A Short Introduction to Bayesian Inference

Olivier Le Maître ${ }^{1}$
with Colleagues \& Friends
Francesco Rizzi and Omar Knio

UTOPI \neq
Uncertainty Treatment and
optimisation in Aerospace

PhD course on UQ - DTU

Background: Bayes' theorem

- A set of observations is used to update (refine) some a priori knowledge about a certain hypothesis.
- Suppose that we have a set of data $\left(\left\{d^{i}\right\}_{i=1}^{N}\right)$ and we assume a certain model to represent it. Let H be the set of parameters (i.e. our hypotheses) defining (parametrizing) our model.

Bayes' theorem

$$
\pi\left(H \mid\left\{d^{i}\right\}_{i=1}^{N}\right) \propto \mathcal{L}\left(\left\{d^{i}\right\}_{i=1}^{N} \mid H\right) \mathcal{P}(H)
$$

$\diamond \mathcal{P}(H)$ is the prior of H.
$\diamond \mathcal{L}\left(\left\{d^{i}\right\}_{i=1}^{N} \mid H\right)$ is the likelihood.
$\diamond \pi\left(H \mid\left\{d^{i}\right\}_{i=1}^{N}\right)$ is the posterior probability.

- Interpretation: a process of continuously updating the current state of knowledge in view of new observations.

Background: Bayes' theorem

- The likelihood $\mathcal{L}\left(\left\{d^{i}\right\}_{i=1}^{N} \mid H\right)$ represents the probability of obtaining the data given the hypotheses H.
- The prior $\mathcal{P}(H)$ represents the information that we have about the parameters before the observations are taken into consideration.
- The choice of the prior is a key step in the inference process and should be based, when possible, on some a priori knowledge about the parameters.
- In general, we distinguish between informative (e.g. a Gaussian with known mean and variance), and non-informative priors (e.g. a uniform distribution where we only need the upper and lower bounds).
- Let's look at an example.

Example

- Suppose that we have the following polynomial:

"True" polynomial

$$
y(x)=10-2 x+7.5 x^{2}-3.3 x^{3}-3.2 x^{4}
$$

where $x \in(0,1)$.

- We perturb the "true" curve at N coordinates $\left\{x_{i}\right\}_{i=1}^{N}$ with a Gaussian noise with mean zero and variance 0.01 , i.e. $\mathcal{N}(0,0.01)$.
- This yields a set of noise observations, $\left(\left\{x_{i}, d_{i}\right\}_{i=1}^{N}\right)$.
- For this example we have $N=30$. (We will discuss the effect of the number of observations)

Example

- Objective: given the data $\mathbf{d}=\left\{d_{i}\right\}_{i=1}^{N}$, can we recover the original polynomial?
- We need to define a model (i.e. the hypothesis) to describe the data.
- Our model is a polynomial of certain order p :

$$
\begin{equation*}
M(x)=\sum_{k=0}^{p} c_{k} x^{k} \tag{1}
\end{equation*}
$$

- It follows that our set of hypothesis is:

$$
\begin{equation*}
H=\left\{c_{0}, c_{1}, c_{2}, \ldots, c_{p}\right\} \tag{2}
\end{equation*}
$$

Bayes' theorem

$$
\pi\left(\left\{c_{k}\right\}_{k=0}^{p} \mid\left\{d_{i}\right\}_{i=1}^{N}\right) \propto \mathcal{L}\left(\left\{d_{i}\right\}_{i=1}^{N} \mid\left\{c_{k}\right\}_{k=0}^{p}\right) \mathcal{P}\left(\left\{c_{k}\right\}_{k=0}^{p}\right)
$$

- We now need to define the likelihood and priors.

Likelihood

- To formulate the likelihood we assume the following relationship:

$$
d_{i}=M\left(x_{i}\right)+\epsilon_{i}
$$

where ϵ_{i} is a random variable which represents the discrepancy between the i-th observation, d_{i}, and the model evaluated at the i-th coordinate, $M\left(x_{i}\right)$.

- Assuming N independent realizations and $\epsilon_{i} \sim N\left(0, \sigma^{2}\right), i=1, \ldots, N$, the likelihood can be written as

$$
\mathcal{L} \equiv p\left(\left\{d_{i}\right\}_{i=1}^{N} \mid\left\{c_{k}\right\}_{k=0}^{p}\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{\left(d_{i}-M\left(x_{i}\right)\right)^{2}}{2 \sigma^{2}}\right)
$$

- Objective: jointly infer σ^{2} and $\left\{c_{k}\right\}_{k=0}^{p}$.

Prior selection

- The choice of a prior should be based, when possible, on some a priori knowledge about the parameters.
- We have $p+2$ unknowns, i.e. the $(p+1)$ coefficients $\left\{c_{k}\right\}_{k=0}^{p}$ and the variance σ^{2}.
- For each c_{k}, since we have limited information and for the purpose of this exercise, we choose a uniform distribution

$$
\mathcal{P}\left(c_{k}\right)= \begin{cases}\frac{1}{400} & \text { for }-200<c_{k} \leq 200 \\ 0 & \text { otherwise }\end{cases}
$$

- In theory, these bounds can be made arbitrarely large.
- We know that σ^{2} cannot be negative: this information is what we defined as a priori knowledge about a parameter. We assume a Jeffreys prior:

$$
\mathcal{P}\left(\sigma^{2}\right)= \begin{cases}\frac{1}{\sigma^{2}} & \text { for } \sigma^{2}>0 \\ 0 & \text { otherwise }\end{cases}
$$

Posterior

Final form of the joint posterior

$$
\pi\left(\left\{c_{k}\right\}_{k=0}^{p}, \sigma^{2} \mid\left\{d_{i}\right\}_{i=1}^{N}\right) \propto\left[\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{\left(d_{i}-M\left(x_{i}\right)\right)^{2}}{2 \sigma^{2}}\right)\right] \mathcal{P}\left(\sigma^{2}\right) \prod_{j=0}^{p} \mathcal{P}\left(c_{j}\right)
$$

- The problem now reduces to simulate (sample) this posterior.
- We are dealing with a $(p+2)$-dimensional probability distribution.
- For high-dimensional cases, which are also the only interesting ones, use Markov chain Monte Carlo (MCMC) methods.
- MCMC: class of algorithms suitable to sample high-dimensional probability distributions.
- Must pay attention to mixing ability, convergence...
- Important feature: the quality of the sample improves as a function of the number of steps.

Posterior sampling

- Basic idea: the algorithm generates a Markov chain, i.e. at a certain time t, the state x_{t} depends only on the previous one x_{t-1}.

1 Suppose the current value of the chain is x_{t}. We draw a candidate, x^{\prime}, from a Gaussian centered at the current state and with a given covariance matrix: $x^{\prime} \sim N\left(x_{t}, \beta^{2} I\right)$.
2 Calculate the follwing ratio:

$$
r=\frac{\pi\left(x^{\prime}\right)}{\pi\left(x_{t}\right)}
$$

2 Draw a sample $\alpha \sim U(0,1)$.
3 The new state x_{t+1} is chosen according to the following rule:

$$
x_{t+1}=\left\{\begin{array}{lll}
x^{\prime} & \text { if } \alpha<r, & \text { ACCEPTED } \\
x_{t} & \text { if } \text { otherwise, } & \text { REJECTED }
\end{array}\right.
$$

4 Repeat loop...

- The parameter β must be tuned to have a well-mixing chain and must be fixed once at the beginning. In general, the objective is to have an average acceptance ratio between 0.2 and 0.5 .

Example 1

Zeroth-order model

- Suppose that we infer a zeroth-order polynomial:

$$
M(x)=c_{0}
$$

- We know that this is far from the true model defined before, which was a fourth-order polynomial.

Two-dimensional joint posterior

$$
\pi\left(c_{0}, \sigma^{2} \mid\left\{d_{i}\right\}_{i=1}^{N}\right) \propto\left[\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{\left(d_{i}-c_{0}\right)^{2}}{2 \sigma^{2}}\right)\right] \mathcal{P}\left(\sigma^{2}\right) \mathcal{P}\left(c_{0}\right)
$$

(a) Chain for c_{0}.

(b) Chainfor σ^{2}. इ

Posterior distributions

- Chain samples can be used to estimate the marginalized posteriors of the parameters via KDE.

(c) Posterior for c_{0}.

(d) Posterior for σ^{2}.

(e) Compare with true.

This approach only allows us to infer the mean value.

Inference for higher-dimensional case

fourth-order model

- Suppose that we infer a fourth-order polynomial:

$$
M(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}
$$

Six-dimensional joint posterior

$$
\pi\left(\left\{c_{k}\right\}_{k=0}^{4}, \sigma^{2} \mid\left\{d_{i}\right\}_{i=1}^{N}\right) \propto\left[\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{\left(d_{i}-M\left(x_{i}\right)\right)^{2}}{2 \sigma^{2}}\right)\right] \mathcal{P}\left(\sigma^{2}\right) \prod_{j=0}^{p} \mathcal{P}\left(c_{j}\right)
$$

(f) Chain for c_{0}.

(g) Chain for c_{1}

Markov Chains

(h) Chain for c_{2}.

(j) Chain for C_{4}.

(i) Chain for c_{3}.

(k) Chain for σ^{2}.

Closing remarks

- Results based on the MAP estimates of the coefficients.
- Note: increasing the order of the polynomial yields a lower value of the variance because the model is getting closer to the true curve.

(I) Posterior for σ^{2}.

(m) Comparison between true and inferred curve.

