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PC projection

Model output and assumption

Consider the output of a model parametrized by a (finite) set of independent random
variables ξ = (ξ1 . . . ξN),

U(ξ) ∈ V a.s.

The solution belongs almost surely to an Hilbert space V, equipped with an inner
product (·, ·)V and associated norm

‖U‖V = (U,U)
1/2
V .

We assume that U(ξ) is a second order random quantity in the sense that

(U(ξ),U(ξ))
1/2
V = ‖U(ξ)‖V ∈ L2(Ξ, pξ),

and we write U ∈ L2(V,Ξ, pξ), where Ξ is the domain of ξ and pξ the associated
density:

pξ(x) =
N∏

i=1

pi (xi ),

ˆ
· · ·
ˆ

Ξ
pξ(x)dx = 1.

U ∈ L2(V,Ξ, pξ)⇔
ˆ
· · ·
ˆ

Ξ
‖U(x)‖2

Vpξ(x)dx <∞.
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PC projection

PC expansion I

The model output U ∈ L2(V,Ξ, pξ) in fact belongs to the tensored space
V ⊗ L2(Ξ, pξ), and so has a separable representation

L2(V,Ξ, pξ) ∈ U(ξ) =
∞∑
l=0

Φl (ξ)ul , Φl ∈ L2(Ξ, pξ), ul ∈ V, l = 0, 1, 2, . . .

The PC expansion of U rely on

1 the introduction of an orthonormal polynomial basis of L2(Ξ, pξ),

span {Ψ0,Ψ1,Ψ2, . . . } = L2(Ξ, pξ),

〈
Ψi ,Ψj

〉
=

ˆ
· · ·
ˆ

Ξ

Ψi (x)Ψj (x)pξ(x)dx = δij 〈Ψ1,Ψi〉 ,

2 such that U as for expression in the PC basis

U(ξ) =
∞∑
l=0

Ψl (ξ)ul , ul ∈ V, l = 0, 1, . . .

where the equality stands in the L2-sense.
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PC projection

PC expansion II

Exploiting the product structure of the density, the PC functions Ψl can be
constructed by tensorization of 1-d families of univariate orthogonal polynomial.
For instance, let {ψi

0, ψ
i
1, ψ

i
2, . . . } be the family of orthogonal polynomials for the

density pi , where ψi
j ∈ Πj (Ξi ) has degree j ,

〈
ψi

l , ψ
i
j

〉
i

=

ˆ
Ξi

ψi
l (ξ)ψi

j (x)pi (x)dx = δlj

〈
ψi

l , ψ
i
j

〉
.

We introduce the multi-index α = (α1 . . . αN) ∈ NN, and define the multi-variate
polynomial as product of univariate ones:

Ψα(ξ) =
N∏

i=1

ψi
αi

(ξi ).

The partial degree of Ψα is q = maxi αi = ‖α‖∞
The total degree of Ψα is q =

∑
i αi = ‖α‖`1
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PC projection

PC expansion III

The model output U(ξ) is sought has the PC expansion

L2(V,Ξ, pξ) ∈ U =
∑
α∈NN

Ψα(ξ)uα.

For practical computation, the expansion needs be truncated. Consider the finite
multi-index set A and the truncated expansion

U(ξ) ≈ UA(ξ) =
∑
α∈A

Ψα(ξ)uα.

The truncation error is measured as

ε2(A) =

ˆ
· · ·
ˆ

Ξ
‖U − UA‖2

Vpξ(x)dx =
∑

α∈NN\A

‖Uα‖2
V 〈Ψα,Ψα〉 .

Classical truncation strategies are based on

Partial degree truncation: ANo
∞ = {α ∈ NN, ‖α‖∞ ≤ No}

Total degree truncation: ANo
`1

= {α ∈ NN, ‖α‖`1 ≤ No}
Hyperbolic cross product truncation: ANo

HC(q < 1) = {α ∈ NN,
∑

i α
q ≤ Noq}

All of these strategies are isotropic and converge as No→∞. The dimension of the
PC basis is |A|.
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Non-Intrusive methods

Non-Intrusive methods

Given the truncated PC basis, defined from its index set A, it remains to compute the
PC coefficients uα in the approximation UA(ξ) of the model output:

U(ξ) ≈ UA(ξ) =
∑
α∈A

Ψα(ξ)uα.

In other words, the approximation is sought in the subspace SA ⊗ V of L2(V,Ξ, pξ),
where SA is defined as

SA .
= span {Ψα, α ∈ A} ⊂ L2(Ξ, pξ), dimSA = |A|.

Different methods can be considered for the determination of the PC
coefficients uα.

These methods differ in the definition of the error that approximation minimizes.

These methods should however converge to the unique solution as |A| → ∞.

These methods correspond to different computational strategies which are
more or less suited to a given context. Classical considerations are computational
complexity, available tools and softwares, . . .
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Non-Intrusive methods

Galerkin vs Non-Intrusive methods I

The stochastic Galerkin projection

It uses the model equations to derive an associated problem for the Galerkin
modes uα of the output. For this methods, the Galerkin modes are defined as to
cancel the equations residual within the subspace SA spanned by the truncated
PC basis. It is a method of weighted residual. It aims at minimizing the error
measured by the equation residual.
It assumes a complete knowledge of the model equations, and the PC
expansion of all model unknowns∗.
The formulation of the Galerkin problem can be challenging in particular in
presence of strong model non-linearities.†

Derivation and coding of efficient Galerkin solvers can be time-consuming when
it cannot reuse effectively deterministic code components. It can also require
the development of specific numerical methods (stabilization schemes, new
preconditionners, . . . )

Code verification and certification can also be an issue.‡

∗May require significant memory requirement for large models.
†For instance inequalities, model branching, . . .
‡Not to talk of UQ using legacy codes!
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Non-Intrusive methods

Galerkin vs Non-Intrusive methods II

Non-Intrusive methods

Non-Intrusive methods refer to the set of approaches that reuse deterministic
codes as black-boxes. By this, we mean that we have to our disposal a
numerical code§ that given the value of the input parameters ξ evaluate the
corresponding value of the quantity of interest U(ξ).
We are able to observe the mapping from U : Ξ 7→ V at selected values of
ξ ∈ Ξ¶.

Contrary to the Galerkin projection, Non-Intrusive methods can focus on the
approximation of the QoI only.

We do not need the full knowledge of the model equations, nor of all model
unknowns.

The Non-Intrusive approaches focus on observations of the mapping to construct
the "best" approximation UA(ξ).

Classically, they are based on the minimization of the L2-distance U − UA,

UA = arg min
V∈V⊗SA

E
[
‖U − V‖2

V

]
.

They differ in the way this minimization problem is approximated.

§Could actually be an experimental device.
¶For this reason, the black-box is sometime called the oracle in machine learning theory.
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Basic setting

Consider a sample set of M realizations of the input parameter,

SM =
{
ξ(i), i = 1, . . . ,M

}
,

and the corresponding sample set of observations of the mapping Ξ 7→ V,

YM =
{

y (i) .
= U(ξ(i)), i = 1, . . . ,M

}
.

The original minimization problem (for the L2-distance)

UA = arg min
V∈V⊗SA

E
[
‖U − V‖2

V

]
,

can be substituted for the following least-squares problem:

ÛA = arg min
V∈V⊗SA

1
M

M∑
i=1

‖y (i) − V (ξ(i))‖2
V .

In other words, we estimate the L2 distance from the sample sets using the averaged
sum of squared residuals.
Introducing the PC expansions, the problem can be recast in terms of the coefficients
{uα ∈ V, α ∈ A}:

{uα, α ∈ A} = arg min
{vα∈V,α∈A}

1
M

M∑
i=1

∥∥∥∥∥∥y (i) −
∑
α∈A

vαΨα(ξ(i))

∥∥∥∥∥∥
2

V

.
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Least Squares

Least-squares problem

For simplicity, let us take V = R‖, so the we have to minimize the LS functional

LS (vα, α ∈ A) =
1
M

M∑
i=1

∣∣∣∣∣∣y (i) −
∑
α∈A

vαΨ
(i)
α

∣∣∣∣∣∣
2

, Ψ
(i)
α

.
= Ψα(ξ(i)).

The optimality conditions, ∂LS/∂vα = 0, yield the linear problem satisfied by the
solution

1
M

M∑
i=1

Ψ
(i)
β

y (i) −
∑
α∈A

uαΨ
(i)
α

 = 0, ∀β ∈ A.

Denoting [Z ] ∈ RM×|A| the matrix with entries Zi,α = Ψ
(i)
α , the optimization problem

can be rewritten as a linear system:

1
M

[Z ]T [Z ]u =
1
M

[Z ]T y , u = (uα)T ∈ R|A|, y = (y (0) · · · v (M))T ∈ RM .

The Fisher matrix [F ] = 1
M [Z ]T [Z ] ∈ R|A|×|A| plays a crucial role in the conditioning

of the least-squares problem. Clearly [F ] must be invertible.

‖And for V = Rn?
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Least Squares

Least-squares projection operator

We the haven to solve

[F ]u =
1
M

[Z ]T y , [F ] =
1
M

[Z ]T [Z ],

for the vector u ∈ R|A| of PC coefficients.
The conditioning of the problem depends on the spectrum of the Fisher matrix, through
the matrix [Z ].
In fact [Z ] defines an orthogonal projection operator Π from RM to the subspace
spanned by the |A| columns of [Z ]:

Π = [Z ]([Z ]T [Z ])−1[Z ]T .

The projector Π is symmetric, idempotent (ΠΠ = Π), and columns of [Z ] are Π-stable
(Π[Z ] = [Z ]).
It follows that the solution u belongs to the subspace of R|A| spanned by the columns
of [Z ].
Therefore, the approximation error, R(ξ) = U(ξ)− ÛA(ξ), will be orthogonal to
SA only for M →∞ and appropriate selection of the sample points.

Typically, M = k |A| with k = 3− 5 is used in practice, for degree based polynomial
basis.
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Least Squares

Sample points selection

The Fisher (or information) matrix has for entries

Fαβ =
1
M

M∑
i=1

Ψα(ξ(i))Ψβ(ξ(i)).

It shows that the conditioning of the problem depends on the sample set (its dimension
M and selected points) and the basis through the definition of A.

If the sample points ξ(i) are drawn at random from the distribution pξ , then

lim
M→∞

Fαβ =
〈
Ψα,Ψβ

〉
⇒ lim

M→∞
[F ] = Diag (

〈
Ψα,Ψβ

〉
),

so [F ] is invertible for sufficiently large M.
If the sampling does not follow pξ the LS problem can be modified to consider the
weighted sum of squared residuals:

{uα, α ∈ A} = arg min
{vα,α∈A}

M∑
i=1

ωi

∣∣∣∣∣∣y (i) −
∑
α∈A

vαΨα(ξ(i))

∣∣∣∣∣∣
2

.

This latter form has connections with the NISP method (yet to be introduced), for
appropriate selection of the sampling points and associated weights∗∗.

∗∗What would be appropriate?
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Making it robust

Design of Experiments

The convergence of limM→∞[F ] = Diag (
〈
Ψα,Ψβ

〉
) is however slow for a random

sampling (O(1/
√

M)). It suggests that other types of sampling strategies (e.g.
deterministic ones) can be more efficient.

Optimal Design of Experiments aims at optimizing the spectral properties of [F ] (or
Π), for a fixed sample set dimension M and set of basis functions {Ψα, α ∈ A}.
Classically, it is based on the optimization with respect to SM :

3.5 Least Squares Fit 67

Table 3.1 Classical
approaches for optimal design Name Objective Object

A-optimality minimize the trace (ZtZ)−1

D-optimality maximize determinant ZtZ

E-optimality maximize lower singular value ZtZ

G-optimality minimize largest diagonal term !

statistical theories underlying these sample set constructions assume model obser-
vations with random noise, a situation which is quite different from the framework
considered here.

3.5.3 Weighted Least Squares Problem

In [20, 23], algorithms were introduced based on ad hoc selection of minimiza-
tion points, consisting of tensored Gauss points, or sparse cubature nodes. Such
approaches could be motivated by the use of weighted sums of the squares of local
residuals. Consider for instance the weighted sum of squares of residuals:

Rw(ŝ) ≡
m∑

i=1

w(i)
(
s(i) − ŝ

(
ξ (i)

))2
, w(i) > 0. (3.50)

The solution of this weighted least squares problem is given by

P∑

l=0

ŝk

(
m∑

i=1

w(i)"l

(
ξ (i)

)
"k

(
ξ (i)

))

=
m∑

i=1

w(i)s(i)"k

(
ξ (i)

)
, (3.51)

or in matrix form

(
ZtWZ

)
ŝ = ZtW s, W =





w(1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 w(m)




. (3.52)

For weights satisfying

m∑

i=1

w(i)"l

(
ξ (i)

)
"k

(
ξ (i)

)
=

〈
"2

l

〉
δkl, 0 ≤ k, l ≤ P, (3.53)

(3.51) reduces to

ŝk

〈
"2

k

〉
=

m∑

i=1

w(i)s(i)"k

(
ξ (i)

)
. (3.54)

Such optimization problems are very hard and are usually solved using stochastic
tools: a large number of sample sets SM are generated, optimize by moving the points
individually until a local optimum is reached, and the best set is retained. This sample
set can then be reused since its optimality does not depend on U(ξ).
Pulkelsheim, F.: Optimal Design of Experiments. Classics in Applied Mathematics, vol. 50. SIAM,
Philadelphia (2006)
Hardin, R., Sloane, N.: A new approach to the construction of optimal designs. J. Stat. Plann.
Inference 37, 339-369 (1993)
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Making it robust

Over-fitting

Over-fitting occurs when a too low number of samples is used with respect to the
polynomial degree of the basis††, in particular in presence of noise in the
observed mapping.
The LS solution ÛA effectively reduces the residual,

LS (vα, α ∈ A) =
1
M

M∑
i=1

∣∣∣∣∣∣y (i) −
∑
α∈A

vαΨ
(i)
α

∣∣∣∣∣∣
2

but is far from the optimum of the L2-distance problem

E
[
|U − ÛA|2

]
>> min

V∈SA
E
[
|U − V |2

]
.

The empirical error LS(ÛA) is not a safe indicator of the approximation quality.

The later can be estimated using a second sample set: cross-validation.

Alternatively, over-fitting can be detected using resampling (bagging) technics,
such as the Leave-One-Out (LOO), where the stability of the approximation is
verified. If not, M must be increased, A reduced or the LS problem regularized.
Picard, R., Cook, D., Cross-Validation of Regression Models. Journal of the American
Statistical Association 79 (387): 575-583 (1994)
Devijver, P.A., Kittler, J., Pattern Recognition: A Statistical Approach. Prentice-Hall,
London, GB, (1982)

††Pretty much similar to aliasing error in spectral methods.



Non-Intrusive PC methods Least Squares & Minimization Methods Non-Intrusive Spectral Projection Sparse Grids Preconditioning

Making it robust

Regularization of LS problem

If only a low number M of sampling points are available, compared to |A| a
regularization of the LS problem may be necessary.

L2 Tikhonov regularization: the LS problem is completed by a regularization term:

u = arg min
v
‖[Z ]v − y‖2 + ‖[Γ]v‖2 ,

with now the regularized solution

u =
(

[Z ]T [Z ] + [Γ]T [Γ]
)−1

[Z ]T y .

Typical choice for the regularization matrix [Γ] is

[Γ] ∝ Diag (〈Ψα,Ψα)),

giving solution with lower 2nd moment.

Suitable regularization matrix can be defined a priori, for instance if one has
information regarding the decay rate of the spectrum of U(ξ).

Alternatively, [Γ] can be optimized (over a prescribed family) using a
cross-validation sample set.



Non-Intrusive PC methods Least Squares & Minimization Methods Non-Intrusive Spectral Projection Sparse Grids Preconditioning

Making it robust

Compressive Sensing - `1 minimization

If M < |A|, the LS problem is clearly underdetermined (there multiple solutions).

However, in many situations, U(ξ) has in fact a sparse representation in the basis
of SA‡‡, meaning that many of the coefficients ul in the expansion are negligible
or zero.

If the expansion of U(ξ) in SA is K -sparse, that is ‖u‖`0 = K , then the solution
can be computed even for K < M < |A|, provided the matrix [Z ] satisfy some
technical properties. It suggests to determined the vector of expansion
coefficients as the minimizer of the constrained optimization problem

u = arg min
v
‖v‖`0 s.t . ‖[Z ]v − y‖2 = 0.

Further, it can be shown that the above problem is equivalent for some γ > 0 to
the `1 minimization problem

u = arg min
v

{
‖[Z ]v − y‖2 + γ‖u‖`1

}
.

Several algorithms are available for the `1-minimization problems (LASSO, LARS
see http://www-stat.stanford.edu/~tibs/lasso.html, Basis-Pursuit, . . . )

‡‡Think of the expansion of an additive model in the basis forANo
∞ .

http://www-stat.stanford.edu/~tibs/lasso.html
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Orthogonal projection

The approximation
UA(ξ) =

∑
α∈A

uαΨα(ξ),

minimizing the L2-error,

ε2 = E
[∥∥∥U − UA

∥∥∥2

V

]
corresponds to the orthogonal projection of U ∈ V ⊗ L2(Ξ, pξ) onto V ⊗ SA:

E
[(

U − UA,V
)
V

]
= 0 ∀V ∈ V ⊗ SA.

Because V ∈ V ⊗ SA has for generic expansion V =
∑
α vαΨα, and {Ψα, α ∈ NN} is

an orthogonal basis, we immediately have the relations:
∀α ∈ A, v ∈ V:

E

∑
β∈A

(uβΨβ , vΨα)V

 =
∑
β∈A

(uβ , v)VE
[
ΨαΨβ

]
= (uβ , v)

〈
Ψβ ,Ψβ

〉
.

such that
uβ
〈
Ψβ ,Ψβ

〉
=
〈
U,Ψβ

〉
=

ˆ
Ξ

U(y)Ψβ(y)pξ(y)dy .
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Non-Intrusive Spectral Projection

The NISP method uses the relations

uα =
1

〈Ψα,Ψα〉
〈U,Ψα〉 =

1
〈Ψα,Ψα〉

ˆ
Ξ

U(y)Ψβ(y)pξ(y)dy ,

to estimate the expansion coefficients of U.

the constant 〈Ψα,Ψα〉 (norm of the polynomials) are known exactly.

the coefficients uα are independently computed.

its amounts to the computation of N-dimensional integrals in a product space:

ˆ
Ξ

U(y)Ψβ(y)pξ(y)dy =

ˆ
. . .

ˆ
U(y1, . . . , yN)Ψα(y1, . . . , yN)p1(y1) . . . pN(yN)dy1 . . . dyN.

Classically, the integrals are estimated by means of numerical quadrature or
sampling approaches.
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Random & Quasi-random quadratures

Monte-Carlo integration:

Estimate integrals from a random sample sets (MC and variants):

Iα =

ˆ
Ξ

U(ξ)Ψα(ξ)pξ(ξ)dξ ≈ Im
α =

1
m

m∑
i=1

U(ξ(i))Ψα(ξ(i)),

where {ξ(i), i = 1, . . . ,m} is a sample set drawn randomly (or pseudo-randomly) in Ξ
according to the density pξ .

Error estimation:

lim
m→∞

|Iα − Im
α | =

V [UΨα]√
m

.

Convergence rate independent of the regularity of the functional

Convergence rate independent of the of the dimensionality

Slow convergence rate
Improved sampling strategy
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Random & Quasi-random quadratures

Improved Monte-Carlo integration:

MC LHS QMC
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Deterministic quadratures

Deterministic Quadratures

The integrals can also be computed by means of deterministic quadratures involving
a set of Nq quadrature points ξi di and weights w (i):

ˆ
Ξ

U(ξ)Ψα(ξ) ≈
NQ∑
i=1

w (i)U(ξ(i))Ψα
(
ξ(i)
)
.

One dimensional quadratures rules

ˆ
f (x)dx ≈

nq∑
i=1

f (xi )wi ,

such as mid-point rule, Simpson rules, Gauss’ quadratures, . . . , can be tensorized.
For instance, in the case of the same measure along the N-dimension:

ˆ
. . .

ˆ
f (x1, . . . , xN)dx1 . . . dxN ≈

nq∑
i1=1

· · ·
nq∑

iN=1

f (xi1 , . . . , xiN )wi1 × · · · × wiN ,

requiring a total of nN
q function evaluations.

Tensorization can use a different number of quadrature points along the different
dimensions.
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Deterministic quadratures

Multi-dimensional quadrature

Approximate integrals by N-dimensional quadratures:
Owing to the product structure of Ξ the quadrature points ξ(i) and weights w (i) can be
obtained by

full tensorization of n points 1-D quadrature (i.e. Gauss):

NQ = nN

partial tensorization of nested 1-D quadrature formula (Féjer, Clenshaw-Curtis)
using Smolyak formula: [Smolyak, 63]

NQ << nN

The partial tensorization results in so-called Sparse-Grid cubature formula, that can be
constructed adaptively to the integrants (anisotropic formulas) in order to account for
variable behaviors along the stochastic directions. [Gerstner and Griebel, 2003]

Important development of sparse-grid methods
Anisotropy and adaptivity

Also (sparse grid) collocation methods (N-dimensional interpolation) [Mathelin
and Hussaini, 2003], [Nobile et al, 2008]
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Recap.

We want to construct a functional approximation of a model-output U, where the model
involves random parameters ξ

ξ ∈ Ξ ⊆ RN, with probability density function pξ.

The approximation is sought as

U(ξ) ≈ Û(ξ) =
∑
β∈B

uβΨβ(ξ),

with B a multi-index set and { Ψβ} CONS.

You have seen different types of non-intrusive methods:

Non-Intrusive Spectral Projection: compute {sβ ,β ∈ B} by numerical
quadrature, exploiting orthogonality of the PC Ψβ (orthogonal projection on
span{Ψβ})
Least-Squares type: compute {β,β ∈ B} by solving an optimization problem
based on a set of observation points and possibly regularization techniques

Collocation: use a set of model-output observations to construct an interpolation

Observe that the two first differ from the latter by the a priori / implicit selection of the
approximation space.
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Comments

Non-intrusive methods are very attractive by the fact they reuse code and rely on
deterministic computations. However their computational complexity -measured
as the number of deterministic simulations needed- quickly grows with the dimension N
of the parameter space (and with Card(B)).

This is particularly critical when one relies on straightforward tensorization of
one-dimensional objects (quadrature or interpolation rules) to construct
N-dimensional ones: complexity is then in O(CN).

Sparse grid methods aim at reducing the complexity by relying on smarter
tensorization strategies.

Hint: total degree truncation of the PC basis, instead of partial degree truncation, for
the PC basis SP = span{Ψβ ,β ∈ B}:

Card

{
β ∈ NN,

N∑
i=1

βi ≤ No

}
� Card

{
β ∈ NN, β1≤i≤N ≤ No

}
.

Question: how to reuse the idea of sparse tensorization for quadrature or
interpolation rules?
(Answer: Smolyak formula.)
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Smolyak Formula

Smolyak Formula
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Smolyak Formula

Sparse quadrature

We consider here the cubature problem for NISP where we need to approximate
N-dimensional integrals of type

IN(f ) =

ˆ 1

0
. . .

ˆ 1

0
f (x1, . . . , xN)dx1 . . . dxN.

This situation corresponds to Ξ = [0, 1]N and

pξ(x) =

{
1, x ∈ Ξ

0, otherwise
.

Ideas and concepts of sparse grid immediately extend to collocation and integration,
and to more general situations having product structures,

RN ⊇ Ξ := Ξ1 × · · · × ΞN, pξ(x1, . . . , xN) := pξ1 (x1)× · · · × pξN (xN),

using ad-hoc one-dimensional quadrature/interpolation rules along each direction
1 ≤ j ≤ N.
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Smolyak Formula

Sparse quadrature

Consider the sequence of nested one-dimensional quadrature formulas for
l = 1, 2, . . .

I1(f ) =

ˆ 1

0
f (x)dx ≈ I(l)(f ) =

Q(l)∑
q=1

w (l)
q f (x (l)

q ),

such that
{

x (i)
q , q = 1, . . .Q(i)

}
⊂
{

x (j)
q , q = 1, . . .Q(j)

}
for 1 ≤ i < j .3.3 Deterministic Integration Approach for NISP 55

Fig. 3.3 Nodes of the Clenshaw-Curtis (left) and Fejèr (right) rules for levels 1 ≤ l ≤ 6

3.3.2 Tensor Product Formulas

We now return to the N-dimensional numerical integration in (3.11). From the 1D
quadrature formula, say Q

(1)
l , N-dimensional cubature rules can be constructed by

tensorization. For instance, if the random parameters are identically distributed, such
that the same quadrature Q

(1)
l can be used along all directions, we obtain

If ≈ Q(N)f =
(
Q

(1)
l ⊗ · · · ⊗ Q

(1)
l

)
f. (3.23)

The previous definition can be extended to situations where the independent random
parameters have different distributions, simply by using different quadratures rules
along the different integration directions. Different levels in each direction can also
be used. The latter case results in formulas of the form

If ≈
(
Q

(1)
l1

⊗ · · · ⊗ Q
(1)
lN

)
f. (3.24)

It is important to recognize that the tensor product results in summations over all
possible combinations of the indices:

(
Q

(1)
l1

⊗ · · · ⊗ Q
(1)
lN

)
f =

nl1∑

i1=1

· · ·
nlN∑

iN=1

f
(
ξ

(i1)
1 , . . . , ξ

(iN)
N

)
w

(i1)
l1

· · ·w(iN)
lN

. (3.25)

The telescopic sum can be recast to a unique sum as in (3.11), with appropriate
indexation of the cubature points ξ (i) and weights W(i). Product formulas are regular
grids of integration points, as illustrated in Fig. 3.4 for the Fejèr quadrature with
N = 2. We see that the integrand f has to be evaluated at a set of points lying on a
structured grid in the integration domain ".

We further observe that for the product formulas in (3.23), the total number NQ
of cubature points is

NQ = (nl)
N , (3.26)

Owing to the nested nature, increasing l to l + 1 introduces additional points and
changes the weights associated to the older ones.
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Smolyak Formula

Sparse quadrature

Consider the sequence of nested one-dimensional quadrature formulas for
l = 1, 2, . . .

I1(f ) =

ˆ 1

0
f (x)dx ≈ I(l)(f ) =

Q(l)∑
q=1

w (l)
q f (x (l)

q ),

such that
{

x (i)
q , q = 1, . . .Q(i)

}
⊂
{

x (j)
q , q = 1, . . .Q(j)

}
for 1 ≤ i < j .

The fully tensorized N-dimensional quadrature formula at level l has for expression

IN(f ) ≈ IF (l)
N (f ) :=

(
I(l) ⊗ · · · ⊗ I(l)

)
(f )

=

Q(l)∑
q1=1

· · ·
Q(l)∑

qN=1

(
w (l)

q1
× · · · × w (l)

qN

)
f (x (l)

q1
, . . . , x (l)

qN
).

This formula has QN
F (l) = Q(l)N points with positive weights w (l)

q1
× · · · ×w (l)

qN
provided

the one-dimensional sequence has positive weights w (l)
q > 0!
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Smolyak Formula

Sparse quadrature

Back to the nested one-dimensional formulas

Denote ∆(l)f the difference formula between levels l − 1 and l ,

∆(l)f :=
(

I(l) − I(l−1)
)

(f ) =

Q(l)∑
q=1

∆w (l)
q f (x (l)

q ), ∆(0)f := 0.

54 3 Non-intrusive Methods

Fig. 3.2 Nodes of the
trapezoidal rule at levels
1 ≤ l ≤ 6

the corresponding quadrature for f is expressed as:

Q
(1)
l f =

nl∑

i=1

f
(
ξ

(i)
l

)
w

(i)
l , (3.21)

with ξ
(i)
l ≡ F−1(x

(i)
l ) and w

(i)
l = w̃

(i)
l . We now provide examples of classical nested

quadrature formulas.

• Trapezoidal rule. A simple nested quadrature formula is the trapezoidal rule for
integration on [0,1] with unit weight. It corresponds to

nl = 2l − 1, x
(i)
l = i

nl + 1
,

(3.22)

Q̃
(1)
l g = 1

nl + 1



3
2

(
g

(
x

(1)
l

)
+ g

(
x

(nl)
l

))
+

nl−1∑

il=2

g
(
x

(i)
l

)


 .

Figure 3.2 shows the modes at levels 1 ≥ l ≥ 6 of the nested trapezoidal rule. It is
seen that the nodes at given level are equidistant, contrary to the Gauss points. In
addition, no node is on the boundary of the integration domain, a characteristic
which makes the trapezoidal rule suited for NISP in case of unbounded random
parameters. However, the trapezoidal rule has a slow convergence rate with the
number of nodes involved in the integration, due to the underlying piecewise lin-
ear approximation of g(x). Higher order Newton-Cotes composite formulas [220]
can be used to improve the convergence rate with the number of nodes.

• Clenshaw-Curtis [36] and Fejèr rules. These quadratures approximates Ĩ(1)g

by the exact integral of the Chebychev polynomial expansion of g. The nodes
of these quadratures are the maximum of the Chebychev polynomials, including
(Clenshaw-Curtis) or excluding (Fejèr) the two boundary nodes. Efficient strate-
gies can be used to compute the nodes and weights for a given level l [81, 82, 173,
233]. Again, using nl = (2l ) ± 1 results in nested sets of nodes. The Clenshaw-
Curtis and Fejèr quadrature nodes are plotted in Fig. 3.3 for 1 ≤ l ≤ 6.



Non-Intrusive PC methods Least Squares & Minimization Methods Non-Intrusive Spectral Projection Sparse Grids Preconditioning

Smolyak Formula

Sparse quadrature

Back to the nested one-dimensional formulas

Denote ∆(l)f the difference formula between levels l − 1 and l ,

∆(l)f :=
(

I(l) − I(l−1)
)

(f ) =

Q(l)∑
q=1

∆w (l)
q f (x (l)

q ), ∆(0)f := 0.

Clearly, the one-dimensional quadrature formula at level l is expressed as

I(l)(f ) =
l∑

i=1

∆(i)(f ).

Observe: for nested formulas that exactly integrate constants,

Q(l)∑
q=1

∆w (l)
q =

{
1, l = 1
0, l > 1

⇒ positive weights w (l)
q do not imply ∆w (l)

q ≥ 0 for l > 1.
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Smolyak Formula

Differences Formula

For the construction of sparse N-dimensional cubatures, we introduce the multi-index
α = (α1, . . . , αN) ∈ (N∗)N, and use the norms

|α|`1 =
N∑

i=1

|αi |, |α|`∞ = max
1≤i≤N

|αi |.

The fully tensorized formula can be recast as

IF (l)
N (f ) :=

(
I(l) ⊗ · · · ⊗ I(l)

)
(f ) =

∑
α∈A∞(l)

(
∆(α1) ⊗ · · · ⊗∆(αN)

)
(f ),

where the summation is over the multi-index set

A∞(l) :=
{
α ∈ (N∗)N, |α|`∞ ≤ l

}
,

or explicitly,

(
∆(α1) ⊗ · · · ⊗∆(αN)

)
(f ) =

Q(α1)∑
q1=1

· · ·
Q(αN)∑
qN=1

(
∆wα1

q1
× · · · ×∆wαN

qN

)
f (xα1

q1
, . . . , xαN

qN
).
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Smolyak Formula

Summation of tensored differences to FT formula56 3 Non-intrusive Methods

Fig. 3.4 Illustration of cubature rules constructed by products of nested Fejèr quadratures: plotted
are the 2D grids of integration nodes from (3.25) for different values of the levels l1 and l2 along
the integration dimensions. Grids on the diagonal plots correspond to the definition (3.23) of the
cubature

while for (3.25) it is NQ = ∏
i nli . In both cases, NQ exhibits an exponential increase

with N. This result, known as the curse of dimensionality, shows that even if optimal
quadrature formulas are used (Gauss type), the tensored form for cubature formula
can be practical only when expanding low-dimensional model outputs needing low
to moderate order stochastic basis functions, in which case a low level formula is
sufficient.

3.4 Sparse Grid Cubatures for NISP

The sparse tensorization of quadrature formulas constitutes an efficient way to tem-
per the curse of dimensionality of cubature rules. It is first observed that cubatures
resulting from full tensorization are non-optimal in the sense that their degree of
exactness could actually be achieved using a lower number of nodes. However, no
general method is available to construct optimal cubature rules for arbitrary number
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Smolyak Formula

The Smolyak formula (1963) is constructed by defining a new set of multi-indices for
the summation of tensored difference formulas; specifically the Smolyak formula at
level l is given by

IS(l)
N (f ) =

∑
α∈AS (l)

(
∆(α1) ⊗ · · · ⊗∆(αN)

)
(f ),

where the summation is now over the multi-index set

AS(l) :=
{
α ∈ (N∗)N, |α|`1 ≤ l + N − 1

}
⊂ A∞(l).

This is essentially the idea of the total order truncation -as opposed to the partial order
truncation- for polynomial bases, but here applied to the partial tensorization of
one-dimensional quadrature formulas.
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Smolyak Formula

Comparison of FT and Smolyak cubature rules

56 3 Non-intrusive Methods

Fig. 3.4 Illustration of cubature rules constructed by products of nested Fejèr quadratures: plotted
are the 2D grids of integration nodes from (3.25) for different values of the levels l1 and l2 along
the integration dimensions. Grids on the diagonal plots correspond to the definition (3.23) of the
cubature

while for (3.25) it is NQ = ∏
i nli . In both cases, NQ exhibits an exponential increase

with N. This result, known as the curse of dimensionality, shows that even if optimal
quadrature formulas are used (Gauss type), the tensored form for cubature formula
can be practical only when expanding low-dimensional model outputs needing low
to moderate order stochastic basis functions, in which case a low level formula is
sufficient.

3.4 Sparse Grid Cubatures for NISP

The sparse tensorization of quadrature formulas constitutes an efficient way to tem-
per the curse of dimensionality of cubature rules. It is first observed that cubatures
resulting from full tensorization are non-optimal in the sense that their degree of
exactness could actually be achieved using a lower number of nodes. However, no
general method is available to construct optimal cubature rules for arbitrary number

58 3 Non-intrusive Methods

Fig. 3.5 Comparison of product and sparse tensorizations in the construction of cubature formulas
of level l = 4, for the numerical integration in N = 2 dimensions. The left plot shows the indexes of
the summation of difference formulas !

(N)
k for the product form in (3.30) (squares) and Smolyak’s

algorithm in (3.29) (triangle). The resulting grids for the Fejèr nested quadrature rule are shown in
the middle (product form) and right (sparse grid) plots

Fig. 3.6 Illustration of the sparse grid cubature nodes in N = 2 and N = 3 dimensions for the
Smolyak’s method and nested Fejèr quadrature formulas. Different levels l are considered as indi-
cated

It is seen that the sparse cubature involves a significantly reduced number of
points. In higher dimension, the ratio of number of nodes for product and sparse cu-
bature increases. More information concerning the construction of sparse cubature
formulas, their properties and discussion on efficient implementation strategies can
be found in [83, 84, 173, 186, 187]. We provide in Fig. 3.6 examples of sparse grids
based on the nested Fejèr quadrature, in N = 2 and 3 dimensions and different levels
l in the Smolyak construction.
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Smolyak Formula

Comparison of FT and Smolyak cubature rules

58 3 Non-intrusive Methods

Fig. 3.5 Comparison of product and sparse tensorizations in the construction of cubature formulas
of level l = 4, for the numerical integration in N = 2 dimensions. The left plot shows the indexes of
the summation of difference formulas !

(N)
k for the product form in (3.30) (squares) and Smolyak’s

algorithm in (3.29) (triangle). The resulting grids for the Fejèr nested quadrature rule are shown in
the middle (product form) and right (sparse grid) plots

Fig. 3.6 Illustration of the sparse grid cubature nodes in N = 2 and N = 3 dimensions for the
Smolyak’s method and nested Fejèr quadrature formulas. Different levels l are considered as indi-
cated

It is seen that the sparse cubature involves a significantly reduced number of
points. In higher dimension, the ratio of number of nodes for product and sparse cu-
bature increases. More information concerning the construction of sparse cubature
formulas, their properties and discussion on efficient implementation strategies can
be found in [83, 84, 173, 186, 187]. We provide in Fig. 3.6 examples of sparse grids
based on the nested Fejèr quadrature, in N = 2 and 3 dimensions and different levels
l in the Smolyak construction.
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Smolyak Formula

Sparse grids in 2 and 3-D

58 3 Non-intrusive Methods

Fig. 3.5 Comparison of product and sparse tensorizations in the construction of cubature formulas
of level l = 4, for the numerical integration in N = 2 dimensions. The left plot shows the indexes of
the summation of difference formulas !

(N)
k for the product form in (3.30) (squares) and Smolyak’s

algorithm in (3.29) (triangle). The resulting grids for the Fejèr nested quadrature rule are shown in
the middle (product form) and right (sparse grid) plots

Fig. 3.6 Illustration of the sparse grid cubature nodes in N = 2 and N = 3 dimensions for the
Smolyak’s method and nested Fejèr quadrature formulas. Different levels l are considered as indi-
cated

It is seen that the sparse cubature involves a significantly reduced number of
points. In higher dimension, the ratio of number of nodes for product and sparse cu-
bature increases. More information concerning the construction of sparse cubature
formulas, their properties and discussion on efficient implementation strategies can
be found in [83, 84, 173, 186, 187]. We provide in Fig. 3.6 examples of sparse grids
based on the nested Fejèr quadrature, in N = 2 and 3 dimensions and different levels
l in the Smolyak construction.
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Smolyak Formula

Number of points in Sparse grids (Nested Clenshaw-Curtis quadrature rule)

3.4 Sparse Grid Cubatures for NISP 59

Fig. 3.7 Minimum number
of nodes Nmin for the
Smolyak’s sparse cubature for
exact integration of
polynomial integrands with
degree ≤ p over hypercubes
with uniform weight (nested
Clenshaw-Curtis rules and
Smolyak’s sparse
tensorization)

In Fig. 3.7, we plot the minimal number of nodes for the exact integration of
polynomial with degree ≤ p as a function of the number N of dimensions. Shown
is the case of a constant weight and sparse grid based on Clenshaw-Curtis rules. For
N = 12, exact integration up to the sixth order requires a few thousand of cubature
nodes (and consequently as many individual deterministic model solutions); this is
significantly less than 312 (roughly half a million nodes!) the number of resolutions
yielding the same accuracy for the product Gauss formula. Application of sparse
grid methods for NISP is highly attractive, due to its reduced computational com-
plexity, compared to product form cubature formulas and Monte Carlo sampling
strategies, for moderate number of random parameters. The first use of sparse grid
techniques was proposed in [109, 110], for the projection of elliptic equation solu-
tions with random coefficients. The Smolyak sparse tensorization was used, relying
on a package written by Knut Petras [186, 187] for the computation of the integra-
tion nodes and weights. However, although drastically improving the computational
complexity of NISP, it was soon acknowledged that it remains too expensive to be
applied for numerically demanding deterministic models and/or stochastic problems
involving a larger number of random variables. This observation sets the starting
point of researches toward adaptive sparse grid techniques.

3.4.2 Adaptive Sparse Grids

The definition of the multi-index set for the construction in (3.29) can be modified
to yield more general sparse grid cubatures. The general form is

Q
(N)
l f =

∑

l∈I(l)

(
!

(1)
l1

⊗ · · · ⊗ !
(1)
lN

)
f, (3.31)

where the multi-index set I(l) is function of the level l. The Smolyak’s construction
corresponds to the definition

I(l) =
{

l ∈ NN :
N∑

i=1

li ≤ l + N − 1

}

, (3.32)
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Smolyak Formula

Comments & Remarks

Observe: the support points of the tensored difference formula associated to the
multi-index α are a subset of those associated to β ≥ α (that is αi ≤ βi for
i = 1, . . . ,N), owing to the nested nature of the one-dimensional formulas.

In practice, given l > 1 the Smolyak formula is recast as a weighted-sum,

IS(l)
N (f ) =

QN
S (l)∑

q=1

wS(l),N
q f (xS(l),N

q ).

increasing level l introduces additional points and change the weights

Fast algorithm for the computation of points and weights are mandatory when
N > 10

QN
S (l)� QN

F (l) as N ↑
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Smolyak Formula

Comments & Remarks

The sparse tensorization tempers the curse of dimensionality
The Smolyak cubature is less accurate than the fully-tensored formula (for the
same level)

Question: what’s the polynomial space ΠN for which the Smolyak formula is
exact?

The Smolyak cubature does not define a discrete inner product. Why ?

What about collocation methods?

Regarding Non-Instrusive Spectral Projection

Use the same sparse rule for all integrands (U(ξ)Ψβ(ξ)), β ∈ B: Direct NISP

Determine B such that ∀β,β′ ∈ B the cubature exactly integrates (ΨβΨβ′ ):
internal-aliasing free NISP

Alternatively, consider differences formulas for the Fully-Tensored NISP projection
at different level l , resulting in the use of F-T quadratures depending on β.
Internal aliasing-free while allowing for larger set B. Pseudo-Spectral NISP
[Marzouk, 2013], [Constantine, 2013]

External aliasing remains!
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Adaptive Sparse Grid
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Adaptive Sparse Grid

Generalization of Smolyak formula

One can consider general classes of cubature formulas through the generic expression

IAN (f ) =
∑
α∈A

(
∆(α1) ⊗ · · · ⊗∆(αN)

)
(f ).

This calls for a definition of the multi-index set A.

Ideas?
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Adaptive Sparse Grid

Generalization of Smolyak formula

IAN (f ) =
∑
α∈A

(
∆(α1) ⊗ · · · ⊗∆(αN)

)
(f )

`ρ-(quasi)norm: hyperbolic cross product

|α|`ρ :=

(
N∑

i=1

|αi − 1|ρ
)1/ρ

, A(ρ) :=
{
α ∈ (N∗)N, |α|`ρ < l

}
, ρ > 0.

α 2

α1

ρ = 2.0

α 2

α1

ρ = 1.0
α 2

α1

ρ = 0.75

α 2

α1

ρ = 0.5

α 2

α1

ρ = 0.35

This family corresponds to isotropic cubatures.
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Generalization of Smolyak formula

IAN (f ) =
∑
α∈A

(
∆(α1) ⊗ · · · ⊗∆(αN)

)
(f )

Weighted `1-norms: dimension adaptivity / anisotropic rules
Let W1≤i≤N > 0 be directional weights:

|α|`1(w ) :=
N∑

i=1

Wi |αi − 1|, A = A(w ,C) :=
{
α ∈ (N∗)N, |α|`1(w ) < C

}
.

3.4 Sparse Grid Cubatures for NISP 61

Fig. 3.8 Example of two-dimensional cubatures constructed with the dimension-adaptive strategy
using a1 = 1.5 (left) and a1 = 0.6 (right) and a2 = 1 + (1 − a1)/ l, l = 6. Plotted are the respective
multi-index sets (top row, see (3.34)) and the corresponding sparse grids (bottom row, Fejèr nested
nodes)

the telescope sum expansion in terms of difference rules, see (3.31), when defin-
ing a sparse grid cubature. Examples of admissible and non-admissible multi-index
sets are shown in Fig. 3.9 for the case of N = 2. The adaptive sparse grid method
requires that the progressive enrichment of the multi-index set maintains the ad-
missibility. In addition, the enrichment should reduce the integration error in the
most efficient way. To this end, an indicator is used to determine which multi-
index should be added to I . Following [84], we denote gl the error indicator as-
sociated to a given multi-index l. The indicator gl combines information from the
associated difference term, !

(N)
l f , with the computational complexity involved

in its estimation. The latter is measured by nl defined as the number of cuba-
ture nodes in the evaluation of !

(N)
l f . A convenient form for gl was proposed

in [84]:

gl ≡ max

{

α

∣∣∣∣∣
!

(N)
l f

!
(N)
1 f

∣∣∣∣∣ , (1 − α)
n1

nl

}

, (3.36)

where 0 ≤ α ≤ 1 weights the difference contribution and computational cost.
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Admissible multi-index sets

What is the constraint on the structure of the multi-index set A? Why?

Admissible sets: A is said admissible if all α ∈ A has predecessors in all the N
directions:

∀α ∈ A, αj > 1⇒ α− ej ∈ A, j = 1, . . . ,N,

where ej is the unit vector in direction j ,

(ej )i =

{
1, i = j
0, i 6= j

.

62 3 Non-intrusive Methods

Fig. 3.9 Examples of admissible and non-admissible multi-index sets in two dimensions

With this indicator, the enrichment of I can proceed. Assume that at a given step
of the adaptation we have constructed an admissible multi-index set I , and define
for l ∈ I its forward neighborhood Fl as

Fl ≡ {l + ej ,1 ≤ j ≤ N}. (3.37)

The next multi-index to be included in I , denoted k, is to be selected such that gk
is the largest and

k /∈ I, (a)

k ∈
⋃

l∈I
Fl, (b)

I ∪ {k} is admissible. (c)

These conditions state that k should be a new multi-index (a), taken in the forward
neighborhood of I (b), whose inclusion leaves I admissible (c).

The procedure is most efficiently implemented considering two subsets O and A.
The set O contains the “old” multi-indexes which need not be tested anymore, while
A contains those who are candidates for inclusion in I . The set O is initialized to {1}
and A to F1. We then select the multi-index in A, say l, having the highest indicator.
The multi-index l is removed form A and added to O; A is then completed by the
multi-indexes in the forward neighborhood Fl that maintain I = O ∪ A admissible,
and the error indicators gk∈Fl of the new multi-indexes in A are computed. The
procedure is repeated as long as the global error indicator η, defined as

η ≡
∑

l∈A
gl, (3.38)

is greater than a prescribed error tolerance ε. The algorithm can be summarized as
follows:

Initialization:

set O = {1}
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Admissible multi-index sets

What is the constraint on the structure of the multi-index set A? Why?

Admissible sets: A is said admissible if all α ∈ A has predecessors in all the N
directions:

∀α ∈ A, αj > 1⇒ α− ej ∈ A, j = 1, . . . ,N,

where ej is the unit vector in direction j ,

(ej )i =

{
1, i = j
0, i 6= j

.
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Forward neighborhood and candidate set

Given a multi-index α, we define its forward neighborhood as the multi-index set

F(α) =
{
α + ej , j = 1, . . . ,N

}
.

Given an admissible multi-index set A, we define its admissible forward multi-index
set C as

C(A) :=
{
α ∈ (N∗)N,α /∈ A and A ∪ {α} admissible

}
.

Clearly,
∀α ∈ C(A), ∃β ∈ A such that α ∈ F(β).

Adaptive strategy:
The multi-index set of the adapted cubature for the approximation of IN (f ) is
constructed by building a sequence of admissible sets A(0) → A(1) → A(2) . . . , such
that

A(k+1) = A(k) ∪αk , αk ∈ C(A(k)).

In words, given A(k), a new tensorization is added (one at a time) that leaves the
resulting set admissible.

How to pick αk ∈ C(A(k)) ?
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Error indicator

For a multi-index α ∈ (N∗)N, we define the associated excess as

e(α) =
∣∣(∆α1 ⊗ · · · ⊗∆αN

)
(f )
∣∣.

To enrich A(k), we should choose αk ∈ C(A(k)) corresponding to the largest excess
eα,

αk = arg max
α∈C(A(k))

∣∣(∆α1 ⊗ · · · ⊗∆αN
)
(f )
∣∣.

However, the objective of the adaptation is to reduce the error for the least possible
number of function evaluations, so we also want to balance the excess with
computational complexity of the new tensorization. Gerstner and Griebel proposed
to pick αk from

αk = arg max
α∈C(A(k))

max ((1− ρ)e(α),C/NQ(α)) , C ∈ [0, 1],

where NQ(α) =
∏

i Nαi
Q is the number of points in the tensored difference formula.

for C = 0, the adaptation only considers the excess,

for C = 1, the adaptation only considers the complexity.

A stopping criteria ?
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Fig. 3.10 Illustration of the adaptive sparse grid procedure for N = 2. The plots on the top row
show the evolution of the multi-index set I , distinguishing the sets of old multi-indexes O (light
gray squares) and active multi-indexes A (dark gray squares). The corresponding sparse grids are
plotted in the bottom row

3.5.1 Least Squares Minimization Problem

The expansion coefficients in (3.39) can be defined as the solution of an optimization
problem for the sum of the squares of the residuals R,

R(ŝ) ≡
m∑

i=1

(
r(i)

)2
=

m∑

i=1

(
s(i) − ŝ

(
ξ (i)

))2
, (3.40)

where the residuals r(i) are simply the distances between the observations and the
predictions of the surrogate model:

r(i) ≡ s(i) − ŝ
(
ξ (i)

)
. (3.41)

The coefficients ŝk are then sought to minimize R.
Expressing the stationarity of R with regard to the expansion coefficients ŝk , i.e.

∂R/∂ ŝk , we end up with a set of (P + 1) linear equations:

∂R

∂ ŝk
= −2

m∑

i=1

(
s(i) − ŝ

(
ξ (i)

))
"k

(
ξ (i)

)
= 0, 0 ≤ k ≤ P. (3.42)
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For NISP, one uses a cubature formula

IAN (f ) =
∑
α∈A

(
∆(α1) ⊗ · · · ⊗∆(αN)

)
(f ),

to compute a series of integrals with f = fβ(ξ) = S(ξ)Ψβ(ξ) and β ∈ BPC .

A minimal compatibility relation between A and B is that they satisfy the discrete
orthogonality relation for the PC, that is

IAN (ΨβΨ′β) = δββ′
〈

Ψβ ,Ψβ

〉
, ∀β,β′ ∈ B.

Given B one can determine the minimal admissible set A from the exactness
properties of the one-dimensional quadratures.

Alternatively, given A, one can determine B as the largest admissible set of PC
tensorizations that satisfies the discrete orthogonality.

Recall: the model-output S is usually not polynomial. Be conservative!

What about the case of multiple model-outputs ?
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Preconditioning

Non-Intrusive projections are appealing for complex & non-linear problems
BUT non-intrusive does not mean that U(ξ) is easily approximated.

Difficulties remains for

non-smooth mapping ξ 7→ U(ξ)

but also for enforcement of positivity constraints, presence of plateau,
saturation behavior, highly stretched dependences.

Preconditioning can help in these situations, introducing an inversible transformation
Φ:

Y (ξ) = Φ(U(ξ))→ U(ξ) ≈ Φ−1(
∑
α∈A

yαΦα(ξ)).

Transformation must be chosen so Y (ξ) has a tight spectrum, allowing the use of a low
degree PC expansion.
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Preconditioning

Preconditioning can help in these situations, introducing an inversible transformation
Φ:

Y (ξ) = Φ(U(ξ))→ U(ξ) ≈ Φ−1(
∑
α∈A

yαΦα(ξ)).

Transformation must be chosen so Y (ξ) has a tight spectrum, allowing the use of a low
degree PC expansion.
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Application to hydrogen oxydation model
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Figure 1: Concentration versus time selected realizations in S. Shown are curves for O2, H2O,
HO2, and H, as indicated. fig:realizations

mations; the actual projection and the e�ectiveness of the resulting preconditioning are extensively
studied in the following section. As discussed previously in section 3, we take advantage of the
non-intrusive character of NISP, which allows us to freely define a di�erent transformation suited to
each of the model variables (species concentrations). This is particularly important as we have just
seen that di�erent species experience di�erent types of dynamics, some having simple monotonic
behavior, with variability in the characteristic time scale only, others presenting more complex evo-
lution that prevents trivial scaling laws. However, we retain transformations of the type discussed
in section 3.1, which incorporate only an amplitude scaling factor ĉi and a time scaling factor t̂i.

We base the selection of scaling factors for the model variables on their observed behavior. In
fact, in view of the plots in Figure 1, we have set the following types of scaling laws. Regarding
amplitude scaling, we distinguish the case of the species having monotonic evolutions from the case
of species with non-monotonic behavior. In the former case (monotonic), we define the amplitude
scaling factor either as the initial concentration (monotonic decay) or as the equilibrium value
(monotonic increase). Note that the asymptotic equilibrium value is known a priori as it is function
of the initial concentrations and equilibrium constants, which are all deterministic. For the case
of non-monotonic evolutions, the amplitude scaling factor is defined as the maximal concentration
achieved over time. Concerning the time scaling factors t̂i, they are defined as the time at which
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Figure 2: Scaled variables versus stretched time. Individual curves are obtained by transforming
the original realizations shown in Figure 1. fig:scaled
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Preconditioning can help in these situations, introducing an inversible transformation
Φ:

Y (ξ) = Φ(U(ξ))→ U(ξ) ≈ Φ−1(
∑
α∈A

yαΦα(ξ)).

Transformation must be chosen so Y (ξ) has a tight spectrum, allowing the use of a low
degree PC expansion.
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6.3 Convergence in distribution

To better appreciate the improvement brought by the preconditioning, we provide in Figure 14 a
comparison of the probability density functions of [H] at time t = 8, obtained with preconditioned
and direct NISP with p = 1, 2 and 3. The left plot shows the PDFs of the recovered variable
for the case preconditioned NISP, based on Algorithm 2 with PC expansion of the logarithm of
the scaled variable using Option 2. The right plot shows the PDFs for the case of the direct NISP
projection, together a PDF obtained with direct Monte Carlo sampling that is used as surrogate for
the “exact” PDF. All curves are generated using the same number of samples and Kernel Density
Estimation (KDE) procedure [?].

Focusing first on the case of the preconditioned NISP, we remark that the PDFs for p = 2 and
p = 3 are essentially the same, while for p = 1 significant di�erences are observed. In particular,
with p = 1 the maximum of the density seems under-estimated and the plateau for [H] ⇡ 0 is
not evident. Comparison with the exact PDF shown in the right plot (curve labeled Monte Carlo)
highlights the quality of the preconditioned projections at p = 2 and 3. In fact, even a second order
expansion provides a reasonably accurate approximation.

The fast convergence of preconditioned NISP is to be contrasted with the results of direct pro-
jection (i.e., using the identity transformation), which for the three PC orders tested remain far o�
the exact (Monte Carlo) result. Comparing preconditioned and direct NISP, with p = 1 we observe
that while both PDFs significantly depart from the exact PDF, preconditioned NISP is already
providing a fairly better approximation. Increasing the order to p = 2 and 3, the convergence of
the direct projection appears much slower in the case of the direct projection. In particular, at
p = 3 the direct projection is still unable to capture the plateau at the lowest concentration values,
while it also su�ers from long tails that extend into a range of negative concentrations. Thus, the
present observations clearly highlight some of the advantages of preconditioning.
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Figure 14: PDFs of [H] at time t = 8. Left: preconditioned NISP at di�erent PC orders as
indicated. Right: direct NISP method with the same orders. Also shown on the right is the PDF
of [H] generated with Monte-Carlo sampling. fig:convH
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Questions?
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240-243, (1963).
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T. Gerstner and M. Griebel, Numerical integration using sparse grids. Numerical Algorithms, 18, 209-232, (1998).

K. Petras, On the Smolyak cubature error for analytic functions. Adv. Comput. Math., 12, 71-93, (2000).

K. Petras, Fast calculation in the Smolyak algorithm. Numerical Algorithms, 26, 93-109, (2001).

F. Nobile, R. Tempone and C. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations
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A. Keese and H. Matthies, Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations.
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