Spectral Methods for Uncertainty Quantification

Olivier Le Maître ${ }^{1}$
with Colleague \& Friend Omar Knio

UTOPI/
Uncertainty Treatment and
optimisation in Aerospace

PhD course on UQ - DTU

Overview

Objectives of the lecture

- Introduce Parametric Uncertainty Quantification \& Propagation
- Discuss a first spectral expansion: the Karhunen-Loève decomposition
- Formalism and essential ingredients of Wiener's PC expansions
- Generalize finite dimensional PC expansions to arbitrary measures
- Shortly discuss alternative construction approaches.
(1) Parametric Data Propagation
- Data uncertainty
- Alternative UQ\& P methods
(2) Spectral expansions
- Karhunen-Loeve expansion
- Wiener-Hermite expansion
- Generalized PC expansions
(3) PC Expansions of Stochastic Quantities
- Random variables and vectors
- Random fields
- PC expansions in practice

Simulation and errors

Simulation framework.

Basic ingredients

- Understanding of the physics involved (optional?): selection of the mathematical model.
- Numerical method(s) to solve the model.
- Specify a set of data:
select a system among the class spanned by the model.

Simulation framework.

Basic ingredients

- Understanding of the physics involved (optional?):
selection of the mathematical model.
- Numerical method(s) to solve the model.
- Specify a set of data:
select a system among the class spanned by the model.

Simulation errors

- Model errors: physical approximations and simplifications.
- Numerical errors: discretization, approximate solvers, finite arithmetics.
- Data error: boundary/initial conditions, model constants and parameters, external forcings, ...

Sources of data uncertainty

- Inherent variability (e.g. industrial processes).
- Epistemic uncertainty (e.g. model constants).
- May not be fully reducible, even theoretically.

Sources of data uncertainty

- Inherent variability (e.g. industrial processes).
- Epistemic uncertainty (e.g. model constants).
- May not be fully reducible, even theoretically.

Probabilistic framework

- Define an abstract probability space $(\Theta, \mathcal{A}, d \mu)$.
- Consider data D as random quantity: $D(\theta), \theta \in \Theta$.
- Simulation output S is random and on $(\Theta, \mathcal{A}, d \mu)$.

Sources of data uncertainty

- Inherent variability (e.g. industrial processes).
- Epistemic uncertainty (e.g. model constants).
- May not be fully reducible, even theoretically.

Probabilistic framework

- Define an abstract probability space $(\Theta, \mathcal{A}, d \mu)$.
- Consider data D as random quantity: $D(\theta), \theta \in \Theta$.
- Simulation output S is random and on $(\Theta, \mathcal{A}, d \mu)$.
- Data D and simulation output S are dependent random quantities (through the mathematical model \mathcal{M}):

$$
\mathcal{M}(S(\theta), D(\theta))=0, \quad \forall \theta \in \Theta
$$

Propagation of data uncertainty

Data density

$$
\mathcal{M}(S, D)=0
$$

Solution density

- Variability in model output: numerical error bars.
- Assessment of predictability.
- Support decision making process.
- What type of information (abstract quantities, confidence intervals, density estimations, structure of dependencies, ...) one needs?

Deterministic methods

- Sensitivity analysis (adjoint based, AD, ...): local.
- Perturbation techniques: limited to low order and simple data uncertainty.
- Neumann expansions: limited to low expansion order.
- Moments method: closure problem (non-Gaussian / non-linear problems).

Spectral Methods

Deterministic methods

Simulation techniques

Monte-Carlo

- Generate a sample set of data realizations and compute the corresponding sample set of model ouput.
- Use sample set based random estimates of abstract characterizations (moments, correlations, ...).
- Plus: Very robust and re-use deterministic codes: (parallelization, complex data uncertainty).
- Minus: slow convergence of the random estimates with the sample set dimension.

Spectral Methods

Deterministic methods

Simulation techniques

Spectral Methods

- Parameterization of the data with random variables (RVs).
- \perp projection of solution on the $\left(L_{2}\right)$ space spanned by the RVs.
- Plus: arbitrary level of uncertainty, deterministic approach, convergence rate, information contained.
- Minus: parameterizations (limited \# of RVs), adaptation of simulation tools (legacy codes), robustness (non-linear problems, non-smooth output, ...).
- Not suited for model uncertainty

Propagation of data uncertainty

Propagation of data uncertainty

- Large number of parameters
- Costly model evaluation (PDE)
- Estimation of $p(S)$ is not the end of the story!

Alternative UQ\& P methods

Approximate the model output $S(D)$ through a functional representation of the form

$$
S(D) \approx \sum_{k=0}^{\mathrm{P}} S_{k} \Psi_{k}(D) \doteq S^{\mathrm{P}}(D)
$$

$$
S(D) \approx \sum_{k=0}^{\mathrm{P}} S_{k} \Psi_{k}(D) \doteq S^{\mathrm{P}}(D)
$$

- Exploit (whenever possible) the smoothness of $S(D)$ to have a fast convergence of $S^{P}(D)$ toward $S(D)$
- Determine S^{P} at a low computational cost
- Base UQ analysis on the surrogate $S^{\mathrm{P}}(D)$ (cheap evaluations).

Example (Elliptic equations)

Let $\Omega \in \mathbb{R}^{2}$ be a closed domain, and the Dirichlet problem

$$
\begin{array}{ll}
\boldsymbol{\nabla} \cdot(\nu(\boldsymbol{x}) \nabla u(\boldsymbol{x}))=-f(\boldsymbol{x}) & \forall \boldsymbol{x} \in \Omega \\
u(\boldsymbol{x})=0 & \boldsymbol{x} \in \partial \Omega
\end{array}
$$

with $0<\epsilon<\nu(\boldsymbol{x})<+\infty$ and f given.
Introducing a suitable functional space $V:=H_{0}^{1}$, the solution $u \in V$ is such that

$$
\begin{array}{lr}
a(u, v ; \nu)=b(v) & \forall v \in V, \\
a(u, v ; \nu)=\int_{\Omega} \nu \nabla u \cdot \nabla v d \boldsymbol{x} & b(v)=\int_{\Omega} f v d \boldsymbol{x} .
\end{array}
$$

The solution is unique.

Example (Uncertainty)

The unique solution to

$$
a(u, v ; \nu)=b(v) \quad \forall v \in V
$$

depends (continuously) on ν :
Now, if ν is uncertain and model as a random process defined on a probability space $(\Theta, \Sigma, d \mu)$

$$
(\Omega \times \Theta) \ni(\boldsymbol{x} \times \theta) \mapsto \nu(\boldsymbol{x}, \theta) \in \mathbb{R}
$$

$\nu(\cdot, \theta)$ is a function with domain $\Omega, \nu(\boldsymbol{x}, \cdot)$ is a random variable.

$$
\Longrightarrow u(\boldsymbol{x}, \nu) \text { is now random, we write } U(\boldsymbol{x}, \theta) .
$$

The stochastic solution $U(\boldsymbol{x}, \theta)$ solves almost surely

$$
a(U(\cdot, \theta), v ; \nu(\theta))=b(v) \quad \forall v \in V
$$

We need to compute $U(\boldsymbol{x}, \theta)$.

Example (Spectral expansion)

Often $U(\boldsymbol{x}, \theta)$ is smooth in \boldsymbol{x} and with respect to $\nu(\theta)$. We seek for a spectral approximation using a rapidly converging series

$$
U(\boldsymbol{x}, \theta)=\sum_{n \geq 0} u_{n}(\boldsymbol{x}) \eta_{n}(\theta)
$$

where $u_{n}(\boldsymbol{x}) \in V$ and $\eta_{n}(\theta)$ is defined on $(\Theta, \Sigma, d \mu)$.

Table of content

(1) Parametric Data Propagation

- Data uncertainty
- Alternative UQ\& P methods
(2) Spectral expansions
- Karhunen-Loeve expansion
- Wiener-Hermite expansion
- Generalized PC expansions
(3) PC Expansions of Stochastic Quantities
- Random variables and vectors
- Random fields
- PC expansions in practice

Consider a stochastic process $U(\boldsymbol{x}, \theta)$ (say the solution of the stochastic elliptic problem). We seek for the spectral expansion of U as

$$
U(\boldsymbol{x}, \theta)=\sum_{n \geq 0} u_{n}(\boldsymbol{x}) \eta_{n}(\theta),
$$

Denote

- (u, v) the inner product in $L^{2}(\Omega)$ equipped with the norm $\|\cdot\|_{2}$
- $\mathbb{E}[\cdot]$ the expectation operator
and assume $\mathbb{E}[U(\boldsymbol{x}, \cdot)]=0$ and $U \in L^{2}(\Omega, \Theta): \mathbb{E}\left[U(\boldsymbol{x}, \cdot)^{2}\right]<+\infty,\|U(\cdot, \theta)\|_{2}<+\infty$ How to define the best m-terms truncated expansion

$$
U(\boldsymbol{x}, \theta) \approx \sum_{n=1}^{m} u_{n}(\boldsymbol{x}) \eta_{n}(\theta) ?
$$

Hint: the m-terms expansion minimizes the approximation error

$$
\epsilon(m)^{2}=\mathbb{E}\left[\left\|U-\sum_{n=1}^{m} u_{n} \eta_{n}\right\|_{2}^{2}\right],
$$

- The solution is not unique:

$$
\left\|u_{n}\right\|_{2}=1
$$

- The spatial modes u_{n} are the eigenfunctions of the auto-correlation kernel

$$
(\Omega \times \Omega) \ni(\boldsymbol{x}, \boldsymbol{y}) \mapsto K(\boldsymbol{x}, \boldsymbol{y})=\mathbb{E}[U(\boldsymbol{x}, \cdot) U(\boldsymbol{y}, \cdot)] \in \mathbb{R}
$$

That is:

$$
\left(K u_{n}, v\right)=\lambda_{n}\left(u_{n}, v\right) \quad v \in V
$$

Observe : K is a symmetric positive operator so the eigenfunctions are orthonormal: $\left(u_{n}, u_{n^{\prime}}\right)=\delta_{n n^{\prime}}$

The optimal decomposition is

$$
U(\boldsymbol{x} \theta) \approx \sum_{n=1}^{m} \sqrt{\lambda_{n}} u_{n}(\boldsymbol{x}) \eta_{n}(\theta)
$$

where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0$ and

$$
\eta_{n}(\theta)=\left(U(\cdot, \theta), u_{n}\right), \quad \mathbb{E}\left[\eta_{n}\right]=0, \quad \mathbb{E}\left[\eta_{n}^{2}\right]=1 .
$$

- optimality and convergence in the mean-squared sense
- can be applied only if U is known
- how to represent the stochastic coefficient?

Example (Parametrization)

The KL expansion is often used to construct parametrizations of the uncertain model input which are known.
For instance, ν is frequently model as a log-normal random field:

$$
\nu(\boldsymbol{x}, \theta)=C \exp G(\boldsymbol{x}, \theta)
$$

where G is a zero-mean Gaussian random field with prescribed auto-correlation kernel $K_{G}(\boldsymbol{x}, \boldsymbol{y})$:

$$
G(\boldsymbol{x}, \theta) \approx \sum_{n=1}^{m} g_{n}(\boldsymbol{x}) \xi_{n}(\theta)
$$

where the ξ_{n} 's are independent normalized Gaussian random variables. Setting $\boldsymbol{\xi}=\left(\xi_{1} \cdots \xi_{m}\right)$, we finally seek for the approximate $U^{m}(\boldsymbol{x}, \boldsymbol{\xi})$ such that a.s.

$$
a\left(U^{m}(\boldsymbol{x}, \boldsymbol{\xi}), v ; \nu(\boldsymbol{x}, \boldsymbol{\xi})\right)=b(v) \quad \forall v \in V
$$

Table of content

(1) Parametric Data Propagation

- Data uncertainty
- Alternative UQ\& P methods
(2) Spectral expansions
- Karhunen-Loeve expansion
- Wiener-Hermite expansion
- Generalized PC expansions
(3) PC Expansions of Stochastic Quantities
- Random variables and vectors
- Random fields
- PC expansions in practice

Consider a \mathbb{R}-valued random variable defined on a probability space $(\Theta, \Sigma, d P)$:

$$
U: \Theta \mapsto \mathbb{R}
$$

We denote $L^{2}(\Theta, d P)$ the space of second order random variables:

$$
U \in L^{2}(\Theta, d P) \Leftrightarrow \mathbb{E}\left[U^{2}\right]:=\int_{\Theta} U(\theta)^{2} d P(\theta)<+\infty
$$

Let $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ be a sequence of centered, normalized, mutually orthogonal (uncorrelated) Gaussian random variables:

$$
\mathbb{E}\left[\xi_{i}\right]=0, \quad \mathbb{E}\left[\xi_{i} \xi_{j}\right]=\delta_{i, j} \quad \forall i, j=1,2, \ldots
$$

We denote for $p=0,1,2, \ldots$:

- $\hat{\Gamma}_{p}$ the space of orthogonal polynomials in $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ with degree $\leq p$.
- Γ_{p} the set of polynomials belonging to $\hat{\Gamma}_{p}$ and \perp to $\hat{\Gamma}_{p-1}$.
- $\tilde{\Gamma}_{p}$ the (sub) space spanned by Γ_{p}.

We have

$$
\hat{\Gamma}_{p}=\hat{\Gamma}_{p-1} \oplus \tilde{\Gamma}_{p}, \quad L^{2}(\Theta, d P)=\bigoplus_{p=0}^{p=\infty} \tilde{\Gamma}_{p}
$$

- $\tilde{\Gamma}_{p}$ is called the p-th Homogeneous Chaos.
- Γ_{p} is called the Polynomial Chaos of order p.
- Γ_{p} consists of orthogonal polynomials with degree p, involving all combinations of the r.v. $\left\{\xi_{i}\right\}$.

Note: functions of r.v. are r.v. themselves and are regarded as functionals.

Fundamental Result:

Any well-behaved random variable, e.g. second order ones, has a PC representation of the form

$$
\begin{aligned}
U(\theta)= & u_{0} \Gamma_{0}+\sum_{i_{1}=1}^{\infty} u_{i_{1}} \Gamma_{1}\left(\xi_{i_{1}}(\theta)\right)+\sum_{i_{1}=1}^{\infty} \sum_{i_{2}=1}^{i_{1}} u_{i_{1}, i_{2}} \Gamma_{2}\left(\xi_{i_{1}}(\theta), \xi_{i_{2}}(\theta)\right) \\
& +\sum_{i_{1}=1}^{\infty} \sum_{i_{2}=1}^{i_{1}} \sum_{i_{3}=1}^{i_{2}} u_{i_{1}, i_{2}, i_{3}} \Gamma_{3}\left(\xi_{i_{1}}(\theta), \xi_{i_{2}}(\theta), \xi_{i_{3}}(\theta)\right) \\
& +\sum_{i_{1}=1}^{\infty} \sum_{i_{2}=1}^{i_{1}} \sum_{i_{3}=1}^{i_{2}} \sum_{i_{4}=1}^{i_{3}} u_{i_{1}, i_{2}, i_{3}, i_{4}} \Gamma_{4}\left(\xi_{i_{1}}(\theta), \xi_{i_{2}}(\theta), \xi_{i_{3}}(\theta), \xi_{i_{4}}(\theta)\right)+\ldots
\end{aligned}
$$

The series converges in the mean-square sense:

$$
\lim _{p \rightarrow \infty} \mathbb{E}\left[\left(u_{0} \Gamma_{0}+\cdots+\sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{p}=1}^{i_{p-1}} \Gamma_{p}\left(\xi_{i_{1}}, \cdots, \xi_{i_{p}}\right)-U\right)^{2}\right]=0
$$

PC expansion of U :

$$
\begin{aligned}
U(\theta)= & u_{0} \Gamma_{0}+\sum_{i_{1}=1}^{\infty} u_{i_{1}} \Gamma_{1}\left(\xi_{i_{1}}(\theta)\right)+\sum_{i_{1}=1}^{\infty} \sum_{i_{2}=1}^{i_{1}} u_{i_{1}, i_{2}} \Gamma_{2}\left(\xi_{i_{1}}(\theta), \xi_{i_{2}}(\theta)\right) \\
& +\sum_{i_{1}=1}^{\infty} \sum_{i_{2}=1}^{i_{1}} \sum_{i_{3}=1}^{i_{2}} u_{i_{1}, i_{2}, i_{3}} \Gamma_{3}\left(\xi_{i_{1}}(\theta), \xi_{i_{2}}(\theta), \xi_{i_{3}}(\theta)\right) \\
& +\sum_{i_{1}=1}^{\infty} \sum_{i_{2}=1}^{i_{1}} \sum_{i_{3}=1}^{i_{2}} \sum_{i_{4}=1}^{i_{3}} u_{i_{1}, i_{2}, i_{3}, i_{4}} \Gamma_{4}\left(\xi_{i_{1}}(\theta), \xi_{i_{2}}(\theta), \xi_{i_{3}}(\theta), \xi_{i_{4}}(\theta)\right)+\ldots
\end{aligned}
$$

- We denote $\boldsymbol{\xi}:=\left\{\xi_{i}\right\}_{i=1}^{\infty}$.
- We shall write $U(\xi)$ for the PC expansion of U.

Few important properties:

- Vanishing expectation: $\mathbb{E}\left[\Gamma_{p}\right]=0$ for $p>0$.
- One can express the expectation of U in the Gaussian space spanned by $\boldsymbol{\xi}_{i}$ with the measure

$$
p_{\boldsymbol{\xi}}(\boldsymbol{y})=\prod_{i=1}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left[-y_{i}^{2} / 2\right]
$$

- that is

$$
\begin{aligned}
\mathbb{E}[U] & =\int_{\Theta} U(\theta) d P(\theta)=\int_{\Theta} U(\boldsymbol{\xi}(\theta)) d P(\theta) \\
& =\int \cdots \int U(\boldsymbol{y}) p_{\boldsymbol{\xi}}(\boldsymbol{y}) d \boldsymbol{y}=:\langle\boldsymbol{U}\rangle
\end{aligned}
$$

- The orthogonality of the polynomials is with regard to the Gaussian measure.

Truncated PC expansions: in practice a finite number of r.v. is used

$$
\boldsymbol{\xi}=\left\{\xi_{1}, \cdots, \xi_{\mathrm{N}}\right\}
$$

N is called the stochastic dimension and $\boldsymbol{\xi}$ is often referred as the stochastic germ.

Example of two dimensional PC expansion:

$$
\begin{aligned}
U\left(\xi_{1}, \xi_{2}\right) & =u_{0} \Gamma_{0}+u_{1} \Gamma_{1}\left(\xi_{1}\right)+u_{2} \Gamma_{2}\left(\xi_{2}\right) \\
& +u_{11} \Gamma_{2}\left(\xi_{1}, \xi_{1}\right)+u_{21} \Gamma_{2}\left(\xi_{2}, \xi_{1}\right)+u_{22} \Gamma_{2}\left(\xi_{2}, \xi_{2}\right) \\
& +u_{111} \Gamma_{3}\left(\xi_{1}, \xi_{1}, \xi_{1}\right)+u_{211} \Gamma_{3}\left(\xi_{2}, \xi_{1}, \xi_{1}\right)+u_{221} \Gamma_{3}\left(\xi_{2}, \xi_{2}, \xi_{1}\right) \\
& +u_{222} \Gamma_{3}\left(\xi_{2}, \xi_{2}, \xi_{2}\right)+u_{1111} \Gamma_{4}\left(\xi_{1}, \xi_{1}, \xi_{1}, \xi_{1}\right)+\ldots
\end{aligned}
$$

With the introduction of an indexation scheme, the expansion can be recast as

$$
U(\xi)=\sum_{k=0}^{\infty} u_{k} \Psi_{k}(\xi), \quad u_{k} \in \mathbb{R}
$$

The U_{k} are the PC coefficients of U and Ψ_{k} are (orthogonal) polynomial. We here use the convention $\psi_{0}=\Gamma_{0}=1$.

1-D PC expansion:
Recall that the chaos polynomials are orthogonal wrt the probability density of ξ (centered, normalized, Gaussian):

$$
\begin{equation*}
p_{\xi}(y)=\frac{1}{\sqrt{2 \pi}} \exp \left[-y^{2} / 2\right] . \tag{1}
\end{equation*}
$$

By $\psi_{p}(\xi)$ we denote the 1D polynomial of order p. Following the indexation convention, $\psi_{0}(\xi)=1$.
The orthogonality condition is:

$$
\mathbb{E}\left[\psi_{i} \psi_{j}\right]=\int_{\mathbb{R}} \psi_{i}(y) \psi_{j}(y) p_{\xi}(y) \mathrm{d} y=\delta_{i j}\left\langle\psi_{i}^{2}\right\rangle .
$$

- The ψ_{i} is the well known Hermite polynomial of degree i.
- the Hermite polynomials are normalized s.t. $\left\langle\psi_{i}^{2}\right\rangle=i!$.

First Hermite polynomials (1-D):

Hermite polynomials

One-dimensional Hermite polynomials, $\psi_{p}(\xi)$, for $p=0, \ldots, 6$ 6.

Multi-dimensional PC basis:
The N-variate polynomials Ψ_{i} are constructed as product of 1-D Hermite polynomials. Let $\gamma:=\left\{\gamma_{1} \ldots \gamma_{\mathrm{N}}\right\} \in \mathbb{N}^{\mathrm{N}}$ be a multi-index and $\lambda(p)$ the multi-index set

$$
\lambda(p)=\left\{\gamma: \sum_{i=1}^{\mathrm{N}} \gamma_{i}=p\right\} .
$$

The p-th order polynomial chaos is constructed according to:

$$
\Gamma_{p}=\left\{\bigcup_{\gamma \in \lambda(p)} \prod_{\gamma_{1}}^{\gamma_{\mathrm{N}}} \psi_{\gamma_{i}}\left(\xi_{i}\right)\right\}
$$

Example for $\mathrm{N}=2$:

$$
\begin{aligned}
U\left(\xi_{1}, \xi_{2}\right) & =u_{0} \psi_{0}+u_{1} \psi_{1}\left(\xi_{1}\right)+u_{2} \psi_{1}\left(\xi_{2}\right)+u_{11} \psi_{2}\left(\xi_{1}\right)+u_{21} \psi_{1}\left(\xi_{2}\right) \psi_{1}\left(\xi_{1}\right) \\
& +u_{22} \psi_{2}\left(\xi_{2}\right)+u_{111} \psi_{3}\left(\xi_{1}\right)+u_{211} \psi_{1}\left(\xi_{2}\right) \psi_{2}\left(\xi_{1}\right) \\
& +u_{221} \psi_{2}\left(\xi_{2}\right) \psi_{1}\left(\xi_{1}\right)+u_{222} \psi_{3}\left(\xi_{2}\right)+u_{1111} \psi_{4}\left(\xi_{1}\right)+\ldots
\end{aligned}
$$

Wiener-Hermite expansion

The Hermite polynomials for $p \leq 2(\mathrm{~N}=2)$

The Hermite polynomials for $p=3(\mathrm{~N}=2)$

Truncated PC expansion
In addition to a finite number of random variables, N , we need to truncate the PC expansion to a finite order p

$$
U(\xi) \approx U^{\mathrm{P}}(\xi)=\sum_{k=0}^{\mathrm{P}} u_{k} \Psi_{k}(\xi), \quad \mathrm{P}+1=\frac{(\mathrm{N}+p)!}{\mathrm{N}!p!}
$$

Dependence of $(\mathrm{P}+1)$ on N and p :

p / N	1	2	3	4	5	6	p / N	1	2	3	4	5	6
1	2	3	4	5	6	7	4	5	15	35	70	126	210
2	3	6	10	15	21	28	5	6	21	56	126	252	462
3	4	10	20	35	56	84	6	7	28	84	210	462	924

Fast increase with both N and p.

Other truncature strategies may be used.

Number of terms in the PC expansion plotted against the order, p, and the number of dimensions, N .

The truncated expansion of a random variable U is

$$
U(\theta) \approx U^{\mathrm{P}}(\xi)+\epsilon(\mathrm{N}, p)=\sum_{k=0}^{\mathrm{P}} u_{k} \Psi_{k}(\xi)+\epsilon(\mathrm{N}, p) .
$$

The truncation error depends both on N and p.

> The error is a random variable.

The expansion converges in the mean-square sense as N and p go to infinity [Cameron \& Martin, 1947]:

$$
\lim _{\mathrm{N}, p \rightarrow \infty}\left\langle\epsilon^{2}(\mathrm{~N}, p)\right\rangle=0
$$

In light of the dependence of P on the order and the number of random variables, the PC representation will be computationally efficient if the convergence is fast in both N and p.

Hilbert space (fixed finite N)

- The polynomials $\left\{\Psi_{k}\right\}_{k=0}^{\infty}$ forms an orthogonal basis of $L^{2}\left(\mathbb{R}^{N}, p_{\xi}\right)$.
- $L^{2}\left(\mathbb{R}^{\mathrm{N}}, p_{\xi}\right)$ is equipped with the inner product

$$
\langle U, V\rangle:=\mathbb{E}[U V]=\int_{\mathbb{R}^{N}} U(\boldsymbol{y}) V(\boldsymbol{y}) p_{\boldsymbol{\xi}}(\boldsymbol{y}) d \boldsymbol{y}
$$

and norm $\|U\|_{L^{2}\left(\mathbb{R}^{N}, p_{\boldsymbol{\xi}}\right)}:=\langle U, U\rangle^{1 / 2}$.

- The convergence of the truncated expansion $U^{P} \rightarrow U$ depends on the probability law of U.
- For instance, if U is Gaussian, it has an exact first order expansion.
- Suggests the construction of polynomial spaces based on non-Gaussian distributions.

	Distribution ξ	Polynomials $\psi_{k}(\xi)$	Support
Continuous RV	Gaussian	Hermite	$(-\infty, \infty)$
	γ	Laguerre	$[0, \infty)$
	β	Jacobi	[a, b]
	Uniform	Legendre	[a, b]
Discrete RV	Poisson	Charlier	\{0, 1, 2, \ldots
	Binomial	Krawtchouk	$\{0,1,2, \ldots, n\}$
	Negative binomial	Meixner	$\{0,1,2, \ldots\}$
	Hypergeometric	Hahn	$\{0,1,2, \ldots, n\}$

Families of probability laws and corresponding families of orthogonal polynomials.

Generalized PC expansions

One-dimensional Legendre polynomials of order $p=0, \ldots$,
6.

- If the r.v. in $\boldsymbol{\xi}$ are independent,

$$
p_{\boldsymbol{\xi}}(\boldsymbol{y})=\prod_{i=1}^{\mathrm{N}} p_{i}\left(y_{i}\right)
$$

the Ψ_{k} can be obtained by tensorization of one-dimensional polynomials constructed on the probability distribution of each ξ_{i}.

- We denote $\left\{\psi_{l}^{(i)}\right\}_{l=0}^{p}$ the family of 1-D polynomials with degree $\leq p$ orthogonal w.r.t. to the measure p_{i} associated to $\xi_{i}, i=1, \cdots, \mathrm{~N}$, that is

$$
\int \psi_{l}(y) \psi_{l^{\prime}}(y) p_{i}(y) d y=\delta_{l, l^{\prime}} \int \psi_{l}(y)^{2} p_{i}(y) d y
$$

- The m-th order GPC is constructed according to:

$$
\Gamma_{m}^{G}=\left\{\bigcup_{\gamma \in \lambda(m)} \prod_{\gamma_{1}}^{\gamma_{\mathrm{N}}} \psi_{\gamma_{i}}^{(i)}\left(\xi_{i}\right)\right\}, \quad \bigoplus_{m=0}^{m=p} \Gamma_{m}^{G}=\left\{\Psi_{k}\right\}_{k=0}^{k=\mathrm{P}}
$$

- For general distributions of the independent ξ_{i}, one can rely on numerical orthogonalization procedure (Gram-Schmidt) to construct the 1-D family of polynomials.
- Anticipating forthcoming lectures, one can think of using other types of functionals in the construction.
- These include piecewise polynomial functions, sine and cosine functions (uniform measure), wavelets, ...
- In fact any basis of the Hilbert space $L^{2}\left(\equiv, p_{\boldsymbol{\xi}}\right)$, where \equiv is the support of $p_{\boldsymbol{\xi}}$.
- An important aspect to keep in mind is the dimension of the expansion.
(Really) Generalized PC: Case of a germ ξ with dependent components ξ_{i}
- The joint probability distribution $p_{\boldsymbol{\xi}}$ can not be factorized.
- Denote p_{i} the marginal distribution of ξ_{i} :

$$
p_{i}(y)=\int \mathrm{d} y_{1} \cdots \int \mathrm{~d} y_{i-1} \int \mathrm{~d} y_{i+1} \cdots \int \mathrm{~d} y_{\mathrm{N}} p_{\boldsymbol{\xi}}\left(y_{1}, \cdots, y_{\mathrm{N}}\right) .
$$

- Let $\left\{\phi_{p}^{(i)}(\xi)\right\}$ be the corresponding sets of 1-D polynomials satisfying

$$
\left\langle\phi_{p}^{(i)}, \phi_{p^{\prime}}^{(i)}\right\rangle_{p_{i}} \equiv \int \phi_{p}^{(i)}(y) \phi_{p^{\prime}}^{(i)}(y) p_{i}(y) \mathrm{d} y=\delta_{p p^{\prime}}
$$

(Really) Generalized PC:
Case of a germ ξ with dependent components ξ_{i}

- The joint probability distribution $p_{\boldsymbol{\xi}}$ can not be factorized.
- Denote p_{i} the marginal distribution of ξ_{i} :

$$
p_{i}(y)=\int \mathrm{d} y_{1} \cdots \int \mathrm{~d} y_{i-1} \int \mathrm{~d} y_{i+1} \cdots \int \mathrm{~d} y_{\mathrm{N}} p_{\boldsymbol{\xi}}\left(y_{1}, \cdots, y_{\mathrm{N}}\right) .
$$

- The Chaos function associated to the multi-index $\gamma \in \mathbb{N}^{N}$ writes

$$
\Psi_{\gamma}(\boldsymbol{\xi})=\left[\frac{p_{1}\left(\xi_{1}\right) \ldots p_{\mathrm{N}}\left(\xi_{\mathrm{N}}\right)}{p_{\boldsymbol{\xi}}(\boldsymbol{\xi})}\right]^{1 / 2} \phi_{\gamma_{1}}^{(1)}\left(\xi_{1}\right) \ldots \phi_{\gamma_{\mathrm{N}}}^{(\mathrm{N})}\left(\xi_{\mathrm{N}}\right) .
$$

- It can be checked that the Ψ 's are orthogonal and form a basis of $L^{2}\left(\equiv, p_{\xi}\right)$.
- This is no more a polynomial expansion!
(1) Parametric Data Propagation
- Data uncertainty
- Alternative UQ\& P methods
(2) Spectral expansions
- Karhunen-Loeve expansion
- Wiener-Hermite expansion
- Generalized PC expansions
(3) PC Expansions of Stochastic Quantities
- Random variables and vectors
- Random fields
- PC expansions in practice
- Let U^{P} be given by a truncated (G)PC expansion

$$
U^{\mathrm{P}}(\boldsymbol{\xi})=\sum_{k=0}^{\mathrm{P}} u_{k} \Psi_{k}(\boldsymbol{\xi})
$$

where the chaos polynomials $\left\{\Psi_{0}, \ldots, \Psi_{\mathrm{P}}\right\}$ are orthogonal (with the convention $\Psi_{0}=1$).

- The mathematical expectation of U is

$$
\mathbb{E}\left[U^{\mathrm{P}}\right]=\left\langle U^{\mathrm{P}}(\boldsymbol{\xi})\right\rangle=\left\langle\Psi_{0}, U^{\mathrm{P}}(\boldsymbol{\xi})\right\rangle=\sum_{k=0}^{\mathrm{P}} u_{k}\left\langle\Psi_{0}, \Psi_{k}\right\rangle=u_{0}
$$

- Let U^{P} be given by a truncated (G)PC expansion

$$
U^{\mathrm{P}}(\boldsymbol{\xi})=\sum_{k=0}^{\mathrm{P}} u_{k} \Psi_{k}(\boldsymbol{\xi}),
$$

where the chaos polynomials $\left\{\Psi_{0}, \ldots, \Psi_{\mathrm{P}}\right\}$ are orthogonal (with the convention $\Psi_{0}=1$).

- Its variance $\sigma_{U^{\mathrm{P}}}^{2}$ is in turn

$$
\begin{aligned}
\sigma_{U^{\mathrm{P}}}^{2} & =\mathbb{E}\left[\left(U^{\mathrm{P}}-\mathbb{E}\left[U^{\mathrm{P}}\right]\right)^{2}\right]=\mathbb{E}\left[\left(\sum_{k=1}^{\mathrm{P}} u_{k} \Psi_{k}\right)^{2}\right] \\
& =\sum_{k, l=1}^{\mathrm{P}} u_{k} u_{l}\left\langle\Psi_{k}, \Psi_{l}\right\rangle=\sum_{k=1}^{\mathrm{P}} u_{k}^{2}\left\langle\Psi_{k}^{2}\right\rangle
\end{aligned}
$$

The variance of U^{P} is given as a weighted sum of its squared PC coefficients.

- Let U^{P} be given by a truncated (G)PC expansion

$$
U^{\mathrm{P}}(\boldsymbol{\xi})=\sum_{k=0}^{\mathrm{P}} u_{k} \Psi_{k}(\boldsymbol{\xi}),
$$

where the chaos polynomials $\left\{\Psi_{0}, \ldots, \Psi_{\mathrm{P}}\right\}$ are orthogonal (with the convention $\Psi_{0}=1$).

- Similar expressions for the higher order moments of U^{P} in terms of its PC coefficients (but more complex).
- More complex statistical characterizations can be obtained by means of sampling strategies:
(1) sampling of \equiv with probability density p_{ξ},
(2) generation of realization of U^{P} by evaluating the PC expansion,
(3) analysis of the sample set (density estimation, probability of events, ...).
- Will be shown in subsequent lectures.

Consider a \mathbb{R}^{d}-random vectors: $\boldsymbol{U}: \equiv \mapsto \mathbb{R}^{d}$.
Denoting U_{i} the i-th component of the random vector, its truncated PC expansion writes

$$
U_{i}(\boldsymbol{\xi}) \approx \sum_{k=0}^{\mathrm{P}}\left(u_{i}\right)_{k} \Psi_{k}(\boldsymbol{\xi})
$$

- The expansion of \boldsymbol{U} can be recast in the vector form

$$
\boldsymbol{U}=\sum_{k=0}^{\mathrm{P}} \boldsymbol{u}_{k} \Psi_{k}(\boldsymbol{\xi})
$$

where $\boldsymbol{u}_{k}=\left(\left(u_{1}\right)_{k} \cdots\left(u_{d}\right)_{k}\right)^{t} \in \mathbb{R}^{d}$ is the vector containing the k-th PC coefficients of the random vector components.

- \boldsymbol{u}_{k} is called the k-th stochastic mode of the random vector.

Consider a \mathbb{R}^{d}-random vectors: $\boldsymbol{U}: \equiv \mapsto \mathbb{R}^{d}$.
Denoting U_{i} the i-th component of the random vector, its truncated PC expansion writes

$$
U_{i}(\boldsymbol{\xi}) \approx \sum_{k=0}^{\mathrm{P}}\left(u_{i}\right)_{k} \Psi_{k}(\boldsymbol{\xi}) .
$$

- Two components U_{i} and U_{j} are orthogonal iff

$$
\sum_{k=0}^{\mathrm{P}}\left(u_{i}\right)_{k}\left(u_{j}\right)_{k}\left\langle\psi_{k}^{2}\right\rangle=0 .
$$

- The correlation and covariance matrices of the vector \boldsymbol{U} can be respectively expressed as:

$$
\boldsymbol{r}=\sum_{k=0}^{\mathrm{P}} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{T}\left\langle\Psi_{k}^{2}\right\rangle, \quad \quad \boldsymbol{c}=\sum_{k=1}^{\mathrm{P}} \boldsymbol{u}_{k} \boldsymbol{u}_{k}^{T}\left\langle\Psi_{k}^{2}\right\rangle
$$

Consider a 2nd order stochastic process

$$
\Omega \times \Theta \ni(\boldsymbol{x}, \theta) \mapsto U(\boldsymbol{x}, \theta) \in \mathbb{R}
$$

It PC approximation writes

$$
U(\boldsymbol{x}, \theta) \approx U^{\mathrm{P}}(\boldsymbol{x}, \boldsymbol{\xi}(\theta))=\sum_{k=0}^{\mathrm{P}} u_{k}(\boldsymbol{x}) \Psi_{k}(\boldsymbol{\xi}(\theta))
$$

- Functions $u_{k}: \boldsymbol{x} \in \Omega \mapsto \mathbb{R}$ are called the stochastic modes of U.
- Owing to the orthogonality of the chaos polynomials,

$$
\mathbb{E}\left[U(\boldsymbol{x}, \cdot) \Psi_{k}\right]=\sum_{l} u_{l}(\boldsymbol{x}) \mathbb{E}\left[\Psi_{l} \Psi_{k}\right]=u_{k}(\boldsymbol{x})\left\langle\Psi_{l}^{2}\right\rangle
$$

- From the convention $\Psi_{0}=1, u_{0}(\boldsymbol{x})$ is the mean of the stochastic process

$$
\mathbb{E}\left[U^{\mathrm{P}}(\boldsymbol{x}, \cdot)\right]=\sum_{k=0}^{\mathrm{P}} u_{k}(\boldsymbol{x})\left\langle\Psi_{k}\right\rangle=U_{0}(\boldsymbol{x})
$$

Random fields

Consider a 2nd order stochastic process

$$
\Omega \times \Theta \ni(\boldsymbol{x}, \theta) \mapsto U(\boldsymbol{x}, \theta) \in \mathbb{R} .
$$

It PC approximation writes

$$
U(\boldsymbol{x}, \theta) \approx U^{\mathrm{P}}(\boldsymbol{x}, \boldsymbol{\xi}(\theta))=\sum_{k=0}^{\mathrm{P}} u_{k}(\boldsymbol{x}) \Psi_{k}(\boldsymbol{\xi}(\theta)) .
$$

- the correlation function of U^{P} expresses as

$$
\begin{aligned}
R_{U^{\mathrm{P}}}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) & =\left\langle U^{\mathrm{P}}(\boldsymbol{x}, \cdot) U^{\mathrm{P}}\left(\boldsymbol{x}^{\prime}, \cdot\right)\right\rangle=\left\langle\left(\sum_{k=0}^{\mathrm{P}} u_{k}(\boldsymbol{x}) \Psi_{k}\right)\left(\sum_{k=0}^{\mathrm{P}} u_{k}\left(\boldsymbol{x}^{\prime}\right) \Psi_{k}\right)\right\rangle \\
& =\sum_{k=0}^{\mathrm{P}} \sum_{l=0}^{\mathrm{P}} u_{k}(\boldsymbol{x}) u_{l}\left(\boldsymbol{x}^{\prime}\right)\left\langle\Psi_{k} \Psi_{l}\right\rangle=\sum_{k=0}^{\mathrm{P}} u_{k}(\boldsymbol{x}) u_{k}\left(\boldsymbol{x}^{\prime}\right)\left\langle\Psi_{k}^{2}\right\rangle .
\end{aligned}
$$

- It shows that an infinite number of stochastic processes share the same correlation function.

Random fields

Relation with the KL decomposition of $U(\boldsymbol{x}, \theta)$ (zero mean S.P.)
Recall that U can be decomposed in

$$
U(\boldsymbol{x}, \theta)=\sum_{l} u_{l}^{(K L)} \sqrt{\lambda} \eta^{\prime}(\theta), \quad\left(u_{k}^{(K L)}, u_{l}^{(K L)}\right)_{\Omega}=\delta_{k l}, \quad \mathbb{E}\left[\eta^{\prime} \eta^{\prime^{\prime}}\right]=\delta_{\| \prime}
$$

$u_{l}^{(K L)}$ are the eigenfunctions of the covariance function.

- $\eta^{\prime} \in L^{2}(\Theta, d P)$ has a PC expansion:

$$
\eta^{\prime}(\theta)=\sum_{k} \eta_{k}^{\prime} \Psi_{k}(\boldsymbol{\xi}(\theta))
$$

- Inserting the expansions of the η and rearranging the summations

$$
U(\boldsymbol{x}, \theta)=\sum_{k}\left[\sum_{l} u_{l}^{(K L)}(\boldsymbol{x}) \sqrt{\lambda_{l}} \eta_{k}^{\prime}\right] \Psi_{k}(\boldsymbol{\xi}(\theta)) .
$$

- In addition, it comes

$$
\left(u_{k}, u_{k^{\prime}}\right)_{\Omega}=\sum_{l} \sum_{l^{\prime}} \sqrt{\lambda_{l} \lambda_{l^{\prime}}}\left(u_{l}^{(K L)}, u_{l^{\prime}}^{(K L)}\right)_{\Omega} \eta_{k}^{\prime} \eta_{k^{\prime}}^{\prime^{\prime}}=\sum_{l} \lambda_{l} \eta_{k}^{\prime} \eta_{k^{\prime}}^{\prime}
$$

which in general is not zero.
(1) Parametric Data Propagation

- Data uncertainty
- Alternative UQ\& P methods
(2) Spectral expansions
- Karhunen-Loeve expansion
- Wiener-Hermite expansion
- Generalized PC expansions
(3) PC Expansions of Stochastic Quantities
- Random variables and vectors
- Random fields
- PC expansions in practice

Truncated PC expansions can be used to approximate stochastic quantities U (random variables, vectors, fields, ...)
This calls for procedures / strategies to determine

- the number of random variables N in the germ (and eventually their distributions)
- the polynomial order p of the expansion
- the coefficients of the expansion (stochastic modes)

We distinguish two fundamentally different situations
(1) the particular situation where, given the germ $\boldsymbol{\xi}$, information on $U(\xi)$ can be assessed
(2) the general case where only information on $U(\theta)$ is available can be assessed
$U(\xi)$ can be assessed:
This case corresponds to situation found in parametric uncertainty propagation, where for each realization $\boldsymbol{\xi}(\theta)$ one can compute / measure the particular realization $U(\xi(\theta))$.

$$
\text { One can then exploit the mapping } \equiv \ni \xi \mapsto \cup(\xi)
$$

to compute the coefficients u_{k} in the expansion,

$$
U(\xi) \approx U^{P}(\xi)=\sum_{k=0}^{P} u_{k} \Psi_{k}(\xi)
$$

For instance, exploiting the orthogonality of the ψ

$$
u_{k}=\frac{\left\langle U, \Psi_{k}\right\rangle}{\left\langle\Psi_{k}, \Psi_{k}\right\rangle}=\frac{1}{\left\langle\Psi_{k}, \Psi_{k}\right\rangle} \int_{\equiv} U(\boldsymbol{y}) \Psi_{k}(\boldsymbol{y}) p_{\boldsymbol{\xi}}(\boldsymbol{y}) d \boldsymbol{y} .
$$

This is the L^{2}-projection of U onto $\operatorname{span}\left\{\Psi_{k}, k=0, \ldots, \mathrm{P}\right\}$.
Other type of projections and computational strategies will be extensively discussed in the following.

This is the most general situation where:

- a random quantity $U(\theta)$ has to be approximated by means of a PC expansion,
- $U(\theta)$ may be known partially or completely through, e.g., sample set of realizations, moments, estimated probability law, ...
- from the available information, one need to define a germ, expansion order and to specify $U^{\mathrm{P}}(\boldsymbol{\xi}(\theta))$ that approximate $U(\theta)$.

$$
\text { One cannot exploit the mapping } \equiv \ni \xi \mapsto \cup(\xi)
$$

to compute the coefficients u_{k} in the expansion,

$$
U(\theta) \approx U^{P}(\xi(\theta))=\sum_{k=0}^{P} u_{k} \Psi_{k}(\xi(\theta))
$$

This is the typical situation faced when constructing stochastic models of uncertainty in particular to model stochastic fields.

- It essentially amounts to the resolution of optimization problems to identify /estimate the germ and expansion order that best fit the available information.
- Optimization can be based on moments matching, likelihood, entropy maximization, ...

Questions \& Discussion

