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Abstract—Low-Power Wide Area Networks have contributed
in several parts of the Internet of Things ecosystem during
the last years by enabling long range, robust and low power
communication. Machine Learning for embedded systems has
also assisted the advancement of the Internet of Things by
identifying patterns and increasing the accuracy of predicting
events and behaviours. At the same time, wearable and mobile
systems are less obtrusive, consuming less energy and have more
computing resources. In this paper we combine these three
components and propose a low cost wearable system based on
a regular shoe and off-the-shelf electronics which is able to
recognize foot gestures and transmit messages over long range,
in cases of emergency. The evaluation considers an application
scenario where the user performs specific foot gestures to trigger
the transmission of an emergency message, during other activities
(e.g., walking). The proposed wearable system would benefit a
user who is in danger and attempts to notify her/his emergency
contacts in a discreet manner. Results show that the proposed
system is able to identify the intended foot gestures with 98%
accuracy.

Index Terms—IoT, LPWAN, Pervasive Health, Wearable, Foot
Gesture

I. INTRODUCTION

Low-Power Wide Area Networks (LPWANs) have enabled

battery powered long range communication for the Internet of

Things (IoT) [22]. The lifetime of a node, which is powered

solely by a battery, may be from 2 to 4 years approximately

[20], depending on the selected configuration. Furthermore,

LPWANs can operate in urban environments where the net-

work density and interference level might be high [8], [23].

Smart city applications like distributing energy depending

on people demands [5], smart parking models which predict

available free positions based on previous data and many

more have emerged to improve daily life and help on the

current climate change crisis [17]. LPWANs are also being

used in application scenarios involving health and activity

monitoring [14]. The advantages of using LPWAN in health

and activity monitoring are that they offer high robustness

and reliability and the coverage is significantly larger [24]

compared to Bluetooth Low Energy (BLE) or IEEE 802.15.4,

which typically are used in similar situations. Due to the long

range communication, we can assume that in an smart city

environment, where gateways are abundant, LPWANs systems

which are designed to monitor health or activity, do not depend

on any short range gateway or smartphone devices. Thus,

a wearable system including an LPWAN can operate more

“independently” in such cases.

Machine Learning (ML) for embedded systems and IoT

have lately emerged and today there are lightweight versions

of ML models [18]. Hardware accelerators are designed [15]

and software libraries [2] are developed specifically to support

ML for IoT applications. TinyML [32] is a foundation that

is designed to support ultra-low power ML applications for

embedded systems. Another reason for moving the ML models

and computation from the cloud to the end devices is that 5

quintillion bytes of data are produced every day from IoT

devices and less than 1% of unstructured data is analyzed or

used at all [6], [10]. Hence, moving the ML model to the end

device and the sensors, where these data are generated will

make it easier to utilize them. Another interesting paradigm is

to move a part of the computation to the network edge devices

in order to increase the resources and execute more complex

ML models [33]. However, this approach is introducing new

tradeoffs due to the communication with the other devices and

this tradeoff hinders applications with hard deadlines like real-

time systems or the emergency system that this paper focus

on.

In this paper, we present a wearable system including a

ML-based foot gesture interface combined with a LoRa radio.

LoRa [4], [28] is a LPWAN technology widely used in IoT as

it offers long range and robust communication in low-power.

The ML model is designed to execute solely on embedded

Microcontroller Unit (MCU) resources. The proposed system

might be utilized in a use case scenario where the user

is in danger and wants to broadcast a message asking for

help. However, the user might not want to be noticed by

a possible perpetrator. Furthermore, since LPWAN has long

range coverage (in smart cities environments), the user does

not need to carry a smartphone or being depended on any short

range gateway, which is the case for many wearables designed

for outdoor sports/activities.

A key challenge in existing gesture recognition applications

is to distinguish the pattern of the desired gesture and not

misinterpret it with similar patterns caused by other activities,

like jogging for instance. To avoid this, we propose a classifier

based on a lightweight Neural Network (NN), which is able

to distinguish between 3 activities (walking, jogging, standing)

and 2 gestures (double tap at toe tip and double tap at heel)



in different environments. The illustrated proof of concept

outlines that this approach can be used in other use case

scenarios.

Our contributions, which we believe are beneficial for

pervasive health and activity monitoring applications, are listed

below:
• An unobtrusive, low cost prototype that can operate

independently (in smart city environments) which is able

to capture and classify several activities and foot gestures

with high accuracy.

• A classifier based on a lightweight NN model which is

implemented and tuned in Python first and then ported

to the MCU of the prototype with 98% accuracy on

classifying activities from foot gestures.

• A preliminary in-the-wild evaluation of the classifier

conducted indoors and outdoors by two individuals.

II. RELATED WORK

The related works can be divided in two areas. First,

emergency systems designed for the same or similar purpose

are presented and compared with the proposed system. Second,

ML for embedded systems which are designed for several

purposes are presented and we focus on how a ML model

can be merged in embedded systems and what the potential

benefits are.

Silent Beacon [29] is a personal alert system that consists

of a button designed to communicate through Bluetooth with

a smartphone. In case of emergency it can contact a number

of contacts and share the current GPS position. Run angel is

a similar product, but focuses on outdoors sports users [27].

The wearable is a wristband and beside sending emergency

messages and the position of the user in case of danger, it also

emits a very loud alarm to attract attention. In 2016, Harvard

medical school classified available alert systems (mostly for

elderly) based on their cost [11]. The wearables were either

designed for neck or wristbands and the main difference be-

tween them is the communication range and the fact that some

of them provide fall detection. The scientific literature focuses

mostly on the elderly and proposes similar approaches to fall

detection. For instance, Ren et al. [25] designed a wearable,

which is attached to the belt and based on accelerometers

and the implemented algorithm is able to detect fall with

an accuracy of 96%. An approach, which is closer to the

one we propose, is presented in [31], where they propose a

wearable based on LPWAN to monitor individuals who do

outdoor activities in remote and risky environments, such as

hiking, skiing, etc. In this system, there is a synergy between a

smartwatch monitoring health metrics, an LPWAN for sharing

GPS signals, and a smartphone for visualizing possible alerts.

Several of the solutions mentioned above depend on a

monthly fee, which include maintenance costs and sometimes

a GSM subscription. Moreover, most of the systems are imple-

mented based on indiscreet wearables or the communication

range is rather short based on a smartphone or a gateway with

short range. This means that in case of emergency, the user

might be observed by a possible perpetrator. Furthermore, if

the system depends on a smartphone and the user forgot it

during the activity, the alert system does not work. In contrast,

the long range emergency system that we propose can operate

independently in smart city environments at a lower cost and

the interface is rather discreet.

In [18], the authors presents the progress that have been

made to overcome a number of challenges with deep learning

when used on embedded and mobile devices. The authors

mention challenges that the community faced in the beginning

working with smartphones, then continued with smartwatches

and concluding with what were the trends at the time. Bina-

rized Neural Networks are performing feedfoward inference,

they can occupy a large amount of memory, but in [21],

the authors classify sensor data directly on the end device

instead of transmitting the sensor data to the cloud. In order

to minimise the memory usage, they use 1-bit weights instead

of 32-bit floating points weights. Furthermore, by changing

the order of inference computation, they decreased the size

of the temporaries, which store the computations between

layers during feedforward inference, while still achieving 95%

accuracy.

ML is used in wearable systems to capture events of in-

terests in physical activities or medical complications. Rockni

et al. [26] tackle the problem of retraining wearable systems

where a new sensor is introduced to the network and is

deployed in several parts of the body. They introduce a method

to transfer activity recognition data from the sensors which are

already deployed to the new one. The authors of [9] attempt

to decrease the computational resources required in multi-

task learning approaches. They focus on audio tasks (i.e.,

speech recognition and emotion recognition) and how they

can share representations among tasks while having a balance

in performance. An on-board activity classification framework

for wearable systems is designed to decrease the energy

consumption [34]. The energy consumption is decreased by

performing the classification on board and consequently by

transmitting less data through the radio. Moreover, they enable

a conditional classification where energy-hungry components

will be activated only if it would be beneficial, based on

a classification which takes place previously and requires

less energy. Suresh et al. in [30] illustrate that an on-board

classification in smart farming applications can extend the

battery lifetime by a factor of three. In a similar spirit with the

previous approaches, transmitting less data through the radio

decreases the energy consumption.

The novelty of the our system does not lie in a new

ML compression technique that reduces the memory footprint

or the consumed energy but in the combination between a

lightweight ML model, which is able to be deployed on-board

into an embedded system, a foot gesture interface and an

LPWAN, which is able to operate robustly and reliably as an

emergency system. All the aforementioned approaches act as

evidence that embedded ML has several benefits for the IoT

ecosystem.



III. PROBLEM FORMULATION

Using a wearable system to recognize foot gestures that is

based on low cost force sensors placed underneath a shoe sole

may be challenging. The wearable system is designed for use

cases, such as jogging, walking, or other sports/activities in

different environments. In order to distinguish the input from

the force sensors between these activities and the desired foot

gestures, we decided to use a NN classifier. Implementing a

NN model on a resource-constrained IoT node is a non-trivial

process because it is not designed to function under limitations

imposed by an MCU in terms of memory, computing power

and energy resources.

The research question we are addressing in this paper is if

a user may utilize a long range emergency system like the one

briefly described above, under use cases in sports, pervasive

health or a similar scenarios, despite the resource-constrained

embedded system. Furthermore, we evaluate the developed

system under these scenarios to quantify the accuracy in

distinguishing between foot gestures and other activities.

IV. SYSTEM OVERVIEW

This section describes the technical details of the system.

During the design, we selected low cost and low power

consumer electronics in order to fit into the IoT ecosystem.

The system can be divided into two parts, the hardware

prototype and the NN classifier.

A. Hardware prototype

To realize the prototype, we use a regular shoe and then

we place two force sensors underneath the shoe sole. One is

placed at the toe tip and the other at the heel as depicted

in Figure 1. The force sensors are connected to the LPWAN

MCU, which is glued to the side of the shoe with a small

power-bank. The model of the force sensors is FSR 406 from

Interlink Electronics and have a surface of 38mm × 38mm in

square shape. The LPWAN device consists of an ESP32 MCU

and a RFM95 LoRa modem. Note that another LPWAN is used

as a receiver which is connected directly to a laptop to act as

a gateway. The software we use is Arduino-LMIC library [1].

(a) (b) (c)

Fig. 1: The prototype was based on a regular shoe including

two force sensors, one at the the tip of the shoe (a), one at the

heel (b), and both are connected on an IoT node (c)
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Fig. 2: Raw measurements of the investigated activities from

both sensors

B. Neural Network classifier

The use of Neural Networks on mobile and embedded

devices have increased a lot during the last years [19]. This

integration has lead to scientific breakthroughs and has shaped

the norm in pattern recognition and other features offered from

NNs in IoT and pervasive health. In our approach, we use a NN

classifier with two hidden layers that operates by forwarding

information in one direction through each layer in the network.

This model was chosen among others ML approaches (Long-

Short Term Memory [12], Convolutional Neural Network [3],

and even Support Vector Machine [7]) by evaluating the

tradeoff between accuracy and implementation complexity to

fit on an ESP32 MCU. The approach we followed here was to

first implement the model in Python and the Keras [16] library

in order to evaluate and configure it before porting it to the

MCU.

In order to define the NN classifier, the first step was to

acquire a dataset and use it to train a NN model. Using the

prototype, we performed the activities and the desired gestures.

The analog output voltage from the sensors were converted

to digital values via the Analog to Digital Converter (ADC),

which provided a digital value between 0 - 4095. We collected
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Fig. 3: Raw measurements from the sensors during performing

foot gestures: double tap at the tip and the heel captured by

the (a) front and (b) back sensor

the data at a rate of 50 Hz and went on for approximately 10

minutes, leading to 30,000 stored data points. Data was then

split into batches of 100 sample points (2 seconds of recording)

creating a total of 300 arrays for each activity/gesture. This

was done for both force sensors. Furthermore, the data was

gathered in a controlled environment using a treadmill indoors,

but also outdoors using a street pavement in a regular urban

environment. The activities performed were walking, jogging,

standing and the gestures were double tap at the tip of the sole

and double tap at the heel. The time interval between the taps

was approximately 0.5 seconds. Moreover, a label was given

manually to each activity/gesture and the dataset was generated

from two individuals performing the mentioned activities and

gestures. A part of the collected data are illustrated in Figure 2

and Figure 3. In Figure 2b, we see that the force sensor

saturates when the user was standing. This did not affect the

accuracy of our results. However, we have to mention that if

we target more complex gestures, the accuracy might drop.

This can be solved by using a sensor which is able to tolerate

more weight.

The Figures 2-3 illustrate that it is difficult to distinguish

foot gestures between activities based on the raw data. For

instance, the double tap heel signal coming from the back

sensor in Figure 3b could be easily misinterpreted for jogging

in Figure 2b if the jogging was faster. To solve this, we

extracted a number of features to increase the accuracy of

the model: median, mean, standard deviation, max, min, and

number of steps. After consulting a correlation matrix, we

dropped the following features: the max and min from the

front sensor and the min from the back sensor. This was a step

to make the model more lightweight in order to port it to the

MCU and also because these features did not contribute to the

classification process. Thus, the model has 4 layers including

two hidden ones. The input layer has 9 nodes which is the

number of the features. The first hidden layer has 32 nodes and

the second has 16 nodes. Finally, the output layer has 5 nodes,

which is the number of activities/gestures. As an activation

function, we used rectified linear unit as it showed to have the

minimum loss and cross-entropy loss function for the same

reason. We also used ridge regression to avoid overfitting.

V. PILOT EVALUATION

During the evaluation, we followed one experimental sce-

nario indoors and one outdoors, executed by two individuals.

The scenario was the following: An individual is using the

shoe and tried to perform each activity/gesture 60 times.

Performing an activity 60 times is equal to 2 minutes of walk-

ing, standing, or jogging. The foot gestures were performed

every 2 seconds approximately and with 0.5 second interval

between the taps. Even though we managed to port the NN

classifier to the MCU, we choose to take raw values during

the experiments and do the classification offline in order to

perform a more systematic analysis on the statistics of the

results. We used 80% for training the NN classifier and 20%

for testing. Note that the classifier is trained per individual.

We followed this approach because gait pattern is a unique

biometric [13] and creating a universal classifier was not the

scope of this paper, but rather proposing a lightweight NN

model that performs well with the wearable system and the

given scenarios. Furthermore, it is common in foot gesture

interfaces that the users are programming the specific gestures

they want and there is an offered a procedure to register it.

We repeated this scenario indoors and outdoors and we plot

the confusion matrices of the results in Figures 4 - 5.

Figure 4 presents the accuracy of the two individuals indoors

and we see that all the activities/gestures are classified with

more than 96.67% accuracy and the overall accuracy for both

is 99.33%. We have to mention that for the indoor cases, the

environment was more controlled as we used a treadmill for

the experiments. For the outdoors case in Figure 5, there is a

slight drop of the overall accuracy to 97.5% and also in this

case all the activities/gestures are classified with more than

95% accuracy. Even though the outdoor environment is more

unstable, the accuracy drop is almost insignificant and illus-

trates that the interface can function in several environments.

However in a critical scenario like this, the accuracy should

be higher and we plan to investigate how to improve it.
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Fig. 4: Experimental results from indoors, on the Y-axis is the

ground truth and on the X-axis, the predicted output

VI. CONCLUSION

In this paper, we presented a long range emergency system

that consists of a regular shoe wearable, a foot gesture inter-

face, and an LPWAN. The whole implementation is based on

off-the-shelf and low cost electronics. The results show that

with a lightweight NN classifier, it is possible to offer approx-

imately 98% accuracy among 5 different activities/gestures

tested by two individuals indoors and outdoors. Based on

the obtained results we can say that the proposed wearable

system is able to to deliver robust and reliable performance as

a long range emergency system. In addition, in a smart city

environment it can operate independent from a smartphone or

a short range gateway which makes it more practical towards

users in outdoor sports or activities. Moreover, we plan to

evaluate the proposed system further with more individuals

and more use case scenarios to get more insights.
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Explaining the unique nature of individual gait patterns with deep
learning. Scientific Reports, 9(1):2391, Feb 2019.

[14] T. Hossain, M. A. R. Ahad, T. Tazin, and S. Inoue. Activity Recognition
by Using LoRaWAN Sensor. In Proceedings of the 2018 ACM Interna-

tional Joint Conference and 2018 International Symposium on Pervasive

and Ubiquitous Computing and Wearable Computers, UbiComp ’18,
page 58–61, New York, NY, USA, 2018. Association for Computing
Machinery.

[15] Intel. Intel® Movidius Vision Processing Units (VPUs), 2016.
https://www.intel.com/content/www/us/en/products/processors/
movidius-vpu.html.

[16] Keras. Keras: The python deep learning library, 2020.

[17] Københavns kommune. Smart City, 2017. https://urbandevelopmentcph.
kk.dk/indhold/smart-city.

[18] N. D. Lane, S. Bhattacharya, A. Mathur, P. Georgiev, C. Forlivesi,
and F. Kawsar. Squeezing Deep Learning into Mobile and Embedded
Devices. IEEE Pervasive Computing, 16(3):82–88, 2017.

[19] N. D. Lane and P. Warden. The Deep (Learning) Transformation of
Mobile and Embedded Computing, year=2018, volume=51, number=5.
Computer, pages 12–16.

[20] J. C. Liando, A. Gamage, A. W. Tengourtius, and M. Li. Known and
Unknown Facts of LoRa: Experiences from a Large-Scale Measurement
Study. ACM Trans. Sen. Netw., 15(2), Feb. 2019.

[21] B. McDanel, S. Teerapittayanon, and H. Kung. Embedded Binarized
Neural Networks. In Proceedings of the 2017 International Confer-

ence on Embedded Wireless Systems and Networks, EWSN ’17, page
168–173, USA, 2017. Junction Publishing.

[22] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer. A comparative study
of LPWAN technologies for large-scale IoT deployment. ICT Express,
5(1):1 – 7, 2019.

[23] C. Orfanidis, L. M. Feeney, M. Jacobsson, and P. Gunningberg. In-
vestigating interference between LoRa and IEEE 802.15.4g networks.
In 2017 IEEE 13th International Conference on Wireless and Mobile

Computing, Networking and Communications (WiMob), pages 1–8,
2017.
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