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Parametric Data Propagation Spectral expansions PC Expansions of Stochastic Quantities

Overview

Objectives of the lecture

Introduce Parametric Uncertainty Quantification & Propagation

Discuss a first spectral expansion: the Karhunen-Loève decomposition

Formalism and essential ingredients of Wiener’s PC expansions

Generalize finite dimensional PC expansions to arbitrary measures

Shortly discuss alternative construction approaches.
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Simulation and errors

Simulation framework.

Basic ingredients

Understanding of the physics involved (optional?):
selection of the mathematical model.

Numerical method(s) to solve the model.

Specify a set of data:
select a system among the class spanned by the model.

Simulation errors

Model errors: physical approximations and simplifications.

Numerical errors: discretization, approximate solvers, finite arithmetics.

Data error: boundary/initial conditions, model constants and parameters,
external forcings, . . .
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Data uncertainty

Sources of data uncertainty

Inherent variability (e.g. industrial processes).

Epistemic uncertainty (e.g. model constants).

May not be fully reducible, even theoretically.

Probabilistic framework

Define an abstract probability space (Θ,A, dµ).

Consider data D as random quantity: D(θ), θ ∈ Θ.

Simulation output S is random and on (Θ,A, dµ).

Data D and simulation output S are dependent random quantities (through
the mathematical modelM):

M(S(θ),D(θ)) = 0, ∀θ ∈ Θ.
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Data uncertainty

Propagation of data uncertainty

Data density

M(S,D) = 0

Solution density

Variability in model output: numerical error bars.

Assessment of predictability.

Support decision making process.

What type of information (abstract quantities, confidence intervals, density estimations,
structure of dependencies, . . . ) one needs?
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Alternative UQ& P methods

Deterministic methods

Sensitivity analysis (adjoint based, AD, . . . ): local.

Perturbation techniques: limited to low order and simple data uncertainty.

Neumann expansions: limited to low expansion order.

Moments method: closure problem (non-Gaussian / non-linear problems).

Simulation techniques Monte-Carlo

Spectral Methods
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Alternative UQ& P methods

Deterministic methods

Simulation techniques Monte-Carlo

Generate a sample set of data realizations and compute the corresponding
sample set of model ouput.
Use sample set based random estimates of abstract characterizations
(moments, correlations, . . . ).

Plus: Very robust and re-use deterministic codes: (parallelization, complex data
uncertainty).

Minus: slow convergence of the random estimates with the sample set
dimension.

Spectral Methods
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Alternative UQ& P methods

Deterministic methods

Simulation techniques Monte-Carlo

Spectral Methods

Parameterization of the data with random variables (RVs).

⊥ projection of solution on the (L2) space spanned by the RVs.

Plus: arbitrary level of uncertainty, deterministic approach, convergence
rate, information contained.

Minus: parameterizations (limited # of RVs), adaptation of simulation tools
(legacy codes), robustness (non-linear problems, non-smooth output, . . . ).

Not suited for model uncertainty
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Alternative UQ& P methods

Propagation of data uncertainty
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Alternative UQ& P methods

Propagation of data uncertainty
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Large number of parameters

Costly model evaluation (PDE)

Estimation of p(S) is not the end of the story!
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Alternative UQ& P methods
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Approximate the model output S(D) through a functional representation of the form

S(D) ≈
P∑

k=0

Sk Ψk (D)
.

= SP(D)
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Alternative UQ& P methods
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S(D) ≈
P∑

k=0

Sk Ψk (D)
.

= SP(D)

Exploit (whenever possible) the smoothness of S(D) to have a fast convergence
of SP(D) toward S(D)

Determine SP at a low computational cost

Base UQ analysis on the surrogate SP(D) (cheap evaluations).
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Alternative UQ& P methods

Example (Elliptic equations)

Let Ω ∈ R2 be a closed domain, and the Dirichlet problem

∇ · (ν(x)∇u(x)) = −f (x) ∀x ∈ Ω,

u(x) = 0 x ∈ ∂Ω.

with 0 < ε < ν(x) < +∞ and f given.
Introducing a suitable functional space V := H1

0 , the solution u ∈ V is such that

a(u, v ; ν) = b(v) ∀v ∈ V ,

a(u, v ; ν) =

ˆ
Ω
ν∇u ·∇vdx b(v) =

ˆ
Ω

fvdx .

The solution is unique.
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Alternative UQ& P methods

Example (Uncertainty)

The unique solution to

a(u, v ; ν) = b(v) ∀v ∈ V ,

depends (continuously) on ν: u := u(x , ν)
Now, if ν is uncertain and model as a random process defined on a probability space
(Θ,Σ, dµ)

(Ω×Θ) 3 (x × θ) 7→ ν(x , θ) ∈ R.

ν(·, θ) is a function with domain Ω, ν(x , ·) is a random variable.
=⇒ u(x , ν) is now random, we write U(x , θ).

The stochastic solution U(x , θ) solves almost surely

a(U(·, θ), v ; ν(θ)) = b(v) ∀v ∈ V .

We need to compute U(x , θ).
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Alternative UQ& P methods

Example (Spectral expansion)

Often U(x , θ) is smooth in x and with respect to ν(θ). We seek for a spectral
approximation using a rapidly converging series

U(x , θ) =
∑
n≥0

un(x)ηn(θ),

where un(x) ∈ V and ηn(θ) is defined on (Θ,Σ, dµ).
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Karhunen-Loeve expansion

Consider a stochastic process U(x , θ) (say the solution of the stochastic elliptic
problem). We seek for the spectral expansion of U as

U(x , θ) =
∑
n≥0

un(x)ηn(θ),

Denote

(u, v) the inner product in L2(Ω) equipped with the norm ‖ · ‖2

E [·] the expectation operator

and assume E [U(x , ·)] = 0 and U ∈ L2(Ω,Θ): E
[
U(x , ·)2] < +∞, ‖U(·, θ)‖2 < +∞

How to define the best m-terms truncated expansion

U(x , θ) ≈
m∑

n=1

un(x)ηn(θ)?
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Karhunen-Loeve expansion

Hint: the m-terms expansion minimizes the approximation error

ε(m)2 = E

∥∥∥∥∥U −
m∑

n=1

unηn

∥∥∥∥∥
2

2

,

The solution is not unique: ‖un‖2 = 1

The spatial modes un are the eigenfunctions of the auto-correlation kernel

(Ω× Ω) 3 (x , y) 7→ K (x , y) = E [U(x , ·)U(y , ·)] ∈ R.

That is:

(Kun, v) = λn(un, v) v ∈ V .
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Karhunen-Loeve expansion

Observe : K is a symmetric positive operator so the eigenfunctions are orthonormal:
(un, un′ ) = δnn′

The optimal decomposition is

U(xθ) ≈
m∑

n=1

√
λnun(x)ηn(θ),

where λ1 ≥ λ2 ≥ · · · ≥ 0 and

ηn(θ) = (U(·, θ), un), E [ηn] = 0, E
[
η2

n

]
= 1.

optimality and convergence in the mean-squared sense

can be applied only if U is known

how to represent the stochastic coefficient?
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Karhunen-Loeve expansion

Example (Parametrization)

The KL expansion is often used to construct parametrizations of the uncertain model
input which are known.
For instance, ν is frequently model as a log-normal random field:

ν(x , θ) = C exp G(x , θ),

where G is a zero-mean Gaussian random field with prescribed auto-correlation kernel
KG(x , y):

G(x , θ) ≈
m∑

n=1

gn(x)ξn(θ),

where the ξn ’s are independent normalized Gaussian random variables. Setting
ξ = (ξ1 · · · ξm), we finally seek for the approximate Um(x , ξ) such that a.s.

a
(
Um(x , ξ), v ; ν(x , ξ)

)
= b(v) ∀v ∈ V .
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Wiener-Hermite expansion

Consider a R-valued random variable defined on a probability space (Θ,Σ, dP):

U : Θ 7→ R.

We denote L2(Θ, dP) the space of second order random variables:

U ∈ L2(Θ, dP)⇔ E
[
U2
]

:=

ˆ
Θ

U(θ)2dP(θ) < +∞.

Let {ξi}∞i=1 be a sequence of centered, normalized, mutually orthogonal (uncorrelated)
Gaussian random variables:

E [ξi ] = 0, E
[
ξiξj
]

= δi,j ∀ i, j = 1, 2, . . .
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Wiener-Hermite expansion

We denote for p = 0, 1, 2, . . . :

Γ̂p the space of orthogonal polynomials in {ξi}∞i=1 with degree ≤ p.

Γp the set of polynomials belonging to Γ̂p and ⊥ to Γ̂p−1.

Γ̃p the (sub) space spanned by Γp .

We have

Γ̂p = Γ̂p−1 ⊕ Γ̃p, L2(Θ, dP) =

p=∞⊕
p=0

Γ̃p.

Γ̃p is called the p-th Homogeneous Chaos.

Γp is called the Polynomial Chaos of order p.

Γp consists of orthogonal polynomials with degree p, involving all combinations of
the r.v. {ξi}.

Note: functions of r.v. are r.v. themselves and are regarded as functionals.
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Wiener-Hermite expansion

Fundamental Result: [Wiener, 1938]

Any well-behaved random variable, e.g. second order ones, has a PC representation of
the form

U(θ) =u0Γ0 +
∞∑

i1=1

ui1 Γ1(ξi1 (θ)) +
∞∑

i1=1

i1∑
i2=1

ui1,i2 Γ2(ξi1 (θ), ξi2 (θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ui1,i2,i3 Γ3(ξi1 (θ), ξi2 (θ), ξi3 (θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ui1,i2,i3,i4 Γ4(ξi1 (θ), ξi2 (θ), ξi3 (θ), ξi4 (θ)) + . . .

The series converges in the mean-square sense:

lim
p→∞

E


u0Γ0 + · · ·+

∞∑
i1=1

· · ·
ip−1∑
ip=1

Γp(ξi1 , · · · , ξip )− U

2
 = 0.
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Wiener-Hermite expansion

PC expansion of U:

U(θ) =u0Γ0 +
∞∑

i1=1

ui1 Γ1(ξi1 (θ)) +
∞∑

i1=1

i1∑
i2=1

ui1,i2 Γ2(ξi1 (θ), ξi2 (θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ui1,i2,i3 Γ3(ξi1 (θ), ξi2 (θ), ξi3 (θ))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ui1,i2,i3,i4 Γ4(ξi1 (θ), ξi2 (θ), ξi3 (θ), ξi4 (θ)) + . . .

We denote ξ := {ξi}∞i=1.

We shall write U(ξ) for the PC expansion of U.
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Wiener-Hermite expansion

Few important properties:

Vanishing expectation: E [Γp] = 0 for p > 0.

One can express the expectation of U in the Gaussian space spanned by ξi with
the measure

pξ(y) =
∞∏
i=1

1
√

2π
exp

[
−y2

i /2
]
.

that is

E [U] =

ˆ
Θ

U(θ)dP(θ) =

ˆ
Θ

U(ξ(θ))dP(θ)

=

ˆ
· · ·
ˆ

U(y)pξ(y)dy =: 〈U〉 .

The orthogonality of the polynomials is with regard to the Gaussian measure.
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Wiener-Hermite expansion

Truncated PC expansions: in practice a finite number of r.v. is used

ξ = {ξ1, · · · , ξN}

N is called the stochastic dimension and ξ is often referred as the stochastic germ.

Example of two dimensional PC expansion:

U(ξ1, ξ2) = u0Γ0 + u1Γ1(ξ1) + u2Γ2(ξ2)

+ u11Γ2(ξ1, ξ1) + u21Γ2(ξ2, ξ1) + u22Γ2(ξ2, ξ2)

+ u111Γ3(ξ1, ξ1, ξ1) + u211Γ3(ξ2, ξ1, ξ1) + u221Γ3(ξ2, ξ2, ξ1)

+ u222Γ3(ξ2, ξ2, ξ2) + u1111Γ4(ξ1, ξ1, ξ1, ξ1) + . . .

With the introduction of an indexation scheme, the expansion can be recast as

U(ξ) =
∞∑

k=0

uk Ψk (ξ), uk ∈ R.

The uk are the PC coefficients of U and Ψk are (orthogonal) polynomial. We here use
the convention Ψ0 = Γ0 = 1.
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Wiener-Hermite expansion

1-D PC expansion:
Recall that the chaos polynomials are orthogonal wrt the probability density of ξ
(centered, normalized, Gaussian):

pξ(y) =
1
√

2π
exp

[
−y2/2

]
. (1)

By ψp(ξ) we denote the 1D polynomial of order p.
Following the indexation convention, ψ0(ξ) = 1.
The orthogonality condition is:

E
[
ψiψj

]
=

ˆ
R
ψi (y)ψj (y)pξ(y)dy = δij

〈
ψ2

i

〉
.

The ψi is the well known Hermite polynomial of degree i .

the Hermite polynomials are normalized s.t.
〈
ψ2

i

〉
= i!.
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Wiener-Hermite expansion

First Hermite polynomials (1-D):
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One-dimensional Hermite polynomials, ψp(ξ), for p = 0, . . . , 6.
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Wiener-Hermite expansion

Multi-dimensional PC basis:
The N-variate polynomials Ψi are constructed as product of 1-D Hermite polynomials.
Let γ := {γ1 . . . γN} ∈ NN be a multi-index and λ(p) the multi-index set

λ(p) =

{
γ :

N∑
i=1

γi = p

}
.

The p-th order polynomial chaos is constructed according to:

Γp =

 ⋃
γ∈λ(p)

γN∏
γ1

ψγi (ξi )

 .

Example for N = 2:

U(ξ1, ξ2) = u0ψ0 + u1ψ1(ξ1) + u2ψ1(ξ2) + u11ψ2(ξ1) + u21ψ1(ξ2)ψ1(ξ1)

+ u22ψ2(ξ2) + u111ψ3(ξ1) + u211ψ1(ξ2)ψ2(ξ1)

+ u221ψ2(ξ2)ψ1(ξ1) + u222ψ3(ξ2) + u1111ψ4(ξ1) + . . .



Parametric Data Propagation Spectral expansions PC Expansions of Stochastic Quantities

Wiener-Hermite expansion

The Hermite polynomials for p ≤ 2 (N = 2)
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Wiener-Hermite expansion

The Hermite polynomials for p = 3 (N = 2)
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Wiener-Hermite expansion

Truncated PC expansion
In addition to a finite number of random variables, N, we need to truncate the PC
expansion to a finite order p

U(ξ) ≈ UP(ξ) =
P∑

k=0

uk Ψk (ξ), P + 1 =
(N + p)!

N!p!

Dependence of (P + 1) on N and p:
p/N 1 2 3 4 5 6

1 2 3 4 5 6 7
2 3 6 10 15 21 28
3 4 10 20 35 56 84

p/N 1 2 3 4 5 6
4 5 15 35 70 126 210
5 6 21 56 126 252 462
6 7 28 84 210 462 924

Fast increase with both N and p.

Other truncature strategies may be used.



Parametric Data Propagation Spectral expansions PC Expansions of Stochastic Quantities

Wiener-Hermite expansion

 0  1  2  3  4  5
 5

 10
 15

 1
 10

 100
 1000

 10000
 100000

P+1

p
N

P+1

Number of terms in the PC expansion plotted against the order, p, and the number of
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Wiener-Hermite expansion

The truncated expansion of a random variable U is

U(θ) ≈ UP(ξ) + ε(N, p) =
P∑

k=0

uk Ψk (ξ) + ε(N, p).

The truncation error depends both on N and p.
The error is a random variable.

The expansion converges in the mean-square sense as N and p go to
infinity [Cameron & Martin, 1947]:

lim
N,p→∞

〈
ε2(N, p)

〉
= 0.

In light of the dependence of P on the order and the number of random variables, the
PC representation will be computationally efficient if the convergence is fast in both N
and p.
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Generalized PC expansions

Hilbert space (fixed finite N)

The polynomials {Ψk}∞k=0 forms an orthogonal basis of L2(RN, pξ).

L2(RN, pξ) is equipped with the inner product

〈U,V 〉 := E [UV ] =

ˆ
RN

U(y)V (y)pξ(y)dy

and norm ‖U‖L2(RN,pξ) := 〈U,U〉1/2.

The convergence of the truncated expansion UP → U depends on the probability
law of U.

For instance, if U is Gaussian, it has an exact first order expansion.

Suggests the construction of polynomial spaces based on non-Gaussian
distributions.
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Generalized PC expansions

Generalized Polynomial Chaos (GPC) [Xiu & Karniadakis, 2002]
Distribution Polynomials Support

ξ ψk (ξ)
Continuous RV Gaussian Hermite (−∞,∞)

γ Laguerre [0,∞)
β Jacobi [a, b]

Uniform Legendre [a, b]
Discrete RV Poisson Charlier {0, 1, 2, . . . }

Binomial Krawtchouk {0, 1, 2, . . . , n}
Negative binomial Meixner {0, 1, 2, . . . }
Hypergeometric Hahn {0, 1, 2, . . . , n}

Families of probability laws and corresponding families of orthogonal polynomials.
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Generalized PC expansions
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Generalized PC expansions

If the r.v. in ξ are independent,

pξ(y) =
N∏

i=1

pi (yi ),

the Ψk can be obtained by tensorization of one-dimensional polynomials
constructed on the probability distribution of each ξi .

We denote {ψ(i)
l }

p
l=0 the family of 1-D polynomials with degree ≤ p orthogonal

w.r.t. to the measure pi associated to ξi , i = 1, · · · ,N, that is
ˆ
ψl (y)ψl′ (y)pi (y)dy = δl,l′

ˆ
ψl (y)2pi (y)dy .

The m-th order GPC is constructed according to:

ΓG
m =

 ⋃
γ∈λ(m)

γN∏
γ1

ψ
(i)
γi (ξi )

 ,

m=p⊕
m=0

ΓG
m = {Ψk}k=P

k=0 .
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Generalized PC expansions

For general distributions of the independent ξi , one can rely on numerical
orthogonalization procedure (Gram-Schmidt) to construct the 1-D family of
polynomials.

Anticipating forthcoming lectures, one can think of using other types of functionals
in the construction.

These include piecewise polynomial functions, sine and cosine functions (uniform
measure), wavelets, . . .

In fact any basis of the Hilbert space L2(Ξ, pξ), where Ξ is the support of pξ .

An important aspect to keep in mind is the dimension of the expansion.
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Generalized PC expansions

(Really) Generalized PC: [Soize & Ghanem, 2004]
Case of a germ ξ with dependent components ξi

The joint probability distribution pξ can not be factorized.

Denote pi the marginal distribution of ξi :

pi (y) =

ˆ
dy1 · · ·

ˆ
dyi−1

ˆ
dyi+1 · · ·

ˆ
dyN pξ(y1, · · · , yN).

Let {φ(i)
p (ξ)} be the corresponding sets of 1-D polynomials satisfying〈

φ
(i)
p , φ

(i)
p′

〉
pi
≡
ˆ
φ

(i)
p (y)φ

(i)
p′ (y)pi (y)dy = δpp′ .
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Generalized PC expansions

(Really) Generalized PC: [Soize & Ghanem, 2004]
Case of a germ ξ with dependent components ξi

The joint probability distribution pξ can not be factorized.

Denote pi the marginal distribution of ξi :

pi (y) =

ˆ
dy1 · · ·

ˆ
dyi−1

ˆ
dyi+1 · · ·

ˆ
dyN pξ(y1, · · · , yN).

The Chaos function associated to the multi-index γ ∈ NN writes

Ψγ(ξ) =

[
p1(ξ1) . . . pN(ξN)

pξ(ξ)

]1/2

φ
(1)
γ1 (ξ1) . . . φ

(N)
γN (ξN).

It can be checked that the Ψ’s are orthogonal and form a basis of L2(Ξ, pξ).

This is no more a polynomial expansion!
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Random variables and vectors

Let UP be given by a truncated (G)PC expansion

UP(ξ) =
P∑

k=0

uk Ψk (ξ),

where the chaos polynomials {Ψ0, . . . ,ΨP} are orthogonal (with the convention Ψ0 = 1).

The mathematical expectation of U is

E
[
UP
]

=
〈

UP(ξ)
〉

=
〈

Ψ0,U
P(ξ)

〉
=

P∑
k=0

uk 〈Ψ0,Ψk 〉 = u0.
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Random variables and vectors

Let UP be given by a truncated (G)PC expansion

UP(ξ) =
P∑

k=0

uk Ψk (ξ),

where the chaos polynomials {Ψ0, . . . ,ΨP} are orthogonal (with the convention Ψ0 = 1).

Its variance σ2
UP is in turn

σ
2
UP = E

[(
UP − E

[
UP
])2
]

= E

( P∑
k=1

uk Ψk

)2


=
P∑

k,l=1

uk ul 〈Ψk ,Ψl〉 =
P∑

k=1

u2
k

〈
Ψ2

k

〉
.

The variance of UP is given as a weighted sum of its squared PC coefficients.
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Random variables and vectors

Let UP be given by a truncated (G)PC expansion

UP(ξ) =
P∑

k=0

uk Ψk (ξ),

where the chaos polynomials {Ψ0, . . . ,ΨP} are orthogonal (with the convention Ψ0 = 1).

Similar expressions for the higher order moments of UP in terms of its PC coefficients (but
more complex).

More complex statistical characterizations can be obtained by means of sampling strategies:

1 sampling of Ξ with probability density pξ ,
2 generation of realization of UP by evaluating the PC expansion,
3 analysis of the sample set (density estimation, probability of events, . . . ).

Will be shown in subsequent lectures.
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Random variables and vectors

Consider a Rd -random vectors: U : Ξ 7→ Rd .
Denoting Ui the i-th component of the random vector, its truncated PC expansion writes

Ui (ξ) ≈
P∑

k=0

(ui )k Ψk (ξ).

The expansion of U can be recast in the vector form

U =
P∑

k=0

uk Ψk (ξ),

where uk = ((u1)k · · · (ud )k )t ∈ Rd is the vector containing the k -th PC coefficients of the
random vector components.

uk is called the k -th stochastic mode of the random vector.
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Random variables and vectors

Consider a Rd -random vectors: U : Ξ 7→ Rd .
Denoting Ui the i-th component of the random vector, its truncated PC expansion writes

Ui (ξ) ≈
P∑

k=0

(ui )k Ψk (ξ).

Two components Ui and Uj are orthogonal iff

P∑
k=0

(ui )k (uj )k

〈
Ψ2

k

〉
= 0.

The correlation and covariance matrices of the vector U can be respectively expressed as:

r =
P∑

k=0

uk uT
k

〈
Ψ2

k

〉
, c =

P∑
k=1

uk uT
k

〈
Ψ2

k

〉
.
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Random fields

Consider a 2nd order stochastic process
Ω× Θ 3 (x, θ) 7→ U(x, θ) ∈ R.

It PC approximation writes
U(x, θ) ≈ UP(x, ξ(θ)) =

∑P
k=0 uk (x)Ψk (ξ(θ)).

Functions uk : x ∈ Ω 7→ R are called the stochastic modes of U.

Owing to the orthogonality of the chaos polynomials,

E [U(x, ·)Ψk ] =
∑

l

ul (x)E [Ψl Ψk ] = uk (x)
〈

Ψ2
l

〉
.

From the convention Ψ0 = 1, u0(x) is the mean of the stochastic process
E
[
UP(x, ·)

]
=
∑P

k=0 uk (x) 〈Ψk 〉 = u0(x).
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Random fields

Consider a 2nd order stochastic process
Ω× Θ 3 (x, θ) 7→ U(x, θ) ∈ R.

It PC approximation writes
U(x, θ) ≈ UP(x, ξ(θ)) =

∑P
k=0 uk (x)Ψk (ξ(θ)).

the correlation function of UP expresses as

RUP (x, x′) =
〈

UP(x, ·)UP(x′, ·)
〉

=

〈(
P∑

k=0

uk (x)Ψk

)(
P∑

k=0

uk (x′)Ψk

)〉

=
P∑

k=0

P∑
l=0

uk (x)ul (x′) 〈Ψk Ψl〉 =
P∑

k=0

uk (x)uk (x′)
〈

Ψ2
k

〉
.

It shows that an infinite number of stochastic processes share the same correlation function.
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Random fields

Relation with the KL decomposition of U(x, θ) (zero mean S.P.)
Recall that U can be decomposed in

U(x, θ) =
∑

l

u(KL)
l

√
λlη

l (θ),
(

u(KL)
k , u(KL)

l

)
Ω

= δkl , E
[
η

l
η

l′
]

= δll′ .

u(KL)
l are the eigenfunctions of the covariance function.

ηl ∈ L2(Θ, dP) has a PC expansion:
ηl (θ) =

∑
k η

l
k Ψk (ξ(θ)).

Inserting the expansions of the η and rearranging the summations

U(x, θ) =
∑

k

[∑
l

u(KL)
l (x)

√
λlη

l
k

]
Ψk (ξ(θ)).

In addition, it comes

(uk , uk′ )Ω =
∑

l

∑
l′

√
λlλl′

(
u(KL)

l , u(KL)

l′

)
Ω
η

l
kη

l′
k′ =

∑
l

λlη
l
kη

l
k′

which in general is not zero.
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Random fields
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PC expansions in practice

Truncated PC expansions can be used to approximate stochastic quantities U (random
variables, vectors, fields, . . . )
This calls for procedures / strategies to determine

the number of random variables N in the germ (and eventually their distributions)

the polynomial order p of the expansion

the coefficients of the expansion (stochastic modes)

We distinguish two fundamentally different situations

1 the particular situation where, given the germ ξ, information on U(ξ) can be
assessed

2 the general case where only information on U(θ) is available can be assessed
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PC expansions in practice

U(ξ) can be assessed:

This case corresponds to situation found in parametric uncertainty propagation, where
for each realization ξ(θ) one can compute / measure the particular realization
U(ξ(θ)).

One can then exploit the mapping Ξ 3 ξ 7→ U(ξ)

to compute the coefficients uk in the expansion,

U(ξ) ≈ UP(ξ) =
P∑

k=0

uk Ψk (ξ)

For instance, exploiting the orthogonality of the Ψ

uk =
〈U,Ψk 〉
〈Ψk ,Ψk 〉

=
1

〈Ψk ,Ψk 〉

ˆ
Ξ

U(y)Ψk (y)pξ(y)dy .

This is the L2-projection of U onto span{Ψk , k = 0, . . . , P}.

Other type of projections and computational strategies will be extensively discussed in
the following.
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PC expansions in practice

This is the most general situation where:

a random quantity U(θ) has to be approximated by means of a PC expansion,

U(θ) may be known partially or completely through, e.g., sample set of
realizations, moments, estimated probability law, . . .
from the available information, one need to define a germ, expansion order and
to specify UP(ξ(θ)) that approximate U(θ).

One cannot exploit the mapping Ξ 3 ξ 7→ U(ξ)

to compute the coefficients uk in the expansion,

U(θ) ≈ UP(ξ(θ)) =
P∑

k=0

uk Ψk (ξ(θ))

as there is no explicit relation between U(θ) and ξ(θ).
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PC expansions in practice

This is the typical situation faced when constructing stochastic models of uncertainty in
particular to model stochastic fields.

It essentially amounts to the resolution of optimization problems to identify
/estimate the germ and expansion order that best fit the available information.

Optimization can be based on moments matching, likelihood, entropy
maximization, . . .
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PC expansions in practice

Questions & Discussion
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