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Consider the output of a model parametrized by a (finite) set of independent random
variables € = (&1 ... &n),

ueg)ev as.

The solution belongs almost surely to an Hilbert space V', equipped with an inner
product (-, -)y and associated norm

1Ully = (U, U)}/%.
We assume that U(&) is a second order random quantity in the sense that
(U, UK = 1U©)llv € La(Z, pe),

and we write U € Ly(V, E,pg), where = is the domain of ¢ and Pg the associated
density:

N
pe(x) = | | pi(x), v | pe(x)dx =1.
- fisen. [ Lo

UeLm.Zpe) & [+ [ IU)Ipe(x)dx < oc.

RN Ge



The model output U € Ly(V, E,pg) in fact belongs to the tensored space
Ve L(=, pg), and so has a separable representation

1=0

oo
Lo(V,Z,pg) € U(€) = > _®i(&)u, € Lo(S,pg), uy eV, 1=0,1,2
The PC expansion of U rely on

@ the introduction of an orthonormal polynomial basis of L, (=, p,;-),

span {\Uo7 Wy, Wy, ... } = Lg(E,pE),

Wiw) = [+ [ 0w (0pe (0dx = 8 (w1, w1,

@ such that U as for expression in the PC basis

1=0
where the equality stands in the Ly-sense.

U(ﬁ)ZZW/(E)U/, uev, l:0717
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Exploiting the product structure of the density, the PC functions W, can be
constructed by tensorization of 1-d families of univariate orthogonal polynomial.
For instance, let {4}, v], 4}, ...} be the family of orthogonal polynomials for the
density p;, where 1/)]5 € Mi(Z;) has degree J,

(vl.9]), / e pix)ax = oy (], ]

We introduce the multi-index o = (ay ... anx) € NN, and define the multi-variate
polynomial as product of univariate ones:

N
Vo (&) =[] wh, &)
i=1

o The partial degree of W, is ¢ = max; aj = ||a||c
o The total degree of Vo is g = 3, o = ||l
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PC projection

The model output U(¢) is sought has the PC expansion

LV, pg) U= D Va(é)ua
aeNN

For practical computation, the expansion needs be truncated. Consider the finite
multi-index set .A and the truncated expansion

UE) =~ UA(E) = D Va()ta.
acA
The truncation error is measured as

aeNN\ A

EA) = [ LU= UApedx = 3 (Ul (W, W)

Classical truncation strategies are based on

o Partial degree truncation: ANS = {a € NN, ||a||cc < No}

o Total degree truncation: Aj° = {a € N¥, [|a]l¢, < No}

@ Hyperbolic cross product truncation: AN.(q < 1) = {o € NN, 3, o < No9}
PC basis is |A|.

[m]

All of these strategies are isotropic and converge as No — oo. The dimension of the
=
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Non-Intrusive methods

Given the truncated PC basis, defined from its index set A, it remains to compute the
PC coefficients u,, in the approximation U4 (&) of the model output:

Ue) =~ UME) = D Va(&)ua.

acA

In other words, the approximation is sought in the subspace S4 ® V of Lo(V, =, pg),
where S 4 is defined as

Sa =span{Vq,a € A} C Lz(—,Pg) dimSa = | Al

o Different methods can be considered for the determination of the PC
coefficients uy,.

o These methods differ in the definition of the error that approximation minimizes.
o These methods should however converge to the unique solution as | A| — co.

o These methods correspond to different computational strategies which are
more or less suited to a given context. Classical considerations are computational
complexity, available tools and softwares, . ..
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Non-Intrusive methods

The stochastic Galerkin projection

o It uses the model equations to derive an associated problem for the Galerkin
modes u, of the output. For this methods, the Galerkin modes are defined as to
cancel the equations residual within the subspace S 4 spanned by the truncated
PC basis. It is a method of weighted residual. It aims at minimizing the error
measured by the equation residual.

o It assumes a complete knowledge of the model equations, and the PC
expansion of all model unknowns*.

o The formulation of the Galerkin problem can be challenging in particular in
presence of strong model non-linearities.

o Derivation and coding of efficient Galerkin solvers can be time-consuming when
it cannot reuse effectively deterministic code components. It can also require

the development of specific numerical methods (stabilization schemes, new
preconditionners, . ..)

o Code verification and certification can also be an issue.*

*May require significant memory requirement for large models.
T For instance inequalities, model branching, ...
¥ Not to talk of UQ using legacy codes! =] 5 =
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Non-Intrusive methods

Non-Intrusive methods

Qo

Qo

Qo

Qo

Non-Intrusive methods refer to the set of approaches that reuse deterministic
codes as black-boxes. By this, we mean that we have to our disposal a
numerical code$ that given the value of the input parameters ¢ evaluate the
corresponding value of the quantity of interest U(&).

We arﬁ able to observe the mapping from U : = — V at selected values of
¢ e =

Contrary to the Galerkin projection, Non-Intrusive methods can focus on the
approximation of the Qol only.

We do not need the full knowledge of the model equations, nor of all model
unknowns.

The Non-Intrusive approaches focus on observations of the mapping to construct
the "best" approximation U (¢).

Classically, they are based on the minimization of the L,-distance U — U4,
A . 2
= m E - V|5
U arg Vevms [||U ||V]

They differ in the way this minimization problem is approximated.

SCould actually be an experimental device.
9 For this reason, the black-box is sometime called the oracle in machine learning theory. =
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CBasieseting
Consider a sample set of M realizations of the input parameter,
Sy = {g(">,i= 1,...,M},
and the corresponding sample set of observations of the mapping = — V,
Yy = {y(") = U(eWy,i= 1,...,M}.
The original minimization problem (for the Ly-distance)
UA =arg vein. E[IU-VI3],

can be substituted for the following Ieast-squares problem:

oA = () _ vy

ag, min. 1 Z Iy = Ve
In other words, we estimate the L, distance from the sample sets using the averaged
sum of squared residuals.
Introducing the PC expansions, the problem can be recast in terms of the coefficients
{Ua €V, 0 € A}:

2

y(") _ Z Va\ua(g("))

acA
o

M
1
Un,a € A} = ar min —
{Uo oA} =arg, min )32
Limsi -

v
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Least Squares

For simplicity, let us take V = Rll, so the we have to minimize the LS functional
LS (Vo,a € A)

1 &
= >0 -
i=1

2
S vl

acA
solution

& =vae).
The optimality conditions, 9LS/dv. = 0, yield the linear problem satisfied by the
1

vy (y(’) > uawﬁi))] =0, VBeA
acA

Denoting [Z] € RM* Al the matrix with entries Z; , = W), the optimization problem
can be rewritten as a linear system:

M “

nMg

1 1
(272 = 12Ty, u=(ua)T € RML,y = (/O
The Fisher matrix [F]

VIMNT ¢ M.
112]7[Z] € RIAIXIAl plays a crucial role in the conditioning
of the least-squares problem. Clearly [F] must be invertible
Limsi
. Il And for v = R"?
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Least Squares

We the haven to solve
_ T _ T
[Flu= M[Z] y, [Fl= M[Z] 21,

for the vector u € RIAl of PC coefficients.

The conditioning of the problem depends on the spectrum of the Fisher matrix, through
the matrix [Z].

In fact [Z] defines an orthogonal projection operator I from RM to the subspace
spanned by the |.4| columns of [Z]:

n=21arzp-"i2’

The projector M is symmetric, idempotent (M1 = M), and columns of [Z] are I-stable

(N[2] = 2)).
It follows that the solution u belongs to the subspace of R4 spanned by the columns
of [Z].

Therefore, the approximation error, R(¢) = U(¢) — U4 (), will be orthogonal to
S 4 only for M — oo and appropriate selection of the sample points.

Typically, M = k|.A| with k = 3 — 5 is used in practice, for degree based polynomial
basis.
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Least Squares

The Fisher (or information) matrix has for entries

M
1 . .
Fap = 17 2_Va(€)Ws(?).
=1
It shows that the conditioning of the problem depends on the sample set (its dimension
M and selected points) and the basis through the definition of A.
o If the sample points &) are drawn at random from the distribution p, then
Jim_ Fop = (Vo,Wg) = MILmQQ[F] = Diag ({Wa, ¥5)),
so [F] is invertible for sufficiently large M.
o If the sampling does not follow Pg the LS problem can be modified to consider the
weighted sum of squared residuals:
{Ua,x € A} = arg

M 2
min E wi
{Va,a€A} =

y(’) _ Z Vawa(g(i))

acA

This latter form has connections with the NISP method (yet to be introduced), for
**What would be appropriate?

appropriate selection of the sampling points and associated weights**.

[m]

=
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Making it robust

The convergence of limy_, o [F] = Diag (<\Ua, \IIB>) is however slow for a random

sampling (O(1/+/M)). It suggests that other types of sampling strategies (e.g.
deterministic ones) can be more efficient.

Optimal Design of Experiments aims at optimizing the spectral properties of [F] (or
M), for a fixed sample set dimension M and set of basis functions {W,, o € A}.
Classically, it is based on the optimization with respect to Sy:

Name Objective Object
A-optimality minimize the trace (z'z2)~!
D-optimality maximize determinant 7'z
E-optimality maximize lower singular value 7'z
G-optimality minimize largest diagonal term n

Such optimization problems are very hard and are usually solved using stochastic
tools: a large number of sample sets SV are generated, optimize by moving the points
individually until a local optimum is reached, and the best set is retained. This sample
set can then be reused since its optimality does not depend on U(€).

Pulkelsheim, F.: Optimal Design of Experiments. Classics in Applied Mathematics, vol. 50. SIAM,
Philadelphia (2006)
Hardin, R., Sloane, N.: A new approach to the construction of optimal designs. J. Stat. Plann.

Inference 37, 339-369 (1993)
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Making it robust

o Over-fitting occurs when a too low number of samples is used with respect to the
polynomial degree of the basis’T, in particular in presence of noise in the
observed mapping.

The LS solution U4 effectively reduces the residual,

2
M
1 ) .
LS(Va,aEA):MZ y(l)— Z Vawg)
i=1 acA

but is far from the optimum of the L,-distance problem
E [|U— UA\Z] >> min E [|U_ V|2].
VeSS

o The empirical error LS(UA) is not a safe indicator of the approximation quality.
o The later can be estimated using a second sample set: cross-validation.

o Alternatively, over-fitting can be detected using resampling (bagging) technics,
such as the Leave-One-Out (LOO), where the stability of the approximation is
verified. If not, M must be increased, .A reduced or the LS problem regularized.

Picard, R., Cook, D., Cross-Validation of Regression Models. Journal of the American
Statistical Association 79 (387): 575-583 (1994)

Devijver, P.A., Kittler, J., Pattern Recognition: A Statistical Approach. Prentice-Hall,
London, GB, (1982)

Limsi
. Tt Pretty much similar to aliasing error in spectral methods. =] 5 =
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Making it robust

If only a low number M of sampling points are available, compared to |.A| a
regularization of the LS problem may be necessary.

o L, Tikhonov regularization: the LS problem is completed by a regularization term:

u=argmin [[[Z]v — y|* + |[1]vI*,
with now the regularized solution

u= (12724171 Ay

Typical choice for the regularization matrix [[] is

[F] < Diag ((Wa, Va)),
giving solution with lower 2nd moment.

cross-validation sample set.

o Suitable regularization matrix can be defined a priori, for instance if one has
o Alternatively, [I'] can be optimized (over a prescribed family) using a

information regarding the decay rate of the spectrum of U(¢).
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Making it robust

o If M < | AJ, the LS problem is clearly underdetermined (there multiple solutions).

o However, in many situations, U(&) has in fact a sparse representation in the basis
of S4*, meaning that many of the coefficients u; in the expansion are negligible
or zero.

o If the expansion of U(€) in S4 is K-sparse, that is ||u||¢, = K|, then the solution
can be computed even for K < M < |A|, provided the matrix [Z] satisfy some
technical properties. It suggests to determined the vector of expansion
coefficients as the minimizer of the constrained optimization problem

u=argmin|vil, st [iZlv—y|?=o.

o Further, it can be shown that the above problem is equivalent for some v > 0 to
the £ minimization problem

u=argmin {[|[Z]v ~ yII* +llule, | -

o Several algorithms are available for the £4-minimization problems (LASSO, LARS
see http://www-stat.stanford.edu/~tibs/lasso.html, Basis-Pursuit, ...)

Limsi
. HEThink of the expansion of an additive model in the basis for ANC. o & =
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The approximation

UA(E) = Z uawa(g)v
minimizing the L,-error,

acA

# = ju-w]

corresponds to the orthogonal projection of U € V ® Lo(=, pE) ontoV ® S4:

E[(U—UA, v)v] =0 YWeVvasa.

Yae A veV:

Because V € V ® S.4 has for generic expansion V = Y~ vaWa, and {Wo,a € NN} is
an orthogonal basis, we immediately have the relations:

E |:Z (UB\UB, V\l"a)v:|
BeA

such that

= Z (Uﬁ, V)v]E [\UQ\UB] = (Uﬁ, V) <\|JB, \Uﬁ> .
BeA

us (V5. ¥5) = (U.¥5) = [ UW(0)pe(y)dy.

[m]

=
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The NISP method uses the relations

1
e Y

<\Ila, .
to estimate the expansion coefficients of U

s Luwvswieemay.

o the constant (W, W) (norm of the polynomials) are known exactly.
o the coefficients u, are independently computed

o its amounts to the computation of N-dimensional integrals in a product space

L U@wspemidy = [ o [ Ubr )Walvn, o mIpi (1) - prON)r . o

Classically, the integrals are estimated by means of numerical quadrature or
sampling approaches.

RN Ge



Estimate integrals from a random sample sets (MC and variants):

m 1 i i i
k= [U©Va(©lpe(€rde ~ 17 = 3 U vae?),

where {¢() i =1,..., m} is a sample set drawn randomly (or pseudo-randomly) in =
according to the density P -

o Error estimation:

VI[UV.]

T ym

o Convergence rate independent of the regularity of the functional
o Convergence rate independent of the of the dimensionality

o Slow convergence rate

o Improved sampling strategy

o
Il = 151 =
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Random & Quasi-random quadratures
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Deterministic quadratures

The integrals can also be computed by means of deterministic quadratures involving
a set of Ng quadrature points ¢'di and weights w(/):

N,
/_ UE)va(¢) ~ XO: w UMy (g(i)) )
= i=1

One dimensional quadratures rules

Nq
/f(x)dx ~ Y f(xi)w,
i=1
such as mid-point rule, Simpson rules, Gauss’ quadratures, ..., can be tensorized
For instance, in the case of the same measure along the N-dimension:
Ng Ng
/.../f(x1,A..,xN)dx1 LooaXN R Z:n-z:f(x,-1,..l,x,-l\,)w,-1 X X Wiy
=1 =1
requiring a total of n) function evaluations.
j dimensions.
Limsi

Tensorization can use a different number of quadrature points along the different

=
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Deterministic quadratures

Approximate integrals by N-dimensional quadratures: ) )
Owing to the product structure of = the quadrature points £() and weights w(/) can be
obtained by

o full tensorization of n points 1-D quadrature (i.e. Gauss):

using Smolyak formula:

o partial tensorization of nested 1-D quadrature formula (Féjer, Clenshaw-Curtis)

[Smolyak, 63]
Ng << nN

The partial tensorization results in so-called Sparse-Grid cubature formula, that can be
constructed adaptively to the integrants (anisotropic formulas) in order to account for
variable behaviors along the stochastic directions.

[Gerstner and Griebel, 2003]
o Important development of sparse-grid methods
o Anisotropy and adaptivity

o Also (sparse grid) collocation methods (N-dimensional interpolation)
and Hussaini, 2003], [Nobile et al,

[Mathelin
2008]
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We want to construct a functional approximation of a model-output U, where the model
involves random parameters &

¢ € = C RN, with probability density function P
The approximation is sought as
UE) ~ (&) = 3 ugvg(8),
Ben
with B a multi-index set and { \UB} CONS.

You have seen different types of non-intrusive methods:

o Non-Intrusive Spectral Projection: compute {s,@, 3 € B} by numerical
quadrature, exploiting orthogonality of the PC ¥ 3 (orthogonal projection on
span{\llﬂ})

o Least-Squares type: compute {3, 3 € B} by solving an optimization problem
based on a set of observation points and possibly regularization techniques

o Collocation: use a set of model-output observations to construct an interpolation

jll Observe that the two first differ from the latter by the a priori / implicit selection of the
il 2pproximation space. o e S

RN Ge



Non-intrusive methods are very attractive by the fact they reuse code and rely on
deterministic computations. However their computational complexity -measured
as the number of deterministic simulations needed- quickly grows with the dimension N
of the parameter space (and with Card(B)).

This is particularly critical when one relies on straightforward tensorization of
one-dimensional objects (quadrature or interpolation rules) to construct
N-dimensional ones: complexity is then in O(CN).

Sparse grid methods aim at reducing the complexity by relying on smarter
tensorization strategies.

Hint: total degree truncation of the PC basis, instead of partial degree truncation, for
the PC basis S* = span{\llﬁ,,@ € B}:

N
Card {,@ eNN, DB < No} < Card {B € NN, B<j<y < No}.

i=1

Question: how to reuse the idea of sparse tensorization for quadrature or
interpolation rules?
(Answer: Smolyak formula.)

u]
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Smolyak Formula

o F = = E DA



N-dimensional integrals of type

We consider here the cubature problem for NISP where we need to approximate

1 1
/N(f) =/0 /o f(X1,...,XN)dX1 ... aXN.
This situation corresponds to = = [0, 1]N and
1, xe=
pe(x) = {07

otherwise -
Ideas and concepts of sparse grid immediately extend to collocation and integration,
and to more general situations having product structures,

RN D ===y x - x 2n, P, ) = Py (31) X -+ X Pey (),
1<j<N

using ad-hoc one-dimensional quadrature/interpolation rules along each direction
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Consider the sequence of nested one-dimensional quadrature formulas for
I=1,2,...

h(f) = / f(xX)dx ~ 10 (f) = Zw“)f(x(’)

g=1

suchthat {x{",qg=1,...0(1)} c XY, qg=1,...0()} for 1 < i < j.

6 E 6 E
5 ¢ i300 0 o/clololo]olololololocoaat i) My 5 - 1000000000000 .
' 4} @0000 00 000006 - 4} @O0000000000® o
[ [
3 3fFo o o o o oo - 3 3 o0 o o o 0O -
2Fo o o o 0O - 2+ o o o E
1} o o ol 1+ o] —

Fig. 3.3 Nodes of the Clenshaw-Curtis (left) and Fejer (right) rules for levels 1 <1 <6

Owing to the nested nature, increasing / to / + 1 introduces additional points and
changes the weights associated to the older ones.
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I=1,2,

Consider the sequence of nested one-dimensional quadrature formulas for

I1(f)—/ F(x)dx ~ 10(f) = ZW(')I( 0y,
such that {x (’),q—1

=1, ..C)(i)}c{xq ,q=1,...

Q()}for1<i<y
The fully tensorized N-dimensional quadrature formula at level / has for expression
NGETSIGES

(/<’ ® @I ) (f)

Q) lel()} / / / /
= (wgh) X wgg) f(x((h), .. ,xég).
=1 an=1
This formula has QN(/) = Q(/)N points with positive weights w, L(?')
the one-dimensional sequence has positive weights w() > 0!

o Provided

RN Ge



Back to the nested one-dimensional formulas

Denote A()f the difference formula between levels / — 1 and /,

a)
ADf = (/(’) - /<’-1>) (N =>awd1x), aOf:.=o.
g=1

O00OOOOOOOOOOOOO -1

F O o0 0 0O o0 o0 o A

level - |

- (o] (o] o -1

- N W s~ 0o
T

- o) -
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Back to the nested one-dimensional formulas

Denote A()f the difference formula between levels / — 1 and /,

g=1

Q)
AOf .= (/(’) - /<’—1>) (H=>auH(x), aOf=o.
Clearly, the one-dimensional quadrature formula at level / is expressed as

|
10y =37 a0(f).

=1
Observe: for nested formulas that exactly integrate constants,

=1

Q) 1
ZAW(O =<7
0, I>1
q=1
= positive weights w((,'

) do not imply Awf,') >0for/> 1.
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a=(o,.

N
lale, =D lail,
i_

lale,, = 1max |exi]-
The fully tensorized formula can be recast as

<i<N

(f)_( ’)®...®/(’))(f): 3 (A(a1)®

aecA ()
where the summation is over the multi-index set

Al (1),

Aso(l) == {a € (NN, |ale, <1}
or explicitly,

Q(ay)  Q(an)
(A("“) @@ AN ) H=> - Z Awg' x -

q=1

- X AW;NN) f(xg,",

aN
o Xgy )

For the construction of sparse N-dimensional cubatures, we introduce the multi-index
an) € (N*)N, and use the norms

RN Ge
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Fig. 3.4 Illustration of cubature rules constructed by products of nested Fejér quadratures: plotted
are the 2D grids of integration nodes from (3.25) for different values of the levels /; and I, along
the integration dimensions. Grids on the diagonal plots correspond to the definition (3.23) of the
cubature
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Smolyak Formula

The Smolyak formula (1963) is constructed by defining a new set of multi-indices for
level / is given by

K= 3

the summation of tensored difference formulas; specifically the Smolyak formula at
e Ag(l)

A g ... e A(aN)) (f)
where the summation is now over the multi-index set

As(l) = {a e (V)N |y, <T+N—=1} C As(l).

one-dimensional quadrature formulas.

This is essentially the idea of the total order truncation -as opposed to the partial order
truncation- for polynomial bases, but here applied to the partial tensorization of
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Fig. 3.4 Tlustration of cubature rules constructed by products of nested Fejer quadratures: plotted
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Fig. 3.5 Comparison of product and sparse tensorizations in the construction of cubature formulas
of level I = 4, for the numerical integration in N = 2 dimensions. The left plot shows the indexes of
the summation of difference formulas A,(CN) for the product form in (3.30) (squares) and Smolyak’s
algorithm in (3.29) (triangle). The resulting grids for the Fejer nested quadrature rule are shown in
the middle (product form) and right (sparse grid) plots
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Smolyak Formula
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Fig. 3.6 Illustration of the sparse grid cubature nodes in N =2 and N = 3 dimensions for the
Smolyak’s method and nested Fejér quadrature formulas. Different levels [ are considered as indi-
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Fig. 3.7 Minimum number
of nodes N, for the
Smolyak’s sparse cubature for
exact integration of
polynomial integrands with
degree < p over hypercubes
with uniform weight (nested
Clenshaw-Curtis rules and
Smolyak’s sparse
tensorization)
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Observe: the support points of the tensored difference formula associated to the
multi-index o are a subset of those associated to 8 > « (thatis «; < ; for
i=1,...,N), owing to the nested nature of the one-dimensional formulas.

In practice, given / > 1 the Smolyak formula is recast as a weighted-sum,

S(/ Qg(l) S(),N S(/),N
RO = 37w Nexg ™).
q=1

o increasing level / introduces additional points and change the weights

o Fast algorithm for the computation of points and weights are mandatory when
N> 10

o QJ(N < QF(l)asN 1
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Smolyak Formula

o The sparse tensorization tempers the curse of dimensionality

o The Smolyak cubature is less accurate than the fully-tensored formula (for the
same level)

o Question: what's the polynomial space NN for which the Smolyak formula is
exact?

o The Smolyak cubature does not define a discrete inner product. Why ?
o What about collocation methods?

Regarding Non-Instrusive Spectral Projection

o Use the same sparse rule for all integrands (U(g)wﬂ(g)), 3 € B: Direct NISP

o Determine B such that V3, 3’ € B the cubature exactly integrates (wﬁwﬂ,):
internal-aliasing free NISP

o Alternatively, consider differences formulas for the Fully-Tensored NISP projection
at different level /, resulting in the use of F-T quadratures depending on /3.
Internal aliasing-free while allowing for larger set 5. Pseudo-Spectral NISP
[Marzouk, 2013], [Constantine, 2013]

o External aliasing remains!
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Adaptive Sparse Grid
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One can consider general classes of cubature formulas through the generic expression

II<14(f) = Z (A(C“‘) Q- ® A(aN)) (f)

acA

This calls for a definition of the multi-index set A.

Ideas?
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acA

K=Y (A(a1)®...®A(0N)) )
£,-(quasi)norm:

hyperbolic cross product

N 1/p
lele, = (Zlai - 1|”>
i=

. Alp) = f{ae W) Jal, <1}, p>0.
This farhily correspondé to isotropic cubatures.
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Weighted /{-norms:
Let Wi<j<x > 0 be directional weights:

II<I4(f) = Z (A(O“) Q- ® A(aN)) (f)

dimension adaptivity / anisotropic rules

1 , A= .A(W, C) = {a € (N*)N, |a|e1(w) < C}.

567 6 91

using a1 = 1.5 (lft)and ay = 0.6 (right) and a2 = 1+ (1 —ay)/ 1, = 6. Plotted ar the respective
multi-index sets (10p row, see (3.34)) and the corresponding sparse grids (bortom row, Fejer nested




What is the constraint on the structure of the multi-index set .A? Why?
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What is the constraint on the structure of the multi-index set .A? Why?

Admissible sets: A is said admissible if all « € .4 has predecessors in all the N
directions:

VacA ojy>1=a-ecA j=1,...N
where e; is the unit vector in direction j,

@ 7]

Admissible Non—Admissible Non—Admissible
OO O
mEm

O8O ’
EEEE

1y

EDE |ElEE

1 l1

1

Fig. 3.9 Examples of admissible and non-admissible multi-index sets in two dimensions
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Adaptive Sparse Grid

Given a multi-index a, we define its forward neighborhood as the multi-index set
Fla) = {a+e,-,j: 1,...,N}.
Given an admissible multi-index set A, we define its admissible forward multi-index
setC as
C(A) = {ae (N)N, o ¢ Aand AU {a} admissible }.
Clearly,
Va € C(A),3B8 € Asuch that a € F(B3).

Adaptive strategy:
The multi-index set of the adapted cubature for the approximation of /y(f) is

constructed by building a sequence of admissible sets A© — AM — A@ . such
that

A = AW Gy, oy € C(AR).

In words, given A%, a new tensorization is added (one at a time) that leaves the
resulting set admissible.

How to pick ay € C(AM) 2
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Adaptive Sparse Grid

For a multi-index « € (N*)N, we define the associated excess as
e(a) = (A% @--- @ A™N)(f)].

To enrich A®%), we should choose o € C(AK)) corresponding to the largest excess
e,

= AN Q- @ AN ().
ok argaeng(aj(k))l( )

However, the objective of the adaptation is to reduce the error for the least possible
number of function evaluations, so we also want to balance the excess with

computational complexity of the new tensorization. Gerstner and Griebel proposed
to pick a, from

Qi = arg  max max((1 - p)e(a)z C/No(a))7 Ce [07 1]7
acc(Ak)

where Ng(a) = [1; Ng" is the number of points in the tensored difference formula.

o for C = 0, the adaptation only considers the excess,
o for C = 1, the adaptation only considers the complexity.
A stopping criteria ?
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Adaptive Sparse Grid
N N N
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Fig. 3.10 Illustration of the adaptive sparse grid procedure for N = 2. The plots on the rop row
show the evolution of the multi-index set Z, distinguishing the sets of old multi-indexes O (light
gray squares) and active multi-indexes A (dark gray squares). The corresponding sparse grids are
plotted in the bottom row
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Adaptive Sparse Grid

For NISP, one uses a cubature formula

K=Y (A(a1) Q@ ® A("‘N)) (),
acA

to compute a series of integrals with f = fB(g) = S(g)\llﬂ(g) and B € Bpc.

o A minimal compatibility relation between A and B is that they satisfy the discrete
orthogonality relation for the PC, that is

A 1y /
K(WaVy) =i <wﬂ,wﬁ>, v3,8 € B.
o Given B one can determine the minimal admissible set A from the exactness
properties of the one-dimensional quadratures.

o Alternatively, given A, one can determine B as the largest admissible set of PC
tensorizations that satisfies the discrete orthogonality.

o Recall: the model-output S is usually not polynomial. Be conservative!
o What about the case of multiple model-outputs ?
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Non-Intrusive projections are appealing for complex & non-linear problems
Difficulties remains for

BUT non-intrusive does not mean that U(¢) is easily approximated.
@ non-smooth mapping & — U(&)

o but also for enforcement of positivity constraints, presence of plateau,
d:

saturation behavior, highly stretched dependences.

Preconditioning can help in these situations, introducing an inversible transformation

Y(€) = d(U(€) = UE) = o' ( D ya®a()).

aEA
Transformation must be chosen so Y(&) has a tight spectrum, allowing the use of a low
degree PC expansion.

RN Ge



Preconditioning can help in these situations, introducing an inversible transformation

o
Y(€) = o(U(£)) = UE) = o7 (D ya®al(8)).

acA

Transformation must be chosen so Y(£) has a tight spectrum, allowing the use of a low
degree PC expansion.

02 selod)

120) s
xi0 L] - s
e st 1 )
o oo
e
5 ool
o JRE= B 2
Zod z of * o]
* %
* o oo
oz azm)
s 0 = g Ca——
G w o, m e m w @
! ' oz ) . 1 sai)
e oz
o o)
o) o8 -9
ool %ol *od
* o) o
o)
N L
G e

Figure 2: Scaled variables versus stretched time. Individual curves are obtained by transforming
Figure 1:Concentration versus time selected realizations in S. Shown are curves for Oz, HyO the original realizations shown in Figure 1.
HO2, and H, as indicated.
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P:

Preconditioning can help in these situations, introducing an inversible transformation

acA
Transformation must be chosen so Y(¢) has a tight spectrum, allowing the use of a low
degree PC expansion.

Y(€) = o(U(8)) = UE) = 07 (D_ YaPa(é)).

s

0
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1e-14

Tho1a  2e-14 3815 [

5e-15  le-14 15e-14
Figure 14: PDFs of [H] at time ¢ = 8. Left: preconditioned NISP at different PC orders as
of [H] generated with Monte-Carlo sampling.

20-14
indicated. Right: direct NISP method with the same orders. Also shown on the right is the PDF
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Questions?

Further readings:
Q S. Smolyak, Quadrature and interpolation formulas for tensor products of certain class of functions. Dokl. Akad. Nauk. SSSR, 4,
240-243, (1963).
E. Novak and K. Ritter, High dimensional integration of smooth functions over cubes. Numer. Math., 75, pp. 79-97, (1996).
T. Gerstner and M. Griebel, Numerical integration using sparse grids. Numerical Algorithms, 18, 209-232, (1998).
K. Petras, On the Smolyak cubature error for analytic functions. Adv. Comput. Math., 12, 71-93, (2000).
K. Petras, Fast calculation in the Smolyak algorithm. Numerical Algorithms, 26, 93-109, (2001).
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F. Nobile, R. Tempone and C. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations
with random input data. SIAM J. Numerical Analysis, 46:5, 2411-2442, (2008).

A. Keese and H. Matthies, Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations.
Technical Report, Institute of Scientific Computing TU Braunschweig, (2003).

X. Ma and N. Zabaras, Adaptative hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations.
J. Computational Physics, (2009).
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