| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

## Non-Intrusive Approaches for Spectral UQ Methods

Olivier Le Maître<sup>1</sup> with Colleague & Friend Omar Knio







PhD course on UQ - DTU



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

#### Outline

- Reminder on PC expansions and notations
- Non-Intrusive vs Galerkin methods
- Least-squares and minimization formulations
- Non-Intrusive Spectral Projection
- Sparse Grids



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

#### **Table of content**

#### 1 Non-Intrusive PC methods

- PC projection
- Non-Intrusive methods

#### 2 Least Squares & Minimization Methods

- Least Squares
- Making it robust

#### 3 Non-Intrusive Spectral Projection

- Random & Quasi-random quadratures
- Deterministic quadratures

#### 4 Sparse Grids

- Smolyak Formula
- Adaptive Sparse Grid



#### Preconditioning

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| <b>0000</b> 000          | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |
| PC projection            |                                      |                                   |                                         |         |

#### Model output and assumption

l

Consider the output of a model parametrized by a (finite) set of **independent** random variables  $\boldsymbol{\xi} = (\xi_1 \dots \xi_N)$ ,

$$U(oldsymbol{\xi})\in\mathcal{V}$$
 a.s.

The solution belongs almost surely to an Hilbert space  $\mathcal{V},$  equipped with an inner product  $(\cdot,\cdot)_{\mathcal{V}}$  and associated norm

$$||U||_{\mathcal{V}} = (U, U)_{\mathcal{V}}^{1/2}.$$

We assume that  $U(\xi)$  is a second order random quantity in the sense that

$$(U(\boldsymbol{\xi}), \mathrm{U}(\boldsymbol{\xi}))_{\mathcal{V}}^{1/2} = \|U(\boldsymbol{\xi})\|_{\mathcal{V}} \in L_{2}(\Xi, \boldsymbol{p}_{\boldsymbol{\xi}}),$$

and we write  $U \in L_2(\mathcal{V}, \Xi, p_{\xi})$ , where  $\Xi$  is the domain of  $\xi$  and  $p_{\xi}$  the associated density:

$$p_{\boldsymbol{\xi}}(\boldsymbol{x}) = \prod_{i=1}^{N} p_i(x_i), \quad \int \cdots \int_{\Xi} p_{\boldsymbol{\xi}}(\boldsymbol{x}) d\boldsymbol{x} = 1.$$
$$J \in L_2(\mathcal{V}, \Xi, p_{\boldsymbol{\xi}}) \Leftrightarrow \int \cdots \int_{\Xi} \|U(\boldsymbol{x})\|_{\mathcal{V}}^2 p_{\boldsymbol{\xi}}(\boldsymbol{x}) d\boldsymbol{x} < \infty.$$



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |
| PC projection            |                                      |                                   |                                         |         |

#### PC expansion I

The model output  $U \in L_2(\mathcal{V}, \Xi, p_{\xi})$  in fact belongs to the tensored space  $\mathcal{V} \otimes L_2(\Xi, p_{\xi})$ , and so has a separable representation

$$L_2(\mathcal{V}, \Xi, \boldsymbol{p}_{\boldsymbol{\xi}}) \in U(\boldsymbol{\xi}) = \sum_{l=0}^{\infty} \Phi_l(\boldsymbol{\xi}) u_l, \quad \Phi_l \in L_2(\Xi, \boldsymbol{p}_{\boldsymbol{\xi}}), \ u_l \in \mathcal{V}, \ l = 0, 1, 2, \dots$$

The PC expansion of *U* rely on

1 the introduction of an orthonormal polynomial basis of  $L_2(\Xi, p_{\xi})$ ,

$$\operatorname{span} \{ \Psi_0, \Psi_1, \Psi_2, \dots \} = L_2(\Xi, \rho_{\boldsymbol{\xi}}),$$
$$\langle \Psi_i, \Psi_j \rangle = \int \cdots \int_{\Xi} \Psi_i(\boldsymbol{x}) \Psi_j(\boldsymbol{x}) \rho_{\boldsymbol{\xi}}(\boldsymbol{x}) d\boldsymbol{x} = \delta_{ij} \langle \Psi_1, \Psi_i \rangle,$$

Such that U as for expression in the PC basis

$$U(\boldsymbol{\xi}) = \sum_{l=0}^{\infty} \Psi_l(\boldsymbol{\xi}) u_l, \quad u_l \in \mathcal{V}, \ l = 0, 1, \dots$$

where the equality stands in the  $L_2$ -sense.



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |
|--------------------------|--------------------------------------|-----------------------------------|--------------|---------|
| PC projection            |                                      |                                   |              |         |
| PC expansion II          |                                      |                                   |              |         |

Exploiting the **product structure** of the density, the PC functions  $\Psi_i$  can be constructed by tensorization of 1-d families of univariate orthogonal polynomial. For instance, let  $\{\psi_0^i, \psi_1^i, \psi_2^i, \ldots\}$  be the family of orthogonal polynomials for the density  $p_i$ , where  $\psi_i^i \in \Pi^j(\Xi_i)$  has degree j,

$$\left\langle \psi_{l}^{i},\psi_{j}^{i}
ight
angle _{i}=\int_{\Xi_{i}}\psi_{l}^{i}(\xi)\psi_{j}^{i}(x)p_{i}(x)dx=\delta_{lj}\left\langle \psi_{l}^{i},\psi_{j}^{i}
ight
angle .$$

We introduce the multi-index  $\alpha = (\alpha_1 \dots \alpha_N) \in \mathbb{N}^N$ , and define the multi-variate polynomial as product of univariate ones:

$$\Psi_{lpha}(oldsymbol{\xi}) = \prod_{i=1}^{\mathrm{N}} \psi^{i}_{lpha_{i}}(oldsymbol{\xi}_{i})$$

- The partial degree of  $\Psi_{\alpha}$  is  $q = \max_{i} \alpha_{i} = \|\alpha\|_{\infty}$
- The total degree of  $\Psi_{\alpha}$  is  $q = \sum_{i} \alpha_{i} = \|\alpha\|_{\ell_{1}}$



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |
| PC projection            |                                      |                                   |                                         |         |

#### PC expansion III

The model output  $U(\xi)$  is sought has the PC expansion

$$L_2(\mathcal{V}, \Xi, \boldsymbol{p}_{\boldsymbol{\xi}}) \in \boldsymbol{U} = \sum_{\alpha \in \mathbb{N}^N} \Psi_{\alpha}(\boldsymbol{\xi}) \boldsymbol{u}_{\boldsymbol{\alpha}}.$$

For practical computation, the expansion needs be **truncated**. Consider the finite multi-index set A and the truncated expansion

$$U(\boldsymbol{\xi}) pprox U^{\mathcal{A}}(\boldsymbol{\xi}) = \sum_{lpha \in \mathcal{A}} \Psi_{lpha}(\boldsymbol{\xi}) u_{lpha}.$$

The truncation error is measured as

$$\epsilon^{2}(\mathcal{A}) = \int \cdots \int_{\Xi} \|U - U^{\mathcal{A}}\|_{\mathcal{V}}^{2} \rho_{\boldsymbol{\xi}}(\boldsymbol{x}) d\boldsymbol{x} = \sum_{\alpha \in \mathbb{N}^{\mathbb{N}} \setminus \mathcal{A}} \|U_{\alpha}\|_{\mathcal{V}}^{2} \langle \Psi_{\alpha}, \Psi_{\alpha} \rangle.$$

Classical truncation strategies are based on

- Partial degree truncation:  $\mathcal{A}_{\infty}^{No} = \{ \alpha \in \mathbb{N}^{N}, \|\alpha\|_{\infty} \leq No \}$
- Total degree truncation:  $\mathcal{A}_{\ell_1}^{No} = \{ \alpha \in \mathbb{N}^N, \|\alpha\|_{\ell_1} \le No \}$
- Hyperbolic cross product truncation:  $\mathcal{A}_{HC}^{N_0}(q < 1) = \{ \alpha \in \mathbb{N}^N, \sum_i \alpha^q \leq No^q \}$

All of these strategies are isotropic and converge as  $No \rightarrow \infty$ . The dimension of the PC basis is  $|\mathcal{A}|$ .

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |
| Non-Intrusive methods    |                                      |                                   |                                         |         |

**Non-Intrusive methods** 

Given the truncated PC basis, defined from its index set A, it remains to compute the PC coefficients  $u_{\alpha}$  in the approximation  $U^{A}(\boldsymbol{\xi})$  of the model output:

$$U({m \xi})pprox U^{\mathcal A}({m \xi}) = \sum_{lpha\in {\mathcal A}} \Psi_lpha({m \xi}) u_lpha.$$

In other words, the approximation is sought in the subspace  $S_A \otimes V$  of  $L_2(V, \Xi, p_{\xi})$ , where  $S_A$  is defined as

$$S_{\mathcal{A}} \doteq \operatorname{span} \{ \Psi_{\alpha}, \alpha \in \mathcal{A} \} \subset L_2(\Xi, p_{\mathcal{E}}), \quad \dim S_{\mathcal{A}} = |\mathcal{A}|.$$

- **Different methods** can be considered for the **determination** of the PC coefficients  $u_{\alpha}$ .
- These methods differ in the definition of the error that approximation minimizes.
- These methods should however converge to the unique solution as  $|\mathcal{A}| \to \infty$ .
- These methods correspond to different computational strategies which are more or less suited to a given context. Classical considerations are computational complexity, available tools and softwares, ...



| Non-Intrusive PC methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|--------------|---------|
| Non-Intrusive methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                   |              |         |
| Only when we have a second s |                                      |                                   |              |         |

#### The stochastic Galerkin projection

- It uses the model equations to derive an associated problem for the Galerkin modes u<sub>α</sub> of the output. For this methods, the Galerkin modes are defined as to cancel the equations residual within the subspace S<sub>A</sub> spanned by the truncated PC basis. It is a method of weighted residual. It aims at minimizing the error measured by the equation residual.
- It assumes a complete knowledge of the model equations, and the PC expansion of all model unknowns\*.
- The formulation of the Galerkin problem can be challenging in particular in presence of strong model non-linearities.<sup>†</sup>
- Derivation and coding of efficient Galerkin solvers can be time-consuming when it cannot reuse effectively deterministic code components. It can also require the development of specific numerical methods (stabilization schemes, new preconditionners, ...)
- Code verification and certification can also be an issue.<sup>‡</sup>



<sup>\*</sup> May require significant memory requirement for large models.

<sup>&</sup>lt;sup>†</sup>For instance inequalities, model branching, ...

<sup>&</sup>lt;sup>‡</sup>Not to talk of UQ using legacy codes!

| Non-Intrusive PC methods<br>○○○○○○●  | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |
|--------------------------------------|--------------------------------------|-----------------------------------|--------------|---------|
| Non-Intrusive methods                |                                      |                                   |              |         |
| Galerkin vs Non-Intrusive methods II |                                      |                                   |              |         |

#### **Non-Intrusive methods**

- Non-Intrusive methods refer to the set of approaches that reuse deterministic codes as black-boxes. By this, we mean that we have to our disposal a numerical code<sup>§</sup> that given the value of the input parameters *ξ* evaluate the corresponding value of the quantity of interest *U*(*ξ*). We are able to observe the mapping from *U* : Ξ → *V* at selected values of *ξ* ∈ Ξ<sup>¶</sup>.
- Contrary to the Galerkin projection, Non-Intrusive methods can focus on the approximation of the QoI only.
- We do not need the full knowledge of the model equations, nor of all model unknowns.
- The Non-Intrusive approaches focus on observations of the mapping to construct the "best" approximation  $U^{\mathcal{A}}(\boldsymbol{\xi})$ .
- Classically, they are based on the minimization of the  $L_2$ -distance  $U U^A$ ,

$$U^{\mathcal{A}} = \arg \min_{V \in \mathcal{V} \otimes \mathcal{S}_{\mathcal{A}}} \mathbb{E} \left[ \|U - V\|_{\mathcal{V}}^2 \right].$$

• They differ in the way this minimization problem is approximated.

<sup>§</sup>Could actually be an experimental device.

<sup>¶</sup>For this reason, the black-box is sometime called the oracle in machine learning theory. 🔖 🐗 🚊 🕨 🛓 🖉 🔍 🔿

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

#### **Table of content**

#### 1 Non-Intrusive PC methods

- PC projection
- Non-Intrusive methods

### 2 Least Squares & Minimization Methods

- Least Squares
- Making it robust

#### 3 Non-Intrusive Spectral Projection

- Random & Quasi-random quadratures
- Deterministic quadratures

### 4 Sparse Grids

- Smolyak Formula
- Adaptive Sparse Grid



## Preconditioning

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

#### **Basic setting**

Consider a sample set of *M* realizations of the input parameter,

$$S_M = \left\{ \boldsymbol{\xi}^{(i)}, i = 1, \dots, M \right\},$$

and the corresponding sample set of observations of the mapping  $\Xi \mapsto \mathcal{V}$ ,

$$Y_M = \left\{ y^{(i)} \doteq U(\xi^{(i)}), i = 1, \dots, M \right\}.$$

The original minimization problem (for the  $L_2$ -distance)

$$U^{\mathcal{A}} = rg\min_{V \in \mathcal{V} \otimes \mathcal{S}_{\mathcal{A}}} \mathbb{E}\left[ \|U - V\|_{\mathcal{V}}^2 
ight],$$

can be substituted for the following least-squares problem:

$$\hat{U}^{\mathcal{A}} = \arg\min_{V \in \mathcal{V} \otimes \mathcal{S}_{\mathcal{A}}} \frac{1}{M} \sum_{i=1}^{M} \| y^{(i)} - V(\boldsymbol{\xi}^{(i)}) \|_{\mathcal{V}}^2.$$

In other words, we estimate the  $L_2$  distance from the sample sets using the averaged sum of squared residuals.

Introducing the PC expansions, the problem can be recast in terms of the coefficients  $\{u_{\alpha} \in \mathcal{V}, \alpha \in \mathcal{A}\}$ :

$$\{u_{\alpha}, \alpha \in \mathcal{A}\} = \arg \min_{\{v_{\alpha} \in \mathcal{V}, \alpha \in \mathcal{A}\}} \frac{1}{M} \sum_{i=1}^{M} \left\| y^{(i)} - \sum_{\alpha \in \mathcal{A}} v_{\alpha} \Psi_{\alpha}(\boldsymbol{\xi}^{(i)}) \right\|_{\mathcal{V}}^{2}.$$



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | <b>00</b> 0000                       | 0000                              | 000000000000000000000000000000000000000 |         |
| Least Squares            |                                      |                                   |                                         |         |

#### Least-squares problem

For simplicity, let us take  $\mathcal{V}=\mathbb{R}^{\|},$  so the we have to minimize the LS functional

$$LS(\mathbf{v}_{\alpha}, \alpha \in \mathcal{A}) = \frac{1}{M} \sum_{i=1}^{M} \left| \mathbf{y}^{(i)} - \sum_{\alpha \in \mathcal{A}} \mathbf{v}_{\alpha} \Psi^{(i)}_{\alpha} \right|^{2}, \quad \Psi^{(i)}_{\alpha} \doteq \Psi_{\alpha}(\boldsymbol{\xi}^{(i)}).$$

The optimality conditions,  $\partial LS / \partial v_{\alpha} = 0$ , yield the linear problem satisfied by the solution

$$\frac{1}{M}\sum_{i=1}^{M}\left[\Psi_{\beta}^{(i)}\left(y^{(i)}-\sum_{\alpha\in\mathcal{A}}u_{\alpha}\Psi_{\alpha}^{(i)}\right)\right]=0,\quad\forall\beta\in\mathcal{A}.$$

Denoting  $[Z] \in \mathbb{R}^{M \times |\mathcal{A}|}$  the matrix with entries  $Z_{i,\alpha} = \Psi_{\alpha}^{(i)}$ , the optimization problem can be rewritten as a linear system:

$$\frac{1}{M}[Z]^{T}[Z]\boldsymbol{u} = \frac{1}{M}[Z]^{T}\boldsymbol{y}, \quad \boldsymbol{u} = (u_{\alpha})^{T} \in \mathbb{R}^{|\mathcal{A}|}, \quad \boldsymbol{y} = (y^{(0)} \cdots v^{(M)})^{T} \in \mathbb{R}^{M}.$$

The Fisher matrix  $[F] = \frac{1}{M}[Z]^T[Z] \in \mathbb{R}^{|\mathcal{A}| \times |\mathcal{A}|}$  plays a crucial role in the conditioning of the least-squares problem. Clearly [F] must be invertible.



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |
|--------------------------|--------------------------------------|-----------------------------------|--------------|---------|
| Least Squares            |                                      |                                   |              |         |

#### Least-squares projection operator

We the haven to solve

$$[F]\boldsymbol{u} = \frac{1}{M}[Z]^{T}\boldsymbol{y}, \quad [F] = \frac{1}{M}[Z]^{T}[Z],$$

for the vector  $\boldsymbol{u} \in \mathbb{R}^{|\mathcal{A}|}$  of PC coefficients.

The conditioning of the problem depends on the spectrum of the Fisher matrix, through the matrix [Z].

In fact [Z] defines an orthogonal projection operator  $\Pi$  from  $\mathbb{R}^M$  to the subspace spanned by the  $|\mathcal{A}|$  columns of [Z]:

$$\Pi = [Z]([Z]T[Z])^{-1}[Z]^{T}.$$

The projector  $\Pi$  is symmetric, idempotent ( $\Pi\Pi = \Pi$ ), and columns of [Z] are  $\Pi$ -stable ( $\Pi[Z] = [Z]$ ).

It follows that the solution  $\boldsymbol{u}$  belongs to the subspace of  $\mathbb{R}^{|\mathcal{A}|}$  spanned by the columns of [*Z*].

Therefore, the approximation error,  $R(\xi) = U(\xi) - \hat{U}^{\mathcal{A}}(\xi)$ , will be orthogonal to  $S_{\mathcal{A}}$  only for  $M \to \infty$  and *appropriate* selection of the sample points.

Typically, M = k|A| with k = 3 - 5 is used in practice, for degree based polynomial basis.



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |
| Least Squares            |                                      |                                   |                                         |         |

#### Sample points selection

The Fisher (or information) matrix has for entries

$$F_{lphaeta} = rac{1}{M}\sum_{i=1}^M \Psi_lpha(oldsymbol{\xi}^{(i)}) \Psi_eta(oldsymbol{\xi}^{(i)}).$$

It shows that the conditioning of the problem depends on the sample set (its dimension M and selected points) and the basis through the definition of A.

• If the sample points  $\xi^{(i)}$  are drawn at random from the distribution  $p_{\xi}$ , then

$$\lim_{M\to\infty} F_{\alpha\beta} = \langle \Psi_{\alpha}, \Psi_{\beta} \rangle \Rightarrow \lim_{M\to\infty} [F] = \text{Diag}\left( \langle \Psi_{\alpha}, \Psi_{\beta} \rangle \right),$$

so [F] is invertible for sufficiently large M.

 If the sampling does not follow p<sub>ξ</sub> the LS problem can be modified to consider the weighted sum of squared residuals:

$$\{u_{\alpha}, \alpha \in \mathcal{A}\} = \arg \min_{\{\boldsymbol{v}_{\alpha}, \alpha \in \mathcal{A}\}} \sum_{i=1}^{M} \boldsymbol{\omega}_{i} \left| \boldsymbol{y}^{(i)} - \sum_{\alpha \in \mathcal{A}} \boldsymbol{v}_{\alpha} \boldsymbol{\Psi}_{\alpha}(\boldsymbol{\xi}^{(i)}) \right|^{2}$$



This latter form has connections with the NISP method (yet to be introduced), for appropriate selection of the sampling points and associated weights\*\*.

\*\*What would be appropriate?

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |
| Making it robust         |                                      |                                   |                                         |         |

#### **Design of Experiments**

The convergence of  $\lim_{M\to\infty} [F] = \text{Diag}(\langle \Psi_{\alpha}, \Psi_{\beta} \rangle)$  is however slow for a random sampling  $(\mathcal{O}(1/\sqrt{M}))$ . It suggests that other types of sampling strategies (*e.g.* deterministic ones) can be more efficient.

**Optimal Design of Experiments** aims at optimizing the spectral properties of [F] (or  $\Pi$ ), for a fixed sample set dimension M and set of basis functions  $\{\Psi_{\alpha}, \alpha \in \mathcal{A}\}$ . Classically, it is based on the optimization with respect to  $S_M$ :

| Name         | Objective                      | Object         |
|--------------|--------------------------------|----------------|
| A-optimality | minimize the trace             | $(Z^t Z)^{-1}$ |
| D-optimality | maximize determinant           | $Z^t Z$        |
| E-optimality | maximize lower singular value  | $Z^t Z$        |
| G-optimality | minimize largest diagonal term | П              |

Such optimization problems are very hard and are usually solved using stochastic tools: a large number of sample sets  $S^M$  are generated, optimize by moving the points individually until a local optimum is reached, and the best set is retained. This sample set can then be reused since its optimality does not depend on  $U(\xi)$ .

Pulkelsheim, F.: Optimal Design of Experiments. Classics in Applied Mathematics, vol. 50. SIAM, Philadelphia (2006) Hardin, R., Sloane, N.: A new approach to the construction of optimal designs. J. Stat. Plann. Inference 37, 339-369 (1993)



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |
|--------------------------|--------------------------------------|-----------------------------------|--------------|---------|
| Making it robust         |                                      |                                   |              |         |
| Over-fitting             |                                      |                                   |              |         |

 Over-fitting occurs when a too low number of samples is used with respect to the polynomial degree of the basis<sup>††</sup>, in particular in presence of noise in the observed mapping.

The LS solution  $\tilde{U}^{\mathcal{A}}$  effectively reduces the residual.

$$LS(\mathbf{v}_{\alpha}, \alpha \in \mathcal{A}) = \frac{1}{M} \sum_{i=1}^{M} \left| y^{(i)} - \sum_{\alpha \in \mathcal{A}} \mathbf{v}_{\alpha} \Psi_{\alpha}^{(i)} \right|^{2}$$

but is far from the optimum of the  $L_2$ -distance problem

$$\mathbb{E}\left[|U-\hat{U}^{\mathcal{A}}|^{2}\right] >> \min_{V\in\mathcal{S}_{\mathcal{A}}}\mathbb{E}\left[|U-V|^{2}\right].$$

- The empirical error  $LS(\hat{U}^{\mathcal{A}})$  is not a safe indicator of the approximation quality.
- The later can be estimated using a second sample set: cross-validation.
- Alternatively, over-fitting can be detected using resampling (bagging) technics, such as the Leave-One-Out (LOO), where the stability of the approximation is verified. If not, M must be increased, A reduced or the LS problem regularized. Picard, R., Cook, D., Cross-Validation of Regression Models. Journal of the American Statistical Association 79 (387): 575-583 (1994)

Devijver, P.A., Kittler, J., Pattern Recognition: A Statistical Approach. Prentice-Hall, London, GB, (1982) <sup>††</sup>Pretty much similar to aliasing error in spectral methods.

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | 0000000                              | 0000                              | 000000000000000000000000000000000000000 |         |
| Making it robust         |                                      |                                   |                                         |         |

**Regularization of LS problem** 

If only a low number *M* of sampling points are available, compared to |A| a regularization of the LS problem may be necessary.

• L<sub>2</sub> Tikhonov regularization: the LS problem is completed by a regularization term:

$$\boldsymbol{u} = \arg\min_{\boldsymbol{v}} \|[\boldsymbol{Z}]\boldsymbol{v} - \boldsymbol{y}\|^2 + \|[\boldsymbol{\Gamma}]\boldsymbol{v}\|^2,$$

with now the regularized solution

$$\boldsymbol{u} = \left( [\boldsymbol{Z}]^T [\boldsymbol{Z}] + [\boldsymbol{\Gamma}]^T [\boldsymbol{\Gamma}] \right)^{-1} [\boldsymbol{Z}]^T \boldsymbol{y}.$$

Typical choice for the regularization matrix [Γ] is

$$[\Gamma] \propto \text{Diag} (\langle \Psi_{\alpha}, \Psi_{\alpha})),$$

giving solution with lower 2nd moment.

- Suitable regularization matrix can be defined *a priori*, for instance if one has information regarding the decay rate of the spectrum of U(ξ).
- Alternatively, [\[Gamma] can be optimized (over a prescribed family) using a cross-validation sample set.



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |
|--------------------------|--------------------------------------|-----------------------------------|--------------|---------|
| Making it robust         |                                      |                                   |              |         |
| Compressive Sen          | sing - l1 minimization               |                                   |              |         |

- If M < |A|, the LS problem is clearly underdetermined (there multiple solutions).
- However, in many situations, U(ξ) has in fact a sparse representation in the basis of S<sub>A</sub><sup>‡‡</sup>, meaning that many of the coefficients u<sub>l</sub> in the expansion are negligible or zero.
- If the expansion of  $U(\xi)$  in  $S_A$  is *K*-sparse, that is  $||\boldsymbol{u}||_{\ell_0} = K$ , then the solution can be computed even for K < M < |A|, provided the matrix [Z] satisfy some technical properties. It suggests to determined the vector of expansion coefficients as the minimizer of the **constrained** optimization problem

$$\boldsymbol{u} = \arg\min_{\boldsymbol{v}} \|\boldsymbol{v}\|_{\ell_0} \quad s.t. \quad \|[\boldsymbol{Z}]\boldsymbol{v} - \boldsymbol{y}\|^2 = 0.$$

• Further, it can be shown that the above problem is equivalent for some  $\gamma > 0$  to the  $\ell_1$  minimization problem

$$u = \arg\min_{\boldsymbol{V}} \left\{ \|[\boldsymbol{Z}]\boldsymbol{v} - \boldsymbol{y}\|^2 + \gamma \|\boldsymbol{u}\|_{\ell_1} \right\}.$$

 Several algorithms are available for the l<sub>1</sub>-minimization problems (LASSO, LARS see http://www-stat.stanford.edu/~tibs/lasso.html, Basis-Pursuit,...)



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

#### **Table of content**

#### 1 Non-Intrusive PC methods

- PC projection
- Non-Intrusive methods

#### 2 Least Squares & Minimization Methods

- Least Squares
- Making it robust

#### 3 Non-Intrusive Spectral Projection

- Random & Quasi-random quadratures
- Deterministic quadratures

### 4 Sparse Grids

- Smolyak Formula
- Adaptive Sparse Grid



## Preconditioning

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

#### **Orthogonal projection**

The approximation

$$U^{\mathcal{A}}(\boldsymbol{\xi}) = \sum_{lpha \in \mathcal{A}} u_{lpha} \Psi_{lpha}(\boldsymbol{\xi}),$$

minimizing the  $L_2$ -error,

$$\epsilon^{2} = \mathbb{E}\left[\left\|U - U^{\mathcal{A}}\right\|_{\mathcal{V}}^{2}\right]$$

corresponds to the orthogonal projection of  $U \in \mathcal{V} \otimes L_2(\Xi, p_{\mathcal{E}})$  onto  $\mathcal{V} \otimes S_{\mathcal{A}}$ :

$$\mathbb{E}\left[\left(U-U^{\mathcal{A}},V\right)_{\mathcal{V}}\right]=0\quad\forall V\in\mathcal{V}\otimes\mathcal{S}_{\mathcal{A}}.$$

Because  $V \in \mathcal{V} \otimes S_{\mathcal{A}}$  has for generic expansion  $V = \sum_{\alpha} v_{\alpha} \Psi_{\alpha}$ , and  $\{\Psi_{\alpha}, \alpha \in \mathbb{N}^{\mathbb{N}}\}$  is an orthogonal basis, we immediately have the relations:  $\forall \alpha \in \mathcal{A}, v \in \mathcal{V}$ :

$$\mathbb{E}\left[\sum_{\beta\in\mathcal{A}}(u_{\beta}\Psi_{\beta},v\Psi_{\alpha})_{\mathcal{V}}\right]=\sum_{\beta\in\mathcal{A}}(u_{\beta},v)_{\mathcal{V}}\mathbb{E}\left[\Psi_{\alpha}\Psi_{\beta}\right]=(u_{\beta},v)\left\langle\Psi_{\beta},\Psi_{\beta}\right\rangle.$$

such that

$$u_{\beta} \langle \Psi_{\beta}, \Psi_{\beta} \rangle = \langle U, \Psi_{\beta} \rangle = \int_{\Xi} U(\mathbf{y}) \Psi_{\beta}(\mathbf{y}) p_{\boldsymbol{\xi}}(\mathbf{y}) d\mathbf{y}.$$



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

#### **Non-Intrusive Spectral Projection**

The NISP method uses the relations

$$u_{\alpha} = \frac{1}{\langle \Psi_{\alpha}, \Psi_{\alpha} \rangle} \langle U, \Psi_{\alpha} \rangle = \frac{1}{\langle \Psi_{\alpha}, \Psi_{\alpha} \rangle} \int_{\Xi} U(\boldsymbol{y}) \Psi_{\beta}(\boldsymbol{y}) \rho_{\boldsymbol{\xi}}(\boldsymbol{y}) d\boldsymbol{y},$$

to estimate the expansion coefficients of U.

- the constant  $\langle \Psi_{\alpha}, \Psi_{\alpha} \rangle$  (norm of the polynomials) are known exactly.
- the coefficients  $u_{\alpha}$  are independently computed.
- its amounts to the computation of N-dimensional integrals in a product space:

$$\int_{\Xi} U(\boldsymbol{y}) \Psi_{\beta}(\boldsymbol{y}) p_{\boldsymbol{\xi}}(\boldsymbol{y}) d\boldsymbol{y} = \int \dots \int U(y_1, \dots, y_N) \Psi_{\alpha}(y_1, \dots, y_N) p_1(y_1) \dots p_N(y_N) dy_1 \dots dy_N.$$

Classically, the integrals are estimated by means of **numerical quadrature** or **sampling approaches**.



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection<br>●○○○ | Sparse Grids | Precond |
|--------------------------|--------------------------------------|-------------------------------------------|--------------|---------|
| Random & Quasi-random q  | uadratures                           |                                           |              |         |
| Monte-Carlo integ        | gration:                             |                                           |              |         |

Estimate integrals from a random sample sets (MC and variants):

$$I_{\alpha} = \int_{\Xi} U(\xi) \Psi_{\alpha}(\xi) p_{\xi}(\xi) d\xi \approx I_{\alpha}^{m} = \frac{1}{m} \sum_{i=1}^{m} U(\xi^{(i)}) \Psi_{\alpha}(\xi^{(i)}),$$

where  $\{\xi^{(i)}, i = 1, ..., m\}$  is a sample set drawn randomly (or pseudo-randomly) in  $\Xi$  according to the density  $p_{\xi}$ .

• Error estimation:

$$\lim_{m\to\infty}|I_{\alpha}-I_{\alpha}^{m}|=\frac{\mathbb{V}[U\Psi_{\alpha}]}{\sqrt{m}}.$$

- Convergence rate independent of the regularity of the functional
- Convergence rate independent of the of the dimensionality
- Slow convergence rate
- Improved sampling strategy



| Non-Intrusive | PC methods Least Square | s & Minimization Methods Non-In | trusive Spectral Projection Sparse Grids |           |
|---------------|-------------------------|---------------------------------|------------------------------------------|-----------|
| 0000000       | 0000000                 | 0000                            | 00000000                                 | 000000000 |

Random & Quasi-random quadratures

#### Improved Monte-Carlo integration:

| MC | LHS | QMC |
|----|-----|-----|
|    |     |     |
|    |     |     |
|    |     |     |



Precond

| Non-Intrusive PC methods  | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|---------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                    | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |
| Deterministic quadratures |                                      |                                   |                                         |         |

Deterministic Quadratures

The integrals can also be computed by means of **deterministic quadratures** involving a set of Nq quadrature points  $\xi^{i} di$  and weights  $w^{(i)}$ :

$$\int_{\Xi} U(\boldsymbol{\xi}) \Psi_{\alpha}(\boldsymbol{\xi}) \approx \sum_{i=1}^{N_O} w^{(i)} U(\boldsymbol{\xi}^{(i)}) \Psi_{\boldsymbol{\alpha}}\left(\boldsymbol{\xi}^{(i)}\right).$$

One dimensional quadratures rules

$$\int f(x)dx \approx \sum_{i=1}^{n_q} f(x_i)w_i,$$

such as **mid-point rule**, Simpson rules, Gauss' quadratures, ..., can be tensorized. For instance, in the case of the same measure along the N-dimension:

$$\int \dots \int f(x_1, \dots, x_N) dx_1 \dots dx_N \approx \sum_{i_1=1}^{n_q} \dots \sum_{i_N=1}^{n_q} f(x_{i_1}, \dots, x_{i_N}) w_{i_1} \times \dots \times w_{i_N},$$

requiring a total of  $n_q^N$  function evaluations.

Tensorization can use a different number of quadrature points along the different dimensions.



| Non-Intrusive PC methods  | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |
|---------------------------|--------------------------------------|-----------------------------------|--------------|---------|
| Deterministic quadratures |                                      |                                   |              |         |
| Multi-dimensiona          | l quadrature                         |                                   |              |         |
| Approximate               | integrals by N-dimensiona            | I quadratures:                    |              |         |

Owing to the product structure of  $\Xi$  the guadrature points  $\mathcal{E}^{(l)}$  and weights  $w^{(l)}$  can be obtained by

- full tensorization of *n* points 1-D quadrature (*i.e.* Gauss):
- partial tensorization of nested 1-D guadrature formula (Féjer, Clenshaw-Curtis) using Smolyak formula:

The partial tensorization results in so-called Sparse-Grid cubature formula, that can be constructed adaptively to the integrants (anisotropic formulas) in order to account for variable behaviors along the stochastic directions. [Gerstner and Griebel, 2003]

- Important development of sparse-grid methods
- Anisotropy and adaptivity
- Also (sparse grid) collocation methods (N-dimensional interpolation) [Mathelin and Hussaini, 2003], [Nobile et al, 2008]





 $N_{O} = n^{N}$ 

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

#### Recap.

We want to construct a functional approximation of a model-output U, where the model involves random parameters  $\xi$ 

 $\boldsymbol{\xi} \in \Xi \subseteq \mathbb{R}^{N}$ , with probability density function  $p_{\boldsymbol{\xi}}$ .

The approximation is sought as

$$U(\boldsymbol{\xi}) \approx \hat{U}(\boldsymbol{\xi}) = \sum_{\boldsymbol{\beta} \in \mathcal{B}} u_{\boldsymbol{\beta}} \Psi_{\boldsymbol{\beta}}(\boldsymbol{\xi}),$$

with  $\mathcal{B}$  a multi-index set and  $\{ \Psi_{\beta} \}$  CONS.

You have seen different types of non-intrusive methods:

- Non-Intrusive Spectral Projection: compute {s<sub>β</sub>, β ∈ B} by numerical quadrature, exploiting orthogonality of the PC Ψ<sub>β</sub> (orthogonal projection on span{Ψ<sub>β</sub>})
- Least-Squares type: compute  $\{\beta, \beta \in B\}$  by solving an optimization problem based on a set of observation points and possibly regularization techniques
- Collocation: use a set of model-output observations to construct an interpolation

**Observe** that the two first differ from the latter by the *a priori* / implicit selection of the approximation space.

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |
|                          |                                      |                                   |                                         |         |

#### Comments

Non-intrusive methods are very attractive by the fact they reuse code and rely on deterministic computations. However their computational complexity -measured as the number of deterministic simulations needed- quickly grows with the dimension N of the parameter space (and with  $Card(\mathcal{B})$ ).

This is particularly critical when one relies on straightforward tensorization of one-dimensional objects (quadrature or interpolation rules) to construct N-dimensional ones: complexity is then in  $\mathcal{O}(C^N)$ .

Sparse grid methods aim at reducing the complexity by relying on smarter tensorization strategies.

Hint: total degree truncation of the PC basis, instead of partial degree truncation, for the PC basis  $S^P = \operatorname{span}\{\Psi_{\beta}, \beta \in B\}$ :

$$\operatorname{Card}\left\{\boldsymbol{\beta} \in \mathbb{N}^{\mathrm{N}}, \sum_{i=1}^{\mathrm{N}} \beta_{i} \leq \operatorname{No}\right\} \ll \operatorname{Card}\left\{\boldsymbol{\beta} \in \mathbb{N}^{\mathrm{N}}, \beta_{1 \leq i \leq \mathrm{N}} \leq \operatorname{No}\right\}.$$

# **Question:** how to reuse the idea of sparse tensorization for quadrature or interpolation rules?

(Answer: Smolyak formula.)



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | •00000000000000000000000000000000000000 |         |
| Smolyak Formula          |                                      |                                   |                                         |         |



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |
|--------------------------|--------------------------------------|-----------------------------------|--------------|---------|
| Smolyak Formula          |                                      |                                   |              |         |
| Sparse quadrature        |                                      |                                   |              |         |

We consider here **the cubature problem for NISP** where we need to approximate N-dimensional integrals of type

$$I_{\mathrm{N}}(f) = \int_0^1 \ldots \int_0^1 f(x_1, \ldots, x_{\mathrm{N}}) dx_1 \ldots dx_{\mathrm{N}}.$$

This situation corresponds to  $\Xi = [0, 1]^N$  and

$$p_{\boldsymbol{\xi}}(\boldsymbol{x}) = egin{cases} 1, & \boldsymbol{x} \in \Xi \ 0, & ext{otherwise} \end{cases}$$

Ideas and concepts of sparse grid immediately extend to collocation and integration, and to more general situations having **product structures**,

$$\mathbb{R}^{\mathbb{N}} \supseteq \Xi := \Xi_1 \times \cdots \times \Xi_{\mathbb{N}}, \quad p_{\boldsymbol{\xi}}(x_1, \ldots, x_{\mathbb{N}}) := p_{\xi_1}(x_1) \times \cdots \times p_{\xi_{\mathbb{N}}}(x_{\mathbb{N}}),$$

using ad-hoc one-dimensional quadrature/interpolation rules along each direction  $1 \leq j \leq \mathrm{N}.$ 



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |
| Smolyak Formula          |                                      |                                   |                                         |         |

#### Sparse quadrature

Consider the sequence of **nested one-dimensional** quadrature formulas for l = 1, 2, ...

$$l_1(f) = \int_0^1 f(x) dx \approx l^{(l)}(f) = \sum_{q=1}^{O(l)} w_q^{(l)} f(x_q^{(l)}),$$

such that  $\left\{x_q^{(i)}, q = 1, \dots Q(i)\right\} \subset \left\{x_q^{(j)}, q = 1, \dots Q(j)\right\}$  for  $1 \le i < j$ .



**Fig. 3.3** Nodes of the Clenshaw-Curtis (*left*) and Fejèr (*right*) rules for levels  $1 \le l \le 6$ 

Owing to the **nested nature**, increasing *I* to I + 1 introduces additional points and changes the weights associated to the older ones.



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |
|--------------------------|--------------------------------------|-----------------------------------|--------------|---------|
| Smolyak Formula          |                                      |                                   |              |         |
| Sparse guadratur         | e                                    |                                   |              |         |

Consider the sequence of **nested one-dimensional** quadrature formulas for l = 1, 2, ...

$$I_{1}(f) = \int_{0}^{1} f(x) dx \approx I^{(l)}(f) = \sum_{q=1}^{Q(l)} w_{q}^{(l)} f(x_{q}^{(l)}),$$

such that  $\{x_q^{(i)}, q = 1, \dots Q(i)\} \subset \{x_q^{(j)}, q = 1, \dots Q(j)\}$  for  $1 \le i < j$ .

The fully tensorized N-dimensional quadrature formula at level / has for expression

$$\begin{split} I_{\rm N}(f) &\approx I_{\rm N}^{{\sf F}(l)}(f) := \left(I^{(l)} \otimes \cdots \otimes I^{(l)}\right)(f) \\ &= \sum_{q_1=1}^{Q(l)} \cdots \sum_{q_{\rm N}=1}^{Q(l)} \left(w_{q_1}^{(l)} \times \cdots \times w_{q_{\rm N}}^{(l)}\right) f(x_{q_1}^{(l)}, \dots, x_{q_{\rm N}}^{(l)}). \end{split}$$

This formula has  $Q_F^N(I) = Q(I)^N$  points with **positive** weights  $w_{q_1}^{(I)} \times \cdots \times w_{q_N}^{(I)}$  provided the one-dimensional sequence has positive weights  $w_q^{(I)} > 0!$ 



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |
|--------------------------|--------------------------------------|-----------------------------------|--------------|---------|
| Smolyak Formula          |                                      |                                   |              |         |
| Sparse quadratur         | e                                    |                                   |              |         |

#### Back to the nested one-dimensional formulas

Denote  $\Delta^{(l)} f$  the difference formula between levels l - 1 and l,

$$\Delta^{(l)}f := \left(I^{(l)} - I^{(l-1)}\right)(f) = \sum_{q=1}^{Q(l)} \Delta w_q^{(l)} f(x_q^{(l)}), \quad \Delta^{(0)}f := 0.$$





| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |
|--------------------------|--------------------------------------|-----------------------------------|--------------|---------|
| Smolyak Formula          |                                      |                                   |              |         |
| Sparse quadratur         | e                                    |                                   |              |         |

## Back to the nested one-dimensional formulas

Denote  $\Delta^{(l)} f$  the difference formula between levels l - 1 and l,

$$\Delta^{(l)}f := \left(I^{(l)} - I^{(l-1)}\right)(f) = \sum_{q=1}^{Q(l)} \Delta w_q^{(l)}f(x_q^{(l)}), \quad \Delta^{(0)}f := 0.$$

Clearly, the one-dimensional quadrature formula at level / is expressed as

$$I^{(l)}(f) = \sum_{i=1}^{l} \Delta^{(i)}(f).$$

Observe: for nested formulas that exactly integrate constants,

$$\sum_{q=1}^{Q(l)} \Delta w_q^{(l)} = \begin{cases} 1, & l=1\\ 0, & l>1 \end{cases}$$

 $\Rightarrow$  positive weights  $w_q^{(l)}$  do not imply  $\Delta w_q^{(l)} \ge 0$  for l > 1.



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | 0000000                              | 0000                              | 000000000000000000000000000000000000000 |         |
| Smolyak Formula          |                                      |                                   |                                         |         |

#### **Differences Formula**

For the construction of sparse N-dimensional cubatures, we introduce the **multi-index**  $\alpha = (\alpha_1, \ldots, \alpha_N) \in (\mathbb{N}^*)^N$ , and use the norms

$$|\boldsymbol{\alpha}|_{\ell_1} = \sum_{i=1}^{N} |\alpha_i|, \quad |\boldsymbol{\alpha}|_{\ell_{\infty}} = \max_{1 \leq i \leq N} |\alpha_i|.$$

The fully tensorized formula can be recast as

$$I_{\mathrm{N}}^{F(l)}(f) := \left(I^{(l)} \otimes \cdots \otimes I^{(l)}\right)(f) = \sum_{\boldsymbol{lpha} \in \mathcal{A}_{\infty}(l)} \left(\Delta^{(\alpha_1)} \otimes \cdots \otimes \Delta^{(\alpha_{\mathrm{N}})}\right)(f),$$

where the summation is over the multi-index set

$$\mathcal{A}_{\infty}(I) := \left\{ \boldsymbol{\alpha} \in (\mathbb{N}^*)^{\mathbb{N}}, |\boldsymbol{\alpha}|_{\ell_{\infty}} \leq I \right\},$$

or explicitly,

$$\left(\Delta^{(\alpha_1)}\otimes\cdots\otimes\Delta^{(\alpha_N)}\right)(f)=\sum_{q_1=1}^{Q(\alpha_1)}\cdots\sum_{q_N=1}^{Q(\alpha_N)}\left(\Delta w_{q_1}^{\alpha_1}\times\cdots\times\Delta w_{q_N}^{\alpha_N}\right)f(x_{q_1}^{\alpha_1},\ldots,x_{q_N}^{\alpha_N}).$$



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | 000000                               | 0000                              | 000000000000000000000000000000000000000 | )       |
|                          |                                      |                                   |                                         |         |

Lims

#### Summation of tensored differences to FT formula



Fig. 3.4 Illustration of cubature rules constructed by products of nested Fejer quadratures: plotted are the 2D grids of integration nodes from (3.25) for different values of the levels  $l_1$  and  $l_2$  along the integration dimensions. Grids on the diagonal plots correspond to the definition (3.23) of the cubature

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |
| Smolyak Formula          |                                      |                                   |                                         |         |

The Smolyak formula (1963) is constructed by defining a new set of multi-indices for the summation of tensored difference formulas; specifically the Smolyak formula at level / is given by

$$I_{\mathrm{N}}^{\mathcal{S}(l)}(f) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}_{\mathcal{S}}(l)} \left( \Delta^{(\alpha_1)} \otimes \cdots \otimes \Delta^{(\alpha_{\mathrm{N}})} \right)(f),$$

where the summation is now over the multi-index set

$$\mathcal{A}_{\mathcal{S}}(l) := \left\{ \boldsymbol{\alpha} \in (\mathbb{N}^*)^{\mathbb{N}}, |\boldsymbol{\alpha}|_{\ell_1} \leq l + N - 1 \right\} \subset \mathcal{A}_{\infty}(l).$$

This is essentially the idea of the total order truncation -as opposed to the partial order truncation- for polynomial bases, but here applied to the **partial tensorization of one-dimensional quadrature formulas**.



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

#### **Comparison of FT and Smolyak cubature rules**



Fig. 3.4 Illustration of cubature rules constructed by products of nested Fejèr quadratures: plotted are the 2D grids of integration nodes from (3.25) for different values of the levels  $l_1$  and  $l_2$  along the integration dimensions. Grids on the diagonal plots correspond to the definition (3.23) of the cubature

|                | 0 |   |   |   | 0<br>0 |   |   |   | 0 |              |
|----------------|---|---|---|---|--------|---|---|---|---|--------------|
| 0              | 0 |   | 0 |   | õ      |   | 0 |   | 0 | o            |
|                |   |   |   |   | 0      |   |   |   |   |              |
|                | 0 |   |   |   | Θ      |   |   |   | 0 |              |
|                |   |   |   |   | 0      |   |   |   |   |              |
| $\infty \circ$ | 0 | 0 | 0 | Ο | 0      | 0 | 0 | 0 | 0 | 0 <b>0</b> 0 |
|                |   |   |   |   | 0      |   |   |   |   |              |
|                | 0 |   |   |   | 0      |   |   |   | 0 |              |
|                |   |   |   |   | 0      |   |   |   |   |              |
| 0              | 0 |   | Ο |   | Θ      |   | Θ |   | 0 | O            |
|                | o |   |   |   | 0<br>0 |   |   |   | 0 |              |

Limsi

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 | )       |
| Creatively Fermula       |                                      |                                   |                                         |         |

#### **Comparison of FT and Smolyak cubature rules**



**Fig. 3.5** Comparison of product and sparse tensorizations in the construction of cubature formulas of level l = 4, for the numerical integration in N = 2 dimensions. The *left plot* shows the indexes of the summation of difference formulas  $\Delta_k^{(N)}$  for the product form in (3.30) (*squares*) and Smolyak's algorithm in (3.29) (*triangle*). The resulting grids for the Fejèr nested quadrature rule are shown in the *middle* (product form) and *right* (sparse grid) *plots* 



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 | )       |
|                          |                                      |                                   |                                         |         |

#### Sparse grids in 2 and 3-D



Fig. 3.6 Illustration of the sparse grid cubature nodes in N = 2 and N = 3 dimensions for the Smolyak's method and nested Fejèr quadrature formulas. Different levels *l* are considered as indicated



◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Preco |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|-------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |       |
| Smolvak Formula          |                                      |                                   |                                         |       |

#### Number of points in Sparse grids (Nested Clenshaw-Curtis quadrature rule)

Fig. 3.7 Minimum number of nodes  $N_{\min}$  for the Smolyak's sparse cubature for exact integration of polynomial integrands with degree  $\leq p$  over hypercubes with uniform weight (nested Clenshaw-Curtis rules and Smolyak's sparse tensorization)





| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |  |
|--------------------------|--------------------------------------|-----------------------------------|--------------|---------|--|
| Smolyak Formula          |                                      |                                   |              |         |  |
| Comments & Remarks       |                                      |                                   |              |         |  |

**Observe:** the support points of the tensored difference formula associated to the multi-index  $\alpha$  are a subset of those associated to  $\beta \ge \alpha$  (that is  $\alpha_i \le \beta_i$  for i = 1, ..., N), owing to the nested nature of the one-dimensional formulas.

In practice, given l > 1 the Smolyak formula is recast as a weighted-sum,

$$I_{\rm N}^{{\rm S}(l)}(f) = \sum_{q=1}^{Q_{\rm S}^{\rm S}(l)} w_q^{{\rm S}(l),{\rm N}} f(\boldsymbol{x}_q^{{\rm S}(l),{\rm N}}).$$

- increasing level / introduces additional points and change the weights
- $\bullet\,$  Fast algorithm for the computation of points and weights are mandatory when N>10

• 
$$Q_S^{
m N}(I) \ll Q_F^{
m N}(I)$$
 as N  $\uparrow$ 



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |  |  |
|--------------------------|--------------------------------------|-----------------------------------|--------------|---------|--|--|
| Smolyak Formula          |                                      |                                   |              |         |  |  |
| Comments & Remarks       |                                      |                                   |              |         |  |  |

- The sparse tensorization tempers the curse of dimensionality
- The Smolyak cubature is less accurate than the fully-tensored formula (for the same level)
- Question: what's the polynomial space Π<sup>N</sup> for which the Smolyak formula is exact?
- The Smolyak cubature does not define a discrete inner product. Why ?
- What about collocation methods?

#### Regarding Non-Instrusive Spectral Projection

- Use the same sparse rule for all integrands  $(U(\xi)\Psi_{\beta}(\xi)), \beta \in \mathcal{B}$ : Direct NISP
- Determine  $\mathcal{B}$  such that  $\forall \beta, \beta' \in \mathcal{B}$  the cubature **exactly** integrates  $(\Psi_{\beta}\Psi_{\beta'})$ : internal-aliasing free NISP
- Alternatively, consider differences formulas for the Fully-Tensored NISP projection at different level *I*, resulting in the use of F-T quadratures depending on β. Internal aliasing-free while allowing for larger set B.
   Pseudo-Spectral NISP [Marzouk, 2013], [Constantine, 2013]
- External aliasing remains!



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 | ,<br>,  |
| Adaptive Sparse Grid     |                                      |                                   |                                         |         |

# Adaptive Sparse Grid



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| Non-Intrusive PC methods          | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |  |  |
|-----------------------------------|--------------------------------------|-----------------------------------|--------------|---------|--|--|
| Adaptive Sparse Grid              |                                      |                                   |              |         |  |  |
| Generalization of Smolyak formula |                                      |                                   |              |         |  |  |

One can consider general classes of cubature formulas through the generic expression

$$l_{\mathrm{N}}^{\mathcal{A}}(f) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} \left( \Delta^{(\alpha_1)} \otimes \cdots \otimes \Delta^{(\alpha_N)} \right) (f).$$

This calls for a definition of the multi-index set  $\mathcal{A}$ .

# Ideas?



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 | )       |
| Adaptive Sparse Grid     |                                      |                                   |                                         |         |

#### **Generalization of Smolyak formula**

$$k_{\mathrm{N}}^{\mathcal{A}}(f) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} \left( \Delta^{(\alpha_1)} \otimes \cdots \otimes \Delta^{(\alpha_{\mathrm{N}})} \right) (f)$$

 $\ell_{\rho}$ -(quasi)norm:

hyperbolic cross product

$$|\boldsymbol{\alpha}|_{\ell_{\rho}} := \left(\sum_{i=1}^{N} |\boldsymbol{\alpha}_{i} - 1|^{\rho}\right)^{1/\rho}, \quad \mathcal{A}(\rho) := \big\{\boldsymbol{\alpha} \in (\mathbb{N}^{*})^{N}, |\boldsymbol{\alpha}|_{\ell_{\rho}} < l\big\}, \quad \rho > 0.$$





| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 | ,<br>,  |
|                          |                                      |                                   |                                         |         |

#### Adaptive Sparse Grid

#### Generalization of Smolyak formula

$$I_{\mathrm{N}}^{\mathcal{A}}(f) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} \left( \Delta^{(\alpha_1)} \otimes \cdots \otimes \Delta^{(\alpha_{\mathrm{N}})} \right) (f)$$

#### Weighted $\ell_1$ -norms:

dimension adaptivity / anisotropic rules

Let  $W_{1 \le i \le N} > 0$  be directional weights:

$$|\boldsymbol{\alpha}|_{\ell_1(\boldsymbol{W})} := \sum_{i=1}^{N} W_i |\alpha_i - 1|, \quad \mathcal{A} = \mathcal{A}(\boldsymbol{W}, \boldsymbol{C}) := \big\{ \boldsymbol{\alpha} \in (\mathbb{N}^*)^N, |\boldsymbol{\alpha}|_{\ell_1(\boldsymbol{W})} < \boldsymbol{C} \big\}.$$



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | 000000                               | 0000                              | 000000000000000000000000000000000000000 | )       |
| Adaptive Sparse Grid     |                                      |                                   |                                         |         |

#### Admissible multi-index sets

What is the constraint on the structure of the multi-index set A? Why?



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |
| Adaptive Sparse Grid     |                                      |                                   |                                         |         |

#### Admissible multi-index sets

What is the constraint on the structure of the multi-index set A? Why?

Admissible sets: A is said admissible if all  $\alpha \in A$  has predecessors in all the N directions:

$$\forall \boldsymbol{\alpha} \in \mathcal{A}, \ \alpha_j > 1 \Rightarrow \boldsymbol{\alpha} - \boldsymbol{e}_j \in \mathcal{A}, \quad j = 1, \dots, N,$$

where  $\boldsymbol{e}_{i}$  is the unit vector in direction j,

$$(\boldsymbol{e}_j)_i = \begin{cases} 1, & i=j\\ 0, & i\neq j \end{cases}$$



Fig. 3.9 Examples of admissible and non-admissible multi-index sets in two dimensions



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 000000                   | 000000                               | 0000                              | 000000000000000000000000000000000000000 | )       |
| Adaptive Sparse Grid     |                                      |                                   |                                         |         |

#### Forward neighborhood and candidate set

Given a multi-index  $\alpha$ , we define its forward neighborhood as the multi-index set

$$\mathcal{F}(\boldsymbol{\alpha}) = \{ \boldsymbol{\alpha} + \boldsymbol{e}_j, j = 1, \dots, N \}.$$

Given an admissible multi-index set  $\mathcal{A},$  we define its admissible forward multi-index set  $\mathcal{C}$  as

$$\mathcal{C}(\mathcal{A}) := \big\{ \boldsymbol{\alpha} \in (\mathbb{N}^*)^N, \boldsymbol{\alpha} \notin \mathcal{A} \text{ and } \mathcal{A} \cup \{ \boldsymbol{\alpha} \} \text{ admissible} \big\}.$$

Clearly,

$$\forall \alpha \in C(\mathcal{A}), \exists \beta \in \mathcal{A} \text{ such that } \alpha \in \mathcal{F}(\beta).$$

#### Adaptive strategy:

The multi-index set of the adapted cubature for the approximation of  $I_N(f)$  is constructed by building a sequence of admissible sets  $\mathcal{A}^{(0)} \to \mathcal{A}^{(1)} \to \mathcal{A}^{(2)} \dots$ , such that

$$\mathcal{A}^{(k+1)} = \mathcal{A}^{(k)} \cup oldsymbol{lpha}_k, \quad oldsymbol{lpha}_k \in \mathcal{C}(\mathcal{A}^{(k)}).$$

In words, given  $\mathcal{A}^{(k)}$ , a new tensorization is added (one at a time) that leaves the resulting set admissible.

## How to pick $\alpha_k \in \mathcal{C}(\mathcal{A}^{(k)})$ ?



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids | Precond |
|--------------------------|--------------------------------------|-----------------------------------|--------------|---------|
| Adaptive Sparse Grid     |                                      |                                   |              |         |
| Error indicator          |                                      |                                   |              |         |

For a multi-index  $\alpha \in (\mathbb{N}^*)^N$ , we define the associated excess as

 $e(\alpha) = |(\Delta^{\alpha_1} \otimes \cdots \otimes \Delta^{\alpha_N})(f)|.$ 

To enrich  $\mathcal{A}^{(k)}$ , we should choose  $\alpha_k \in \mathcal{C}(\mathcal{A}^{(k)})$  corresponding to the largest excess  $e_{\alpha}$ ,

$$\boldsymbol{\alpha}_k = \arg \max_{\boldsymbol{\alpha} \in \mathcal{C}(\mathcal{A}^{(k)})} | (\Delta^{lpha_1} \otimes \cdots \otimes \Delta^{lpha_N})(f) |.$$

However, the objective of the adaptation is to reduce the error for the least possible number of function evaluations, so we also want to **balance the excess with computational complexity of the new tensorization**. Gerstner and Griebel proposed to pick  $\alpha_k$  from

$$oldsymbol{lpha}_k = rg\max_{oldsymbol{lpha}\in \mathcal{C}(\mathcal{A}^{(k)})} \max\left((1-
ho)oldsymbol{e}(oldsymbol{lpha}), oldsymbol{C}/N_Q(oldsymbol{lpha})
ight), \quad oldsymbol{C}\in [0,1],$$

where  $N_Q(\alpha) = \prod_i N_Q^{\alpha_i}$  is the number of points in the tensored difference formula.

- for C = 0, the adaptation only considers the excess,
- for C = 1, the adaptation only considers the complexity.

#### A stopping criteria ?

| Non-Intrusive PC methods | Least Squares & Minimizat | ion Methods Non-<br>000 | Intrusive Spectral Projectio | n Sparse Grids | Precond |
|--------------------------|---------------------------|-------------------------|------------------------------|----------------|---------|
| Adaptive Sparse Grid     |                           |                         |                              |                |         |
|                          | Largest g <sub>k</sub>    | I                       | Largest g <sub>k</sub>       |                |         |
|                          |                           |                         |                              |                |         |

**Fig. 3.10** Illustration of the adaptive sparse grid procedure for N = 2. The plots on the *top row* show the evolution of the multi-index set  $\mathcal{I}$ , distinguishing the sets of old multi-indexes  $\mathcal{O}$  (*light gray squares*) and active multi-indexes  $\mathcal{A}$  (*dark gray squares*). The corresponding sparse grids are plotted in the *bottom row* 

. .

.



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000 | )       |
| Adaptive Course Oxid     |                                      |                                   |                             |         |

For NISP, one uses a cubature formula

$$l_{\mathrm{N}}^{\mathcal{A}}(f) = \sum_{\boldsymbol{lpha} \in \mathcal{A}} \left( \Delta^{(\alpha_1)} \otimes \cdots \otimes \Delta^{(\alpha_N)} \right) (f),$$

to compute a series of integrals with  $f = f_{\beta}(\xi) = S(\xi)\Psi_{\beta}(\xi)$  and  $\beta \in \mathcal{B}_{PC}$ .

 A minimal compatibility relation between A and B is that they satisfy the discrete orthogonality relation for the PC, that is

$$I_{\mathcal{N}}^{\mathcal{A}}(\Psi_{\boldsymbol{\beta}}\Psi_{\boldsymbol{\beta}}') = \delta_{\boldsymbol{\beta}\boldsymbol{\beta}'}\left\langle \Psi_{\boldsymbol{\beta}},\Psi_{\boldsymbol{\beta}}\right\rangle, \quad \forall \boldsymbol{\beta}, \boldsymbol{\beta}' \in \mathcal{B}.$$

- Given *B* one can determine the **minimal admissible set** *A* from the exactness properties of the one-dimensional quadratures.
- Alternatively, given A, one can determine B as the largest admissible set of PC tensorizations that satisfies the discrete orthogonality.
- **Recall:** the model-output *S* is usually not polynomial. Be conservative!
- What about the case of multiple model-outputs ?



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

#### Preconditioning

Non-Intrusive projections are appealing for complex & non-linear problems **BUT** non-intrusive **does not mean that**  $U(\xi)$  **is easily approximated**. Difficulties remains for

- non-smooth mapping  $\boldsymbol{\xi} \mapsto U(\boldsymbol{\xi})$
- but also for enforcement of positivity constraints, presence of plateau, saturation behavior, highly stretched dependences.

Preconditioning can help in these situations, introducing an **inversible** transformation  $\Phi$ :

$$Y({m \xi}) = \Phi(U({m \xi})) o U({m \xi}) pprox \Phi^{-1}(\sum_{lpha \in {\mathcal A}} y_lpha \Phi_lpha({m \xi})).$$

Transformation must be chosen so  $Y(\xi)$  has a tight spectrum, allowing the use of a low degree PC expansion.



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

#### Preconditioning

Preconditioning can help in these situations, introducing an **inversible** transformation  $\Phi$ :

$$Y(oldsymbol{\xi}) = \Phi(U(oldsymbol{\xi})) o U(oldsymbol{\xi}) pprox \Phi^{-1}(\sum_{lpha \in \mathcal{A}} y_lpha \Phi_lpha(oldsymbol{\xi})).$$

Transformation must be chosen so  $Y(\xi)$  has a tight spectrum, allowing the use of a low degree PC expansion.



Figure 1: Concentration versus time selected realizations in S. Shown are curves for O<sub>2</sub>, H<sub>2</sub>O the original realizations shown in Figure 1. HO<sub>2</sub>, and H, as indicated.

| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Precond |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|---------|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |         |

#### Preconditioning

Preconditioning can help in these situations, introducing an **inversible** transformation  $\Phi$ :

$$Y(\boldsymbol{\xi}) = \Phi(U(\boldsymbol{\xi})) 
ightarrow U(\boldsymbol{\xi}) pprox \Phi^{-1}(\sum_{lpha \in \mathcal{A}} y_{lpha} \Phi_{lpha}(\boldsymbol{\xi})).$$

Transformation must be chosen so  $Y(\xi)$  has a tight spectrum, allowing the use of a low degree PC expansion.



Figure 14: PDFs of [H] at time t = 8. Left: preconditioned NISP at different PC orders as indicated. Right: direct NISP method with the same orders. Also shown on the right is the PDF of [H] generated with Monte-Carlo sampling.



| Non-Intrusive PC methods | Least Squares & Minimization Methods | Non-Intrusive Spectral Projection | Sparse Grids                            | Pre |
|--------------------------|--------------------------------------|-----------------------------------|-----------------------------------------|-----|
| 0000000                  | 000000                               | 0000                              | 000000000000000000000000000000000000000 |     |

# **Questions?**

#### Further readings:

- S. Smolyak, Quadrature and interpolation formulas for tensor products of certain class of functions. Dokl. Akad. Nauk. SSSR, 4, 240-243, (1963).
- E. Novak and K. Ritter, High dimensional integration of smooth functions over cubes. Numer. Math., 75, pp. 79-97, (1996).
- T. Gerstner and M. Griebel, Numerical integration using sparse grids. Numerical Algorithms, 18, 209-232, (1998).
- K. Petras, On the Smolyak cubature error for analytic functions. Adv. Comput. Math., 12, 71-93, (2000).
- K. Petras, Fast calculation in the Smolyak algorithm. Numerical Algorithms, 26, 93-109, (2001).
- F. Nobile, R. Tempone and C. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numerical Analysis, 46:5, 2411-2442, (2008).
- A. Keese and H. Matthies, Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations. Technical Report, Institute of Scientific Computing TU Braunschweig, (2003).
- X. Ma and N. Zabaras, Adaptative hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Computational Physics, (2009).



cond