
Frequency-dependent BCs are given by

 being the velocity at a boundary and 
the accumulators  ,  and 
determined by solving the coupled ADEs

where  is the number of real poles ,  is 
the number of complex conjugate pole pairs 

, and , ,  and  are 
numerical coefficients determined using e.g. 
Miki’s model for a porous material.

The boundary conditions are formulated by 
inserting the calculated velocity  into the 
pressure term of the linear coupled wave 
equation .

Physics-informed Neural Networks

Two multi-layer feed-forward neural 
networks are setup as depicted in Fig. 1

where  and  are the network weights 
and biases, respectively;  is the receiver 
position,  is the time, and  is the source 
position.  is only for freq.-dep. BCs. 

NOTE: In contrary to “black box” deep 
learning, the underlying physics are 
included in the training and their residual 
minimized through the loss function in 
PINNs.
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Physics-informed neural networks for 1D 
sound field predictions with parameterized 
sources and impedance boundaries

Nikolas Borrel-Jensen1, Allan P. Engsig-Karup2, Cheol-Ho Jeong1

Realistic sound is essential in virtual environments, such as computer games and 
mixed reality. Efficient and accurate numerical methods for pre-calculating acoustics 
have been developed over the last decade; however, pre-calculating acoustics makes 
handling dynamic scenes with moving sources challenging, requiring intractable 
memory storage. A physics-informed neural network (PINN) method in 1D is 
presented, which learns a compact and efficient surrogate model with parameterized 
moving Gaussian sources and impedance boundaries, and satisfies a system of 
coupled equations. The model shows relative mean errors below 2%/0.2 dB and 
proposes a first step in developing PINNs for realistic 3D scenes.  

 
The freq.-indep. minimisation problem is

where

For freq.-dep. BCs the loss  should 
be added to minimisation problem.

Results and Conclusion

Freq.-indep. (Fig. 2) and dep. (Fig. 3) BCs 
are tested, each with parameterized moving 
sources trained at seven evenly distributed 
positions  m and 
evaluated at  
m.

The relative errors  are all below 
2% indicating good predictions with no 
perpetual differences.
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The Wave Equation

The wave equation is describing how sound 
waves propagate

where  is the pressure (Pa),  is the time 
(s) and  is the speed of sound in air (m/s). 
The initial conditions (ICs) are satisfied by 
using a Gaussian source for the pressure 
part and setting the velocity equal to zero

with  being the width of the pulse 
determining the frequencies to span.

Frequency-independent BCs are given by 
 

where  is the normalized 
surface impedance,  denotes the air 
density  and  is the impedance.
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Figure 1. PINN scheme for frequency-dependent boundaries.

Figure 2. Frequency-independent impedance boundaries evaluated at five source positions.

Figure 3. Frequency-dependent impedance boundaries evaluated at five source positions.
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