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Objectives of the lecture

o Introduce Parametric Uncertainty Quantification & Propagation

o Discuss a first spectral expansion: the Karhunen-Loéve decomposition
o Formalism and essential ingredients of Wiener's PC expansions

o Generalize finite dimensional PC expansions to arbitrary measures

o Shortly discuss alternative construction approaches.
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Q Parametric Data Propagation

o Data uncertainty

o Alternative UQ& P methods

(2 Spectral expansions
o Karhunen-Loeve expansion
o Wiener-Hermite expansion

o Generalized PC expansions

Q PC Expansions of Stochastic Quantities
o Random variables and vectors

o Random fields

o PC expansions in practice

RN Ge



Basic ingredients

o Understanding of the physics involved (optional?):

selection of the mathematical model.
o Numerical method(s) to solve the model.
o Specify a set of data:

select a system among the class spanned by the model.
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Simulation and errors

Basic ingredients

o Understanding of the physics involved (optional?):

selection of the mathematical model.
o Numerical method(s) to solve the model.
o Specify a set of data:

select a system among the class spanned by the model.

Simulation errors

o Model errors: physical approximations and simplifications.
o Numerical errors: discretization, approximate solvers, finite arithmetics.

o Data error: boundary/initial conditions, model constants and parameters,
external forcings, ...
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Sources of data uncertainty

o Inherent variability (e.g. industrial processes).
o Epistemic uncertainty (e.g. model constants).

o May not be fully reducible, even theoretically.
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Data uncertainty
Sources of data uncertainty

o Inherent variability (e.g. industrial processes).
o Epistemic uncertainty (e.g. model constants).
o May not be fully reducible, even theoretically

Probabilistic framework

o Define an abstract probability space (©, A, du).
o Consider data D as random quantity: D(9), 6 € ©

o Simulation output S is random and on (©, A, du).
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Data uncertainty

Sources of data uncertainty

o Inherent variability (e.g. industrial processes).
o Epistemic uncertainty (e.g. model constants).
o May not be fully reducible, even theoretically.

Probabilistic framework
o Define an abstract probability space (©, A, du).
o Consider data D as random quantity: D(0), 0 € ©.
o Simulation output S is random and on (©, A, du).

o Data D and simulation output S are dependent random quantities (through
the mathematical model M):

M(S(0),D(0)) =0, Voe®.
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Data uncertainty

Propagation of data uncertainty

Data density Solution density

M(S,D) =0

Pt
Pt

Solution value

@ Variability in model output: numerical error bars.
O Assessment of predictability.
@ Support decision making process.

@ What type of information (abstract quantities, confidence intervals, density estimations,
structure of dependencies, . ..) one needs?
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Alternative UQ& P methods
Deterministic methods

o Sensitivity analysis (adjoint based, AD, ...): local.

o Perturbation techniques: limited to low order and simple data uncertainty.
o Neumann expansions: limited to low expansion order.

o Moments method: closure problem (non-Gaussian / non-linear problems).
Simulation techniques

Spectral Methods

Monte-Carlo J

J
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Alternative UQ& P methods

Deterministic methods

Simulation techniques Monte-Carlo

o Generate a sample set of data realizations and compute the corresponding
sample set of model ouput.

o Use sample set based random estimates of abstract characterizations
(moments, correlations, ... ).

o Plus: Very robust and re-use deterministic codes: (parallelization, complex data
uncertainty).

o Minus: slow convergence of the random estimates with the sample set
dimension.

Spectral Methods
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Alternative UQ& P methods

Deterministic methods J

Simulation techniques Monte-Carlo J

Spectral Methods

o Parameterization of the data with random variables (RVs).
o L projection of solution on the (L,) space spanned by the RVs.

o Plus: arbitrary level of uncertainty, deterministic approach, convergence
rate, information contained.

o Minus: parameterizations (limited # of RVs), adaptation of simulation tools
(legacy codes), robustness (non-linear problems, non-smooth output, . ..).

o Not suited for model uncertainty
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Alternative UQ& P methods

Propagation of data uncertainty

25

Output value

0.5

Parameter value

o Large number of parameters
o Costly model evaluation (PDE)
o Estimation of p(S) is not the end of the story!

pdf output

Model
pdf input




Parameter value

Parameter value
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Approximate the model output S(D) through a functional representation of the form

P
S(D) = > SWk(D) = S*(D)
k=0
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Output value
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Model ———
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Approximation
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Parameter value

Output value

P
S(D) = > SxWk(D) = S*(D)

Model ——
pdf input s
Approximation
L pdf output —— 1
e e
6 4 2 o 2 4 B

Parameter value

o Exploit (whenever possible) the smoothness of S(D) to have a fast convergence

of SP(D) toward S(D)

o Determine S at a low computational cost

o Base UQ analysis on the surrogate SP(D) (cheap evaluations).
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Alternative UQ& P methods

Example (Elliptic equations)

Let Q € R? be a closed domain, and the Dirichlet problem

V- (v(x)Vu(x)) = —f(x) vx €Q,
u(x)=0 X € 09.

with 0 < e < v(X) < +o0 and f given.
Introducing a suitable functional space V := Hg, the solution u € V is such that

a(u, v;v) = b(v) Yvev,

a(u,v; u):/uVu~Vvdx b(v):/ fvdx.
Q Q

The solution is unique.




Parametric Data Propagation Spectral expansions PC i of ic Qi

0000000800 00000000000000000000000000 0000000000
Alternative UQ& P methods

Example (Uncertainty)

The unique solution to

a(u, v;v) = b(v) Yvev,
depends (continuously) on v: u:=u(x,v)
Now, if v is uncertain and model as a random process defined on a probability space

(©,%,dp)
(2% ©)> (xx0)—v(x,0)eR.
v(-,0) is a function with domain €, v(x, -) is a random variable.
— u(x,v) is now random, we write U(x, 0).
The stochastic solution U(x, 6) solves almost surely
a(Uu(-,0),v;v(9)) = b(v) vv e V.

We need to compute U(x, 6).




Alternative UQ& P methods

Example (Spectral expansion)
Often U(x, 0) is smooth in x and with respect to v(6). We seek for a spectral
approximation using a rapidly converging series

U(x,0) = un(X)nn(0),
n>0
where up(x) € V and nn(0) is defined on (©, X, du).
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Q Parametric Data Propagation

o Data uncertainty

o Alternative UQ& P methods

(2 Spectral expansions
o Karhunen-Loeve expansion
o Wiener-Hermite expansion

o Generalized PC expansions

Q PC Expansions of Stochastic Quantities
o Random variables and vectors

o Random fields

o PC expansions in practice
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Karhunen-Loeve expansion

Consider a stochastic process U(x, 0) (say the solution of the stochastic elliptic
problem). We seek for the spectral expansion of U as
U(x,0) = un(X)nn(6),
n>0
Denote
o (u, v) the inner product in L?(Q) equipped with the norm || - ||
o E[-] the expectation operator

and assume E [U(x,-)] = 0and U € [3(Q,©): E [U(x, )?] < +oo, |U(-,0)||2 < +o0
How to define the best m-terms truncated expansion

U(x,0) = > un(X)nn(6)?

n=1
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Hint: the m-terms expansion minimizes the approximation error

2
C(m)2:E|: :|>
2

m
RS P
n=1
o The solution is not unique:
o The spatial modes up, are the eigenfunctions of the auto-correlation kernel

llunll2 =
(2x9Q) > (x,y)— K(x,y) =E[U(x,)U(y,)] €R.
That is:

(Kun, v) = An(un, v)

veV.
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Karhunen-Loeve expansion

Observe : K is a symmetric positive operator so the eigenfunctions are orthonormal:
(Un, Uy ) = Op

The optimal decomposition is
m

U(x0) = Z Antn(X)n(6),

n=1
where \y > X\ > --- > 0and

m(8) = (U(-0),un), E[na] =0, E[nf] =1

o optimality and convergence in the mean-squared sense
o can be applied only if U is known

o how to represent the stochastic coefficient?
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Karhunen-Loeve expansion

Example (Parametrization)

The KL expansion is often used to construct parametrizations of the uncertain model
input which are known.
For instance, v is frequently model as a log-normal random field:

v(x,0) = Cexp G(x,0),

where G is a zero-mean Gaussian random field with prescribed auto-correlation kernel
Ka(x, y):

G(x,0) = ) gn(X)n(6),

n=1
where the £n's are independent normalized Gaussian random variables. Setting
€ = (& -+~ €m), we finally seek for the approximate U™ (x, £) such that a.s.
a(Um(x,&),viv(x,€)) = b(v) VvelV.




Q Parametric Data Propagation

o Data uncertainty

o Alternative UQ& P methods

(2 Spectral expansions
o Karhunen-Loeve expansion
o Wiener-Hermite expansion

o Generalized PC expansions

Q PC Expansions of Stochastic Quantities
o Random variables and vectors

o Random fields

o PC expansions in practice
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Consider a R-valued random variable defined on a probability space (©, ¥, dP)

U: 9—R.
We denote L?(©, dP) the space of second order random variables

Uel?©,dP) & E U2
Let {&}y

/ U(0)2dP(0) < +oo.
>, be a sequence of centered, normalized, mutually orthogonal (uncorrelated)
Gaussian random variables
E[¢]=0, E[¢g] =6, Vij=1,2
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Wiener-Hermite expansion

We denote forp = 0,1,2,...:

[} fp the space of orthogonal polynomials in {£;}7°, with degree < p.
o Tp the set of polynomials belonging to '» and L to Fp_1.
[} fp the (sub) space spanned by I'p.

We have

©

8

fp=Tp1@Fp, L[3(O,dP)=

o
-
°

p=

o [ is called the p-th Homogeneous Chaos.
o [p is called the Polynomial Chaos of order p.

o [p consists of orthogonal polynomials with degree p, involving all combinations of
the r.v. {&}.

Note: functions of r.v. are r.v. themselves and are regarded as functionals.
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Wiener-Hermite expansion

Fundamental Result:

[Wiener,
Any well-behaved random variable, e.g. second order ones, has a PC representation of

1938]
the form

it

U(0) =uolo + > _ uj, T1(&;, (0)) +
P

D> uipT2( (0),,(0))

iy=1lp=1
i
oo

DD i s T8 (), 6, (0), €5, (6))
=1 =1 ip—1

it i

FDOD DD Uiininia a6 (0),6,(0), €4, (0), €, (0)) +
i=1 =1 ig=1 ig=1

The series converges in the mean-square sense:

[e'e) ip—1
pim B (“°r°+“'+z~-~2rp<sﬁ,~

2
e 7£ip) -u =0.
=1 p=1
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PC expansion of U:

U(9) =uplo + Z U, T1(&;,(0)) +

it
ip=1

DO Ui T2(6(6),€,(9))
=1 =t
oo ok
FDD D Ui Ta(6 (0),€,(0), 5(0))
i=1 =1 l=1
o ho i3
i1 =1 ig=1 jg=1

FD D DD Ui inisTa(81,(0), £, (0), €5, (), €, (0)) +

o We denote & := {¢;}2,.

@ We shall write U(&) for the PC expansion of U.
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Few important properties:

o Vanishing expectation: E[p] = 0 for p > 0.
the measure

o One can express the expectation of U in the Gaussian space spanned by &; with

= 2
pey) =11 o= P [/
o thatis

E[U] = /e U(0)dP(8) = /e U(£(0))dP(0)
= [+ [ uwpeiay = w.

o The orthogonality of the polynomials is with regard to the Gaussian measure.
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Wiener-Hermite expansion

Truncated PC expansions: in practice a finite number of r.v. is used

£={&, . &}

N is called the stochastic dimension and £ is often referred as the stochastic germ

Example of two dimensional PC expansion:

U(&1,62) = uplo + ugT1(&1) + tela(€2)

+ up1T2(&1,61) + UaqT2(62,&1) + Uzal2(&2, 62)

+ U111T3(61, &1, §1) + Ua11T3(82, 61, 61) + Uaz1T3(62, €2, 61)
+ U22l3(62, &2, €2) + Ur111Ta(€1, €1, 61,61) + - -

With the introduction of an indexation scheme, the expansion can be recast as

oo}

UE) =D wVk(€), ueR.
k=0

the convention Wy =Ty = 1.

The uy are the PC coefficients of U and W are (orthogonal) polynomial. We here use

RN Ge




Wiener-Hermite expansion

1-D PC expansion:

(centered, normalized, Gaussian):

Recall that the chaos polynomials are orthogonal wrt the probability density of ¢

_ 1 2
pe(y) = \/T—WEXP [—,V /2] :
By p(&) we denote the 1D polynomial of order p.

Following the indexation convention, g (§) = 1.
The orthogonality condition is:

Efw] = [ Ry = 5 ()

o The 9 is the well known Hermite polynomial of degree i.
o the Hermite polynomials are normalized s.t. (¢?) = il.

M
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Wiener-Hermite expansion

First Hermite polynomials (1-D):

Hermite polynomials

25
20
15
10
© 5
e 0
-5 i
-10 i
-15 i
220 1 1 1 1
-3 -2 -1 0 1 2 3
X
One-dimensional Hermite polynomials, ¢p(€), forp=0,...,6.
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Wiener-Hermite expansion

Multi-dimensional PC basis:

The N-variate polynomials W; are constructed as product of 1-D Hermite polynomials.
Lety := {v1 ...y} € NN be a multi-index and \(p) the multi-index set

N
A(p) = {7 Py =
i=1

_ p} |
The p-th order polynomial chaos is constructed according to:

N
M= { U wa(a)} .
YEX(P) M1
Example for N = 2:

U(&1,€2) = uotho + urtp1 (1) + a1 (€2) + tr1ep2(&1) + Uit (€2)1(61)
+ Uzov2(€2) + U11193(&1) + 21191 (E2)v2(61)

+ Uzo192(€2)Y1(&1) + Uo2atpa(E2) + Ur1119a(&1) + -

RN Ge
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Wiener-Hermite expansion

The Hermite polynomials for p = 3 (N = 2)

-2

Wy = &62 — &




Wiener-Hermite expansion

Truncated PC expansion

In addition to a finite number of random variables, N, we need to truncate the PC
expansion to a finite order p

P
UE) = UP(&) = uWi(§), P+1= w
k=0 ©

Dependence of (P + 1) on N and p:
[ p/N 1 2 3 4 5 6| p/N
1 2 3 4 5 6 7 4

2 3 6 10 15 21 28 5 21 56 126 252 462
3 4 10 20 35 56 84 6 28 84 210 462 924
Fast increase with both N and p.

2 3 4 5 6]
15 35 70 126 210

~N o o =

Other truncature strategies may be used.
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P+l

100000
10000
1000
100

Number of terms in the PC expansion plotted against the order, p, and the number of
dimensions, N.
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Wiener-Hermite expansion

The truncated expansion of a random variable U is

U(6) ~ UP(€) + (N, p) =

Z UkWk(€) + e(N, p).
k=0
The truncation error depends both on N and p.

The error is a random variable
The expansion converges in the mean-square sense as N and p go to
infinity [Cameron & Martin,

19477:

. 2 _

N,[!‘JIE:oo <E (N7 p)> =0

In light of the dependence of P on the order and the number of random variables, the
and p.

PC representation will be computationally efficient if the convergence is fast in both N
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Generalized PC expansions

Hilbert space (fixed finite N)

o The polynomials {W} 2, forms an orthogonal basis of L2(RN, pg).
o L2(RN, pg) is equipped with the inner product

(U, VY = E[UV] :/ UV(y)pe(y)dy
]RN
and norm ||U||L2(RN,P£) :

(u,uy'2,
law of U.

o The convergence of the truncated expansion UP? — U depends on the probability

o For instance, if U is Gaussian, it has an exact first order expansion.
o Suggests the construction of polynomial spaces based on non-Gaussian
distributions.
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Generalized PC expansions

Gener i Distribution Polynomials Support
13 Y (§)
Continuous RV Gaussian Hermite (—o0, 00)
~ Laguerre [0,00)
B Jacobi [a, b]
Uniform Legendre [a, b]
Discrete RV Poisson Charlier {0,1,2,...}
Binomial Krawtchouk  {0,1,2,...,n}
Negative binomial Meixner {0,1,2,...}
Hypergeometric Hahn {0,1,2,...,n}

Families of probability laws and corresponding families of orthogonal polynomials
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Legendre polynomials

'NG)
o

-0.2
-0.4
-0.6
-0.8

1 T T T N TR T R N
-1 -0.8-0.6-04-02 0 02040608 1
X

One-dimensional Legendre polynomials of order p =0, ..., 6.
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Generalized PC expansions

o If the r.v. in & are independent,

N
pe(v) =[Py,
i=1
the W, can be obtained by tensorization of one-dimensional polynomials
constructed on the probability distribution of each &;.

o We denote {w,(i)}f:o the family of 1-D polynomials with degree < p orthogonal
w.r.t. to the measure p; associated to &, i = 1,--- N, thatis

/ DY) ()piy)dy = 61 / Wi(y)2pily)dy

o The m-th order GPC is constructed according to:

N m=p
rég = { U Hw%’,’(ai)} . Prs= (v
yEX(M) 71 m=0
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Generalized PC expansions

o For general distributions of the independent &;, one can rely on numerical
orthogonalization procedure (Gram-Schmidt) to construct the 1-D family of
polynomials.

o Anticipating forthcoming lectures, one can think of using other types of functionals
in the construction.

o These include piecewise polynomial functions, sine and cosine functions (uniform
measure), wavelets, . ..

o In fact any basis of the Hilbert space L?(=, pg), where = is the support of Pg-

o An important aspect to keep in mind is the dimension of the expansion.

u]
o)
1l
n
it

RN Ge



(Really) Generalized PC:

Case of a germ ¢ with dependent components &;

[Soize & Ghanem, 2004]
o The joint probability distribution pg can not be factorized.

o Denote p; the marginal distribution of &;:

pi(Y):/dY1 -~-/dy;_1 /d}’i+1 -~-/dprg(y1,~ s IN)

o Let {qbg) (&)} be the corresponding sets of 1-D polynomials satisfying

(60.09) = [ 0PIy =55
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Generalized PC expansions

(Really) Generalized PC:

Case of a germ & with dependent components ¢;

[Soize & Ghanem,
o The joint probability distribution pg can not be factorized.

o Denote p; the marginal distribution of ¢;:

pi(y)=/dy1 ---/dy,-_1 /dy,-+1 ~~/dprg(y1,--~ s IN)
o The Chaos function associated to the multi-index v € NN writes
1/2
WL (€) = [M] (). o (en).
pg(€)

o It can be checked that the W’s are orthogonal and form a basis of L2(=, pg)
@ This is no more a polynomial expansion!

2004]
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o Let UP be given by a truncated (G)PC expansion

P
U(&) = D> ukw(8),
k=0
where the chaos polynomials {Wy,

@ The mathematical expectation of U is

., Wp} are orthogonal (with the convention Wy = 1).

(U] = (U(©) = (w0, U'(®)) = zpj U (Wo, W) = to.
k=0

RN Ge



o Let UP be given by a truncated (G)PC expansion

P
UP(&) = > ukwk(8),
k=0
where the chaos polynomials { Wy,
O lts variance af}P isin turn

., Wp} are orthogonal (with the convention Wy = 1).

o= [(U -2 [U])] - {( v

kil

£
IS
=
T
£
Il
-
So
P
<
N
~—

The variance of U” is given as a weighted sum of its squared PC coefficients.
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Random variables and vectors

o Let U” be given by a truncated (G)PC expansion

P
U(&) = > ukw(8),

k=0
where the chaos polynomials {Wy, ..., Wp} are orthogonal (with the convention Wy = 1).

o Similar expressions for the higher order moments of U” in terms of its PC coefficients (but
more complex).

@ More complex statistical characterizations can be obtained by means of sampling strategies:
@ sampling of = with probability density Pe.

@ generation of realization of U” by evaluating the PC expansion,
@ analysis of the sample set (density estimation, probability of events, .. .).

@ Will be shown in subsequent lectures.
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Consider a R?-random vectors: U : = — R,

Denoting U; the i-th component of the random vector, its truncated PC expansion writes

P
Ui(€) m D (i), Wk(8)-
k=0

@ The expansion of U can be recast in the vector form

P
U=73" ucwi(e),
k=0
where uy = ((Us)k - - - (Ug)x)' € RY is the vector containing the k-th PC coefficients of the
random vector components.
@ uy is called the k-th stochastic mode of the random vector.
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Consider a R?-random vectors: U : = — RY.

Denoting U; the i-th component of the random vector, its truncated PC expansion writes

P
UE) ~ D~ (u)y V(&)
k=0

O Two components U; and U; are orthogonal iff

i(uf)k(uj)k <Wi> =0.
k=0

@ The correlation and covariance matrices of the vector U can be respectively expressed as:

P
c= kz:; ugul <wi> .
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Consider a 2nd order stochastic process

Qx©>5(x,0)— Ux,0) € R.
It PC approximation writes
U(x, 0) = U"(x,£(0)) =

ko U (X)W (&(9)).-

@ Functions uk : x € Q — R are called the stochastic modes of U.
@ Owing to the orthogonality of the chaos polynomials,

U, Wi = 3 u(E VW = u(x) (v7)
!

@ From the convention Wy = 1, up(x) is the mean of the stochastic process

E [UP(X7 )] = Soh o Uk(X) (W) = up(x).
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Consider a 2nd order stochastic process

Qx 05 (x,0)— Ux,0) eR.
It PC approximation writes

U(x, 0) = U°(x,£(0)) = o} _o uk(X)Vk(£(0)).

o the correlation function of U” expresses as

P
Z uk(
k=0

=0

Ryp(x,x") = <UP(X7 (X, ')> = <(Z Uk(x)"’k) (Z Uk(xl)‘l’k>>
=0 k=0
P

P
X)u(x') (Wewy) = S u(x)u(x') <wi> .
k=0

@ It shows that an infinite number of stochastic processes share the same correlation function.
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Random fields
Relation with the KL decomposition of U(x

Recall that U can be decomposed in

) (zero mean S.P)

(u(KL

U
KL)) =0n, E [77’71 ] =4y
are the eigenfunctions of the covariance function.
|

o 7' € [2(©, dP) has a PC expansion

U(x, 0) = Z BN

k0

n'(6) = K
@ Inserting the expansions of the n and rearranging the summations

2k Mk Wk (€(0))-
U(x, 0) Z [Z uf® (x)ﬁn’k] Vi (£(0))
@ In addition, it comes

Uk7 Ukl)n = ZZ \/)\/)\// ( (KL)

LK
which in general is not zero,

/I

Il Il
) NNkt = ZAmkW
!




Q Parametric Data Propagation

o Data uncertainty

o Alternative UQ& P methods

(2 Spectral expansions
o Karhunen-Loeve expansion
o Wiener-Hermite expansion

o Generalized PC expansions

Q PC Expansions of Stochastic Quantities
o Random variables and vectors

o Random fields

o PC expansions in practice
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PC expansions in practice

Truncated PC expansions can be used to approximate stochastic quantities U (random
variables, vectors, fields, ...)

This calls for procedures / strategies to determine

o the number of random variables N in the germ (and eventually their distributions)
o the polynomial order p of the expansion

o the coefficients of the expansion (stochastic modes)

We distinguish two fundamentally different situations

@ the particular situation where, given the germ ¢, information on U(¢) can be
assessed

@ the general case where only information on U() is available can be assessed

u]
o)
1l
n
it
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PC expansions in practice
U(¢&) can be assessed:

This case corresponds to situation found in parametric uncertainty propagation, where
for each realization £(0) one can compute / measure the particular realization
U(&(9)).

One can then exploit the mapping = 5 & — U(&)
to compute the coefficients uy in the expansion,

P
UE) ~ UP(&) =D ukWi(&)

k=0
For instance, exploiting the orthogonality of the W
(U, Wy) /
ug = = U(y)Vk(¥)pe(y)dy.
T (v U= WVk¥)Pe ()
This is the L2-projection of U onto span{Wy, k =0, ...,P}.
the following.

1

Other type of projections and computational strategies will be extensively discussed in
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PC expansions in practice

This is the most general situation where:

o arandom quantity U(6) has to be approximated by means of a PC expansion,

o U(0) may be known partially or completely through, e.g., sample set of
realizations, moments, estimated probability law, ...

o from the available information, one need to define a germ, expansion order and
to specify UP(&(9)) that approximate U(6).

One cannot exploit the mapping = 3 & — U(§)
to compute the coefficients uy in the expansion,

P
U(o) = UP(£(0) = D ukWk(£(0))

k=0

as there is no explicit relation between U(0) and &(0).
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PC expansions in practice

This is the typical situation faced when constructing stochastic models of uncertainty in
particular to model stochastic fields.

o |t essentially amounts to the resolution of optimization problems to identify

/estimate the germ and expansion order that best fit the available information.

o Optimization can be based on moments matching, likelihood, entropy
maximization, ...
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Questions & Discussion
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