are assigned significantly impacts the efficiency and effectiveness of an agent’s
learning process. A poor credit structure can result in the agent learning undesirable
behaviors or failing to achieve its objectives altogether.

Integration of AI and mobile gateways in LoRa Networks 21

Credits, which can be positive (rewards) or negative (penalties), need to be assigned
thoughtfully. It’s not just about rewarding the agent for correct behavior, but also about
ensuring the reward magnitude is appropriate. A key example of this challenge can be
seen in the gameSnake, where the goal is for the snake to eat asmany apples as possible.
While it’s effective to reward the agent immediately after it eats an apple, this alone can
be insufficient. Without additional guidance, the agent may learn to wander aimlessly,
waiting for apples to appear rather than optimizing its movement toward them.

To address this, one could provide feedback based on the snake’s proximity to the next
apple. The agent could be penalized for being far away or rewarded for getting closer. This
intermediate feedback could steer the agent toward apples more effectively. However,
there are potential pitfalls. For example:

• Local Minima: If the snake is overly punished for being too far from the apple, it
may find that staying still or killing itself minimizes the penalty, which results in poor
performance.

• Overemphasis on Proximity: On the other hand, if the reward for being near an
apple is too large, it might cause the snake to focus too much on proximity and not
enough on actually eating the apple. This could lead to the snake hovering around
the apple endlessly without ever collecting it, which also hinders progress.

Finding the right balance between rewards and penalties is crucial. If penalties are too
harsh, the agent may avoid taking risks and become stuck in suboptimal solutions. If
rewards are too generous, the agent may fixate on specific behaviors (like proximity) at
the cost of achieving the true goal, which is maximizing the score by eating apples.

This brings us to another challenge in reinforcement learning: balancing exploration (try-
ing new behaviors) and exploitation (maximizing known good behaviors). If the agent
faces too much penalty for exploring, it might miss out on discovering better strategies.
Alternatively, if rewards for exploration are too strong, the agent might spend too much
time experimenting and not enough time optimizing behavior.

Solving the credit assignment problem often requires careful reward design and experi-
mentation. Techniques like reward shaping, where intermediate rewards are used to help
gradually guide the agent through different stages of behavior. For instance, rewarding
the agent for moving closer to an apple, then rewarding it for reaching the apple, and finally
rewarding the successful act of eating the apple helps form amore complex, goal-oriented
strategy.

Ultimately, effective credit assignment involves fine-tuning the reward and penalty struc-
ture, ensuring that the agent’s behavior aligns with the desired outcomes. This thesis will
present the credit assignment in our environment, as well as some of the reward structures
that were ultimately not included.

2.7.8 Policy representation
The gateway needs to be given the policy after themodel has been updated after a training
run. There is multiple ways to represent the policy, using different data structures. The
’simplest’ and most standalone is to implement the policy into a XML file, and have a
custom mobility component which can run the policy.

Another option is to use an external library which can represent the policy as well as to
execute it. Using external libraries will provide optimizations as they are specifically made
to that purpose. Some libraries which looked suitable:

22 Integration of AI and mobile gateways in LoRa Networks

• ONNX: An open format built to represent machine learning models. ONNX defines a
common set of operators - the building blocks of machine learning and deep learning
models. And a common file format to use models with a variety of frameworks, tools,
runtimes, and compilers.

• libtorch: is a PyTorch C++ frontend, which was designed with the idea that the
Python frontend is great, and should be used when possible. The goal of the C++
frontend is to make low latency and high performance environments more feasible,
while not sacrificing the user experience of the Python frontend.

• Lite Runtime (LiteRT): is formerly known as TensorFlow Lite, is Google’s high-performance
runtime for on-device AI. It has key features such as; Multi-platform support, Diverse
language support (C++, Python and more) and High performance. This makes it
ideal for lightweight, efficient and/or real-time rendering solutions.

2.8 Stable-Baselines3 (SB3)
Stable-Baselines3 (SB3) is an open-source framework for reinforcement learning, devel-
oped by the community and designed to implement a variety of model-free policy optimiza-
tion algorithms [16]. The framework has undergone three versions, with the latest version
utilizing PyTorch, and all versions being forks of OpenAI Baselines. Stable-Baselines3 is
supported exclusively for Python. In addition, certain experimental or niche features are
not included in the main framework but are available in the sb3-contrib repository.

To use SB3, the developer must follow the steps outlined below:

• Create a custom environment that defines both the agent’s actions and how the
environment is affected by these actions, thereby determining the environment’s
input state (observations).

• Choose a policy optimization algorithm that is compatible with the environment.

• Select a neural network architecture that is suitable for the chosen algorithm.

The environment is implemented as a class containing three core methods: __init__(),
step(), and reset().

• __init__() sets up the environment’s properties, including the dimensionality and
range of the observation space.

• step(action) defines the agent’s response to the numeric value derived from the
model’s inference. This includes changes due to both the agent’s actions and the
natural progression of time, depending on how the environment is designed. Conse-
quently, how much time that passes between each step depends on the design. As
long as chronological events are executed for the time that occurs between actions.

• reset() is used to generate a fresh initial state. Reset is invoked to generate the
first state, and also at the end of each episode to reset the environment.

One of the key advantages of SB3 is its separation of concerns between the environ-
ment, policy, and neural network. By designing only the environment, developers can
integrate any policy algorithm and neural network architecture, as long as the input and
output spaces are compatible. For example, the Proximal Policy Optimization and Deep-
Q-Network algorithms are compatible with the following types of action- and observation-
spaces, as summarized in Table 2.1 and 2.2 .

Integration of AI and mobile gateways in LoRa Networks 23

Space Type Action Observation
Discrete 3 3

Box 3 3

MultiDiscrete 3 3

MultiBinary 3 3

Dict 7 3

Table 2.1: SB3 PPO compatibility for dif-
ferent space types

Space Type Action Observation
Discrete 3 3

Box 7 3

MultiDiscrete 7 3

MultiBinary 7 3

Dict 7 3

Table 2.2: SB3 DQN compatibility for dif-
ferent space types

The policy networks in Stable-Baselines3 consist of two main components: a feature
extractor and a fully connected network, as illustrated in Figure 2.7. The feature extractor
processes the observations to extract relevant information. For example, in a video game,
the observations could be raw pixel data. The feature extractor would then identify key
elements within the scene, such as enemies, allies, points, or other important objects.
This extracted information is then passed into a fully connected network, which uses it to
predict optimal actions in the game.

By default the network architecture consists of 2 fully connected layers each with 64 neu-
rons when using PPO or DQN. Each layer also uses the tanh activation function by default.

Figure 2.7: Stable-Baselines3 policy network architecture [17]

24 Integration of AI and mobile gateways in LoRa Networks

3 Related Works
This chapter reviews recent research and relevant literature related to this project, with
a focus on LoRa and Reinforcement Learning. It will begin with an overview of studies
and research on LoRa, particularly in the context of mobile gateways and scaling LoRa
networks. Following that, the chapter shifts to Reinforcement Learning, highlighting key
studies on the use of Deep-Q-Network (DQN) and Proximal Policy Optimization (PPO).
It also examines the literature on reward shaping, emphasizing its role in improving the
performance and learning process.

3.1 LoRa Literature
New literature and research for LoRa is continuously being published, as it is still an evolv-
ing technology with much potential. Researchers are therefore putting in effort and time
into determining these possibilities of what LoRa can be used for, as well as possible
limitations and how to overcome them. One study evaluates the use of LoRa in wireless
sensor networks [18]. It presents real-world experiments assessing communication be-
tween LoRa nodes, focusing on LoRa wireless performance, LoRaWAN reliability, and
overall network efficiency. The findings highlight that deploying multiple gateways signif-
icantly enhances coverage, particularly in challenging topographical areas where terrain
impacts connectivity. Another study evaluated LoRa for the use in open field cultivation
scenarios [19], which was simulated using FLoRa. The paper presents a series of different
scenarios where antenna types, number of gateways and number of nodes is explored.
Here it is discovered that increasing the number of gateways from 1 to 4, increases the
performance by 28.6%, and increasing the number of nodes from 10 to 1000 will increase
the percentage of collisions from 1.7% to 65.7%.

Addressing the problem of collisions when more nodes are introduced, Semtech LoRa
documentation [5] highlights their enhanced network capacity which they achieve through
their modulation technique. This is accomplished by employing orthogonal spreading
factors, which enable multiple signals with different spreading factors to be transmitted
simultaneously, even on the same channel. Signals modulated with other spreading fac-
tors appear as minimal noise to the target receiver, allowing for efficient utilization of the
channel without significant degradation in receiver sensitivity.

Besides Semtechs documentation, there are several studies investigation collisions avoid-
ance and detection for LoRa and LoRaWAN. One study investigates the use of supervised
learning for collision detection in LoRaWAN [20]. By using decision trees and random for-
est algorithms to trained to predict whether collisions occurred. The research showed
that random forest performed best with a precision of 0.95, and a accuracy of 0.96. They
conclude that they plan to also explore the use of neural networks in the future, as they
anticipate it could deliver great results in more complex settings.

3.2 Mobility for LoRa Literature
The literature addressing mobility in LoRa gateways is hard to come by, especially AI
driven. However one study addresses the use of mobility in gateways for livestock smart
monitoring [21]. The paper proposes the use of one mobile LoRa gateway for livestock
monitoring. The experiments was done using a discrete-event based simulator called
LoRaSim, which is a python-based environment, and these simulation tool was then used
to simulate environments where static and mobile gateways was used. In the paper the

Integration of AI and mobile gateways in LoRa Networks 25

mobility presented is a straight forward mobility that moves the gateway back and forth,
with additional stops. It was concluded that this type of mobility is best suited for vast
wide livestock areas, and introducing multiple stops for the mobile gateway will not only
improve energy consumption but also the Data Exchange Rate (DER).

A similar study was conducted for Simulation of Mobile LoRaGateway for Smart Electricity
Meter [22], The paper suggests the use of amobile gateway on amotorcycle whichmoving
in a residential area with a series of nodes to collect data from smart meters. The mobility
of the gateway follows a simple straight vertical movement. To perform the study they, as
the previous study, also used LoRaSim to test and experiment different scenarios. They
also see a large amount of collisions for scenarios with large number of nodes, stating that
the challenge is to choosing certain times to send where collisions are less likely to occur,
however from the experiments it could also be concluded that using a mobile gateway
can provide better coverage, minimizing how many gateways are needed. Furthermore,
they also found that increasing amount of nodes will also increase the power consumption
when they investigated the Network Energy Consumption.

One study explored the use of a mobile LoRa gateway to minimize power consumption
in Low-Power Wide Area Networks [23]. The paper introduces LoRaDrone, a mobile sys-
tem leveraging Unmanned Aerial Vehicle (UAV)s as gateways. By flying closer to IoT
nodes, the UAVs reduce the required transmission distance, allowing devices to success-
fully transmit data using lower transmission power. Since energy consumption in wireless
communication is directly linked to transmission power, this reduction significantly de-
creases the overall energy usage of IoT devices. To achieve this, the authors focus on
two primary elements: a mobile approach using UAVs for proximity-based communica-
tion and a low-power communication mechanism designed to optimize data transmission
efficiency. The evaluation of LoRaDrone is conducted through various simulation scenar-
ios, where results show that, compared to a static gateway, the system improves energy
efficiency by up to 70.37 times.

3.3 Reinforcement Learning Literature
The literature on Reinforcement Learning is vast and dense, as it applies to a wide range
of problems. Reinforcement Learning encompasses various tools and techniques that
can optimize or enhance model learning. Researchers continuously study and document
how different methods perform across diverse problems and environments. One study
compares Reinforcement Learning algorithms across different games [24]. The study
focuses on three Reinforcement Learning algorithms: DQN, PPO, and Actor Critic and
Experience Replay (ACER) which is evaluated over 19 games. The results show that
DQN achieves the highest overall score compared to PPO and ACER, but the paper
also highlights its drawbacks. While DQN achieves the best average performance, it also
exhibits the highest variance, leading to unstable results. This issue is particularly evident
in games that require a consistent score. To address this, the paper proposes adjusting
the learning rate and discount factor to improve stability, though this may increase the
time required for learning. Alternatively, the study suggests using other algorithms, such
as PPO or ACER, to achieve more stable performance.

Another study, investigated the use of DQN and PPO for navigation in autonomous vehi-
cles [25] The study used simulations to create environments with 3 different environments;
urban, suburban and highway, and different traffic density and weather conditions. The
study found that while both DQN and PPO demonstrated good performance and effec-
tiveness in different self-driven scenarios, it was PPO that significantly outperformed DQN

26 Integration of AI and mobile gateways in LoRa Networks

across all scenarios. The study shows that PPO has a∼ 4-7% higher completion rate than
DQN across all scenarios of different environments and conditions.

From the studies and research, it can be difficult to distinguished and find out when a
certain algorithms would be most appropriate for a problem and environment. One study
aims to compare these algorithms to find the characteristics of where the algorithms thrive
[26]. The study compares the use of three algorithms; PPO, DQN and A2C, to solve a
game called BreakOut Atari. The paper presents their main insights that were found
between the use of the three different algorithms. One of themore relevant to this project is
that DQNworks well if the environment has a clear immediate form of rewards, where PPO
and A2C perform better when there is more reward exploration and complex strategies are
needed for the environment. The study also found that DQN is more resilient to change
on hyperparameters, where PPO and A2C needs more fine tuning to get good results.

A survey on model-based deep Reinforcement Learning explores its advantages in high-
dimensional problems [27]. It highlights that model-based approaches are more sample-
efficient than model-free methods, a crucial factor in robotics, where data collection is
costly. However, high-dimensional tasks require large neural networks, increasing data
demands and reducing efficiency. The study emphasizes that learning transition models
first allows for better generalization to unseen problems. To address the curse of dimen-
sionality, it proposes latent models, which replace a single complex transition model with
multiple specialized, compact models, improving efficiency. Additionally, the survey dis-
cusses curriculum learning in self-play, where gradually increasing difficulty helps policies
learn progressively. Overall, the study concludes that no single Reinforcement Learning
approach is universally best, but model-based methods hold promise for tackling complex
problems more efficiently.

A study [28] that builds on similar ideas to LoRaDone [23] explores resource allocation for
multiple UAV gateways using Multi-Agent Proximal Policy Optimization (MAPPO) to opti-
mize energy efficiency (in bits per joule). The gateways remain stationary, while mobile
nodes move in random directions, potentially switching between gateway coverage areas.
Each gateway selects the appropriate SF, TP, and Bandwidth while only observing a sub-
set of nodes, dynamically allocated for load balancing. This partial observability requires
cooperation among gateways. The study employs Centralized Training, Decentralized
Execution (CTDE), where the critic network has full state access, but individual agents
act based only on local observations. Comparing their approach with other RL methods,
the results show a 30.5% improvement in energy efficiency for 20 nodes, and 11% im-
provement for 60 nodes. This demonstrates both feasibility of RL in LoRa applications,
and the benefits of coordinated decision-making in multi-agent RL.

Lastly, a study on transfer learning in RL [29] introduces Automatic Curriculum Transfer
from Simple to Complex Environments (ACuTE), a framework designed to improve Rein-
forcement Learning by facilitating policy transfer. ACuTE starts by training in a simplified
low-fidelity environment, where curriculum generation and experimentation are compu-
tationally efficient. This low-fidelity environment retains core structural similarities to the
high-fidelity environment but reduces its complexity. An optimized curriculum is gener-
ated in the low-fidelity environment and then mapped to the high-fidelity environment.
The curriculum is progressively learned before being transferred to the final target task.
Finally, the learned policy is transferred to a physical robot. This approach addresses
a common challenge in traditional Sim2Real methods, where curriculum generation of-
ten requires more time than directly learning the task from scratch. Experimental results
demonstrate that ACuTE achieves faster convergence and improved jump-start perfor-

Integration of AI and mobile gateways in LoRa Networks 27

mance compared to baseline approaches. Its ability to generalize across fidelity levels,
despite noisy mappings, highlights its potential for efficient and scalable transfer learn-
ing. The authors suggest extending ACuTE to multi-agent systems, enabling inter-agent
curriculum transfer for more complex collaborative tasks.

3.4 Reward Shaping Literature
Reward shaping is a technique in Reinforcement Learning that helps guide an agent’s
learning by modifying the reward structure to make the desired behavior easier to dis-
cover. It addresses the credit assignment problem by providing intermediate rewards that
highlight steps toward the goal. A critical aspect of reward shaping is policy invariance,
which ensures that changes to the reward structure do not alter the optimal policy. When
done correctly, reward shaping accelerates learning while preserving the agent’s ability
to converge to the optimal solution.

One study investigates how changes to the reward function affect the optimal policy for a
reinforcement learning model [30]. The paper explores the conditions under which modi-
fications to the reward function in a Markov Decision Process (MDP) preserve the optimal
policy. The authors demonstrate that, in addition to the well-known positive linear trans-
formation from utility theory, it is also possible to add a reward for transitions between
states, provided that the reward is expressible as the difference in the value of an arbi-
trary potential function applied to those states. Moreover, this transformation is shown to
be a necessary condition for invariance, meaning that any other reward transformation
could result in suboptimal policies unless additional assumptions about the underlying
MDP are made. The paper also highlights some common issues (”bugs”) that arise in
reward shaping procedures, particularly when non-potential-based rewards are used. It
also proposes methods for constructing shaping potentials that correspond to distance-
based and subgoal-based heuristics. The authors show that these potentials can lead
to significant reductions in learning time, improving the efficiency of the agent’s training
process.

Another paper [31] argues that policy invariance becomes particularly relevant when un-
observed variables are present. Through simulations, the authors verify their theoretical
findings, demonstrating that if all relevant covariates are observed, causality and invari-
ance are not necessary for obtaining distributionally robust policies. However, these fac-
tors become significant when some variables remain unobserved. To address such cases,
the authors adapt ideas from causal inference and introduce the notion of invariant poli-
cies.

Their theoretical results show that, under certain assumptions, an invariant policy that is
optimal in the training environments also remains optimal in unseen environments, en-
suring it is distributionally robust. Additionally, they propose a method for discovering
invariant policies through an off-policy invariance test, which can be combined with any
existing policy optimization algorithm to learn the optimal invariant policy.

28 Integration of AI and mobile gateways in LoRa Networks

4 Methodology
This chapter outlines the implementation and design of the project, covering both the
configuration of OMNeT++ and the setup of the custom environment in SB3. It explains
the design choices for key components, including how the environment is structured, how
rewards are shaped, and how training is conducted. By breaking down these elements,
the chapter provides a clear understanding of the methodologies adopted to integrate
mobility in OMNeT++ with reinforcement learning and training in SB3.

4.1 Setup
The project consists of two separate environments: OMNeT++ and SB3. SB3 is used
for model training in a simplified environment, where the final trained model can be ex-
ported and deployed in OMNeT++ for inference. While experiments with training directly in
OMNeT++ were conducted (as visualized in Appendix A), this approach proved too time-
consuming to be practical for this project. Therefore, the training process was conducted
in SB3, where mobility, LoRa, and lower-level components were either abstracted away
or simplified to speed up training while preserving essential decision-making elements.

To determine whether AI could be effectively integrated within OMNeT++, an initial Proof-
of-Concept (PoC) was carried out. Alongside this, a literature review was conducted to
establish a foundational understanding of OMNeT++, LoRa, and Reinforcement Learning,
ensuring familiarity with the fundamental theories and existing research relevant to the
project.

Following the PoC and literature review, a selection process was undertaken to identify
suitable frameworks and tools for enabling AI-driven mobility. Since no ”out-of-the-box”
solution existed, various tools and frameworks were tested to assess their capabilities
and limitations. The main requirements for selection were the ability to integrate with OM-
NeT++ while also supporting efficient model training. The final choice was made based
on compatibility, adaptability, and computational efficiency.

Once the appropriate frameworks were identified, a low-fidelity simulation environment
was developed to facilitate training. Initially, it consisted of two stationary nodes and a
mobile gateway moving along a single axis. After verifying that a mobility model could ad-
equately handle this scenario, the simulation was expanded to a two-dimensional space.
Subsequently, additional complexity was introduced by incorporating four nodes with ran-
domized positions and duty cycles. This incremental scaling ensured that the model could
generalize to more complex network conditions while maintaining reliable performance.

4.2 Custom Environment in Stable-Baselines3
A custom environment has been created for this thesis. The objective is to design a
minimal environment compared to OMNeT++, which significantly accelerates the learning
process while allowing easier and more flexible modifications and implementations. Our
custom 2D environment consists of several key elements, which will be discussed. First,
the visual aspects of the environment are described, followed by the technical details,
such as how nodes are represented and how transmissions are performed.

To support development, a rendering of the environment was created. This rendering
was instrumental in verifying the components during implementation and observing the

Integration of AI and mobile gateways in LoRa Networks 29

agent’s behavior after training. The rendering is shown in Figure 4.1. The environment is
depicted as the area within the red box, while additional information is displayed below.

Figure 4.1: Custom environment in SB3

Some key elements can be seen in the rendering:

• A discrete state space as a grid, visualized as a red box.

• The gateway (agent), visualized as a white rectangle.

• Four nodes, visualized with numbering and blue circles filled with green.

The gateway is not implemented as a class directly. Instead, it is represented by a position
that, at each step, ”listens” for incoming packets. In other words, it checks during each
step if any packets have been received from the nodes. The nodes are individual classes
that control when they transmit and the extent of their transmission radius. Consequently,
the gateway does not have its own ”radius”; it relies solely on the transmission radius
of the individual nodes. This abstraction simplifies the process of verifying whether the
gateway is within range in our custom environment.
Nodes and Transmissions
In our custom environment, each node is defined by several key attributes: position, time
of first packet, transmission interval, and transmission model.

• The time of first packet specifies the step at which the node transmits its first
packet. For example, a value of 150 means that the first packet is transmitting at
step 150.

• The transmission interval defines the frequency with which a node transmits pack-
ets, measured in steps. The transmission spacing refers to the time (in steps)

30 Integration of AI and mobile gateways in LoRa Networks

between any two consecutive transmitted packets in the environment.

Time in the environment corresponds directly to discrete steps, where each step incre-
ments the time by 1. This can also be interpreted as seconds in the environment, as the
agent moves at a fixed speed (meters per step, which represents meters per second).
However, for consistency, we refer to this progression as steps throughout this thesis.

After the first packet is transmitted at the designated time, the subsequent transmission
times are computed based on the transmission interval, with some added random vari-
ation. For this a truncated normalization function is used which takes the transmission
interval and a standard deviation of 5 steps. A distribution for a transmission interval of
1500 can be seen in Figure 4.2. This variation is introduced using a small distribution,
ensuring that the intervals between packet transmissions are not fixed but have a degree
of randomness to mimic real-world transmission conditions. The resulting transmission
schedule allows for a more dynamic and realistic representation of packets transmitted in
the environment.

Figure 4.2: Distribution of transmission interval at 1500 steps with a standard deviation of
5

Resetting or creating the environment randomizes the positions of both the nodes and
gateways, as well as the transmission intervals for the nodes. This ensures that the en-
vironment changes with each episode, aiming to prevent overfitting to specific times and
positions. Positions of nodes are also prevented from having overlapping transmission
radius when placed, which makes the environments less likely to be ”clumped” together
and force the nodes to be spread out. The objective is to train a model capable of ob-
serving the given positions and estimating packet times, enabling it to efficiently navigate
between the nodes.

The node also includes a Transmission model, which is a class that determines whether
a packet is successfully received. While packets may be sent, there is no guarantee they
will be received. This depends on several factors. First, if the gateway is outside the
transmission radius of a node, the packet will always be missed. Second, even within the
transmission radius, the likelihood of receiving a packet decreases with increasing dis-

Integration of AI and mobile gateways in LoRa Networks 31

tance from the transmitting node. In other words, a gateway further away will experience
a higher probability of packet loss. This approach is designed to provide a simplified rep-
resentation of real-world behavior. The probability function used can be seen in Equation
4.1.

P (Packet Reception) = e
− distance

ploss scale (4.1)

Here, ploss scale is a configurable parameter that adjusts the probability scaling. This
value can be set based on the transmission radius, and in our experiments its set at
50, with the transmission radius of each node being set to 40. This means that at there
is 44.9% probability that a packet will be received if the gateway is on the edge of the
transmission radius, Figure 4.3 shows a graph of the probability.

The value of ploss scale was chosen as this value, as it provided an aggressive loss in
probability further away, with the goal of making this behavior more comprehensible for
the gateway during training. The same reasoning applies for the hard cutoff outside the
transmission range, where packets cannot be received, when in reality there would still
be a chance to receive such packets.

Figure 4.3: Packet Reception Propability

4.3 Policy
The policy represents the neural network that the gateway (agent) uses to make move-
ment decisions based on its observations. Defining these observations is crucial, as they
determine what the gateway ”sees” and ”knows.” The information provided should be both
meaningful and realistically obtainable.

For this, the default PPO policy network architecture is used, with the exception that it
consists of three fully connected layers for the actor and critic, as this improved learning
efficiency.

The observation space is defined as:

obs(∆t, θ,∆d) (4.2)

32 Integration of AI and mobile gateways in LoRa Networks

where:

• ∆t: The expected time until each node transmits a packet.

• θ: The direction from the gateway to each node, measured in degrees.

• ∆d: The distance between the gateway and each node.

In an environment with 4 nodes, the observation space consists of 12 values, as each input
to the state is proportional to the number of nodes. These observations are normalized
to bring all values into a similar scale (e.g., between 0 and 1), allowing the agent to treat
all inputs equally and preventing certain features from overshadowing others.

To achieve this normalization:

• The distance (∆d) is normalized by dividing it by the maximum distance in the envi-
ronment.

• The direction (θ) is normalized by dividing it by 360.

• The expected time (∆t) is normalized by dividing it by the largest expected time
interval in the environment.

This normalization ensures that all features contribute equally to the learning process,
allowing the agent to generalize better across different situations.

From the observations the agent has 5 discrete actions to choose from: Up, Down, Left,
Right and Standing still. During testing, it was observed that the agent learned faster
and more effectively when each action had a greater impact. Instead of taking an action
at every step, the agent was set to take one action every 10 steps. This approach in-
creased the significance of each action, encouraging the agent to better understand the
environment and make good or bad actions more noticeable.

For successful packet reception, the gateway must reach a position with a reliable con-
nection. Since the environment lacks obstacles that could impede signal propagation, the
only factor affecting reception probability is the distance between the mobile gateway and
the transmitting node. To achieve optimal performance (receiving all packets) the gate-
way must maintain a short distance from the transmitting node at each transmission time.
Thus, for the gateway to receive all packets in a given scenario, the distance between
sequentially transmitting nodes must be small enough to allow the gateway to move into
favorable positions in time.

From this, we derive:

∆tT1,T2 =
distance(nodetransmitting,T1, nodetransmitting,T2)

vgateway
(4.3)

where:

• ∆tT1,T2 is the transmission spacing, the time required for the gateway to move be-
tween two sequentially transmitting nodes.

• distance(nodetransmitting,T1, nodetransmitting,T2) is the Manhattan distance between the
two transmitting nodes.

• vgateway is the speed of the mobile gateway.

Since the gateway moves only along the x- or y-axis, the Manhattan distance is used.

Integration of AI and mobile gateways in LoRa Networks 33

4.4 Credit Assignment
Credit assignment for our agent in the environment has been tested and investigated
thoroughly, with many different iterations to find what worked best. Initially, rewards were
given for successfully receiving packets, which is one of the more obvious rewards, as the
agent’s main goal is to receive the most packets. Additionally, the agent is punished for
missing a packet, as this indicates that the agent was not in the correct position to receive
it due to incorrect actions taken.

It was discovered that varying the punishment for a missed packet depending on how far
away it was from the node transmitting it greatly improved learning. This scaling of the
penalty reduces the negative impact if the missed packet was closer to the agent, making
the feedback more nuanced.

However, these two credits rewards for receiving packets and penalties for missed pack-
ets, were not sufficient for the agent to effectively learn the environment. Therefore, it was
decided to further guide the agent towards the node that was likely to transmit a packet
soonest. This was achieved by providing a small reward based on how close the agent
was to the node that would transmit next.

To summarize, the reward structure used in the final design consisted of:

• Reward for successfully receiving a packet.

• Penalty for losing a packet (scaled based on distance).

• Small reward or penalty, based on distance to the nodes that will transmit next.

• Small reward for taking an action in the direction of the node that is about to transmit
a packet

Additionally, several other reward shapes were tested but ultimately not included in the
final structure:

• Bonus reward for consecutive packet receptions without missing any.

• A declining reward if consecutive packets are received in a row from the same node.

• Bonus reward for packet reception based on fairness.

• Fixed reward given after X actions following the reception of a packet.

These additional reward structures were designed to try and encourage the agent to ex-
plore and prevent it from getting stuck serving only a subset of nodes. However, after
finding an effective reward structure and appropriate hyperparameters, it was determined
that these additional rewards were unnecessary for our final model.

4.5 Integrating OMNeT++ for Model Evaluation
To evaluate models trained in the simplified environment of Stable-Baselines3, we utilize
OMNeT++ (section 2.3), a highly refined network simulation tool. By integrating the FLoRa
framework (section 2.5), we can accurately emulate the unique physical signal properties
of LoRa technology. This approach allows us to transition a trained model from low-fidelity
environment to a high-fidelity one, ensuring its effectiveness in more realistic simulations.

Implementing this simulation was a crucial aspect of the project. The configuration in-
tegrates multiple frameworks within OMNeT++, including INET and FLoRa, alongside
TF-lite-micro. To ensure integration and compatibility, it was essential to establish clear

34 Integration of AI and mobile gateways in LoRa Networks

relationships between the components across these frameworks. In Appendix B, a dia-
gram giving an overview of the relation between components can be seen.

4.5.1 Inference Library
Each framework mentioned in section 2.7.8 was evaluated for compatibility with OM-
NeT++. However, only a variant of TensorFlow Lite (TFLite), specifically TensorFlow Lite
Micro (TFLite Micro), was successfully adapted. TFLite Micro A key compatibility issue
arose due to OMNeT++’s toolchain, which does not support libraries requiring the ”flat-
buffers” dependency. To work around this, a prebuilt version of TFLite Micro, originally
designed for the Arduino system, was used1. This version of TFLite Micro was already
compiled into standalone C++ source and header files, making integration straightfor-
ward. Adapting it for OMNeT++ required only minor modifications: references to Arduino
peripherals and compiler directives (#ifdef) were removed, along with redundant Arduino
example code. However, it is worth noting that this version of TFLite Micro is outdated
compared to the latest upstream release, now also referred to as LiteRT Micro2.

Coincidentally, TFLite Micro is a lightweight version of TensorFlow Litedesigned for DSPs,
microcontrollers, and other low-memory devices. This not only makes it compatible with
OMNeT++ but also highly relevant for real-world deployment.

SB3 provides guidelines for exporting models, including support for TFLite, though it re-
quires multiple conversion steps. For our case, modifications were necessary to the ex-
port process. Since SB3 is based on PyTorch, converting a model to TFLite requires an
intermediate step through TensorFlow (TF). To achieve this, an equivalent neural network
must be constructed using the TF API, after which the weights and biases from the orig-
inal model are copied over. The final TF model is then converted to a TFLite file using
TensorFlow’s built-in TFLiteConverter. At runtime, this TFLite file is used for inference
in OMNeT++.

To ensure correctness, both the TF and original models were tested on the same ran-
domly generated dataset, verifying that their outputs align and confirming the validity of
the conversion process.

4.5.2 File structure
Configuration of the environment follows common pratice for (relatively) small projects in
OMNeT++. As FLoRa is the top-level framework in the project, it is where the component
attribute values are specified, in a omnetpp.ini file. The composite modules such as
nodes, gateways and Radio mediums are described in a network in a .NED file. Then the
modules are contained in their respective projects; Custom LoRa gateway, nodes and
apps in FLoRa, custom mobility and inference application in INET, and Tensorflow-Lite
runtime in the TF-lite-micro project.

4.5.3 INET Mobility System
The INET framework in OMNeT++ includes built-in mobility logic, with pre-existing mo-
bility modules such as circular movement and back-and-forth linear ”tractor” movement.
However, these modules define their movement patterns during the simulation’s initial-
ization phase, making it impossible to modify mobility dynamically during runtime. While
OMNeT++ supports XML formats, which could theoretically allow for a custom inference
component to dynamically adjust mobility using an XML-based model, this possibility has
not been explored in this thesis. Instead a custom module is developed to support the our
modified inference library.

1https://github.com/tensorflow/tflite-micro-arduino-examples
2https://ai.google.dev/edge/litert/microcontrollers/overview

Integration of AI and mobile gateways in LoRa Networks 35

https://github.com/tensorflow/tflite-micro-arduino-examples
https://ai.google.dev/edge/litert/microcontrollers/overview

4.5.4 Custom Mobility Module
The custom mobility model, AdvancedRLMobilityModule, that has been developed, in-
herits from INET_MOBILITY_BASE. The mobility model is configured as a submodule of the
gateway. During the initialization stage of the simulation, the position, direction and speed
properties are configured based on parameters in the omnetpp.ini file.

For our custom mobility model, we define a submodule called AdvancedLearningModel,
which is responsible for executing inference based on the input variables (eq. (4.2)).

The mobility model invokes the AdvancedLearningModel periodically, as configured by
mobility.modelUpdateInterval. Based on the output of the invocation, the mobile gate-
way updates its direction. Themobility modulemoves in this direction until next invocation.

The information required for the input variables of the AdvancedLearningModel inference
is gathered as follows, for each node j:

• During initialization, the position of node j, positionj , is fetched.

• The expected transmission time, Texpected,j , is initialized to the time of node j′s first
packet, Tfirst,j .

• The average duty cycle, tduty cycle,j , is stored as a constant.

During runtime, the position of the gateway, positiongateway, is fetched from the mobility
module and used to calculate the distance and direction to each node j. Additionally, the
expected transmission time Texpected,j is dynamically updated based on packet reception
or elapsed time. Specifically, when either:

1. A packet Pj is received from node j, or

2. The current time Tcurrent is equal to the expected time Texpected,j ,

then the expected transmission time Texpected,j is incremented by the transmission inter-
val ttransmission interval,j . However, due to the mobility module only periodically polling and
updating its state (and the practical difficulties of comparing floating-point values), it is
not feasible to update the expected time at the exact moment of Texpected,j . Therefore,
compensation is made for the time elapsed since passing Texpected,j .

As such, the behavior can be mathematically expressed as the following piecewise func-
tion:

Texpected,j =


Tcurrent + ttransmission interval,j if Pj is received,
Texpected,j + ttransmission interval,j − (Tcurrent − Texpected,j) if Tcurrent > Texpected,j ,

Texpected,j otherwise.

An alternative to this compensation of Texpected,j , is to instead make use of periodic self-
messages in the module, but solving the issue arithmetically is sufficient.

4.5.5 OMNeT++ Data Collection
To enable custom data collection within the simulation, a component called StateLogger
has been created. It functions as a singleton, with nodes and other components signaling
the StateLogger through function calls to report new information, such aswhen a packet is
transmitted. After themobility module invokes AdvancedLearningModel, the StateLogger
module is triggered to record relevant data for plotting and evaluation, such as the number
of packets sent and received for performance metrics (section 4.7.1). This is done by
appending an entry to a log data list.

36 Integration of AI and mobile gateways in LoRa Networks

Once the simulation terminates, the StateLogger module writes the collected data to a
file. This data can then be used for plotting and evaluating different scenarios discussed
in chapter 5.

4.6 Experiments
Each experiment has been performed after the model has been trained in SB3. Experi-
ments in SB3 consist of loading in the model and executed it in the SB3 environment.The
environment is before-hand modified to certain scenarios, ensuring the are consistent.
This means that the investigation and experiments for our reward structure and training
will not be presented, all experiments are based on the final trained model.

Experiments in OMNeT++ is performed by exporting the model, and modify settings in
the main .ini file. This includes things such as position of nodes, send intervals, logging.
Plots are then generated from logs for both SB3 and OMNeT++ experiments.

4.7 Evaluation method
Our cutom SB3 environment is a minimal and down-scaled environment compared to OM-
NeT++. Likewise, it is therefore important that variables are scaled accordingly, such that
the evaluation environment is comparable to the training environment. This is also impor-
tant across individual experiments solely in OMNeT++. For both SB3 and OMNeT++, we
will evaluate the performance of each experiment in 100 episodes. This means the use of
identical seeds in OMNeT++ should be used across experiments to ensure validity in our
results. It also means that the environments should be correctly scaled when comparing
the results from SB3 and OMNeT++, such as positions, transmit intervals, transmission
radius or other relevant variables.

4.7.1 Evaluation Metrics
This section presents two keymetrics, the Packet Delivery Ratio (PDR) and Jain’s fairness
index, which will be used to validate the results in both OMNeT++ and SB3. Thesemetrics
serve as benchmarks to assess the performance and learning progress of the gateway. By
analyzing these metrics, we can evaluate how well the agent performs in the environment
and compare the performance across different scenarios.

Tracking these metrics in both OMNeT++ and SB3 allows us to validate the consistency
and effectiveness of the trained policy, ensuring that the gateway efficiently serves all
nodes in the environment.
Packet Delivery Ratio (PDR)
Packet Delivery Ratio (PDR) is a commonly used metric for evaluating the performance
and reliability of wireless communication networks. It represents the ratio of successfully
delivered packets to the total number of packets transmitted in the network 4.4. A high
PDR indicates that the network is efficiently delivering most of the transmitted packets,
demonstrating strong reliability and performance. Conversely, a low PDR suggests po-
tential issues such as interference, congestion, or other factors causing packet loss. For
this reason, PDR is selected as a key metric for evaluating our experiments and drawing
valid conclusions.

PDR =
Recieved Packets

Generated Packets
· 100 (4.4)

Jain’s Fairness Index
Jain’s Fairness Index evaluates how evenly resources are distributed among users—in
this case, how evenly packets are received by each node. The fairness index is calculated

Integration of AI and mobile gateways in LoRa Networks 37

using 4.5, where xi represents the value associated with the i-th node (or user), and n is
the total number of nodes.

The index ranges from 0 to 1, where 1 indicates perfect fairness. A high fairness index
suggests that packets are distributed evenly across all nodes, whereas a low fairness in-
dex implies that some nodes receive significantly fewer packets, potentially due to factors
such as poor connectivity or network interference.

f(x1, ..., xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

(4.5)

As can be derived from eq. (4.5), the lowest value is actually 1/n, when resources are
allocated to a single node out of n nodes. Thus, a fairness of 0 represents a special case
where there is no throughput at all.

PDR and Jain’s Fairness Index measure different aspects of network performance, and a
high value in one does not always correspond to a high value in the other. For instance,
a high PDR can be achieved even if one node experiences significant packet loss, which
would be reflected in a low Jain’s Fairness Index. Conversely, strong fairness does not
necessarily indicate a high PDR; all nodes could experience the same level of packet loss,
resulting in a fair distribution of packets but an overall poor network performance since it
is ”equally bad” for all nodes.

For these reasons, we chose to use both metrics, as together they provide a comprehen-
sive indication of the gateway’s performance.

4.7.2 Evaluation consistency
Ensuring consistency in evaluations is critical for the validity and reliability of our thesis
experiment. By maintaining a stable environment and controlling randomness, we ensure
that variations in outcomes are due to the actual factors being studied rather than external
noise or unpredictable influences. This is particularly important when comparing different
scenarios, models, or approaches, as it allows for a fair and unbiased assessment.

To achieve this, we use seeding, which ensures that any randomness introduced during
the experiment, such as randomized initial conditions, transmission deviations, or packet
loss. Seeding allows us to reproduce results, making our findings more credible and
scientifically rigorous. Without it, variations in experimental runs could lead to misleading
conclusions, reducing the reliability of our comparisons.

Additionally, we conduct 100 simulations for data collection to obtain statistically significant
and stable performance metrics. Running multiple episodes helps mitigate the effects
of outliers or anomalies that may arise in a single trial. By averaging results over 100
episodes, we achieve a more accurate representation of the underlying trends and overall
performance. However, some of the presented data will be from a single episode, as it
provides a more detailed example of specific behaviors and decision-making processes
within the scenario.

Overall, by enforcing consistency through controlled randomness and a sufficiently large
number of episodes, we enhance the credibility, reproducibility, and robustness of our
findings, ensuring that our conclusions are based on reliable and meaningful data.
Seeds for Stable-Baselines3
Seeding in SB3 is done by setting two seeds before any of the 100 episodes are executed.
The first seed is for Python libraries and randomness, ensuring that any random numbers
generated (e.g., random sampling, shuffling) produce consistent results across different
runs.

38 Integration of AI and mobile gateways in LoRa Networks

The second seed must be set for the model itself. In SB3, the model.set_random_seed
function is used to set the random seed for the model’s internal randomness. This ensures
that the behavior of the model, including training results, exploration, and environment
interaction, remains reproducible across different runs.
Seeds for OMNeT++
In OMNeT++, the seed-set configuration variable is used to determine which set of seeds
will be selected for each simulation run, allowing for different runs to use unique random
number sequences. This prevents overlap between runs while ensuring that each one
gets distinct seeds.

The seed-set affects which set of seeds is used for a particular simulation. The simulation
kernel can automatically generate seeds, and each simulation run may use a different
seed set. The first simulation may start with seed set 0, then seed set 1 for the second,
and so on. OMNeT++ ensures that all automatically generated seeds are spaced far
apart, preventing overlap of random sequences between different simulation runs.

Setting seed-set = ${repetition} ensures that all runs with the same repetition number
use the same seed set. This is useful when we want each repetition of an experiment to
follow the exact same sequence of random numbers, allowing for direct comparisons
between different scenarios.

In our case, for a simulation run series, seeds will range from 0 to 99, ensuring that all
100 simulations use a different seed. To achieve this, we set:

repeat = 100

This causes every combination of iteration variables to be repeated 100 times, and the
predefined OMNeT++ variable $repetition holds the loop counter which is equivalent to
${repetition = 0..99}.

4.7.3 Data Collection & Presentation
Both metrics can be meaningfully evaluated at any point in an episode, calculated based
on the number of packets transmitted and received. The source data includes the num-
ber of packets transmitted per node, the number of packets received by the gateway for
each node, and auxiliary data such as gateway positions. The sampling frequency differs
between SB3 and OMNeT++: in SB3, data is collected at every time step, corresponding
to every simulated second, while in OMNeT++, data is recorded whenever the model is
polled, which occurs every 10th simulated second. Since an evaluation episode lasts for a
full day, the resulting dataset consists of 86,400 data points per episode in SB3 and 8,640
in OMNeT++. Given the large volume of data, visualization techniques are essential for
extracting meaningful insights. To quantify model performance, three types of plots are
employed.

Training Data Plots These plots evaluate different training methods, with the horizontal
axis representing the number of simulation steps. The key metrics include:

• PDR: Sampled at the end of an episode.

• Fairness: Sampled at the end of an episode.

Per Episode Plots These plots capture data for a single episode to analyze specific
behavior:

Integration of AI and mobile gateways in LoRa Networks 39

• Distance to Nodes: Tracks the distance between the mobile gateway and each
node. Transmission times are plotted for reference, helping to identify cyclic move-
ment patterns and their relation to transmissions.

• Heatmap (SB3 Exclusive): This plot visualizes the time spent at each position by
transforming mobile gateway position data into a more intelligible format:

– Count occurrence of gateway at each position.

– Add a small positive value (less than 1) to ensure all values remain positive.

– Apply a logarithmic transformation to compress the data range and thus em-
phasize rarely visited positions.

– Normalize the range to [0, 1] for better visualization (optional).

Episode Batch Plots These plots summarize performance across multiple episodes to
mitigate the effects of stochastic variations. Each episode batch includes 100 simulation
runs, from which summary statistics for performance metrics are visualized.

• PDR Per Node (Bar Plot): Presents the mean PDR per node with standard devia-
tion error bars.

– In some cases, the sum of the mean PDR and standard deviation exceeds
100%, even though packet delivery rate cannot logically surpass this limit. This
typically occurs due to large variations in packet reception across episodes.

• PDR Distribution (Box Plot): A standard box plot illustrating the PDR distribution
across episodes using median, quartiles, and outliers.

• Fairness Distribution (Box Plot): Similar to the PDR box plot but for fairness.

40 Integration of AI and mobile gateways in LoRa Networks

5 Evaluation
This chapter evaluates AI-driven mobility for LoRa gateways serving multiple nodes using
Reinforcement Learning. It explores various scenarios, each addressing different aspects
of the project, with sub-cases included to examine the general scenario in different con-
ditions.

The first scenario examines training performance under different reward structures and
Reinforcement Learning algorithms (PPO and DQN). Since the choice of algorithm and
reward design significantly impacts learning efficiency and final policy behavior, this sce-
nario aims to determine the most effective combination for optimizing network perfor-
mance through gateway movement.

The second scenario evaluates the transfer of an SB3-trained model into OMNeT++. En-
suring correct model export is crucial for real-world deployment, as discrepancies between
training and execution environments can degrade performance. This evaluation alsomea-
sures howwell the model retains its learned behaviors and adapts within OMNeT++, using
our performance metrics.

The third scenario investigates the model’s behavior when a faulty node is introduced
into the environment. In real-world applications, sensor nodes may fail or transmit in-
correct data, potentially misleading the Reinforcement Learning model. This scenario
provides insight into how the model processes observations and how these inputs influ-
ence decision-making. By analyzing its response to faulty nodes, we can determine how
observations contribute to either optimal or suboptimal behaviors under different assump-
tions and data conditions. This analysis is essential for improving the model’s reliability
in dynamic and unpredictable environments while also exploring ways to leverage these
insights for more robust decision-making.

The fourth scenario compares an RL-driven gateway to multiple stationary gateways.
While Reinforcement Learning enables adaptive mobility, stationary gateways are often
used in practical deployments. This scenario evaluates whether mobility provides an ad-
vantage in terms of coverage and overall performance under different node placement
configurations.

The final scenario assesses the effectiveness of an RL-driven gateway versus a static
mobility model. Static mobility models follow predefined movement patterns that may
not always be optimal. By comparing the two approaches in environments where static
mobility is both well-suited and poorly suited, this scenario highlights the potential benefits
and limitations of using reinforcement learning for gateway control.

Tables 5.1 and 5.2 outline the default parameters used for simulations in both OMNeT++
and SB3. In both frameworks, the simulations run for an equivalent duration of 86,400
seconds (1 day), with SB3 measuring time in steps. To ensure consistency, SB3 is scaled
in distance, speed, and transmission range to match OMNeT++, with both area and gate-
way speed set to one-tenth of their OMNeT++ values. The node transmission radius
cutoff is set to 40 meters in SB3, and reception probability as seen in Figure 4.3. 40 me-
ters will correspond to 400 meters in OMNeT++, which is a relatively short range. This
value was selected for training as it provided a clearer reward signal and is maintained
for evaluations.

Integration of AI and mobile gateways in LoRa Networks 41

Transmission intervals are identical in magnitude in both SB3 and OMNeT++, ranging
from 1000ms to 2000ms. The chosen interval duration ensures that a sufficient number
of transmission events occur during each episode, allowing the model to learn effectively.

In this project, transmissions are based on uplink join-requests. According to the Lo-
RaWAN v1.1 specifications [32], when accounting for a Coding Rate of 4

8 , the payload
size of each message is 36 bytes. Omitting preambles and other overhead data, we as-
sume that the ToA is equivalent to the time required to transmit all the data symbols. This
results in a Time on Air (ToA), based on eq. (2.5) and eq. (2.3), given by:

ToA = nsymbols · Ts =
8 · 36
12

· 212

125 kHz
= 786.432ms (5.1)

Considering the duty cycle restriction of 0.1% and using eq. (2.2), the minimum required
transmission interval is:

Tminimum =

(
1

0.1%
− 1

)
· ToA = 999 · 786ms ≈ 785 s (5.2)

Hence the transmission intervals satisfies the transmission constraints set by LoRaWAN.

Parameter Value
Area 3000m x 3000m

Simulation time 86400s (1 day)
Model inference interval 10s
Number of RL gateways 1

RL gateway speed 11 m/s
Number of nodes 4

Node transmission power 11 dBm
Node Spreading Factor SF12

Node bandwidth 125 kHz
Node coding rate 4/8

Table 5.1: Default simulation parameters for OMNeT++

Parameter Value
Area 300m x 300m

Simulation time 86400s (1 day)
Model inference interval 10s
Number of RL gateways 1

RL gateway speed 1.1 ms
Number of nodes 4

Node transmission radius 40m
Table 5.2: Default simulation parameters for SB3

42 Integration of AI and mobile gateways in LoRa Networks

5.1 Scenario 1
The first scenario was designed to evaluate the performance of our environment and
the training setup in SB3. The experiment focuses primarily on the configuration of Rein-
forcement Learning, assessing the efficiency of the training process under various reward
structures and algorithms, specifically PPO and DQN. It compares different reward shap-
ing approaches, highlighting the impact of positional rewards and fairness rewards on
training outcomes. The goal is to identify the optimal reward structure and algorithm to be
used to train the final model implemented in OMNeT++. To this there are 3 cases which
will be compared to our bare reward structure under PPO, which is the one used for the
final model.

• No reward shaping: Where the only rewards or penalties given are when receiving
or missing packets

• Residuals: A test case where Residual Connections are used for each layer in the
network’s feature extractor.

• DQN: Same final reward structure, but uses DQN algorithm instead of PPO for train-
ing.

The learning process for all cases is capped at 10 million steps. Each episode spans a
quarter of a day (21600 seconds) with a time skip of 10, meaning the agent takes 2160
actions per episode. Evaluations occur every second episode.

Learning parameter Value
Total timesteps 10 million
Episode length 21600 steps

Time skip 10
Evaluation frequency 43200 steps
Table 5.3: S1 Learning parameters

Figures 5.1 and 5.2 illustrate the fairness and PDR progression throughout training. These
figures highlight how the model improves over time. By 3 million steps, the agent has
developed a good understanding of the environment and how to serve nodes effectively,
achieving an average PDR of 80% and a fairness metric approaching 1.

Integration of AI and mobile gateways in LoRa Networks 43

Figure 5.1: S1 Fairness during training for final model

Figure 5.2: S1 PDR during training for final model

44 Integration of AI and mobile gateways in LoRa Networks

After training, see Figure 5.1 and 5.2, the model is then evaluated over 100 simulations,
where the episode length is equivalent to one day. Figure 5.4 and 5.3, shows the averaged
performance over all 100 simulations of the final model in SB3. Figure 5.3 shows a boxplot
for fairness and PDR for all nodes over 100 simulations. It can be seen that the agent
performs very well, achieving a great PDR and almost perfect fairness. Figure 5.4 shows
the PDR and Fairness for each individual node over the 100 simulations. This shows that
every node get an average PDR above 89%, with an overall average PDR of 89.54% and
a 0.99 fairness for all the nodes.

Figure 5.3 also shows that there is some outliers and deviation to both PDR and fairness.
This could be the result of certain node positions or transmission intervals that make it
harder for the agent to serve all the nodes over long periods.

Figure 5.3: S1 Performance box plot for final model

Figure 5.4: S1 Performance bar plot for final model

Integration of AI and mobile gateways in LoRa Networks 45

5.1.1 Case A: Training with No Reward Shaping
Training without reward shaping means the gateway only receives environmental signals
in two cases: (1) a reward upon successfully receiving a packet and (2) a penalty for
missing a packet. As a result, the gateway spends most of the time exploring blindly,
receiving minimal feedback between packet events. The training process, illustrated in
Figures 5.6 and 5.7, demonstrates the limited learning progress under these conditions.
The gateway appears to converge to an average PDR of approximately 50% and 0.6
fairness with large deviations, likely because it falls into a local minimumwhere it prioritizes
serving only a subset of nodes. Figure 5.5 is a heatmap of the gateways visited positions
of a simulation run after training which shows this behavior of only serving a subset of
nodes. The general behavior of this trained model is however rather arbitrary and cannot
be concluded to anything specific, as no clear behavior of how or which nodes the gateway
would serve was discovered. This highlights the crucial role of reward shaping in guiding
the gateway’s learning process.

Figure 5.5: S1.A Heatmap of episode

46 Integration of AI and mobile gateways in LoRa Networks

Figure 5.6: S1.A Fairness during training

Figure 5.7: S1.A PDR during training

Integration of AI and mobile gateways in LoRa Networks 47

5.1.2 Case B: Training with Residuals
The impact of incorporating residuals, as shown in Figure 2.6, is evident in Figures 5.8 and
5.9. These figures illustrate how residuals improve the learning efficiency of the gateway.
With residuals, the network reaches a stable convergence point in approximately 1 million
steps, whereas training without residuals required around a little under 2 million steps to
converge.

The effect of residuals should be more pronounced when observations are normalized
with a larger value. For instance, if the expected packet transmission time is normalized
using an entire day rather than the largest expected time in the environment, the result-
ing normalized values become much smaller. Consequently, during backpropagation,
the gradients may also become very small, potentially leading to the vanishing gradient
problem, which hinders effective learning.

Figure 5.8: S1.B Fairness during training

Figure 5.9: S1.B PDR during training

48 Integration of AI and mobile gateways in LoRa Networks

To validate this, a larger normalization value of 86,400 seconds (equivalent to one day)
has been used for the expected packet transmission time. Figures 5.10 and 5.11 illustrate
fairness during the learning process with and without residuals, while Figures 5.12 and
5.13 show the PDR. The results indicate that without residuals, the agent takes signifi-
cantly longer to learn the correct behavior compared to Figures 5.1 and 5.2. Additionally,
the introduction of residuals leads to a more noticeable improvement than previously ob-
served.

This improvement is largely due to residual connections, which help prevent the vanishing
gradient problem, which arises from small reward signals influenced by node positions and
actions, as well as the larger normalization values used. Residual connections mitigate
this by allowing gradients to flow more effectively during training. Instead of requiring
each layer to learn a full transformation from input to output, residual connections enable
layers to focus on learning the difference (or residual) between the input and the desired
transformation, simplifying the optimization process. This not only helps prevent gradient
vanishing but it also accelerates the learning process.

It should be noted the Residual Connection is a special network structure, which relies on
identity mappings that bypass a layer. This structure introduces a computational graph
that TensorFlow’s Sequential API does not support, as it is limited to strictly linear layer
stacks. As a result, despite of the benefits of residual connections, it could not be con-
verted from PyTorch (SB3) to the TensorFlow Lite model used in OMNeT++. This also
means the Final Model used for validation in SB3 did not include Residual Connections
either.

Integration of AI and mobile gateways in LoRa Networks 49

Figure 5.10: S1.B: Fairness with a 86400 normalization value for expected time

Figure 5.11: S1.B Fairness with residuals and a 86400 normalization value for expected
time

50 Integration of AI and mobile gateways in LoRa Networks

Figure 5.12: S1.B PDR with a 86400 normalization value for expected time

Figure 5.13: S1.B PDR with residuals and a 86400 normalization value for expected time

Integration of AI and mobile gateways in LoRa Networks 51

5.1.3 Case C: Training with DQN
The results of training with DQN instead of PPO can be seen in Figure 5.14a and Figure
5.14b. DQN demonstrates roughly the same convergence as our base PPO, with PDR
and fairness stabilizing after approximately 4 million steps. This shows that DQN is also
a good option to use for training in the current environment. DQN could therefore be a
good option for training as it is typically less computationally demanding than PPO, mak-
ing it more suitable for resource-constrained environments or scenarios where training
efficiency is a priority.

The final model is trained using PPO instead of DQN due to DQN’s inherent limitations in
more complex environments. As the environment increases in complexity, the gateway
must learn more intricate behaviors, leading to a larger observation space. PPO is better
suited for handling this increased complexity. Additionally, if the gateway’s actions were
expanded to include continuous control over both direction and speed—requiring a con-
tinuous action space that cannot be effectively represented using discrete actions, then
DQN would be unsuitable. Therefore, PPO was chosen not only for its ability to handle
the problem’s complexity but also because it supports potential future enhancements.

(a) S1.C Fairness during training using DQN

(b) S1.C PDR during training using DQN

Figure 5.14: S1.C Fairness and PDR during training using DQN

52 Integration of AI and mobile gateways in LoRa Networks

5.2 Scenario 2
The purpose of the second experiment is to validate that a model trained in SB3 can be
successfully transferred to OMNeT++ and perform effectively. It will illustrate whether the
simplified environment of SB3 emulates the High-Fidelity environment of OMNeT++, such
that the training is meaningful. In this experiment, we compare the model’s performance
in SB3 and OMNeT++ to evaluate transferability. To achieve this, our custom environment
has been scaled to closely resemble the OMNeT++ environment. The goal is to determine
whether the trained model achieves comparable performance in both SB3 and OMNeT++
under normal conditions and assumptions.

Position (x,y) time of first packet send interval
node 0 (50,50) 400 truncnorm(1600,5)
node 1 (50,250) 800 truncnorm(1600,5)
node 2 (250,250) 1200 truncnorm(1600,5)
node 3 (250,50) 1600 truncnorm(1600,5)
gateway (150,150) 7 7

Table 5.4: S2 SB3 scenario parameters

Position (x,y) (m) time of first packet (s) send interval (s)
node 0 (500,500) 400 truncnorm(1600,5)
node 1 (500,2500) 800 truncnorm(1600,5)
node 2 (2500,2500) 1200 truncnorm(1600,5)
node 3 (2500,500) 1600 truncnorm(1600,5)
gateway (1500,1500) 7 7

Table 5.5: S2 OMNeT++ scenario parameters

(a) SB3 rendered environment (b) OMNeT++ visualized environment

Figure 5.15: S2 Environments in SB3 and OMNeT++.

Integration of AI and mobile gateways in LoRa Networks 53

Figure 5.16: S2 Performance bar plot in SB3

Figure 5.17: S2 Performance box plot in SB3

To validate that the model is correctly exported from SB3 to TensorFlow, a random set
of input-output pairs is generated before export and then compared against the exported
model’s outputs to ensure consistency. This is done with a function that performs the
following checks:

• Ensures that the input dimensions of both models match.

• Generates 10.000 random input samples within the expected input space.

• Computes the output probabilities from both the SB3 model and the converted Ten-
sorFlow model.

• Compares the outputs using the numpy.allclose function with a predefined abso-
lute and relative tolerance.

• Reports any mismatches detected during validation.

54 Integration of AI and mobile gateways in LoRa Networks

The function can be seen in Appendix E, which gives an output for the final model:

Mean Absolute Difference: 7.510244870445604e-08
Mean Relative Difference: 1.3930197155787027e-06

These values indicate a extremely low mean difference, which is likely due to numerical
precision variations during export rather than a faulty conversion.

The exported model is then integrated into OMNeT++ to verify that it remains transfer-
able and behaves consistently with its original SB3 counterpart. The movement pattern
expressed by the gateway for an episode is included in the Appendix C (fig. C.1, fig. C.2,
fig. C.3, fig. C.4). The movement follows a cyclic pattern, with the gateway reducing its
distance to each node before packet transmission. This demonstrates that the learned
behavior is successfully transferred across neural network frameworks and simulation
environments.

The performance seen in fig. 5.18a, fig. 5.18b and fig. 5.19 show that the model per-
forms near-perfectly in OMNeT++, achieving a PDR of 99.94%. Additionally, none of the
episodes resulted in a low data rate, as evidenced by the absence of meaningful outliers.
In this scenario, the agent is able to receive nearly all packets transmitted by the four
nodes. Since the delivery rate of each node is approximately equivalent, the Fairness
metric is also near-perfect, resulting in Fairness of 1.00 due to rounding. Comparing the
model’s performance in OMNeT++ and SB3 reveals that OMNeT++ achieves both higher
PDR and Fairness.

These results confirm the successful transfer of the model, demonstrating its ability to
generalize from SB3 to OMNeT++. Furthermore, they suggest that the SB3 environment
provides a conservative estimate of performance, acting as a lower-bound approximation
of OMNeT++. In other words, SB3 serves as a pessimistic approximation of the real-world
conditions simulated in OMNeT++.

(a) S2 PDR box plot in OMNeT++ (b) S2 Fairness box plot in OMNeT++

Figure 5.18: S2 PDR and Fairness box plots in OMNeT++

Integration of AI and mobile gateways in LoRa Networks 55

Figure 5.19: S2 Performance bar plot in OMNeT++

5.3 Scenario 3
The third scenario examines a critical aspect of our trained model in SB3: how it handles
packet losses. These experiments are designed to observe the gateway’s behavior when
encountering a packet loss. The objective is not to assess the model’s overall perfor-
mance but to analyze its response to such situations. For this a node is modified to be
faulty, such that it always produce a packet that will be missed.

In this context, three approaches to handling a faulty node are considered:

1. Assuming Lost Packet: When the expected time to the next packet from the af-
fected node reaches zero, it assumes a packet loss has occurred. The expected
time is then updated to reflect the arrival of the subsequent packet.

2. Immediate Retry Assumption: The expected time assumes the lost packet, is in
fact not lost, and should be received imminently, making the expected packet time
remain at zero indefinitely.

3. Known Faulty Node: The node is identified as faulty. In contrast to the immediate
retry assumption, the expected time is set to a high value to encourage the gateway
to avoid serving the faulty node.

This scenario highlights the potential challenges a gateway may face when faulty nodes
are present. It also demonstrates effective methods for mitigating these issues by strate-
gically adjusting expected packet times, ensuring the gateway continues to operate effi-
ciently and prioritize active nodes.

For all three cases the same same parameters and setup used Scenario 2 with a modified
faulty node, see Figure 5.15a and Table 5.6.

56 Integration of AI and mobile gateways in LoRa Networks

Position (x,y) time of first packet transmission interval faulty
node 0 (50,50) 400 truncnorm(1600,5) 7

node 1 (50,250) 800 truncnorm(1600,5) 7

node 2 (250,250) 1200 truncnorm(1600,5) 7

node 3 (250,50) 1600 truncnorm(1600,5) 3

gateway (150,150) 7 7 7

Table 5.6: S3 Scenario parameters

To ensure a fair comparison, a base case without any faulty nodes is also tested, which
corresponds to the SB3 results from Scenario 2. This serves as a benchmark for per-
formance in an ideal environment. As shown in Figure 5.20, the agents achieve perfect
fairness and a PDR of 90.19% over 100 evaluations. This highlights how well-suited the
scenario is for the agent, providing optimal conditions for reaching all nodes efficiently.
Establishing this ideal baseline makes it easier to assess the impact when introducing a
faulty node.

Figure 5.20: S3 Performance bar plot (no faulty node)

Integration of AI and mobile gateways in LoRa Networks 57

5.3.1 Case A: Adjusted Expected Time
The results indicate that even when a node is faulty, the agent continues to provide service
to the other nodes by relying on expected time observations, as shown in Figure 5.21.
Despite this, the remaining nodes maintain a relatively high PDR, though it is lower than
before. Notably, node 0 exhibits the worst performance compared to Figure 5.20.

To understand this behavior, Appendix D (fig. D.1, fig. D.2, fig. D.3, fig. D.4) and Figure
5.22 shows that the gateway moves fairly between nodes, as no node is assumed to
be faulty. Node 0, also has a drop in PDR of roughly ∼ 5%, this is likely because it is
scheduled to transmit immediately after the faulty node. In this case, the gateway waits
for a packet that never arrives. Although the expected time mechanism accounts for
potential packet loss, the agent continues to wait as long as possible, anticipating the
arrival of a packet just before the expected time elapses. Over time this will cause the
gateway to not be able to reach node 0 in time, as the actual time the packet is transmitted
and the expected transmission time deviates from each other slightly.

Figure 5.21: S3.A Performance bar plot

58 Integration of AI and mobile gateways in LoRa Networks

Figure 5.22: S3.A Heatmap of gateway in an episode

5.3.2 Case B: Immediate Retry Assumption

The results of this case highlight the importance of correctly assigning expected packet
times to influence the behavior of the model. Figure 5.23 shows that the gateway fails
to receive any packets from the nodes. This issue arises because the gateway remains
close to node 3, as the faulty node continuously signals an expected packet arrival. Since
the agent believes a packet is always imminent, it stays near node 3 indefinitely. This
behavior is further illustrated in Figure 5.24, where the distance to node 3 remains close
to zero, indicating that the gateway never moves away from the node. This is further
validated from Figure 5.25, which shows a heatmap over an episode. Here it can be seen
that the gateway visits all 4 nodes, but stops at node 3 as it indefinitely tries to wait for the
packet it believes will be revived in any moment.

This behavior is clearly undesirable, as the gateway is unable to recognize that the node is
faulty if the expected packet time does not reflect it. Therefore, it is crucial that the method
used to calculate the expected packet time accounts for this issue, whether through an
algorithm or another approach.

Integration of AI and mobile gateways in LoRa Networks 59

Figure 5.23: S3.B Performance bar plot

Figure 5.24: S3.B Disance for node 3 over an episode

60 Integration of AI and mobile gateways in LoRa Networks

Figure 5.25: S3.B Heatmap for gateay in an episode

5.3.3 Case C: Known faulty node

This scenario explores how the gateway can be guided to avoid wasting time on a known
faulty node. One effective approach is to manipulate the expected packet time, influ-
encing the gateway’s decision-making process. By assigning a distant expected packet
time to the faulty node, the gateway deprioritizes it, allowing the system to function more
efficiently.

The results confirm that this strategy is highly effective. As shown in Figure 5.21, Node
3 experiences a better PDR since the gateway no longer wastes time waiting for pack-
ets from the faulty node. This behavior is further validated by the heatmap in Figure 5.27,
which visualizes the gateway’s movement during an episode. The heatmap clearly shows
that the gateway never moves towards the faulty node, instead focusing on serving the
remaining active nodes. Beyond handling faulty nodes, this strategy also enables the
gateway to dynamically adjust the number of nodes it serves. Nodes effectively ”absent”
from the environment can be assigned a permanent distant expected packet time, ensur-
ing optimal resource allocation. In this case, a constant expected packet time equal to
the transmission interval (1600) is used to achieve this effect.

Integration of AI and mobile gateways in LoRa Networks 61

Figure 5.26: S3.C Performance bar plot

Figure 5.27: S3.C Heatmap of Gateway

62 Integration of AI and mobile gateways in LoRa Networks

5.4 Scenario 4
The fourth scenario compares the performance of a reinforcement learning-based mobile
gateway to multiple static gateways in OMNeT++. The experiment evaluates various
node placement configurations to assess how effectively the mobile gateway performs
relative to stationary gateways, which are expected to provide consistent full coverage.
By analyzing differences in performance, this scenario aims to determine the minimum
number of stationary gateways a single mobile gateway can replace.

As observed in section 5.2, the mobile gateway performed optimally, successfully receiv-
ing nearly all packets. In this scenario, the goal is to compare the novel RL-trained mobile
gateway with traditional stationary gateways. Since an ideal scenario with abundant re-
sources offers little insight, this experiment introduces a more challenging environment by
reducing the transmission interval. Under these conditions, the mobile gateway must con-
sistently make optimal decisions to receive packets successfully, increasing the difficulty
of the task.

From the results of this scenario, we will observe that stationary gateways, even when po-
sitioned relatively close to the target nodes (within 500m), do not achieve perfect perfor-
mance. Additionally, the mobile gateway demonstrates its ability to effectively substitute
stationary gateways. Specifically, we will see that the performance of the mobile gate-
way is comparable to four stationary gateways. However, this advantage depends on the
duration between transmissions being long enough for the mobile gateway to cover the
required physical distance. These findings will highlight the mobile gateway’s potential as
an efficient solution in dynamic environments.

5.4.1 Case A: 4 Stationary Gateways
In this case, the goal is to compare the performance of an RL-trained mobile gateway
with that of four stationary gateways. This scenario serves as a baseline for the remaining
cases, representing the performance of stationary gateways under ideal conditions. Given
that there are four nodes, the optimal placement for the stationary gateways is adjacent
to each node to ensure efficient transmissions. Therefore, each stationary gateway is
positioned 100 meters away from a node along the x-axis.

To decide on the transmission intervals for the nodes, we evaluate the distance between
each node. In the case that nodes are located in a grid-layout with 2000m distance, such
that sequentially transmitting nodes are adjacent, the time between each transmissions
equals

2000m/11 m
s = 181 s (5.3)

This is theminimum amount of time required between transmission for themobile gateway
to reach each node and maximize the reception probability. Though, this requires the
mobile gateway to move ideally - however, it is not not able to change it’s direction at any
point in time; only every 10 seconds by inference of the neural network. This can make
it overshoot in directions, which necessitate backtracking. Additionally, the gateway only
has access to an estimate of transmission times. As such, the time between transmissions
for the scenario is padded, to a value of 250 s. This means, every node will have an
individual send interval of nnodes ·∆Ttransmissions ⇒ 4 · 250 s = 1000 s.

Integration of AI and mobile gateways in LoRa Networks 63

Position (x,y) (m) time of first packet (s) send interval (s)
node 0 (500,500) 400 truncnorm(1000,5)
node 1 (500,2500) 650 truncnorm(1000,5)
node 2 (2500,2500) 900 truncnorm(1000,5)
node 3 (2500,500) 1150 truncnorm(1000,5)

mobile gateway (1500,1500) 7 7

station. gateway 0 (400,500) 7 7

station. gateway 1 (400,2500) 7 7

station. gateway 2 (2600,2500) 7 7

station. gateway 3 (2600,500) 7 7

Table 5.7: S4.A OMNeT++ Parameters

Figure 5.28: S4.A Initial positions of LoRaWAN units.

As can be seen in fig. 5.29, the PDR of the stationary gateways is perfect, receiving all
transmitted packets. This is as expected, since each stationary gateway is allocated to
service only a single node, which is spatially adjacent. Once more, an ideal fairness
(fig. 5.30) is also generated by this configuration, as each node has 100% throughput
with the stationary gateways (fig. 5.31).

On the other hand, the constraint of time between transmissions affects the performance
of mobile gateway somewhat. The mobile gateway achieves an average PDR of 96.70%,
and fairness of 0.99. The performance is not completely consistent, as can be seen from
the box plot (fig. 5.29). The minimum and maximum PDR of the 100 episodes, excluding
outliers, is approximately 90% and 100%, respectively. The average performance is still
remarkable, but the distribution does show that the model is not completely robust. In
section 5.2, the mobile gateway had a perfect performance of approximately 100% PDR.
This case thus validates that the amount of time between transmissions are a critical
aspect of the mobile gateway’s performance.

64 Integration of AI and mobile gateways in LoRa Networks

Figure 5.29: S4.A PDR box plot

Figure 5.30: S4.A Fairness box plot

Integration of AI and mobile gateways in LoRa Networks 65

Figure 5.31: S4.A Performance bar plot

5.4.2 Case B: 3 Stationary Gateways
In this scenario case, only three stationary gateways are deployed to service four nodes.

In the previous case, the four nodes were positioned too far apart for a single gateway
to cover multiple nodes simultaneously. If one stationary gateway were simply removed
from that setup, the expected result would be a packet delivery ratio (PDR) of 75%, with
fairness following a similar trend.

To create a more balanced scenario, node 0 and node 1 retain their original positions,
while node 2 and node 3 are moved closer together. However, this adjustment also im-
pacts the mobile gateway, as the distance between the two node pairs (0,1) and (2,3)
increases. To compensate for this, the node pairs are positioned closer to each other.

Additionally, the placement of stationary gateways is adjusted to better suit the new con-
figuration. Instead of being positioned adjacent to each node, two stationary gateways
are placed to jointly service two nodes, while the remaining two nodes share a single
gateway.

From the perspective of the stationary gateways, two nodes are expected to receive strong
service, while the other two will likely experience moderate coverage, leading to a lower
fairness metric.

66 Integration of AI and mobile gateways in LoRa Networks

Position (x,y) (m) time of first packet (s) send interval (s)
node 0 (500,500) 400 truncnorm(1000,5)
node 1 (500,2500) 650 truncnorm(1000,5)
node 2 (2000,2000) 900 truncnorm(1000,5)
node 3 (2000,1000) 1150 truncnorm(1000,5)

mobile gateway (1500,1500) 7 7

station. gateway 0 (600,500) 7 7

station. gateway 1 (600,2500) 7 7

station. gateway 2 (2000,1500) 7 7

Table 5.8: S4.B OMNeT++ parameters

Figure 5.32: S4.B Initial positions of LoRaWAN units.

The performance of mobile and stationary gateways is highly comparable in this case.
The mobile gateway achieves both a higher packet delivery ratio (PDR) and fairness;
however, the stationary gateways exhibit much greater consistency, with minimal vari-
ability in performance across episodes.

The mobile gateway provides slightly worse service to node 1, while nodes 2 and 3 are
poorly serviced by the stationary gateways. The performance of the stationary gateways
aligns with expectations, but the behavior of the mobile gateway was unexpected. One
might have anticipated a lower overall PDR for the mobile gateway, with performance
being evenly distributed between the (1,2) and (2,3) node pairs, as these pairs share the
same inter-node distance.

In this case, the mobile gateway proves to be a more-than-adequate substitute for the
stationary gateways.

Integration of AI and mobile gateways in LoRa Networks 67

(a) S4.B PDR box plot (b) S4.B Fairness box plot

Figure 5.33: S4.B PDR and Fairness box plots

Figure 5.34: S4.B Performance bar plot

68 Integration of AI and mobile gateways in LoRa Networks

5.4.3 Case C: 2 Stationary Gateways
In this case the mobile gateway is compared against 2 stationary gateways, all-together
servicing 4 nodes. 2 sets of nodes are placed in opposite corners of a grid, and stationary
gateways are placed in the midpoint between them

The four nodes can be grouped in 2 clusters of (0,3) & (1,2) by their spatial proximity, of
which a stationary gateway is placed at the midpoint of each. This means the stationary
gateways have an euclidean distance to their respective nodes of 495m.

Furthermore, nodes 2 & 3 are configured with a send interval of 2000 s, while nodes 0 &
1 have send intervals of 1000 s.

This gives a repeating pattern for transmissions as follows:

0 → 1 → 2 → 3 → 0 → 1

Therefore, this scenario represents a mobility pattern where the mobile gateway must
always move between the clusters, but periodically spend more time at each.

Position (x,y) (m) time of first packet (s) Transmission interval (s)
node 0 (500,2000) 400 truncnorm(1000,5)
node 1 (1500,1000) 650 truncnorm(1000,5)
node 2 (1850,1350) 900 truncnorm(2000,5)
node 3 (850,2350) 1150 truncnorm(2000,5)

mobile gateway (1500,1500) 7 7

station. gateway 0 (675,2175) 7 7

station. gateway 1 (1675,1175) 7 7

Table 5.9: S4.C OMNeT++ Parameters

Figure 5.35: S4.C Initial positions of LoRaWAN units.

Integration of AI and mobile gateways in LoRa Networks 69

In this case, it is expected that mobile gateway exhibits lower PDR for the nodes that have
a distance of 2000m to the prior transmitting node (1 & 3), compared to nodes that are only
750m away from the prior transmitting node (0 & 2). But since nodes 2 & 3 have lower
send frequencies, their respective packet delivery rate might be higher, as the gateway
has longer time to prepare for the occasional transmission. Therefore, node 1 is expected
to have the lowest PDR.

For the stationary gateway, we expected equal performance across all nodes, since the
conditions are identical - rate of transmission should not affect the PDR for stationary
gateways.

In this case, consulting the results of (fig. 5.36a, fig. 5.36b, fig. 5.37) the mobile gateway
is able to reach PDR of almost 100%, consistently across the batch of episodes. Against
expectations, the Mobile gateway has equal performance across nodes. Though it is
apparent that node 1 experiences a greater standard deviation of PDR, the fairness is still
rounded to 1.00.

On the other hand, the 2 stationary gateways reach a PDR of 87% consistently. As such,
the mobile gateway has a stable advantage over the stationary gateways for this scenario.

(a) S4.C PDR box plot (b) S4.C Fairness box plot

Figure 5.36: S4.C PDR and Fairness box plots

70 Integration of AI and mobile gateways in LoRa Networks

Figure 5.37: S4.C Performance bar plot

5.5 Scenario 5
The fifth scenario compares the performance of a mobile gateway utilizing reinforcement
learning to a gateway with static mobility in OMNeT++.

A simple mobility model may effectively solve many scenarios without requiring complex
neural network training. The term ”static mobility” contrasts with mobility based on ma-
chine learning (previously referred to simply as the ”mobile gateway”), which dynamically
adapts to circumstances. In contrast, static mobility follows a predetermined movement
pattern defined solely by the scenario configuration. To distinguish between the two ap-
proaches, we use the terms RL mobility and static mobility.

In this scenario, we evaluate a static mobility gateway following a circular motion pattern.
This motion is defined by its center position, radius, linear velocity, and initial angular
position.

The experiments in this scenario aim to assess how effectively the RL mobile gateway
performs compared to the static mobility gateway under various setups, including config-
urations that are both favorable and unfavorable for static mobility.

The results will show that static mobility performs well only in ideal cases, when it is
specifically configured. In contrast, the performance of the RL-based mobile gateway
is influenced by the distance between nodes; while it adapts to different situations, its
performance lacks robustness.

Integration of AI and mobile gateways in LoRa Networks 71

5.5.1 Case A: Evenly positioned nodes on circle
In this case, we investigate whether a well-tuned static mobility gateway can achieve high
performance in an environment specifically suited for it. The four nodes are positioned
equidistantly on a larger circle, each transmitting at harmonic frequencies (a consistent
transmission spacing) with equal offsets in transmission times. By carefully tuning the
constant angular velocity of the circular motion along with its initial angular position, the
static gateway can arrive at the exact location of a node at its transmission time.

The nodes are placed on a circle with a radius of 1000m, resulting in a Manhattan distance
of 2000m between sequentially transmitting nodes. To ensure equal spacing, the nodes
are positioned at angular intervals of 2π/4 = π/2 radians.

Position (x,y) (m) time of first packet (s) Transmission interval (s)
node 0 (1500,1500) 400 truncnorm(1000,5)
node 1 (2500,500) 650 truncnorm(1000,5)
node 2 (3500,1500) 900 truncnorm(2000,5)
node 3 (2500,2500) 1150 truncnorm(2000,5)

RL mobile gateway (2500,1500) 7 7

Table 5.10: S5.A OMNeT++ Parameters

The same transmission timings as in section 5.4.3 is used. This means there is 250
seconds between transmissions occurring. It is desired to tune the circular motion to ideal
values for this scenario. Therefore the static mobility gateway should have an angular
velocity of

ω =
π
2

250 s
=

π

500

rad
s

(5.4)

Therefore, the linear velocity will be

(
π

500

rad

s
) · (1000m) = 2π

m

s
≈ 6.28

m

s
(5.5)

The initial angular position of the static gateway is determined by the position of the first
transmitting node. Node 0 transmits the first packet at tnode0,0 = 400s Based on the
Cartesian coordinates of node 0, it has an angular position of πrad on the circle centered
at (2500,1500). As the circle mobility has an angular velocity of π/2, it can be calculated
that

θinitial+tnode0,0 ·ω = θnode0 ⇒ θinitial = θnode0 −tnode0,0 ·ω = π−400s · π

500

rad

s
=

π

5
(5.6)

Initial angle
(rad)

Center Position
(x,y) [m]

Radius [m] Linear velocity [m/s]

Circle mobil-
ity gateway

0.628 (2500,1500) 1000 6.28

Table 5.11: S5.A Circular motion parameters

72 Integration of AI and mobile gateways in LoRa Networks

Figure 5.38: S5.A Initial positions of LoRaWAN units.

Based on the results of fig. 5.39a, fig. 5.39b, fig. 5.40, the performance of RL mobility and
ideally configured static mobility can be considered equivalent. The expectation of the
static mobility is near-perfect PDR, but it is only able to achieve 85%. This must be due to
the stochastic deviation in transmission times, that the static mobility is not able to adjust
to. But even though the average performance of both mobility is equivalent, the range of
PDR for RL Mobility has a larger distribution. This indicates that it is less stable across
episodes. Furthermore, RL Mobility has a high fairness, yet it is still apparent that node 1
is not serviced well, as it has a lower average PDR and a high deviation.

To conclude, an ideally configured circular motion attains both high PDR and fairness, but
is not perfect. The RL mobility can reach the same average performance, but is not as
reliable within the temporal-spatial constraints of this scenario.

(a) S5.A PDR bar plot (b) S5.A Fairness bar plot

Figure 5.39: S5.A PDR and Fairness bar plots

Integration of AI and mobile gateways in LoRa Networks 73

Figure 5.40: S5.A Performance bar plot

5.5.2 Case B: Dispersed nodes approximating circle
In most real-world scenarios, nodes are not perfectly arranged in a circular or any other
ideal formation. This investigation aims to provide insights into how our RL-basedmobility-
driven gateway performs in comparison to a static-mobility-driven one. The case is based
on the scenario outlined in section 5.5.1, with a slight modification to the node positions.
The nodes are now shifted in a Manhattan grid with distances of 300m, 500m, 350m, and
300m, respectively.

Position (x,y) (m) Time of first packet (s) Transmission interval (s)
node 0 (1700,1400) 400 truncnorm(1000,5)
node 1 (2700,800) 650 truncnorm(1000,5)
node 2 (3800,1450) 900 truncnorm(2000,5)
node 3 (2400,2300) 1150 truncnorm(2000,5)

RL mobile gateway (2500,1500) 7 7

Table 5.12: S5.B OMNeT++ Parameters

Initial angle
(rad)

Center Position
(x,y) [m]

Radius [m] Linear velocity [m/s]

Circle mobil-
ity gateway

0.628 (2500,1500) 1000 6.28

Table 5.13: S5.B Circular motion parameters

74 Integration of AI and mobile gateways in LoRa Networks

Figure 5.41: S5.B Initial positions of LoRaWAN units.

Looking at (fig. 5.42a,fig. 5.42b,fig. 5.43) The performance of the static gateway sharply
decreases by the displacement of nodes from the circle. The performance is no longer
fair, and much lower PDR. Particularly, fewer packets from node 1 are received by the
static gateway. This can be rationalized as being due to the larger deviation from the
circle than other nodes. On the other hand, RL-mobile gateway actually achieves even
better performance that in section 5.5.1. This is likely attributed to the fact that distances
between each node is decreased, reducing the need for exact, optimal decisions.

In this case, its apparent that RL mobility handles deviation from the circular distribution
of nodes, much better than the static mobility gateway.

(a) S5.B PDR box plot (b) S5.B Fairness box plot

Figure 5.42: S5.B PDR and Fairness box plots

Integration of AI and mobile gateways in LoRa Networks 75

Figure 5.43: S5.B Performance bar plot

5.5.3 Case C: Evenly positioned nodes on a larger grid
In this case, nodes are once again positioned on a grid. However, the sequentially trans-
mitting nodes are now positioned at a distance from each other exactly equal to:

DistanceT1,T2 = vRL_gateway ·∆Ttransmissions (5.7)

Substituting the given values:

DistanceT1,T2 = 11 m
s · 250 s = 2750m (5.8)

This means that any suboptimal actions chosen by RL mobility might lead to a lasting
degradation in service across an episode. Therefore, it can be expected that both PDR
and fairness must be lower than in scenarios with ample time between transmissions,
such as section 5.2.

Position (x,y) (m) Time of first packet (s) Transmission interval (s)
node 0 (500,500) 400 truncnorm(1000,5)
node 1 (500,3250) 650 truncnorm(1000,5)
node 2 (3250,3250) 900 truncnorm(1000,5)
node 3 (3250,500) 1150 truncnorm(1000,5)

RL mobile gateway (500,800) 7 7

Table 5.14: S5.C OMNeT++ parameters

76 Integration of AI and mobile gateways in LoRa Networks

On the other hand, the circular motion of the Static Mobility gateway is configured such
that its linear velocity equals that of the RL Mobile gateway, i.e., vstatic_gateway = 11 m

s .
The center of circular motion is placed at the midpoint of all nodes, enabling it to ideally
provide fair performance.

We maintain that the static mobility gateway performs a full rotation in the same time as
the transmission intervals of the nodes, i.e., 1000 s. Thus, the static mobility gateway has
an angular velocity of:

ωstatic_gateway =
2π

1000 s
(5.9)

The radius of the circle is derived from the linear velocity, such that:

vstatic_gateway = radiusstatic_gateway · ωstatic_gateway ⇒ radiusstatic_gateway =
11 m

s
2π

1000 s
≈ 1751m

(5.10)

The radius of this circle exceeds half the length of the sides formed by the node grid but
does not exceed the distance from the center of the circle to the nodes. Thus, the circle
intersects the grid at two points per side, near the corners. This results in the motion being
a circle intersecting the square formed by the node positions.

The minimum distance between the static mobility gateway and a node at transmission
time is given by:

∣∣∣√13752 + 13752 − 1375
∣∣∣ ≈ 194m (5.11)

The initial angle is configured such that the distance to the nodes is minimized at their
time of transmission, similarly to section 5.5.1.

Initial angle
(rad)

Center Position
(x,y) [m]

Radius [m] Linear velocity [m/s]

Circle mobil-
ity gateway

0.628 (1875,1875) 1375 8.64

Table 5.15: S5.C Circular motion parameters

The performance of static mobility is expected to be fair, just as section 5.5.1 exhibited,
but lower RL since there will be some distance away from the transmitting node, albeit
short distance.

Integration of AI and mobile gateways in LoRa Networks 77

Figure 5.44: S5.C Initial positions of LoRaWAN units.

In this case, it is apparent that RL Mobility does not serve the nodes fairly. Specifically,
node 0 is neglected, while node 2 seems to be prioritized. Additionally, the average PDR
achieved by RL mobility is relatively low, and the deviation of both the PDR and fairness
metrics is wide. This demonstrates that having ample time to traverse between nodes
and receive packets is crucial, as simply having the exact amount of time is insufficient
for optimal performance.

The static mobility gateway, on the other hand, performed as expected, exhibiting com-
pletely fair behavior. However, the reduction in average PDR compared to section 5.5.1
was significant, with a decrease of approximately 20%—from 83% to 63%. This drop is
surprising and cannot be attributed solely to the increased minimum distance (from 0m
to 195m). It is more likely a result of the static mobility gateway following a larger circle
with a higher linear velocity. As a result, the distance between the gateway and nodes at
average transmission times is also increased. Consequently, any delays or early trans-
missions could lead to a greater distance between the gateway and the transmitting node,
further impacting the PDR.

(a) S5.C PDR box plot (b) S5.C Fairness box plot

Figure 5.45: S5.C PDR and Fairness box plots

78 Integration of AI and mobile gateways in LoRa Networks

Figure 5.46: S5.C Performance bar plot

Integration of AI and mobile gateways in LoRa Networks 79

6 Discussion and Feasibility
From our results, a mobile gateway trained using RL shows promising performance in
both the training and evaluation environments. However, determining its real-world appli-
cability requires an investigation into the feasibility of deployment in practical use cases.
This feasibility depends on multiple factors, including vehicle constraints, computational
resources, physical movement limitations, data availability, and network scalability.

The type of vehicle used as the mobile gateway was left unspecified in this project, with
speed parameters based on regulations for delivery UAVs. Real-world implementation de-
pends on constraints imposed by the vehicle type, whether aerial, aquatic, or terrestrial.
Each presents unique mobility challenges: terrestrial vehicles are more prone to encoun-
tering obstacles, while aerial and aquatic vehicles are affected by external forces such as
wind and waves. Furthermore, the simulation did not account for realistic physical move-
ment acceleration was assumed to be instant, allowing the vehicle to change direction
or speed instantaneously. In a real-world scenario, inertia, drag, and acceleration limits
must be considered. A practical deployment would likely involve a robotics controller to
interpret high-level movement decisions from the neural network and translate them into
feasible physical actions.

Another critical factor is the computational resources required for model inference. A
realistic baseline for embedded deployment is the Raspberry Pi 4 Model B (4GB)1, which
features 4GB SDRAM, WiFi, Bluetooth, and multiple USB ports which could allow for
connecting a LoRamodule. It also has aMicroSD card slot for ample storage and operates
at approximately 15W (5V, 3A). While the Raspberry Pi is more of a miniature PC than a
microcontroller, it remains relevant for IoT applications due to its balance of performance
and form factor. However, its power consumption is relatively high compared to typical
embedded devices, which may be a limiting factor for battery-powered applications.

The final trained model consists of 12 input nodes and 6 hidden layers, amounting to 444
nodes and 18304 weights. Of these, the critic network contains 4 layer, 218 nodes, and
9024 weights, meaning that only 4 layers, 226 nodes, and 9280 weights are necessary
for inference. The exported TFLite model file has a flash size of 40 kiloByte, which
is minimal compared to the available memory on most embedded platforms. Based on
results from the study ”Quantization and Deployment of Deep Neural Net- works on Mi-
crocontrollers” [33], where a model of approximately 410 kiloByte was deployed on the
SparkFun Edge microcontroller using TFLite Micro, it had an inference time of approxi-
mately 2000ms per input, a linear scaling assumption suggests that our model’s inference
time would be approximately

2000ms× 40 kiloByte
410 kiloByte

= 0.195 s. (6.1)

On a Raspberry Pi 4, with significantly greater computational resources, the inference
time would be expected to decrease substantially. In this project, inference was performed
every 10 seconds, meaning the proportion of time spent on inference is approximately

0.195 s
10 s

= 1.95%. (6.2)

1https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/

80 Integration of AI and mobile gateways in LoRa Networks

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/

In the simulation framework, inference was treated as instantaneous, but in real-world
applications, execution time becomes a critical factor. If inference latency is too high, the
gateway’s movement decisions may be based on outdated information, reducing overall
performance. Furthermore, energy consumption is also a key concern. The study also
reported that a 410 kilokByte model consumed 1.56µWh per inference. Extrapolating
for our smaller model size, the estimated energy consumption per inference is

1.56µWh× 40 kiloByte
410 kiloByte

= 0.1523µWh = 548.28µJ. (6.3)

Over a 10-second period, this results in an average power consumption of

548.28µJ
10s

= 54.83µW. (6.4)

These values remain well within the power budget of a Raspberry Pi 4. However, since
these estimates are based on a different hardware platform, they should be viewed as
rough approximations. Nevertheless, they indicate that exporting the model to an embed-
ded system is feasible. Beyond computational and energy constraints, the deployment
of a mobile gateway must consider the availability of required input data. The model as-
sumes knowledge of end-node positions, the gateway’s own position (e.g., via GPS), the
mean send interval of nodes, and a method for synchronizing with transmission sched-
ules, such as tracking the time of the first packet received. While this information is easily
accessible in a simulation environment, obtaining it in a real-world deployment may intro-
duce additional challenges.

This thesis has been conducted without considering LoRaWAN device classes, as nodes
only transmit join messages, which are uplink transmissions. However, many practical
applications rely on both uplink and downlink communication, making device class an
important factor in feasibility. For instance, Class B devices periodically open receive
windows, requiring gateways to remain nearby longer to support potential downlink trans-
missions. Class C devices, which are almost always available for downlink reception,
demand careful coordination to avoid interference with uplink transmissions.

A major limitation of the current model is its ability to consider only exactly 4 nodes as in-
put at any given time. In real-world LoRaWAN networks, which may consist of hundreds
or thousands of nodes, this is an evident scalability issue. One possible approach is to
dynamically select a subset of nodes as input, changing throughout an episode based on
relevance. Alternatively, a model capable of handling a larger number of nodes simulta-
neously could be explored, although this would likely require a larger neural network with
higher computational demands. A hybrid approach, where a preprocessing mechanism
filters and prioritizes the most relevant nodes before passing them to the main model,
could provide a balance between efficiency and scalability. Furthermore, the evalua-
tions assumed uniform signal propagation characteristics among nodes, including Trans-
mission Power and Spreading Factor. In practice, LoRaWAN networks can consist of
heterogeneous device types with varying transmission power, antenna strengths, and
communication frequencies. Some nodes may transmit less frequently, while others may
have weaker signals due to hardware limitations or environmental interference. These
factors could alter the optimal movement strategy for the gateway, requiring it to adapt
dynamically, such as by prioritizing proximity to nodes with weaker signals to improve
communication reliability.

Integration of AI and mobile gateways in LoRa Networks 81

7 Conclusion
This thesis explored the use of mobility in LoRa gateways driven by Reinforcement Learn-
ing. Our research demonstrates that Reinforcement Learning-based mobility can be ef-
fectively implemented in OMNeT++, and that models trained in a Low-Fidelity custom
environment like Stable-Baselines3 (SB3) can be successfully transferred to OMNeT++
while maintaining strong performance. This approach enables rapid development and ex-
perimentation with custom environments and learning processes, as different frameworks
and tools can be easily tested. Throughout this study, several challenges emerged. De-
veloping a framework to support RLmodels in OMNeT++ was a significant task, with much
of the complexity stemming from designing a custom environment and training models in
SB3.

From a training perspective, experiments with both PPO and DQN revealed that while
DQN converges similarly, stuies show that PPO is better suited for complex environments
requiring continuous control. This is especially important if the observation space grows,
by adding more nodes. Additionally, the use of residual connections was shown to ac-
celerate convergence. Unfortunately, due to conversion limitations between PyTorch and
TensorFlow Lite, the final deployed model did not incorporate residual connections, which
may guide the next steps in research.

Our approach achieved a near-perfect packet delivery ratio (PDR) in High-Fidelity OM-
NeT++ simulations. Compared to the conventional approach of using stationary gate-
ways, the RL-driven gateway performed favorably, proving capable of substituting them.
However, evaluation of the final model revealed that it lacks robustness in general sce-
narios and cannot provide performance guarantees without prior evaluation.

In comparison to other methods of controlling a mobile gateway, such as ”static mobility,”
circular motion was evaluated and shown to perform well in specific scenarios. However,
its effectiveness is highly scenario-dependent and requires specific tuning of the motion,
whereas the RL-driven gateway is more adaptable and performs better when static mobil-
ity does not precisely align with the environment. Notably, the RL-driven gateway exhibits
a broader performance distribution across episodes, exactly because of its dynamic na-
ture, as its behavior is affected by stochastic events.

The study also examined the gateway’s behavior in the presence of faulty nodes. In
scenarios where a node fails, the agent continues to serve the remaining nodes, albeit
sometimes at the cost of waiting for an expected packet from the faulty node. Adjusting
the expected packet times proved to be an effective strategy for mitigating this issue,
highlighting the critical role of adjusting input variables in guiding the gateway’s decision-
making.

TheRL-driven gateway demonstrated potential but struggled with complex decision-making,
particularly when serving nodes transmitting in close proximity or in the presence of faulty
nodes, highlighting the need for a more advanced strategy to enhance robustness. Al-
though the final trained model does not yet exhibit perfect behavior and is not immediately
suitable for real-world deployment, the framework developed in this project provides a
strong foundation for further research. By refining the model to account for factors such
as vehicle dynamics, computational constraints, real-world data availability, and network
scalability, this work has the potential to contribute to more robust industrial IoT applica-
tions, extending beyond theoretical simulations.

82 Integration of AI and mobile gateways in LoRa Networks

8 Future works
Future research could focus on training a gateway to operate effectively in more challeng-
ing environments. This includes scenarios where the gateway must make more complex
decisions, such as prioritizing which nodes to serve when not all are reachable at all times
or detecting faulty nodes. Additionally, teaching the gateway to explore new nodes while
efficiently handling a larger number of them would be valuable.

Another interesting direction is clustering multiple closely positioned nodes into ”super
nodes,” framing the problem as a clustering task to improve scalability. Furthermore,
incorporating multiple mobile gateways working together to dynamically service stationary
nodes introduces a multi-agent Reinforcement Learning (RL) challenge with significant
potential.

Reframing the problem into a multi-objective RL framework could also be beneficial. One
objective could focus on selecting target positions, while another handles path planning,
especially in environments with obstacles where the most direct path is not always feasi-
ble.

Lastly, improving the realism of LoRa emulation in SB3 training could be crucial. As the
number of nodes scales up, network collisions may become more frequent, requiring a
more accurate model of these interactions.

In conclusion, there is vast potential for future exploration in this domain, with numerous
directions that could enhance both the efficiency and adaptability of RL-driven gateways.

Integration of AI and mobile gateways in LoRa Networks 83

Bibliography
[1] S. R. Jino Ramson et al. “A Self-Powered, Real-Time, LoRaWAN IoT-Based Soil

Health Monitoring System”. In: IEEE Internet of Things Journal 8.11 (June 2021),
pp. 9278–9293. ISSN: 2327-4662. DOI: 10.1109/JIOT.2021.3056586.

[2] Sarun Duangsuwan et al. “A Study of Air Pollution Smart Sensors LPWAN via NB-
IoT for Thailand Smart Cities 4.0”. In: 2018 10th International Conference on Knowl-
edge and Smart Technology (KST). Jan. 2018, pp. 206–209. DOI: 10.1109/KST.
2018.8426195.

[3] Fatima Salahdine, Shobhit Aggarwal, and Asis Nasipuri. “Short-Term Traffic Con-
gestion Prediction with Deep Learning for LoRa Networks”. In: SoutheastCon 2022.
Mar. 2022, pp. 261–268. DOI: 10.1109/SoutheastCon48659.2022.9763927.

[4] MOKO Smart: LoRa illustration of chirps. URL: https://www.mokosmart.com/lora-
frequency/.

[5] AN1200.22 LoRa Modulation Basics. URL: https://semtech.my.salesforce.com/sfc/
p/#E0000000JelG/a/2R0000001OJk/yDEcfAkD9qEz6oG3PJryoHKas3UMsMDa3TFqz1UQOkM.

[6] Reyhane Falanji, Martin Heusse, and Andrzej Duda. “Range and Capacity of LoRa
2.4 GHz”. In: Mobile and Ubiquitous Systems: Computing, Networking and Ser-
vices. Ed. by Shangguan Longfei and Priyantha Bodhi. Cham: Springer Nature
Switzerland, 2023, pp. 403–421. ISBN: 978-3-031-34776-4.

[7] TheNetwork Things: Visualization example of code rate. URL: https://www.thethingsnetwork.
org/docs/lorawan/fec-and-code-rate/.

[8] All About LoRa and LoRaWAN. URL: https://www.sghoslya.com/p/lora- is-chirp-
spread-spectrum.html.

[9] The Things Network LoRaWANAdaptive Data Rate. URL: https://www.thethingsnetwork.
org/docs/lorawan/adaptive-data-rate/.

[10] Mariusz Slabicki, Gopika Premsankar, and Mario Di Francesco. “Adaptive configu-
ration of lora networks for dense IoT deployments”. In: NOMS 2018 - 2018 IEEE/I-
FIP Network Operations and Management Symposium. Apr. 2018, pp. 1–9. DOI:
10.1109/NOMS.2018.8406255.

[11] GeeksforGeeks: Visualization of neural network. URL: https://www.geeksforgeeks.
org/neural-networks-a-beginners-guide/.

[12] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–
1958. URL: http://jmlr.org/papers/v15/srivastava14a.html.

[13] Kaiming He et al.Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.
03385 [cs.CV]. URL: https://arxiv.org/abs/1512.03385.

[14] VolodymyrMnih, Koray Kavukcuoglu, David Silver, et al. “Human-level control through
deep reinforcement learning”. In: Nature 518.7540 (2015), pp. 529–533. DOI: 10.
1038/nature14236.

[15] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.
06347 [cs.LG]. URL: https://arxiv.org/abs/1707.06347.

[16] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning Imple-
mentations”. In: Journal of Machine Learning Research 22.268 (2021), pp. 1–8.
URL: http://jmlr.org/papers/v22/20-1364.html.

[17] Stable-Baselines3: Visualization of network architecture. URL: https://stable-baselines3.
readthedocs.io/en/master/guide/custom_policy.html.

84 Integration of AI and mobile gateways in LoRa Networks

https://doi.org/10.1109/JIOT.2021.3056586
https://doi.org/10.1109/KST.2018.8426195
https://doi.org/10.1109/KST.2018.8426195
https://doi.org/10.1109/SoutheastCon48659.2022.9763927
https://www.mokosmart.com/lora-frequency/
https://www.mokosmart.com/lora-frequency/
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001OJk/yDEcfAkD9qEz6oG3PJryoHKas3UMsMDa3TFqz1UQOkM
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001OJk/yDEcfAkD9qEz6oG3PJryoHKas3UMsMDa3TFqz1UQOkM
https://www.thethingsnetwork.org/docs/lorawan/fec-and-code-rate/
https://www.thethingsnetwork.org/docs/lorawan/fec-and-code-rate/
https://www.sghoslya.com/p/lora-is-chirp-spread-spectrum.html
https://www.sghoslya.com/p/lora-is-chirp-spread-spectrum.html
https://www.thethingsnetwork.org/docs/lorawan/adaptive-data-rate/
https://www.thethingsnetwork.org/docs/lorawan/adaptive-data-rate/
https://doi.org/10.1109/NOMS.2018.8406255
https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/
https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
http://jmlr.org/papers/v22/20-1364.html
https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html
https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html

[18] Andrew J Wixted et al. “Evaluation of LoRa and LoRaWAN for wireless sensor net-
works”. In: 2016 IEEE SENSORS. Oct. 2016, pp. 1–3. DOI: 10.1109/ICSENS.2016.
7808712.

[19] “Performance Evaluation of LoRa Networks in an Open Field Cultivation Scenario”.
In: DOI: 10.1109/MOCAST52088.2021.9493416.

[20] Nabil Abdoun et al. “Collision Detection in LoRaWAN Using Machine Learning”.
In: 2024 IEEE 22nd Jubilee International Symposium on Intelligent Systems and
Informatics (SISY). Sept. 2024, pp. 1–6. DOI: 10.1109/SISY62279.2024.10737620.

[21] Mukhammad Gufron Ikhsan et al. “Mobile LoRa Gateway for Smart Livestock Mon-
itoring System”. In: 2018 IEEE International Conference on Internet of Things and
Intelligence System (IOTAIS). Nov. 2018, pp. 46–51. DOI: 10.1109/IOTAIS.2018.
8600842.

[22] Sugianto Sugianto et al. “Simulation of Mobile LoRa Gateway for Smart Electricity
Meter”. In: 2018 5th International Conference on Electrical Engineering, Computer
Science and Informatics (EECSI). Oct. 2018, pp. 292–297. DOI: 10.1109/EECSI.
2018.8752818.

[23] Ciyuan Chen et al. “LoRaDrone: Enabling Low-Power LoRa Data Transmission via
a Mobile Approach”. In: 2022 18th International Conference on Mobility, Sensing
and Networking (MSN). 2022, pp. 239–246. DOI: 10.1109/MSN57253.2022.00050.

[24] Jintaro Nogae et al. “Comparison of reinforcement learning in game AI”. In: 2022
23rd ACIS International Summer Virtual Conference on Software Engineering, Arti-
ficial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Summer).
July 2022, pp. 82–86. DOI: 10.1109/SNPD-Summer57817.2022.00022.

[25] Rishabh Sharma and Prateek Garg. “Optimizing Autonomous Vehicle Navigation
with DQN and PPO: A Reinforcement Learning Approach”. In: 2024 Asia Pacific
Conference on Innovation in Technology (APCIT). July 2024. DOI: 10.1109/APCIT62007.
2024.10673440.

[26] Neil De La Fuente and Daniel A. Vidal Guerra. A Comparative Study of Deep Rein-
forcement LearningModels: DQN vs PPO vs A2C. 2024. arXiv: 2407.14151 [cs.LG].
URL: https://arxiv.org/abs/2407.14151.

[27] Aske Plaat, Walter Kosters, and Mike Preuss. Deep Model-Based Reinforcement
Learning for High-Dimensional Problems, a Survey. 2020. arXiv: 2008.05598 [cs.LG].
URL: https://arxiv.org/abs/2008.05598.

[28] Abdullahi Isa Ahmed and El Mehdi Amhoud. Energy-Efficient Flying LoRa Gate-
ways: A Multi-Agent Reinforcement Learning Approach. 2025. arXiv: 2502.03377
[cs.NI]. URL: https://arxiv.org/abs/2502.03377.

[29] Yash Shukla et al. ACuTE: Automatic Curriculum Transfer from Simple to Complex
Environments. 2022. arXiv: 2204.04823 [cs.RO]. URL: https://arxiv.org/abs/2204.
04823.

[30] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. “Policy Invariance Under Re-
ward Transformations: Theory and Application to Reward Shaping”. In: Proceed-
ings of the Sixteenth International Conference on Machine Learning. ICML ’99. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 278–287. ISBN:
1558606122.

[31] Sorawit Saengkyongam et al. “Invariant Policy Learning: A Causal Perspective”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 45.7 (July 2023),
pp. 8606–8620. ISSN: 1939-3539. DOI: 10.1109/TPAMI.2022.3232363.

[32] LoRa Alliance. LoRaWAN Specification v1.1. Accessed: 2025-02-16. 2017. URL:
https://resources.lora-alliance.org/technical-specifications/lorawan-specification-v1-1.

Integration of AI and mobile gateways in LoRa Networks 85

https://doi.org/10.1109/ICSENS.2016.7808712
https://doi.org/10.1109/ICSENS.2016.7808712
https://doi.org/10.1109/MOCAST52088.2021.9493416
https://doi.org/10.1109/SISY62279.2024.10737620
https://doi.org/10.1109/IOTAIS.2018.8600842
https://doi.org/10.1109/IOTAIS.2018.8600842
https://doi.org/10.1109/EECSI.2018.8752818
https://doi.org/10.1109/EECSI.2018.8752818
https://doi.org/10.1109/MSN57253.2022.00050
https://doi.org/10.1109/SNPD-Summer57817.2022.00022
https://doi.org/10.1109/APCIT62007.2024.10673440
https://doi.org/10.1109/APCIT62007.2024.10673440
https://arxiv.org/abs/2407.14151
https://arxiv.org/abs/2407.14151
https://arxiv.org/abs/2008.05598
https://arxiv.org/abs/2008.05598
https://arxiv.org/abs/2502.03377
https://arxiv.org/abs/2502.03377
https://arxiv.org/abs/2502.03377
https://arxiv.org/abs/2204.04823
https://arxiv.org/abs/2204.04823
https://arxiv.org/abs/2204.04823
https://doi.org/10.1109/TPAMI.2022.3232363
https://resources.lora-alliance.org/technical-specifications/lorawan-specification-v1-1

[33] Pierre-Emmanuel Novac et al. “Quantization and Deployment of Deep Neural Net-
works on Microcontrollers”. In: Sensors (Basel, Switzerland) 21 (Apr. 2021). DOI:
10.3390/s21092984.

86 Integration of AI and mobile gateways in LoRa Networks

https://doi.org/10.3390/s21092984

Appendices

Integration of AI and mobile gateways in LoRa Networks 87

Appendix A Direct Training from
OMNeT++ simulations

It was found that directly training from OMNeT++ was too slow; however, it may still be
valuable for fine-tuning the training process.

In the setup, the environment is OMNeT++, with the mobile gateway acting as the agent.
The reinforcement learning process takes place in a Python script, which is also respon-
sible for creating episodes by setting up the OMNeT++ environment and executing simu-
lations. OMNeT++ and Python communicate through shared data, such as logging states
from OMNeT++ after each episode, which the Python script processes.

A visualization of how the different components interact is shown in Figure A.1.

Figure A.1: System flow for training in OMNeT++ directly

88 Integration of AI and mobile gateways in LoRa Networks

Appendix B OMNeT++ custom
component diagram

Figure B.1: Diagram of the relation between custom components in OMNeT++

Integration of AI and mobile gateways in LoRa Networks 89

Appendix C Scenario 2 - Gateway
Distances to Nodes

Figure C.1: S2 Gateways distance to node 0 over steps

Figure C.2: S2 Gateways distance to node 1 over steps

90 Integration of AI and mobile gateways in LoRa Networks

Figure C.3: S2 Gateways distance to node 2 over steps

Figure C.4: S2 Gateways distance to node 3 over steps

Integration of AI and mobile gateways in LoRa Networks 91

Appendix D Scenario 3.A - Gateway
Distances to Nodes

Figure D.1: S3.A Gateways distance to node 0 over steps

Figure D.2: S3.A Gateways distance to node 1 over steps

92 Integration of AI and mobile gateways in LoRa Networks

Figure D.3: S3.A Gateways distance to node 2 over steps

Figure D.4: S3.A Gateways distance to node 3 over steps

Integration of AI and mobile gateways in LoRa Networks 93

Appendix E Validation Model Conversion
Script

1 def test_sb3_tf_model_conversion(sb3_model , tf_model: TFPolicy):
2 tolerance = {"abs": 2e-6, "rel": 2e-5}
3
4 sb3_input_dim = sb3_model.observation_space.shape[0]
5 tf_input_dim = tf_model.input_dim
6
7 assert sb3_input_dim == tf_input_dim , f"Input dimensions must match. {

sb3_input_dim = } || {tf_input_dim = } "
8 abs_diffs = []
9 rel_diffs = []

10 for _ in range(1000):
11 random_input = np.random.random((1, sb3_input_dim)).astype(np.float32)
12 sb3_output = sb3_get_action_probabilities(random_input.flatten(),

sb3_model).flatten()
13 tf_output = tf_model.call(tf.convert_to_tensor(random_input)).numpy().

flatten()
14
15 abs_diff = np.abs(sb3_output - tf_output)
16 rel_diff = np.abs(abs_diff / (np.abs(sb3_output) + 1e-8)) # Avoid

division by zero
17
18 abs_diffs.append(abs_diff)
19 rel_diffs.append(rel_diff)
20
21 if not np.allclose(sb3_output , tf_output , atol=tolerance["abs"], rtol=

tolerance["rel"]):
22 print(f"Mismatch detected!\nSB3: {sb3_output}\nTF: {tf_output}")
23 mean_abs_diff = np.mean(abs_diffs)
24 mean_rel_diff = np.mean(rel_diffs)
25 print(f"Mean Absolute Difference: {mean_abs_diff:.6f}")
26 print(f"Mean Relative Difference: {mean_rel_diff:.6f}")
27 print("Completed test")

Listing Appendix E.1: model conversion test

94 Integration of AI and mobile gateways in LoRa Networks

Integration of AI and mobile gateways in LoRa Networks 95

Technical
University of
Denmark

Richard Petersens Plads, Building 324
2800 Kgs. Lyngby
Tlf. 4525 1700

www.compute.dtu.dk

www.compute.dtu.dk

	Preface
	Abstract
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Main Objective
	1.3 Structure

	2 Background
	2.1 LoRa
	2.2 LoRaWAN
	2.3 OMNeT++
	2.4 INET
	2.5 FLoRa
	2.6 Neural Networks
	2.7 Reinforcement Learning
	2.8 Stable-Baselines3 (SB3)

	3 Related Works
	3.1 LoRa Literature
	3.2 Mobility for LoRa Literature
	3.3 Reinforcement Learning Literature
	3.4 Reward Shaping Literature

	4 Methodology
	4.1 Setup
	4.2 Custom Environment in Stable-Baselines3
	4.3 Policy
	4.4 Credit Assignment
	4.5 Integrating OMNeT++ for Model Evaluation
	4.6 Experiments
	4.7 Evaluation method

	5 Evaluation
	5.1 Scenario 1
	5.2 Scenario 2
	5.3 Scenario 3
	5.4 Scenario 4
	5.5 Scenario 5

	6 Discussion and Feasibility
	7 Conclusion
	8 Future works
	Bibliography
	Appendices
	Appendix A Direct Training from OMNeT++ simulations
	Appendix B OMNeT++ custom component diagram
	Appendix C Scenario 2 - Gateway Distances to Nodes
	Appendix D Scenario 3.A - Gateway Distances to Nodes
	Appendix E Validation Model Conversion Script

