
PETSc
Portable, Extensible Toolkit for Scientific Computation

Karl Rupp
me@karlrupp.net

Freelance Computational Scientist

Workshop on Modern Scientific Computing

DTU Compute, Technical University of Denmark

March 2-3, 2016

2

Introducing MyselfIntroducing Myself

Education

Master’s Degrees in Microelectronics and Mathematics

Doctoral Degree in Microelectronics

Home University: TU Wien

Interests

Efficient Numerics on Modern Hardware

High-level APIs

Semiconductor Device Simulation

Contact

Email: me@karlrupp.net

Web: http://www.karlrupp.net/

Find me at: Google+, Twitter, LinkedIn

3

Before we start...Before we start...

Goal of this Workshop

You should learn new things about HPC

Ask Questions

Tell me if you do not understand

Ask for further details

Don’t be shy

4

Schedule for Day 1Schedule for Day 1

Morning: Lecture

About PETSc

Vectors and matrices

Linear solvers and preconditioners

Distributed arrays

Afternoon: Hands-On

PETSc configuration and installation

Debugging your PETSc code

Step-by-step implementation of a scalable Poisson solver

Experimentation with preconditioners

5

PETScPETSc

About PETSc

6

PETSc OriginsPETSc Origins

PETSc was developed as a Platform for
Experimentation

We want to experiment with different

Models

Discretizations

Solvers

Algorithms

These boundaries are often blurred...

7

TimelineTimeline

1991 1995 2000 2005 2010 2015

PETSc-1
MPI-1 MPI-2

PETSc-2 PETSc-3
Barry

Bill
Lois

Satish
Dinesh

Hong
Kris
Matt

Victor
Dmitry

Lisandro
Jed
Shri

Peter
Karl

8

PETScPETSc

Portable Extensible Toolkit for Scientific Computing

Architecture
tightly coupled (e.g. XT5, BG/P, Earth Simulator)

loosely coupled such as network of workstations

GPU clusters (many vector and sparse matrix kernels)

Software Environment
Operating systems (Linux, Mac, Windows, BSD, proprietary Unix)

Any compiler

Usable from C, C++, Fortran 77/90, Python, and MATLAB

Real/complex, single/double/quad precision, 32/64-bit int

System Size
500B unknowns, 75% weak scalability on Jaguar (225k cores)
and Jugene (295k cores)

Same code runs performantly on a laptop

Free to everyone (BSD-style license), open development

9

PETScPETSc

Portable Extensible Toolkit for Scientific Computing

Philosophy: Everything has a plugin architecture

Vectors, Matrices, Coloring/ordering/partitioning algorithms

Preconditioners, Krylov accelerators

Nonlinear solvers, Time integrators

Spatial discretizations/topology

Example

Vendor supplies matrix format and associated preconditioner, distributes
compiled shared library.

Application user loads plugin at runtime, no source code in sight.

10

PETScPETSc

Portable Extensible Toolkit for Scientific Computing

Toolset

algorithms

(parallel) debugging aids

low-overhead profiling

Composability

try new algorithms by choosing from product space

composing existing algorithms (multilevel, domain decomposition, splitting)

Experimentation

Impossible to pick the solver a priori

PETSc’s response: expose an algebra of composition

keep solvers decoupled from physics and discretization

11

PETScPETSc

Portable Extensible Toolkit for Scientific Computing
Computational Scientists

PyLith (CIG), Underworld (Monash), Magma Dynamics (LDEO, Columbia),
PFLOTRAN (DOE), SHARP/UNIC (DOE)

Algorithm Developers (iterative methods and preconditioning)

Package Developers
SLEPc, TAO, Deal.II, Libmesh, FEniCS, PETSc-FEM, MagPar, OOFEM,
FreeCFD, OpenFVM

Funding
Department of Energy

SciDAC, ASCR ISICLES, MICS Program, INL Reactor Program
National Science Foundation

CIG, CISE, Multidisciplinary Challenge Program

Documentation and Support
Hundreds of tutorial-style examples

Hyperlinked manual, examples, and manual pages for all routines

Support from petsc-maint@mcs.anl.gov

petsc-maint@mcs.anl.gov

12

The Role of PETScThe Role of PETSc

Developing parallel, nontrivial PDE solvers that deliver high
performance is still difficult and requires months (or even
years) of concentrated effort.

PETSc is a toolkit that can ease these difficulties and re-
duce the development time, but it is not a black-box PDE
solver, nor a silver bullet.

— Barry Smith

13

PETScPETSc

Obtaining PETSc

Linux Package Managers

Web: http://mcs.anl.gov/petsc, download tarball

Git: https://bitbucket.org/petsc/petsc

Mercurial: https://bitbucket.org/petsc/petsc-hg

Installing PETSc

$> cd /path/to/petsc/workdir
$> git clone https://bitbucket.org/petsc/petsc.git \

--branch master --depth 1
$> cd petsc

$> export PETSC_DIR=$PWD PETSC_ARCH=mpich-gcc-dbg
$> ./configure --with-cc=gcc --with-fc=gfortran

--download-fblaslapack --download-{mpich,ml,hypre}

14

PETSc External PackagesPETSc External Packages

Most packages can be automatically
Downloaded

Configured and Built (in $PETSC_DIR/externalpackages)

Installed with PETSc

Works for (list incomplete)
petsc4py

PETSc documentation utilities (Sowing, lgrind, c2html)

BLAS, LAPACK, BLACS, ScaLAPACK, PLAPACK

MPICH, MPE, OpenMPI

ParMetis, Chaco, Jostle, Party, Scotch, Zoltan

MUMPS, Spooles, SuperLU, SuperLU Dist, UMFPack, pARMS

PaStiX, BLOPEX, FFTW, SPRNG

Prometheus, HYPRE, ML, SPAI

Sundials

Triangle, TetGen, FIAT, FFC, Generator

HDF5, Boost

15

PETSc PyramidPETSc Pyramid

PETSc Structure

16

Flow Control for a PETSc ApplicationFlow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function

Evaluation
Postprocessing

Jacobian

Evaluation

Application

Initialization

Main Routine

PETSc

17

PETScPETSc

Vectors and Matrices

18

The Role of PETScThe Role of PETSc

You want to think about how you decompose your data
structures, how you think about them globally. [...]

If you were building a house, you’d start with a set of
blueprints that give you a picture of what the whole house
looks like. You wouldn’t start with a bunch of tiles and say.
“Well I’ll put this tile down on the ground, and then I’ll find a
tile to go next to it.”

But all too many people try to build their parallel programs
by creating the smallest possible tiles and then trying to
have the structure of their code emerge from the chaos of all
these little pieces. You have to have an organizing principle
if you’re going to survive making your code parallel.

— Bill Gropp
— http://www.rce-cast.com/Podcast/rce-28-mpich2.html

19

PETSc VectorsPETSc Vectors

Parallel Vector Layout

proc 0 proc 1 proc 2

VecCreate(PETSC_COMM_WORLD, &x);
VecSetSizes(x, PETSC_DECIDE, N);
VecSetFromOptions(x);

20

PETSc VectorsPETSc Vectors

Vector Gather and Scatter

proc 0 proc 1 proc 2

// y[iy[i]] = x[ix[i]]
VecScatterCreate(...);
VecScatterBegin(...);
VecScatterEnd(...);

21

PETSc VectorsPETSc Vectors

Vector Reductions

proc 0 proc 1 proc 2

VecNorm(...);
VecDot(...);
VecMax(...);
...

22

PETSc VectorsPETSc Vectors

Local (Sequential) Operations

Executed by an arbitrary subset of MPI ranks

Usually involve VecGetArray()/VecRestoreArray()

Collective Operations

Must be executed by all processes in the MPI communicator

Involve MPI operations (scatter, gather, reduce, etc.)

23

PETSc Application IntegrationPETSc Application Integration

Sparse Matrices

The important data type when solving PDEs
Two main phases:

Filling with entries (assembly)
Application of its action (e.g. SpMV)

24

Matrix Memory PreallocationMatrix Memory Preallocation

PETSc sparse matrices are dynamic data structures
can add additional nonzeros freely

Dynamically adding many nonzeros
requires additional memory allocations

requires copies

can kill performance

Memory preallocation provides
the freedom of dynamic data structures

good performance

Easiest solution is to replicate the assembly code
Remove computation, but preserve the indexing code

Store set of columns for each row

Call preallocation routines for all datatypes
MatSeqAIJSetPreallocation()

MatMPIBAIJSetPreallocation()

Only the relevant data will be used

25

PETSc Application IntegrationPETSc Application Integration

Sequential Sparse Matrices
MatSeqAIJSetPreallocation(Mat A, int nz, int nnz[])

nz: expected number of nonzeros in any row

nnz(i): expected number of nonzeros in row i

26

PETSc Application IntegrationPETSc Application Integration

Parallel Sparse Matrix

Each process locally owns a submatrix of contiguous global rows

Each submatrix consists of diagonal and off-diagonal parts

proc 5

proc 4

proc 3

proc 2

proc 1

proc 0

diagonal blocks

offdiagonal blocks

MatGetOwnershipRange(Mat A,int *start,int *end)

start: first locally owned row of global matrix
end-1: last locally owned row of global matrix

27

PETSc Application IntegrationPETSc Application Integration

proc 5

proc 4

proc 3

proc 2

proc 1

proc 0

diagonal blocks

offdiagonal blocks

Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
PETSc numbering

28

PETSc Application IntegrationPETSc Application Integration

Parallel Sparse Matrix

MatMPIAIJSetPreallocation(Mat A, int dnz, int dnnz[],
int onz, int onnz[]

dnz: expected number of nonzeros in any row in the diagonal block

dnnz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portion

onnz(i): expected number of nonzeros in row i in the offdiagonal portion

29

PETSc Application IntegrationPETSc Application Integration

Verifying Preallocation

Use runtime options
-mat_new_nonzero_location_err
-mat_new_nonzero_allocation_err

Use runtime option
-info

Output:

[proc #] Mat r i x s ize : %d X %d ; storage space : %d unneeded , %d used
[proc #] Number o f mal locs dur ing MatSetValues () i s %d

30

Block and Symmetric FormatsBlock and Symmetric Formats

BAIJ

Like AIJ, but uses static block size

Preallocation is like AIJ, but just one index per block

SBAIJ

Only stores upper triangular part

Preallocation needs number of nonzeros in upper triangular
parts of on- and off-diagonal blocks

MatSetValuesBlocked()

Better performance with blocked formats

Also works with scalar formats, if MatSetBlockSize() was called

Variants MatSetValuesBlockedLocal(), MatSetValuesBlockedStencil()

Change matrix format at runtime, don’t need to touch assembly code

31

One Way to Set the Elements of a MatrixOne Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
if (rank == 0) {

for(row = 0; row < N; row++) {
cols[0] = row-1; cols[1] = row; cols[2] = row+1;
if (row == 0) {

MatSetValues(A,1,&row,2,&cols[1],&v[1],
INSERT_VALUES);

} else if (row == N-1) {
MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);

} else {
MatSetValues(A,1,&row,3,cols,v,INSERT_VALUES);

}
}

}
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);

32

A Better Way to Set the Elements of a MatrixA Better Way to Set the Elements of a Matrix

A More Efficient Way

v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
for(row = start; row < end; row++) {

cols[0] = row-1; cols[1] = row; cols[2] = row+1;
if (row == 0) {
MatSetValues(A,1,&row,2,&cols[1],&v[1],

INSERT_VALUES);
} else if (row == N-1) {
MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);

} else {
MatSetValues(A,1,&row,3,cols,v,INSERT_VALUES);

}
}
MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);

Advantages

All ranks busy: Scalable!

Amount of code essentially unchanged

33

MatricesMatrices

Definition (Matrix)
A matrix is a linear transformation between finite dimensional vector spaces.

Definition (Forming a matrix)
Forming or assembling a matrix means defining it’s action in terms of entries
(usually stored in a sparse format).

34

MatricesMatrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)

2. Inverse of anything interesting B = A−1

3. Jacobian of a nonlinear function Jy = limε→0
F(x+εy)−F(x)

ε

4. Fourier transform F ,F−1

5. Other fast transforms, e.g. Fast Multipole Method

6. Low rank correction B = A + uvT

7. Schur complement S = D− CA−1B

8. Tensor product A =
∑

e Ae
x ⊗ Ae

y ⊗ Ae
z

9. Linearization of a few steps of an explicit integrator

34

MatricesMatrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)

2. Inverse of anything interesting B = A−1

3. Jacobian of a nonlinear function Jy = limε→0
F(x+εy)−F(x)

ε

4. Fourier transform F ,F−1

5. Other fast transforms, e.g. Fast Multipole Method

6. Low rank correction B = A + uvT

7. Schur complement S = D− CA−1B

8. Tensor product A =
∑

e Ae
x ⊗ Ae

y ⊗ Ae
z

9. Linearization of a few steps of an explicit integrator

These matrices are dense. Never form them.

34

MatricesMatrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)

2. Inverse of anything interesting B = A−1

3. Jacobian of a nonlinear function Jy = limε→0
F(x+εy)−F(x)

ε

4. Fourier transform F ,F−1

5. Other fast transforms, e.g. Fast Multipole Method

6. Low rank correction B = A + uvT

7. Schur complement S = D− CA−1B

8. Tensor product A =
∑

e Ae
x ⊗ Ae

y ⊗ Ae
z

9. Linearization of a few steps of an explicit integrator

These are not very sparse. Don’t form them.

34

MatricesMatrices

Important Matrices

1. Sparse (e.g. discretization of a PDE operator)

2. Inverse of anything interesting B = A−1

3. Jacobian of a nonlinear function Jy = limε→0
F(x+εy)−F(x)

ε

4. Fourier transform F ,F−1

5. Other fast transforms, e.g. Fast Multipole Method

6. Low rank correction B = A + uvT

7. Schur complement S = D− CA−1B

8. Tensor product A =
∑

e Ae
x ⊗ Ae

y ⊗ Ae
z

9. Linearization of a few steps of an explicit integrator

None of these matrices “have entries”

35

PETScPETSc

Iterative Solvers

36

MatricesMatrices

What can we do with a matrix that doesn’t have entries?

Krylov solvers for Ax = b

Krylov subspace: {b,Ab,A2b,A3b, . . . }
Convergence rate depends on the spectral properties of the matrix

For any popular Krylov method K, there is a matrix of size m, such that K
outperforms all other methods by a factor at least O(

√
m) [Nachtigal et. al.,

1992]

Typically...

The action y← Ax can be computed in O(m)

Aside from matrix multiply, the nth iteration requires at most O(mn)

37

GMRESGMRES

Brute force minimization of residual in {b,Ab,A2b, . . . }

1. Use Arnoldi to orthogonalize the nth subspace, producing

AQn = Qn+1Hn

2. Minimize residual in this space by solving the overdetermined system

Hnyn = e(n+1)
1

using QR-decomposition, updated cheaply at each iteration.

Properties

Converges in n steps for all right hand sides if there exists a polynomial of
degree n such that ‖pn(A)‖ < tol and pn(0) = 1.

Residual is monotonically decreasing, robust in practice

Restarted variants are used to bound memory requirements

38

PETSc SolversPETSc Solvers

Linear Solvers - Krylov Methods

Using PETSc linear algebra, just add:

KSPSetOperators(KSP ksp, Mat A, Mat M)
KSPSolve(KSP ksp, Vec b, Vec x)

Can access subobjects

KSPGetPC(KSP ksp, PC *pc)

Preconditioners must obey PETSc interface
Basically just the KSP interface

Can change solver dynamically from the command line, -ksp_type

39

Linear solvers in PETSc KSPLinear solvers in PETSc KSP

Linear solvers in PETSc KSP (Excerpt)

Richardson

Chebychev

Conjugate Gradient

BiConjugate Gradient

Generalized Minimum Residual Variants

Transpose-Free Quasi-Minimum Residual

Least Squares Method

Conjugate Residual

40

PETScPETSc

Preconditioners

41

PreconditioningPreconditioning

Idea: improve the conditioning of the Krylov operator

Left preconditioning
(P−1A)x = P−1b

{P−1b, (P−1A)P−1b, (P−1A)2P−1b, . . . }

Right preconditioning
(AP−1)Px = b

{b, (P−1A)b, (P−1A)2b, . . . }

The product P−1A or AP−1 is not formed.

A preconditioner P is a method for constructing a matrix (just a linear function,
not assembled!) P−1 = P(A,Ap) using a matrix A and extra information Ap, such
that the spectrum of P−1A (or AP−1) is well-behaved.

42

PreconditioningPreconditioning

Definition (Preconditioner)
A preconditioner P is a method for constructing a matrix P−1 = P(A,Ap) using a
matrix A and extra information Ap, such that the spectrum of P−1A (or AP−1) is
well-behaved.

P−1 is dense, P is often not available and is not needed

A is rarely used by P, but Ap = A is common

Ap is often a sparse matrix, the “preconditioning matrix”

Matrix-based: Jacobi, Gauss-Seidel, SOR, ILU(k), LU

Parallel: Block-Jacobi, Schwarz, Multigrid, FETI-DP, BDDC

Indefinite: Schur-complement, Domain Decomposition, Multigrid

43

Questions to ask when you see a matrixQuestions to ask when you see a matrix

1. What do you want to do with it?
Multiply with a vector
Solve linear systems or eigen-problems

2. How is the conditioning/spectrum?
distinct/clustered eigen/singular values?
symmetric positive definite (σ(A) ⊂ R+)?
nonsymmetric definite (σ(A) ⊂ {z ∈ C : Re[z] > 0})?
indefinite?

3. How dense is it?
block/banded diagonal?
sparse unstructured?
denser than we’d like?

4. Is there a better way to compute Ax?

5. Is there a different matrix with similar spectrum, but nicer properties?

6. How can we precondition A?

43

Questions to ask when you see a matrixQuestions to ask when you see a matrix

1. What do you want to do with it?
Multiply with a vector
Solve linear systems or eigen-problems

2. How is the conditioning/spectrum?
distinct/clustered eigen/singular values?
symmetric positive definite (σ(A) ⊂ R+)?
nonsymmetric definite (σ(A) ⊂ {z ∈ C : Re[z] > 0})?
indefinite?

3. How dense is it?
block/banded diagonal?
sparse unstructured?
denser than we’d like?

4. Is there a better way to compute Ax?

5. Is there a different matrix with similar spectrum, but nicer properties?

6. How can we precondition A?

44

RelaxationRelaxation

Split into lower, diagonal, upper parts: A = L + D + U

Jacobi
Cheapest preconditioner: P−1 = D−1

Successive over-relaxation (SOR)

(
L +

1
ω

D
)

xn+1 =

[(
1
ω
− 1
)

D− U
]

xn + ωb

P−1 = k iterations starting with x0 = 0

Implemented as a sweep

ω = 1 corresponds to Gauss-Seidel

Very effective at removing high-frequency components of residual

44

RelaxationRelaxation

Split into lower, diagonal, upper parts: A = L + D + U

Jacobi
Cheapest preconditioner: P−1 = D−1

Successive over-relaxation (SOR)

(
L +

1
ω

D
)

xn+1 =

[(
1
ω
− 1
)

D− U
]

xn + ωb

P−1 = k iterations starting with x0 = 0

Implemented as a sweep

ω = 1 corresponds to Gauss-Seidel

Very effective at removing high-frequency components of residual

45

FactorizationFactorization

Two phases

symbolic factorization: find where fill occurs, only uses sparsity pattern
numeric factorization: compute factors

LU decomposition

Ultimate preconditioner
Expensive, for m× m sparse matrix with bandwidth b, traditionally requires
O(mb2) time and O(mb) space.

Bandwidth scales as m
d−1

d in d-dimensions
Optimal in 2D: O(m · log m) space, O(m3/2) time
Optimal in 3D: O(m4/3) space, O(m2) time

Symbolic factorization is problematic in parallel

Incomplete LU

Allow a limited number of levels of fill: ILU(k)
Only allow fill for entries that exceed threshold: ILUT
Usually poor scaling in parallel
No guarantees

45

FactorizationFactorization

Two phases

symbolic factorization: find where fill occurs, only uses sparsity pattern
numeric factorization: compute factors

LU decomposition

Ultimate preconditioner
Expensive, for m× m sparse matrix with bandwidth b, traditionally requires
O(mb2) time and O(mb) space.

Bandwidth scales as m
d−1

d in d-dimensions
Optimal in 2D: O(m · log m) space, O(m3/2) time
Optimal in 3D: O(m4/3) space, O(m2) time

Symbolic factorization is problematic in parallel

Incomplete LU

Allow a limited number of levels of fill: ILU(k)
Only allow fill for entries that exceed threshold: ILUT
Usually poor scaling in parallel
No guarantees

45

FactorizationFactorization

Two phases

symbolic factorization: find where fill occurs, only uses sparsity pattern
numeric factorization: compute factors

LU decomposition

Ultimate preconditioner
Expensive, for m× m sparse matrix with bandwidth b, traditionally requires
O(mb2) time and O(mb) space.

Bandwidth scales as m
d−1

d in d-dimensions
Optimal in 2D: O(m · log m) space, O(m3/2) time
Optimal in 3D: O(m4/3) space, O(m2) time

Symbolic factorization is problematic in parallel

Incomplete LU

Allow a limited number of levels of fill: ILU(k)
Only allow fill for entries that exceed threshold: ILUT
Usually poor scaling in parallel
No guarantees

46

1-level Domain decomposition1-level Domain decomposition

Domain size L, subdomain size H, element size h

Overlapping/Schwarz

Solve Dirichlet problems on overlapping subdomains

No overlap: its ∈ O
(

L√
Hh

)
Overlap δ: its ∈

(
L√
Hδ

)

Neumann-Neumann

Solve Neumann problems on non-overlapping subdomains

its ∈ O
(

L
H (1 + log H

h)
)

Tricky null space issues (floating subdomains)

Need subdomain matrices, net globally assembled matrix.

Multilevel variants knock off the leading L
H

Both overlapping and nonoverlapping with this bound

46

1-level Domain decomposition1-level Domain decomposition

Domain size L, subdomain size H, element size h

Overlapping/Schwarz

Solve Dirichlet problems on overlapping subdomains

No overlap: its ∈ O
(

L√
Hh

)
Overlap δ: its ∈

(
L√
Hδ

)
Neumann-Neumann

Solve Neumann problems on non-overlapping subdomains

its ∈ O
(

L
H (1 + log H

h)
)

Tricky null space issues (floating subdomains)

Need subdomain matrices, net globally assembled matrix.

Multilevel variants knock off the leading L
H

Both overlapping and nonoverlapping with this bound

47

MultigridMultigrid

Hierarchy: Interpolation and restriction operators

I↑ : Xcoarse → Xfine I↓ : Xfine → Xcoarse

Geometric: define problem on multiple levels, use grid to compute hierarchy
Algebraic: define problem only on finest level, use matrix structure to build
hierarchy

Galerkin approximation
Assemble this matrix: Acoarse = I↓AfineI↑

Application of multigrid preconditioner (V-cycle)

Apply pre-smoother on fine level (any preconditioner)
Restrict residual to coarse level with I↓
Solve on coarse level Acoarsex = r
Interpolate result back to fine level with I↑
Apply post-smoother on fine level (any preconditioner)

48

Multigrid convergence propertiesMultigrid convergence properties

Textbook: P−1A is spectrally equivalent to identity
Constant number of iterations to converge up to discretization error

Most theory applies to SPD systems
variable coefficients (e.g. discontinuous): low energy interpolants
mesh- and/or physics-induced anisotropy: semi-coarsening/line smoothers
complex geometry: difficult to have meaningful coarse levels

Deeper algorithmic difficulties
nonsymmetric (e.g. advection, shallow water, Euler)
indefinite (e.g. incompressible flow, Helmholtz)

Performance considerations
Aggressive coarsening is critical in parallel
Most theory uses SOR smoothers, ILU often more robust
Coarsest level usually solved semi-redundantly with direct solver

Multilevel Schwarz is essentially the same with different language
assume strong smoothers, emphasize aggressive coarsening

49

Splitting for MultiphysicsSplitting for Multiphysics

[
A B
C D

] [
x
y

]
=

[
f
g

]

Relaxation: -pc_fieldsplit_type
[additive,multiplicative,symmetric_multiplicative][

A
D

]−1 [
A
C D

]−1 [
A

1

]−1
(

1−
[

A B
1

] [
A
C D

]−1
)

Gauss-Seidel inspired, works when fields are loosely coupled

Factorization: -pc_fieldsplit_type schur[
A B

S

]−1 [1
CA−1 1

]−1

, S = D− CA−1B

robust (exact factorization), can often drop lower block
how to precondition S which is usually dense?

interpret as differential operators, use approximate commutators

50

PETScPETSc

Distributed Arrays

51

Distributed ArrayDistributed Array

Interface for topologically structured grids

Defines (topological part of) a finite-dimensional function space

Get an element from this space: DMCreateGlobalVector()

Provides parallel layout

Refinement and coarsening

DMRefineHierarchy()

Ghost value coherence

DMGlobalToLocalBegin()

Matrix preallocation

DMCreateMatrix() (formerly DMGetMatrix())

52

Ghost ValuesGhost Values

To evaluate a local function f (x), each process requires

its local portion of the vector x

its ghost values, bordering portions of x owned by neighboring processes

Local Node

Ghost Node

53

DMDA Global NumberingsDMDA Global Numberings

Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
PETSc numbering

54

DMDA Global vs. Local NumberingDMDA Global vs. Local Numbering

Global: Each vertex has a unique id, belongs on a unique process
Local: Numbering includes vertices from neighboring processes

These are called ghost vertices

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X

Proc 0 Proc 1
Local numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
Global numbering

55

DM VectorsDM Vectors

The DM object contains only layout (topology) information

All field data is contained in PETSc Vecs

Global vectors are parallel

Each process stores a unique local portion

DMCreateGlobalVector(DM dm, Vec *gvec)

Local vectors are sequential (and usually temporary)

Each process stores its local portion plus ghost values

DMCreateLocalVector(DM dm, Vec *lvec)

includes ghost values!

Coordinate vectors store the mesh geometry

DMDAGetCoordinates(DM dm, Vec *coords)

Can be manipulated with their own DMDA
DMDAGetCoordinateDA(DM dm,DM *cda)

56

Updating GhostsUpdating Ghosts

Two-step Process for Updating Ghosts

enables overlapping computation and communication

DMGlobalToLocalBegin(dm, gvec, mode, lvec)

gvec provides the data

mode is either INSERT_VALUES or ADD_VALUES

lvec holds the local and ghost values

DMGlobalToLocalEnd(dm, gvec, mode, lvec)

Finishes the communication

Reverse Process

Via DMLocalToGlobalBegin() and DMLocalToGlobalEnd().

57

DMDA StencilsDMDA Stencils

Available Stencils

proc 0 proc 1

proc 10

proc 0 proc 1

proc 10

Box Stencil Star Stencil

58

Creating a DMDACreating a DMDA

DMDACreate2d(comm, xbdy, ybdy, type, M, N, m, n,
dof, s, lm[], ln[], DA *da)

xbdy,ybdy: Specifies periodicity or ghost cells
DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, DM_BOUNDARY_MIRROR,
DM_BOUNDARY_PERIODIC

type

Specifies stencil: DMDA_STENCIL_BOX or DMDA_STENCIL_STAR

M,N

Number of grid points in x/y-direction

m,n

Number of processes in x/y-direction

dof
Degrees of freedom per node

s
The stencil width

lm,ln

Alternative array of local sizes

Use NULL for the default

59

Working with the Local FormWorking with the Local Form

Wouldn’t it be nice if we could just write our code for the natural
numbering?

Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
PETSc numbering

59

Working with the Local FormWorking with the Local Form

Wouldn’t it be nice if we could just write our code for the natural
numbering?

Yes, that’s what DMDAVecGetArray() is for.

DMDA offers local callback functions

FormFunctionLocal(), set by DMDASetLocalFunction()

FormJacobianLocal(), set by DMDASetLocalJacobian()

Evaluating the nonlinear residual F(x)

Each process evaluates the local residual
PETSc assembles the global residual automatically

Uses DMLocalToGlobal() method

60

Thinking of ExtensionsThinking of Extensions

Multiple Unknowns per Grid Node

Example 1: Displacements ux, uy

Example 2: Velocity components, Pressure

Typical in a multiphysics setting

Multiple Unknowns in a Distributed Setting

Robust abstract concepts important

Lots of bookkeeping

All done by PETSc

61

Thinking of ExtensionsThinking of Extensions

rank 0

rank 2

rank 1

rank 0

rank 1

rank 2

LocalToGlobalMapping

Monolithic Global Monolithic Local

Split Local

GetLocalSubMatrix()

Split Global

GetSubMatrix() / GetSubVector()

LocalToGlobal()

rank 0

rank 1

rank 2

62

DA Local FunctionDA Local Function

User-provided Function for Nonlinear Residual in 2D

PetscErrorCode (*lfunc)(DMDALocalInfo *info,
Field **x, Field **r,
void *ctx)

info All layout and numbering information
x The current solution

Notice that it is a multidimensional array
r The residual
ctx The user context passed to DMSetApplicationContext()

or to SNES

The local DMDA function is activated by calling

SNESSetDM(snes,dm)

SNESSetFunction(snes, r, SNESDAFormFunction, ctx)

63

End of Morning SessionEnd of Morning Session

PETSc Can Help You

solve algebraic and DAE problems in your application area

rapidly develop efficient parallel code, can start from examples

develop new solution methods and data structures

debug and analyze performance

advice on software design, solution algorithms, and performance

petsc-{users,dev,maint}@mcs.anl.gov

You Can Help PETSc

report bugs and inconsistencies, or if you think there is a better way

tell us if the documentation is inconsistent or unclear

consider developing new algebraic methods as plugins, contribute if your
idea works

	PETSc Overview
	PETSc Overview
	Iterative Solvers
	Preconditioners
	Distributed Arrays
	Conclusion

