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certain hypothesis.

o A set of observations is used to update (refine) some a priori knowledge about a

o Suppose that we have a set of data ({d’ {‘L 1) and we assume a certain model to
(parametrizing) our model.
Bayes’ theorem

represent it. Let H be the set of parameters (i.e. our hypotheses) defining

m(HI{d"}q) o« L{d"}4|H) P(H)
o P(H) is the prior of H.

o L({d"}¥,|H) is the likelihood.

o w(H|{d'}},) is the posterior probability.

o Interpretation: a process of continuously updating the current state of knowledge
in view of new observations.
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the hypotheses H.

o The likelihood £({d"}¥,|H) represents the probability of obtaining the data given

o The prior P(H) represents the information that we have about the parameters
before the observations are taken into consideration.

o The choice of the prior is a key step in the inference process and should be based,
when possible, on some a priori knowledge about the parameters.

only need the upper and lower bounds).

o In general, we distinguish between informative (e.g. a Gaussian with known mean
and variance), and non-informative priors (e.g. a uniform distribution where we

o Let’s look at an example.
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o Suppose that we have the following
polynomial:

“True” polynomial

y(x) =10 — 2x + 7.5x% — 3.3x% — 3.2x*
where x € (0,1).

o We perturb the “true” curve at N coordinates

{x; ﬁ 1 with a Gaussian noise with mean zero
and variance 0.01, i.e. A/(0,0.01).

o This yields a set of noise observations,
({xi, A} y).

o For this example we have N = 30. (We will

discuss the effect of the number of
observations)
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o Objective: given the datad = {d,'},-’i 1» can we recover the original polynomial?

o We need to define a model (i.e. the hypothesis) to describe the data.
o Our model is a polynomial of certain order p:

p
M(x) =" cex”
k=0

o |t follows that our set of hypothesis is:

H = {co, 1,0,

ey Cp}
Bayes’ theorem

m({exemoHaiHL1) o« LU AL {ek¥h_o) P({ektio)

o We now need to define the likelihood and priors.

(1)

()
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o To formulate the likelihood we assume the
following relationship:

dl = M(Xf)+6i7

isarepancy

where ¢; is a random variable which represents 955 B
the discrepancy between the i-th observation, d;, 935 <
and the model evaluated at the i-th coordinate, 9.15 of
M(x;). 8.95

B'750 0.2 0.4 0.6 0.8 1

o Assuming N independent realizations and ¢; ~ N(0,02), i = 1,..., N, the

likelihood can be written as

d,' - M i 2
£ = p({d Y e H T (( (x)) )

202

o Objective: jointly infer o2 and {cx };_,.
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o The choice of a prior should be based, when possible, on some a priori knowledge
about the parameters.

o We have p + 2 unknowns, i.e. the (p + 1) coefficients {ck}ﬁ:o and the variance

a2

o For each ¢, since we have limited information and for the purpose of this
exercise, we choose a uniform distribution

S for — 200 < ¢, < 200
P(c.) = { 400 S )
(@) {O otherwise ,

o In theory, these bounds can be made arbitrarely large.

@ We know that o2 cannot be negative: this information is what we defined as a
priori knowledge about a parameter. We assume a Jeffreys prior:

1 2
foro= >0
P(c?) = { o2 ’
(@) {0 otherwise.
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Final form of the joint posterior

o (d: — M(x))? £
m({ek}P_g 2 { A} o [1} Wexp< 5o >] P(UZ)gP(q)

o The problem now reduces to simulate (sample) this posterior.
o We are dealing with a (p + 2)-dimensional probability distribution.

o For high-dimensional cases, which are also the only interesting ones, use Markov
chain Monte Carlo (MCMC) methods.

o MCMC: class of algorithms suitable to sample high-dimensional probability
distributions.

o Must pay attention to mixing ability, convergence...

o Important feature: the quality of the sample improves as a function of the number
of steps.
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o Basic idea: the algorithm generates a Markov chain, i.e. at a certain time t, the
state x; depends only on the previous one x;_+.

-

Suppose the current value of the chain is x;. We
draw a candidate, x’, from a Gaussian centered at 12|
the current state and with a given covariance matrix:
x' ~ N(xt, B21).

Calculate the follwing ratio:

N

0.9]

0.8|

0'6.7 08 09 1 11 12 13 14
2 Draw a sample o ~ U(0, 1).
3 The new state x;,1 is chosen according to the following rule:

N X if a<r, ACCEPTED,
"= Yx if otherwise, REJECTED.

4 Repeat loop...

o The parameter 3 must be tuned to have a well-mixing chain and must be fixed
once at the beginning. In general, the objective is to have an average acceptance
ratio between 0.2 and 0.5.

(=] = = =
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o Suppose that we infer a zeroth-order polynomial:

fourth-order polynomial.

M(x) = co

o We know that this is far from the true model defined before, which was a
Two-dimensional joint posterior

4
77(0070'2|{di}l(i1) S [g \/2_2exp<

L 2
e O )] P(0?) P(co)
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parameters via KDE.

o Chain samples can be used to estimate the marginalized posteriors of the

6

97 98 99 10 101 102 103 104
o

(c) Posterior for cg.
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(d) Posterior for 2.
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(e) Compare with true.

This approach only allows us to infer the mean
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Inference for higher-dimensional case

J
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o Suppose that we infer a fourth-order polynomial:
M(x) =

Co + CiX + Cox? + c3x° + Cyx
Six-dimensional joint posterior

N P —
m({6or o7 A}y o [H e (“"
i=1 o

j=0

)2 P
o) )] P []P()
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o Results based on the MAP estimates of the coefficients.

o Note: increasing the order of the polynomial yields a lower value of the variance
because the model is getting closer to the true curve.
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(l) Posterior for o2

(m) Comparison between true and inferred curve.
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