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Background: Bayes’ theorem

A set of observations is used to update (refine) some a priori knowledge about a
certain hypothesis.

Suppose that we have a set of data ({d i}N
i=1) and we assume a certain model to

represent it. Let H be the set of parameters (i.e. our hypotheses) defining
(parametrizing) our model.

Bayes’ theorem

π(H|{d i}N
i=1) ∝ L({d

i}N
i=1|H) P(H)

� P(H) is the prior of H.

� L({d i}N
i=1|H) is the likelihood.

� π(H|{d i}N
i=1) is the posterior probability.

Interpretation: a process of continuously updating the current state of knowledge
in view of new observations.



Background: Bayes’ theorem

The likelihood L({d i}N
i=1|H) represents the probability of obtaining the data given

the hypotheses H.

The prior P(H) represents the information that we have about the parameters
before the observations are taken into consideration.

The choice of the prior is a key step in the inference process and should be based,
when possible, on some a priori knowledge about the parameters.

In general, we distinguish between informative (e.g. a Gaussian with known mean
and variance), and non-informative priors (e.g. a uniform distribution where we
only need the upper and lower bounds).

Let’s look at an example.



Example

Suppose that we have the following
polynomial:

“True” polynomial

y(x) = 10− 2x + 7.5x2 − 3.3x3 − 3.2x4

where x ∈ (0, 1).
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We perturb the “true” curve at N coordinates
{xi}N

i=1 with a Gaussian noise with mean zero
and variance 0.01, i.e. N (0, 0.01).

This yields a set of noise observations,
({xi , di}N

i=1).

For this example we have N = 30. (We will
discuss the effect of the number of
observations)
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Example

Objective: given the data d = {di}N
i=1, can we recover the original polynomial?

We need to define a model (i.e. the hypothesis) to describe the data.

Our model is a polynomial of certain order p:

M(x) =
p∑

k=0

ck xk (1)

It follows that our set of hypothesis is:

H = {c0, c1, c2, . . . , cp} (2)

Bayes’ theorem

π({ck}
p
k=0|{di}N

i=1) ∝ L({di}N
i=1|{ck}

p
k=0) P({ck}

p
k=0)

We now need to define the likelihood and priors.



Likelihood

To formulate the likelihood we assume the
following relationship:

di = M(xi ) + εi ,

where εi is a random variable which represents
the discrepancy between the i-th observation, di ,
and the model evaluated at the i-th coordinate,
M(xi ).
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Assuming N independent realizations and εi ∼ N(0, σ2), i = 1, ...,N, the
likelihood can be written as

L ≡ p({di}N
i=1|{ck}

p
k=0) =

N∏
i=1

1
√

2πσ2
exp

(
(di −M(xi ))

2

2σ2

)

Objective: jointly infer σ2 and {ck}
p
k=0.



Prior selection

The choice of a prior should be based, when possible, on some a priori knowledge
about the parameters.

We have p + 2 unknowns, i.e. the (p + 1) coefficients {ck}
p
k=0 and the variance

σ2.

For each ck , since we have limited information and for the purpose of this
exercise, we choose a uniform distribution

P(ck ) =

{
1

400 for − 200 < ck ≤ 200,
0 otherwise ,

In theory, these bounds can be made arbitrarely large.

We know that σ2 cannot be negative: this information is what we defined as a
priori knowledge about a parameter. We assume a Jeffreys prior:

P(σ2) =

{
1
σ2 for σ2 > 0,
0 otherwise.



Posterior

Final form of the joint posterior

π({ck}
p
k=0, σ

2|{di}N
i=1) ∝

[ N∏
i=1

1
√

2πσ2
exp

(
(di −M(xi ))

2

2σ2

)]
P(σ2)

p∏
j=0

P(cj )

The problem now reduces to simulate (sample) this posterior.

We are dealing with a (p + 2)-dimensional probability distribution.

For high-dimensional cases, which are also the only interesting ones, use Markov
chain Monte Carlo (MCMC) methods.

MCMC: class of algorithms suitable to sample high-dimensional probability
distributions.

Must pay attention to mixing ability, convergence...

Important feature: the quality of the sample improves as a function of the number
of steps.



Posterior sampling

Basic idea: the algorithm generates a Markov chain, i.e. at a certain time t , the
state xt depends only on the previous one xt−1.
———————————————————

1 Suppose the current value of the chain is xt . We
draw a candidate, x ′, from a Gaussian centered at
the current state and with a given covariance matrix:
x ′ ∼ N(xt , β

2I).

2 Calculate the follwing ratio:

r =
π(x′)

π(xt )
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2 Draw a sample α ∼ U(0, 1).

3 The new state xt+1 is chosen according to the following rule:

xt+1 =

{
x ′ if α < r , ACCEPTED,
xt if otherwise, REJECTED.

4 Repeat loop...
————————————————————-

The parameter β must be tuned to have a well-mixing chain and must be fixed
once at the beginning. In general, the objective is to have an average acceptance
ratio between 0.2 and 0.5.



Example 1



Zeroth-order model

Suppose that we infer a zeroth-order polynomial:

M(x) = c0

We know that this is far from the true model defined before, which was a
fourth-order polynomial.

Two-dimensional joint posterior

π(c0, σ
2|{di}N

i=1) ∝
[ N∏

i=1

1
√

2πσ2
exp

(
(di − c0)

2

2σ2

)]
P(σ2) P(c0)
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(a) Chain for c0.
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(b) Chain for σ2.



Posterior distributions

Chain samples can be used to estimate the marginalized posteriors of the
parameters via KDE.
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(c) Posterior for c0.
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(d) Posterior for σ2.
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(e) Compare with true.

This approach only allows us to infer the mean
value.



Inference for higher-dimensional case



fourth-order model

Suppose that we infer a fourth-order polynomial:

M(x) = c0 + c1x + c2x2 + c3x3 + c4x4

Six-dimensional joint posterior

π({ck}4
k=0, σ

2|{di}N
i=1) ∝

[ N∏
i=1

1
√

2πσ2
exp

(
(di −M(xi ))

2

2σ2

)]
P(σ2)

p∏
j=0

P(cj )
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(f) Chain for c0.
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(g) Chain for c1.



Markov Chains

0 5000 10000 15000
−20

−10

0

10

20

30

40

Step

c 2

(h) Chain for c2.
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(i) Chain for c3.

0 5000 10000 15000
−20

−15

−10

−5

0

5

10

15

20

25

Step

c 4

(j) Chain for c4.
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(k) Chain for σ2.



Closing remarks

Results based on the MAP estimates of the coefficients.

Note: increasing the order of the polynomial yields a lower value of the variance
because the model is getting closer to the true curve.
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(l) Posterior for σ2.
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(m) Comparison between true and inferred curve.


