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Objectives of the lecture

Introduce and discuss Uncertainty Quantification problems

Context, motivations, objectives of UQ analysis

Monte-Carlo approach to serve as reference (and hands-on)

Material of this lecture is taken from the book:
Spectral Methods for Uncertainty Quantification with applications in computational
fluid dynamics with Omar Knio, Springer (2010).
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Simulation and errors

Simulation framework.

Basic ingredients

Selection of a mathematical model:
retain essential physical processes.

Selection of a numerical method:
to solve the model equations.

Define all input-data needed:
select a specific system in the class spanned by the model.

Simulation errors

Model errors: physical approximations and simplifications.

Numerical errors: discretization, approximate solvers, finite arithmetics, . . .

Input-data error: boundary/initial conditions, model constants and
parameters, external forcings, . . .
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Input-data uncertainty

Input Uncertainty

Sources of data uncertainty

Inherent variability (e.g. industrial processes).

Epistemic uncertainty (e.g. model constants).

May not be fully reducible, even theoretically.

Probabilistic framework

Define an abstract probability space (Ω,A, dµ).

Consider input-data D as random quantity: D(ω), ω ∈ Ω.

Simulation output S is random and on (Ω,A, dµ).

Data D and simulation output S are dependent random quantities (through
the mathematical modelM):

M(S(ω),D(ω)) = 0, ∀ω ∈ Ω.
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Input-data uncertainty

Uncertainty Propagation

Propagation of data uncertainty

Data density

M(S,D) = 0

Solution density

Variability in model output: numerical error bars.

Assessment of predictability.

Support decision making process.

What type of information (abstract quantities, confidence intervals, density
estimations, structure of dependencies, . . . ) one needs?
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Input-data uncertainty

UQ Methods

Deterministic methods

Sensitivity analysis (adjoint based, AD, . . . ): local.

Perturbation techniques: limited to low order and simple data uncertainty.

Neumann expansions: limited to low expansion order.

Moments method: closure problem (non-Gaussian / non-linear problems).

Simulation techniques Monte-Carlo

Spectral Methods
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Input-data uncertainty

UQ Methods

Deterministic methods

Simulation techniques Monte-Carlo

Generate a sample set of data realizations and compute the corresponding
sample set of model ouput.
Use sample set based random estimates of abstract characterizations
(moments, correlations, . . . ).

Plus: Very robust and re-use deterministic codes: (parallelization, complex data
uncertainty).

Minus: slow convergence of the random estimates with the sample set
dimension.

Spectral Methods
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Input-data uncertainty

UQ Methods

Deterministic methods

Simulation techniques Monte-Carlo

Spectral Methods

Parameterization of the data with random variables (RVs).

⊥ projection of solution on the (L2) space spanned by the RVs.

Plus: arbitrary level of uncertainty, deterministic approach, convergence rate,
information contained.

Minus: parameterizations (limited # of RVs), adaptation of simulation tools
(legacy codes), robustness (non-linear problems, non-smooth output, . . . ).

Not suited for model uncertainty
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Monte Carlo estimation

Preliminaries

Let Ξ 3 ξ ∼ µ(ξ) be a random quantify (variable, vector, field) and consider
F : Ξ 7→ R, a real-valued random variable. We shall assume that F ∈ L2(Ξ, µ):∫

Ξ
|F (ξ)|2dµ(ξ) = E

[
F 2
]
<∞.

To approximate E [F ], the arithmetic mean is typically used:

F̄N =
1
N

N∑
i=1

F (ξi ),

where the ξi are independent realizations of ξ (drawn from µ).
If the expectation exists, the law of large numbers implies that the arithmetic means
converges to the mathematical expectations

F̄N
p−→ E [F ] as N →∞

Consequently, ξ̄N ' E [F ] for large N.
If F has a finite variance V [F ], the central limit theorem implies

lim
N→∞

Pr

{
x1 <

1√
NV [F ]

N∑
i=1

(F (ξi )− E [F ]) < x2

}
=

1
√

2π

∫ x2

x1

exp

(
−

t2

2

)
dt .
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Monte Carlo estimation

Monte Carlo error – I

If we now let −x1 = x2 = x > 0, it follows that

lim
N→∞

Pr

{∣∣∣∣∣ 1
√

N

N∑
i=1

F (ξi )− E [F ])

∣∣∣∣∣ < x

√
V [F ]

N

}
= Φ(x)

where

Φ(x) =
2
√

2π

∫ x

0
exp

(
−

t2

2

)
dt is the probability integral

When N is sufficiently large, we have

Pr

{∣∣F̄N − E [F ]
∣∣ < x

√
V [F ]

N

}
≈ Φ(x)

This gives a whole variety of estimates, depending on x
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Monte Carlo estimation

Monte Carlo error – II

If a probability 0 < β < 1 is given, then the root xβ of the equation Φ(x) = β can be
found (e.g. from tables)
It follows that

Pr

{∣∣F̄N − E [F ]
∣∣ < xβ

√
V [F ]

N

}
≈ β

The probable error, rN , is the value for which

Pr
{∣∣F̄N − E [F ]

∣∣ ≤ rN
}

=
1
2

= Pr
{∣∣F̄N − E [F ]

∣∣ ≥ rN
}

Thus,
rN = x0.5σ(F )N−1/2

where
σ(F ) ≡

√
V [F ] x0.5 ≈ 0.6745
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Monte Carlo estimation

Remarks

When no information about the smoothness of the function is available, the probable
error in plain MC is:

rN = c

√
V [F ]

N
MC algorithms with reduced variance compared to plain MC are called efficient MC
algorithms.
Techniques used to achieve such reduction are called variance reduction techniques.
Selected approaches are outlined in the following.
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Improving Monte-Carlo estimates

Separation of Principal Part

Consider again xi ∈ ξ with distribution µ and F ∈ L2(ξ, µ).
Suppose we can find H ∈ L2(ξ, µ) close to F

‖F − H‖2 ≡ E
[
|F − H|2

]
≤ ε,

and E [H] is known.
Consider θ(ξ) =

.
= F (ξ)− H(ξ) + E [H]. Plain MC on θ′ gives:

θN = E [H] +
1
N

N∑
i=1

[F (ξi )− H(ξi )]

Clearly, E [θ] = E [F ] and

V [θ] = E
[
|F − H|2

]
− (E [F ]− E [H])2 ≤ ε2

⇒ probable error will be quite small if H predict well F and can be integrated (e.g.
polynomial model of F ).
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Improving Monte-Carlo estimates

Integration on Subdomains

Suppose we can integrate F analytically for ξ ∈ ξ′ ⊂ ξ∫
Ξ′

F (ξ)dµ(ξ) = I′ and
∫

Ξ′
dµ(ξ) = c, 0 < c < 1.

Then
E [F ] =

∫
Ξ\Ξ′

F (ξ)dµ(ξ) + I′.

Define a random point ξ′ ∈ ξ \ ξ′ with distribution µ′(x) = µ(x)/(1− c) and let

H(ξ′)
.

= I′ + (1− c)F (ξ′)

Clearly, E [H] = E [F ]. Thus, we define the MC estimator:

HN = I′ +
1− c

N

N∑
i=1

F (ξ′i )

where ξ′i are independent realizations of ξ′.
It can be shown that if V [F ] exists, then

V [H] ≤ (1− c)V [F ]
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Improving Monte-Carlo estimates

Symmetrization of Integrand

Consider the case of ξ = [a, b] with uniform distribution.
The plain MC approximation of E [F ] would yield:

F̄N =
1
N

N∑
i=1

F (ξi )

where ξi are independent realizations of ξ ∈ [a, b].
Consider now the symmetric function

Fs(xi) =
1
2

[F (ξ) + F (a + b − ξ)]

Clearly, E [Fs] = 2E [F ]. Thus, we consider the MC estimate

F̃sN =
1

2N

N∑
i=1

[F (ξi ) + F (a + b − ξi )]

One can show that if F : [a, b] 7→ R is monotonic, then V [Fs] ≤ V [F ]/2. The result
generalizes to non-monotonic functions for mild conditions.
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Improving Monte-Carlo estimates

Importance Sampling – I

Suppose that he distribution µ has a density f :

Ef [F ] =

∫
Ξ

F (ξ)f (ξ)dξ.

Using

F̄N =
1
N

N∑
i=1

F (ξj ),

we have

vN ≡ V
[
F̄N
]

=
1

N2

N∑
j=1

[
F (ξj )− F̄N

]2
and for N large

F̄N − Ef [F ]
√

vm
≈ N(0, 1).

Importance sampling uses samples ξ1,. . . , ξN from an alternative distribution g and
setting

Ef [F ] =

∫
Ξ

F (ξ)f (ξ)

g(ξ)
g(ξ)dξ = Eg

[
F × f

g

]
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Improving Monte-Carlo estimates

Importance Sampling – II

The choice of g that minimizes the variance of the corresponding estimator is

g∗(ξ) =
|F (ξ)| f (ξ)

|
∫

Ξ
F (η)f (η)dη|

is hard to evaluate because the denominator is essentially the unknown quantity.
A practical alternative is to use the result as follows:∑N

j=1 F (ξj )f (ξj )/g(ξj )∑N
j=1 f (ξj )/g(ξj )

=

∑N
j=1 F (ξj )

∣∣F (ξj )
∣∣−1∑N

j=1

∣∣F (ξj )
∣∣−1

for ξj ∼ g ∝ |F |f . Unfortunately, this estimator is biased and may exhibit severe
instability.
To avoid this, look for distribution g for which |F |f/g is almost constant, with finite
variance. Although finite variance is not necessary for convergence of the last
estimator, importance sampling performs
poorly when Ef [f/g] = +∞, whether in terms of behavior (high amplitude jumps,
instability of path of the average, slow convergence) or in comparison with direct MC.
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Monte Carlo sampling strategies

Iso-probabilistic transformations

Most computer languages propose pseudo-random number generators
Main characteristic : appearance of independence for the sequence and length

Dedicated libraries (std-lib in C++) propose high quality generators for standard
distributions (uniform, normal, exponential, Poisson, Bernoulli, . . . )

Well characterized distributions over R can be achieved by mean of iso-probabilistic
transformations
For higher dimensional ξ = (ξ1, . . . , ξd ), fast sampling can be achieved if the
components ξi are independent, otherwise more involved techniques (e.g. MCMC
sampler) must be considered.
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Monte Carlo sampling strategies

Latin Hypercube Sampling – I

Alternative ways to reduce the MC estimate error are based on controled sampling to
improve the covering of Ξ
Latin hypercube selects n different values from each of d independent rv’s ξ1, . . . , ξd
according to the following procedure:

The range of each variable is divided into n nonoverlapping intervals having
equal probability
One value from each interval is selected at random with respect to the probability
density in the interval

The n values thus obtained for ξ1 are paired in a random manner (equally likely
combinations) with the n values of ξ2.

These n pairs are combined in a random manner with the n values of ξ3 to form n
triplets, and so on, until n d-tuplets are formed.
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Monte Carlo sampling strategies

Latin Hypercube Sampling – II

f (ξ) = f1(ξ1) . . . fd (ξd ).

It is convenient to think of the LH sample (or any random sample of size n) as forming
an (n × d) matrix of input where the j th row contains the specific values of each of the
d input variables ξi to be used on the j th realization of the input (j-th simulation)
The pairing is typically done by associating a random permutation of the first n integers
with each input variable. The permutations ensure that no variable is taken twice
from the same interval for every dimension.
Consider a 2D example, where we are interested in generating a LH with 5 samples
The ranges of ξ1 and ξ2 are first divided into 5 equal probability intervals
We next consider two random permutations of the integers {1, 2, 3, 4, 5}, say:

Permutation 1: (3, 1, 5, 2, 4)

Permutation 2: (2, 4, 1, 3, 5)

Then the resulting LHS would be

Sample Interval used for ξ1 Interval used for ξ2
1 3 2
2 1 4
3 5 1
4 2 3
5 4 5
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Monte Carlo sampling strategies

Latin Hypercube Sampling – III

Elaborate LHS algorithms have been developed, particularly to incorporate key
ingredients to ensure proper performance. These include:

uniform random permutations – a uniform random permutation of 1 to n is one in
which all n! possible orderings have the same probability

imposing pairing restrictions to avoid or minimize correlations between statistically
independent quantities

Sophisticated software tools implementing powerful LHS algorithms are widely
available, including MATLAB.
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Monte Carlo sampling strategies

Comparison of samplin methods

MC LHS QMC

Quasi-Monte Carlo
(deterministic sequence)

Convergence rate
Error estimate
Optimal sampling
strategy
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Overview

Background

Markov chain Monte Carlo (MCMC) methods: class of algorithms aimed at simulating
direct draws from some complex distribution of interest.

Origin of the name: one uses the previous sample values to randomly (Monte Carlo)
generate the next sample value, thus creating a Markov chain.

A Markov chain is indeed defined as a process where the transition probability between
the current and following state is only a function of the current state.

Many different flavors of generating a Markov Chain. Focus on Metropolis-Hastings
algorithm: a random walk using a proposal density and a method for accepting/rejecting
proposed moves.
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Overview

MCMC: features

The states of the chain after a large number of steps are used as samples of the desired
distribution.

The quality of the sample improves as a function of the number of steps.

The more difficult problem is to determine how many steps are needed to converge to
the stationary distribution within an acceptable error: usually one needs at least
∼ 10000 samples.

A good chain is one that has rapid mixing, i.e. the stationary distribution is reached
quickly starting from an arbitrary position and the target probability is explored well and
efficiently.

A common application of these algorithms is for numerically calculating
multi-dimensional integrals.

Let’s look in detail at the Metropolis algorithm and how to generate samples from a
certain distribution.
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Metropolis Algorithm

Metropolis (MH)

MH algorithm can draw samples from a target probability distribution, π, requiring
only the knowledge of a function proportional to the target PDF.

It uses a proposal distribution, P, to generate (Markov chain) candidates that are accepted or
rejected according to a certain rule. Let P be a Gaussian for simplicity.

1 Let ξt=0 be an initial guess for a 2D problem.

2 Draw a candidate ξ′ from a Gaussian centered on the
current state: ξ′ ∼ N (ξ0,Cov) where Cov is chosen
a priori.

3 Calculate the ratio:

r =
π(ξ′)

π(ξ0)
,

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 jt=0

j1

j 2

4 Draw a random number α ∼ U(0, 1).

5 Chain moves (i.e. candidate is
accepted/rejected) according to:

ξ1 =

{
ξ′ if α < r ,
ξ0 otherwise.

6 Repeat the loop.
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4 Draw a random number α ∼ U(0, 1).
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accepted/rejected) according to:

ξ1 =

{
ξ′ if α < r ,
ξ0 otherwise.

6 Repeat the loop.
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Metropolis Algorithm

Metropolis (MH)
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Metropolis Algorithm

Example

Suppose that you want to test MCMC to sample a
certain bimodal PDF, π, which is proportional to a
mixture of two bivariate gaussians:
π ∝ 0.5 ∗ N(µ1,Σ1) + 0.5 ∗ N(µ2,Σ2).

Method: Metropolis algorithm.

1 Choose the proposal distribution: e.g. a gaussian
with covariance: Σprop = 0.1 ∗ I2.

2 Choose a starting point: ξ0 = {10, 10}.
3 Run the machinery for n steps: draw a candidate,

accept/reject, repeat loop.

4 Plot the n samples (this case n = 5000)

The proposal amplitude, 0.1, must be varied to
obtain good mixing and fast convergence.

The number of samples, n, must be as large as
possibile to have a reliable statistics.

What about sensitivity to n and proposal amplitude?
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What about sensitivity to n and proposal amplitude?
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π ∝ 0.5 ∗ N(µ1,Σ1) + 0.5 ∗ N(µ2,Σ2).

Method: Metropolis algorithm.

1 Choose the proposal distribution: e.g. a gaussian
with covariance: Σprop = 0.1 ∗ I2.

2 Choose a starting point: ξ0 = {10, 10}.
3 Run the machinery for n steps: draw a candidate,

accept/reject, repeat loop.

4 Plot the n samples (this case n = 5000)

The proposal amplitude, 0.1, must be varied to
obtain good mixing and fast convergence.

The number of samples, n, must be as large as
possibile to have a reliable statistics.
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Metropolis Algorithm

Example

Suppose that you want to test MCMC to sample a
certain bimodal PDF, π, which is proportional to a
mixture of two bivariate gaussians:
π ∝ 0.5 ∗ N(µ1,Σ1) + 0.5 ∗ N(µ2,Σ2).

Method: Metropolis algorithm.

1 Choose the proposal distribution: e.g. a gaussian
with covariance: Σprop = 0.1 ∗ I2.

2 Choose a starting point: ξ0 = {10, 10}.
3 Run the machinery for n steps: draw a candidate,

accept/reject, repeat loop.

4 Plot the n samples (this case n = 5000)

The proposal amplitude, 0.1, must be varied to
obtain good mixing and fast convergence.

The number of samples, n, must be as large as
possibile to have a reliable statistics.

What about sensitivity to n and proposal amplitude?
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Quality of the MCMC chain

Sensitivity to number of steps

The proposal distribution has covariance: Σprop = 0.1 ∗ I2.

Results for 3 different values of total steps n = 500, 5000 and 25000.

The larger n, the better the approximation.

n = 500 n = 5000 n = 25000
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Quality of the MCMC chain

Sensitivity to proposal amplitude

The proposal amplitude must be tuned to obtain good exploration of the space and fast
convergence of the chain toward the high-probability regions.

Results shown for 0.005 ∗ I2, 0.1 ∗ I2 and 50 ∗ I2.

The smaller the proposal amplitude, the larger the number of the accepted moves.

Large proposals lead to small acceptance and slow exploration of the space.

Ideally, the acceptance rate should be between 30 to 60%.

amplitude = 0.005
acceptance rate ∼ 95 %.

amplitude = 0.1
acceptance rate ∼ 50 %.

amplitude = 50
acceptance rate ∼ 4 %.
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Quality of the MCMC chain

Sensitivity to proposal amplitude

To evaluate the mixing properties of a chain:
visually should look like a white noise.
the autocovariance should be rapidly decaying.
the acceptance rate should be 30 to 60%.

Before computing statistics, the initial steps before convergence should be dropped: these
steps are referred to as “burn-in” period.

The burn-in period is estimated from the autocorrelation as the step at which it drops to and
becomes oscillatory around zero: in this case it is about 3000 steps.

Chain for ξ2 showing the bimodality. Autocovariance for
chain of ξ2.

Chain samples after
omitting 3000 steps.
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Sampling strategies

Given a vector of QoI (quantity of interest) S ∈ Rn, we would like to obtain
probabilistic information regarding S.

We have seen that the mean and covariance of S are given by

E [S] = S0, E
[
SST

]
∈ Rn×n.

Higher moments can also be derived, in particular coefficient of variation,
skewness & flatness factors,. . .
No direct mean to assess probabilities of events, for instance

P(a ≤ Si < b), P(S > s), P
(
{Si < a} ∩ {Sj > b}

)
, . . .

Such probabilities must be estimated by sampling strategies.
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Sampling strategies

Assume we want to estimate the probability of the event S ∈ R:

P(S ∈ R).

We can apply the generic recipe:
1 generate a sample set {ξ(i), i = 1, . . . ,M} of ξ where ξ(i) ∼ pξ ,
2 construct the sample set {S(i) .= S(ξ(i)), i = 1, . . . ,M} solving the model,
3 estimate the probability using the empirical estimator by

P(S ∈ R) = lim
M→∞

#of samples S(i) ∈ R
M

.

In other words, we make use of the relative frequency to estimate probabilities.

This approach raises several concerns, regarding convergence, estimation of low
probability events, . . .

Observe: the empirical estimates are random variables, since they are based on
a random sample set.
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Density estimation

We denote S the sample space, that is P(S ∈ S) = 1, and assume that S has a
(smooth) density denoted π

π : S 7→ R+,

∫
S
π(s)ds = 1.

The question becomes:

how to approximate π from a sample set {S(i)}?
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Histogram Method

The simplest density estimation: histogram method

Consider the 1-d case first, that is n = 1 and S ⊂ R.

We partition S into uniform bins of size h.

Let bi = [xi − h/2, xi + h/2) be the bin centered on xi , and define

pi =
#of samples S(i) ∈ bi

M
,

the relative frequency of the i-th bin.

Observe:
∑

i pi = 1.

The density is then estimated by

π(s) ≈ πh(s) =
1
h

∑
i

pi Ibi (s).

πh is a piecewise constant approximation of π, satisfying

∀s ∈ S, πh(s) ≥ 0,
∫
πh(s)ds =

∑
i

∫
bi

πh(s)ds =
∑

i

1
h

pi h = 1.
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Histogram Method

Histogram method

The histogram method is simple and intuitive.

It can be easily extended to S ⊂ Rn, using for instance hyper-rectangular bins or
any other partition of S.

But:
the approximation depends on the position (centroid xi ) of the bins (orientation
too),

it is susceptible to artifacts (choice of the bins size, outliers,. . . ),

control of accuracy is difficult in high dimension.

A less arbitrary and more robust approach is needed.
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Histogram Method

Histogram method

Example : Gaussian mixture for 5000 samples
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Kernel Density estimation

Kernel density estimation (KDE)

Recall the definition of the probability that S falls in some region R:

P(S ∈ R) =

∫
R
π(s)ds .

= PR.

Then, if we have M vectors independently drawn at random from π, the probability
that k of these vectors fall in R is

P(k|M) =

(
M
k

)
Pk
R(1− PR)M−k .

It can be shown that the mean and variance of the ratio k/M are

E [k/M] = PR, V [k/M] = E

[(
k
M
− PR

)2
]

=
PR(1− PR)

M
.

Therefore, as M →∞ becomes large the mean fraction of the points falling within R is
(as one would expect)

k
M

= PR.



Introduction Monte Carlo Method Markov chain Monte Carlo Density Estimation Sensitivity indices

Kernel Density estimation

Non-parametric density estimation

If R is small enough, π should not vary much over R and one would expect

PR =

∫
R
π(s′)ds′ ≈ π(s)V ,

∀s ∈ R and where V is the volume of R.

Consequently, we shall consider the approximation

π(s ∈ R) ≈
k

MV
.

Of course, we want V small enough for the constant approximation to be valid, and we
need M large enough for the limit k/M to make sense. Clearly, M should increase as V
is decreased. This calls for a compromise.
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Kernel Density estimation

Parzen window

Consider

K (u) =

{
1 if |u| < 1/2,
0 otherwise.

(if n dimensions, K (u) = 1 if |uj | < 1/2 for j = 1, . . . , n).
In words, K = 1 for u in the unit hypercube centered at the origin.
This function is known as the Parzen window.

The quantity

K

(
s − S(i)

h

)
is equal to 1 if the random sample S(i) is inside the hypercube of side h centered
at s.

The total number of samples inside this hypercube is

k =
M∑

i=1

K

(
s − S(i)

h

)
.
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Kernel Density estimation

Parzen window

Consider

K (u) =

{
1 if |u| < 1/2,
0 otherwise.

(if n dimensions, K (u) = 1 if |uj | < 1/2 for j = 1, . . . , n).
In words, K = 1 for u in the unit hypercube centered at the origin.
This function is known as the Parzen window.

The quantity

K

(
s − S(i)

h

)
is equal to 1 if the random sample S(i) is inside the hypercube of side h centered
at s.

Consequently, we shall consider the approximation

πKDE (s) =
1

Mhn

M∑
i=1

K

(
s − S(i)

h

)
.

Parzen Window resembles histogram, except bin are centered on s.
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Kernel Density estimation

KDE using Parzen window

Example : Gaussian mixture for 5000 samples
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Kernel Density estimation

Role of the kernel

To understand the role of K , compute the expectation of πKDE

E [πKDE (s)] =
1
hn

1
M

M∑
i=1

E

[
K

(
s − S(i)

h

)]
=

1
hn

∫
S

K
(

s − s′

h

)
π(s′)ds′.

E [πKDE (s)] is equal to the convolution of the true density (π) with the kernel K .
As h→ 0, the kernel goes to δ (Dirac delta-function), in the sense of distribution:

πKDE (s)→ π(s).

This observation paves the way to better choice of kernel, in particular using
smooth functions K (s), with the property∫

K (s)ds = 1.

Typically K : S 7→ R are chosen as radially symmetric, positive and unimodal.
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Kernel Density estimation

Role of the kernel

To understand the role of K , compute the expectation of πKDE

E [πKDE (s)] =
1
hn

1
M

M∑
i=1

E

[
K

(
s − S(i)

h

)]
=

1
hn

∫
S

K
(

s − s′

h

)
π(s′)ds′.

E [πKDE (s)] is equal to the convolution of the true density (π) with the kernel K .
As h→ 0, the kernel goes to δ (Dirac delta-function), in the sense of distribution:

πKDE (s)→ π(s).

This observation paves the way to better choice of kernel, in particular using
smooth functions K (s), with the property∫

K (s)ds = 1.

A common choice is Gaussian Kernel:

K (s) =
1

(2π)n/2
exp

[
−(sT s)/2

]
.
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Kernel Density estimation

KDE with Gaussian kernel

Example : Gaussian mixture for 5000 samples
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Smoothing parameter

Smoothing parameter

πKDE (s) =
1

Mhn

M∑
i=1

K

(
s − S(i)

h

)
.

It remains to fix h (bandwidth, core-radius), which is a critical parameter:
large h: too much smoothing,

small h: too many spikes.

The best h minimizes the error between the estimated and true densities.
Using mean square error measure, we get

ε2
.

= E
[
(πKDE (s)− π(s))2

]
= E [πKDE (s)− π(s)]2 + V [πKDE (s)].

Bias-variance tradeoff:

large h: reduces variance but increase bias
small h: reduces bias but increase variance

How to pick h?
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Smoothing parameter

Setting of the smoothing parameter

A priori selection. Assumes that the true distribution π is Gaussian, and K is the
Gaussian kernel, one can get an explicit minimizer for ε:

hopt = 1.06σM−1/5,

where σ is the standard deviation of the distribution π.

Data based selection. For general distributions, better results are obtained using

hdata = 0.9AM−1/5, A = min

(
σ,

IQR
1.34

)
,

where IQR is the inter-quantile range, defined as the difference between the 75%
and 25% percentiles.
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Smoothing parameter

KDE with Gaussian kernel

Example : Gaussian mixture for 5000 samples
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Closing remarks:

This ideas can be extended to the multivariate case (isotropic kernels)

Use of variable h to adapt local concentration of observations

Many implementations available (MATLAB).
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Sobol-Hoeffding decomposition

Assumptions

L2 functions over unit-hypercubes
Let L2(Ud ) be the space of real-valued squared-integrable functions over the
d-dimensional hypercube U :

f : x ∈ Ud 7→ f (x) ∈ R, f ∈ L2(Ud )⇔
∫
Ud

f (x)2dx <∞.

L2(Ud ) is equipped with the inner product 〈·, ·〉,

∀f , g ∈ L2(Ud ), 〈u, v〉 :=

∫
Ud

f (x)g(x)dx ,

and norm ‖ · ‖2,
∀f ∈ L2(Ud ), ‖f‖2 := 〈f , f 〉1/2 .
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Sobol-Hoeffding decomposition

Assumptions

L2 functions over unit-hypercubes
Let L2(Ud ) be the space of real-valued squared-integrable functions over the
d-dimensional hypercube U :

f : x ∈ Ud 7→ f (x) ∈ R, f ∈ L2(Ud )⇔
∫
Ud

f (x)2dx <∞.

NB: all subsequent developments immediately extend to product-type situations,
where

x ∈ A = A1 × · · · × Ad ⊆ Rd ,

and weighted spaces L2(A, ρ),

ρ : x ∈ A 7→ ρ(x) ≥ 0, ρ(x) = ρ1(x1)× · · · × ρd (xd ).

(e.g.: ρ is a pdf of a random vector x with mutually independent components.)
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Sobol-Hoeffding decomposition

Ensemble notations

Let D = {1, 2, . . . , d}.
Given i ⊆ D, we denote i∼ := D \ i its complement set in D, such that

i ∪ i∼ = D, i ∩ i∼ = ∅.

For instance

i = {1, 2} and i∼ = {3, . . . , d},
i = D and i∼ = ∅.
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Sobol-Hoeffding decomposition

Ensemble notations

Let D = {1, 2, . . . , d}.
Given i ⊆ D, we denote i∼ := D \ i its complement set in D, such that

i ∪ i∼ = D, i ∩ i∼ = ∅.

Given x = (x1, . . . , xd ), we denote x i the vector having for components the xi∈i, that
is

D ⊇ i = {i1, . . . , i|i|} ⇒ x i = (xi1 , . . . , xi|i| ),

where |i| := Card(i). For instance∫
U|i|

f (x)dx i =

∫
U|i|

f (x1, . . . , xd )
∏
i∈i

dxi ,

and ∫
Ud−|i|

f (x)dx i∼ =

∫
Ud−|i|

f (x1, . . . , xd )
i /∈i∏

i∈D
dxi ,
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Sobol-Hoeffding decomposition

Sobol-Hoeffding decomposition

Any f ∈ L2(Ud ) has a unique hierarchical orthogonal decomposition of the form

f (x) = f (x1, . . . , xd ) =f0 +
d∑

i=1

fi (xi ) +
d∑

i=1

d∑
j=i+1

fi,j (xi , xj )+

d∑
i=1

d∑
j=i+1

d∑
k=j+1

fi,j,k (xi , xj , xk ) + · · ·+ f1,...,d (x1, . . . , xd ).

Hierarchical: 1st order functionals (fi )→ 2nd order functionals (fi,j )→ 3rd order
functionals (fi,j,l )→ · · · → d-th order functional (f1,...,d ).

Decomposition in a sum of 2k functionals
Using ensemble notations:

f (x) =
∑
i⊆D

fi(x i).
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Sobol-Hoeffding decomposition

Sobol-Hoeffding decomposition

Any f ∈ L2(Ud ) has a unique hierarchical orthogonal decomposition of the form

f (x) =
∑
i⊆D

fi(x i).

Orthogonal: the functionals if the S-H decomposition verify the following orthogonality
relations: ∫

U
fi(x i)dxj = 0, ∀i ⊆ D, j ∈ i,∫
Ud

fi(x i)fj(x j)dx = 〈fi, fj〉 = 0, ∀i, j ⊆ D, i 6= j.

It follows the hierarchical construction

f∅ =

∫
Ud

f (x)dx = 〈f 〉∅∼=D

f{i} =

∫
Ud−1

f (x)dx{i}∼ − f∅ = 〈f 〉D\{i} − f∅ i ∈ D

fi =

∫
U|i∼|

f (x)dx i∼ −
∑
j(i

fj = 〈f 〉i∼ −
∑
j(i

fj i ∈ D, |i| ≥ 2.
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Global sensitivity analysis

Parametric sensitivity analysis

Consider x as a set of d independent random parameters uniformly distributed on Ud ,
and f (x) a model-output depending on these random parameters. It is assumes that f
is a 2nd order random variable: f ∈ L2(Ud ). Thus, f has a unique S-H decomposition

f (x) =
∑
i⊆D

fi(x i).

Further, the integrals of f with respect to i∼ are in this context conditional expectations,

E [f |x i] =

∫
U|i∼|

f (x)dx i∼ = g(x i) ∀i ⊆ D,

so the S-H decomposition follows the hierarchical structure

f∅ = E [f ]

f{i} = E
[
f |x{i}

]
− E [f ] i ∈ D

fi = E [f |x i]−
∑
j(i

fj i ⊆ D, |i| ≥ 2.
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Global sensitivity analysis

Variance decomposition

Because of the orthogonality of the S-H decomposition the variance V [f ] of the
model-output can be decomposed as

V [f ] =

i6=∅∑
i⊆D

V [fi], V [fi] = 〈fi, fi〉 .

V [fi] is interpreted as the contribution to the total variance V [f ] of the interaction
between parameters xi∈i.
The S-H decomposition thus provide a rich mean of analyzing the respective
contributions of individual or sets of parameters to model-output variability.
However, as there are 2d − 1 contributions, so one needs more "abstract"
characterizations.
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Global sensitivity analysis

Sensitivity indices

To facilitate the hierarchization of the respective influence of each parameter xi , the
partial variances V [fi] are normalized by V [f ] to obtain the sensitivity indices:

Si(f ) =
V [fi]
V [f ]

≤ 1,
i6=∅∑
i⊆D

Si(f ) = 1.

The order of the sensitivity indices Si is equal to |i| = Card(i).
1st order sensitivity indices. The d first order indices S{i}∈D characterize the
fraction of the variance due the parameter xi only, i.e. without any interaction
with others. Therefore,

1−
d∑

i=1

S{i}(f ) ≥ 0,

measures globally the effect on the variability of all interactions between parameters. If∑d
i=1 S{i} = 1, the model is said additive, because its S-H decomposition is

f (xi , . . . , xd ) = f0 +
d∑

i=1

fi (xi ),

and the impact of the parameters can be studied separately.
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Global sensitivity analysis

Sensitivity indices

To facilitate the hierarchization of the respective influence of each parameter xi , the
partial variances V [fi] are normalized by V [f ] to obtain the sensitivity indices:

Si(f ) =
V [fi]
V [f ]

≤ 1,
i6=∅∑
i⊆D

Si(f ) = 1.

The order of the sensitivity indices Si is equal to |i| = Card(i).
Total sensitivity indices. The first order SI S{i} measures the variability due to
parameter xi alone. The total SI T{i} measures the variability due to the parameter
xi , including all its interactions with other parameters:

T{i} :=
∑
i3i

Si ≥ S{i}.

Important point: for xi to be deemed non-important or non-influent on the
model-output, S{i} and T{i} have to be negligible.
Observe that

∑
i∈D T{i} ≥ 1, the excess from 1 characterizes the presence of

interactions in the model-output.
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Illustration
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Global sensitivity analysis

Sensitivity indices

In many uncertainty problem, the set of uncertain parameters can be naturally
grouped into subsets depending on the process each parameter accounts for. For
instance, boundary conditions BC, material property ϕ, external forcing F , and D is the
union of these distinct subsets:

D = DBC ∪Dϕ ∪DF .

The notion of first order and total sensitivity indices can be extended to
characterize the influence of the subsets of parameters. For instance,

SDϕ =
∑

i⊆Dϕ

Si,

measures the fraction of variance induced by the material uncertainty alone, while

TDF =
∑

i∩DF 6=∅
Si.

measures the fraction of variance due to the external forcing uncertainty and all its
interactions.



Introduction Monte Carlo Method Markov chain Monte Carlo Density Estimation Sensitivity indices
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Example

Let (ξ1, ξ2) be two independent centered, normalized random variables

ξi ∼ N(0, 1), i = 1, 2.

Consider the model-output f : (ξ1, ξ2) ∈ R2 7→ R given by

f (ξ1, ξ2) = (µ1 + σ1ξ1) + (µ2 + σ2ξ2) .

1 Determine the S-H decomposition of f
2 Compute the 1st order and total sensitivity indices of f
3 Comment
4 Repeat for f (ξ1, ξ2) = (µ1 + σ1ξ1) (µ2 + σ2ξ2).
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Example

f (ξ1, ξ2) = µ1 + µ2 + σ1ξ1 + σ2ξ2

E [f ] = (µ1 + µ2)

E [f |ξ1] = (µ1 + µ2) + σ1ξ1
⇒ f1(ξ1) = E [f |ξ1]− E [f ] = σ1ξ1

E [f |ξ2] = (µ1 + µ2) + σ2ξ2
⇒ f2(ξ2) = E [f |ξ2]− E [f ] = σ2ξ2

E [f |ξ1, ξ2] = f (ξ1, ξ2)
⇒ f1,2(ξ1, ξ1) = E [f |ξ1, ξ2]− E [f ]− f1(ξ1)− f2(ξ2) = 0

Then, V [f ] = σ2
1 + σ2

2 , so

S1 = T1 =
σ2

1

σ2
1 + σ2

2
and S2 = T2 =

σ2
2

σ2
1 + σ2

2

Comment: obvious case, as f is a linear (additive) model.
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Example

f (ξ1, ξ2) = µ1µ2 + µ2σ1ξ1 + µ1σ2ξ2 + σ1σ2ξ1ξ2.

E [f ] = µ1µ2

E [f |ξ1] = µ1µ2 + µ2σ1ξ1
⇒ f1(ξ1) = E [f |ξ1]− E [f ] = µ2σ1ξ1

E [f |ξ2] = µ1µ2 + µ1σ2ξ2
⇒ f2(ξ2) = E [f |ξ2]− E [f ] = µ1σ2ξ2

E [f |ξ1, ξ2] = f (ξ1, ξ2)
⇒ f1,2(ξ1, ξ1) = E [f |ξ1, ξ2]− E [f ]− f1(ξ1)− f2(ξ2) = σ1σ2ξ1ξ2

Then, V [f ] = µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2 , so

S1 =
µ2

2σ
2
1

µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2

and S2 =
µ2

1σ
2
2

µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2
,

T1 =
µ2

2σ
2
1 + σ1σ2

µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2

and T2 =
µ2

1σ
2
2 + σ1σ2

µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2
,

Comment: fraction of variance due to interactions is

σ2
1σ

2
2/(µ2

1σ
2
2 + µ2

2σ
2
1 + σ2

1σ
2
2)
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Example

f (ξ1, ξ2) = µ1µ2 + µ2σ1ξ1 + µ1σ2ξ2 + σ1σ2ξ1ξ2.

Then, V [f ] = µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2 , so

S1 =
µ2

2σ
2
1

µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2

and S2 =
µ2

1σ
2
2

µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2
,

T1 =
µ2

2σ
2
1 + σ1σ2

µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2

and T2 =
µ2

1σ
2
2 + σ1σ2

µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2
,

Comment: fraction of variance due to interactions is

σ2
1σ

2
2/(µ2

1σ
2
2 + µ2

2σ
2
1 + σ2

1σ
2
2)

Example: (µ1, σ1) = (1, 3) and (µ2, σ2) = (2, 2), so

S1 = 9/19, S2 = 1/19, S1,2 = 9/19.

One can draw the conclusions:
ξ1 is the most influential variable as S1 > S2 and T1 > T2.
interactions are important as 1− S1 − S2 = 9/19 ≈ 0.5, especially for ξ2 for which
(T2 − S2)/T2 = 9/10 ≈ 1.
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1-st order sensitivity indices by Monte-Carlo sampling

The Si can be computed by MC sampling as follow. Recall that

S{i}(f ) =
V
[
f{i}
]

V [f ]
=

V [E [f |xi ])]

V [f ]
=

E
[
E [f |xi ]

2
]
− E [E [f |xi ]]

2

V [f ]
.

Observe: E [E [f |xi ]] = E [f ].
E [f ] and V [f ] can be estimated using MC sampling.
Let χM = {x(1), · · · , x(M)} be a set of independent samples drawn uniformly in Ud ,
the mean and variance estimators are:

Ê [f ] =
1
M

M∑
l=1

f (x(l)), V̂ [f ] =
1

M − 1

M∑
l=1

f (x(l))2 − Ê [f ]
2
.

It now remains to compute the variance of conditional expectations, V
[
E
[
f |x{i}

]]
.
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Monte-Carlo estimator: variance of conditional expectation

Observe: ∫
Ud+|i∼|

f (x i, x i∼ )f (x i, x ′i∼ )dx idx i∼dx i∼′

=

∫
U|i|

dx i

∫
U|i∼|

f (x i, x i∼ )dx i∼

∫
U|i∼|

f (x i, x ′i∼ )dx ′i∼

=

∫
U|i|

dx i

[∫
U|i∼|

f (x i, x i∼ )dx i∼

]2
.

V
[
E
[
f |x{i}

]]
= E

[
E
[
f |x{i}

]2]− E
[
E
[
f |x{i}

]]2
= E

[
E
[
f |x{i}

]2]− E [f ]2

= lim
M→∞

1
M

M∑
l=1

f
(

x(l)
{i}∼

, x(l)
{i}

)
f
(

x̃(l)
{i}∼

, x(l)
{i}

)
− E [f ]2

(
independent samples x(l)

{i}∼
, x̃(l)
{i}∼

and x(k)
{i}

)
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Monte-Carlo estimator: variance of conditional expectation

Observe: ∫
Ud+|i∼|

f (x i, x i∼ )f (x i, x ′i∼ )dx idx i∼dx i∼′

=

∫
U|i|

dx i

∫
U|i∼|

f (x i, x i∼ )dx i∼

∫
U|i∼|

f (x i, x ′i∼ )dx ′i∼

=

∫
U|i|

dx i

[∫
U|i∼|

f (x i, x i∼ )dx i∼

]2
.

V
[
E
[
f |x{i}

]]
= E

[
E
[
f |x{i}

]2]− E
[
E
[
f |x{i}

]]2
= E

[
E
[
f |x{i}

]2]− E [f ]2

= lim
M→∞

1
M

M∑
l=1

f
(

x(l)
{i}∼

, x(l)
{i}

)
f
(

x̃(l)
{i}∼

, x(l)
{i}

)
− E [f ]2

(
independent samples x(l)

{i}∼
, x̃(l)
{i}∼

and x(k)
{i}

)
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Monte-Carlo estimator: variance of conditional expectation

Observe: ∫
Ud+|i∼|

f (x i, x i∼ )f (x i, x ′i∼ )dx idx i∼dx i∼′

=

∫
U|i|

dx i

∫
U|i∼|

f (x i, x i∼ )dx i∼

∫
U|i∼|

f (x i, x ′i∼ )dx ′i∼

=

∫
U|i|

dx i

[∫
U|i∼|

f (x i, x i∼ )dx i∼

]2
.

V
[
E
[
f |x{i}

]]
= E

[
E
[
f |x{i}

]2]− E
[
E
[
f |x{i}

]]2
= E

[
E
[
f |x{i}

]2]− E [f ]2

= lim
M→∞

1
M

M∑
l=1

f
(

x(l)
{i}∼

, x(l)
{i}

)
f
(

x̃(l)
{i}∼

, x(l)
{i}

)
− E [f ]2

(
independent samples x(l)

{i}∼
, x̃(l)
{i}∼

and x(k)
{i}

)
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Monte-Carlo estimators for 1st order SI S{i}

1 Draw 2 independent sample sets, with size M, χM and χ̃M

2 Compute estimators Ê [f ] and V̂ [f ] from χM (or χ̃M ) [M model evaluations]
3 For i = 1, 2, . . . , d :

Estimate variance of conditional expectation through

̂V
[
E
[
f |x{i}

]]
=

1
M

M∑
l=1

f
(

x (l)
{i}∼

, x (l)
{i}

)
f
(

x̃ (l)
{i}∼

, x (l)
{i}

)
− Ê [f ]

2

[M new model evaluations at (x̃ (l)
{i}∼

, x (l)
{i})]

Estimator of the 1-st order SI:

Ŝ{i}(f ) =
̂V

[
E
[
f |ξ{i}

]]
V̂ [f ]

.

Requires (d + 1)×M model evaluations.
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χM :



x(1)
1 . . . x(1)

i . . . x(1)
d

.

.

.

.

.

.

x(l)
1 . . . x(l)

i . . . x(l)
d

.

.

.

.

.

.

x(M)
1 . . . x(M)

i . . . x(M)
d


χ̃M :



x̃(1)
1 . . . x̃(1)

i . . . x̃(1)
d

.

.

.

.

.

.

x̃(l)
1 . . . x̃(l)

i . . . x̃(l)
d

.

.

.

.

.

.

x̃(M)
1 . . . x̃(M)

i . . . x̃(M)
d


.

χ̃
{i}
M :



x̃(1)
1 . . . x(1)

i . . . x̃(1)
d

.

.

.

.

.

.

.

.

.

x̃(l)
1 . . . x(l)

i . . . x̃(l)
d

.

.

.

.

.

.

.

.

.

x̃(M)
1 . . . x(M)

i . . . x̃(M)
d


.

V
[
E
[
f |x{i}

]]
≈

1
M

M∑
l=1

f (x{i}∼ , x{i}∼ )f (x̃{i}∼ , x{i}∼ )−
(

1
M

M∑
l=1

f (x{i}∼ , x{i}∼ )

)2

.
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Total sensitivity indices by Monte-Carlo sampling

The T{i} can be computed by MC sampling as follow. Recall that

T{i}(f ) =
∑
i3{i}

Si(f ) = 1−
∑

i⊆D\{i}
Si(f ) = 1−

V
[
E
[
f |x{i}∼

]]
V [f ]

.

As for V
[
E
[
f |x{i}

]]
, we can derive the following Monte-Carlo estimator for

V
[
E
[
f |x{i}∼

]]
, using the two independent sample sets χM and χ̃M

̂V
[
E
[
f |x{i}∼

]]
=

1
M

M∑
l=1

f
(

x(l)
{i}∼

, x(l)
{i}

)
f
(

x(l)
{i}∼

, x̃(l)
{i}

)
− E [f ]2,

so finally

T̂{i}(f ) = 1−
1

V̂ [f ]

(
1
M

M∑
l=1

f
(

x(l)
{i}∼

, x(l)
{i}

)
f
(

x(l)
{i}∼

, x̃(l)
{i}

)
− E [f ]2

)

The MC estimation of the T{i} needs d ×M additional model evaluations.
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Monte-Carlo estimation of the SI

χM :



x(1)
1 . . . x(1)

i . . . x(1)
d

.

.

.

.

.

.

x(l)
1 . . . x(l)

i . . . x(l)
d

.

.

.

.

.

.

x(M)
1 . . . x(M)

i . . . x(M)
d


χ̃M :



x̃(1)
1 . . . x̃(1)

i . . . x̃(1)
d

.

.

.

.

.

.

x̃(l)
1 . . . x̃(l)

i . . . x̃(l)
d

.

.

.

.

.

.

x̃(M)
1 . . . x̃(M)

i . . . x̃(M)
d


.

χ̃
{i}
M :



x(1)
1 . . . x̃(1)

i . . . x(1)
d

.

.

.

.

.

.

.

.

.

x(l)
1 . . . x̃(l)

i . . . x(l)
d

.

.

.

.

.

.

.

.

.

x(M)
1 . . . x̃(M)

i . . . x(M)
d


.

V
[
E
[
f |x{i}

]]
≈

1
M

M∑
l=1

f (x{i}∼ , x{i}∼ )f (x{i}∼ , x̃{i}∼ )−
(

1
M

M∑
l=1

f (x{i}∼ , x{i}∼ )

)2

.
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MC estimation of 1st order and total sensitivity indices

requires M × (2d + 1) simulations

convergence of estimators in O(1/
√

M)

slow convergence, but d-independent

convergence not related to smoothness of f

works also (in practice) with advanced sampling schemes (QMC, LHS, . . . ). How
to proceed with QMC/LHS?
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