Spectral Methods for Uncertainty Quantification

Olivier Le Maître ${ }^{1}$
with Colleague \& Friend Omar Knio

UTOPIÆ
Uncertainty Treatment and
optimisation in Aerospace

PhD course on UQ - DTU

Objectives of the lecture

- Basic principle of stochastic Galerkin projection
- Discuss derivation and elementary building blocks of the Galerkin projection
- Galerkin linear models and evaluation of non-linearities.
- Show examples

Table of content

(1) Solution Methods

- Stochastic problem
- Stochastic Galerkin projection

2) Galerkin Projection of Linear / Non-linear Models

- Linear Models
- Galerkin Approximation of Non-Linearities

We consider a given mathematical model \mathcal{M} of a physical system.

- We call data the information that prescribes the physical system among the whole class spanned by \mathcal{M}.
- The data can be physical and modeling constants, IC, BC, forcing terms and any other relevant characteristics.

Denoting u the solution and d the data, one has to solve

$$
\mathcal{M}(u ; d)=0 .
$$

This notation is formal and encompasses

- various types of models: systems of ODE, PDE, integral and algebraic equations, or more generally mixed type models,
- all equations satisfied by u, including governing equations, $B C$, IC, constitutive laws, constraints, ...
- all unknowns (scalars, vectors, fields) involved in the model formulation.

It is further assumed that the problem has a unique solution.

We denote \mathcal{V} a suitable Hilbert space for the deterministic solution u. It will be assumed that \mathcal{V} is independent of the data and we call
\mathcal{V} the deterministic space.

Eventually, the solution needs be discretized.
Let $\mathcal{V}^{h} \subset \mathcal{V}$ be the discrete deterministic approximation space,

$$
\mathcal{V}^{h}=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{m}\right\} .
$$

The corresponding discrete deterministic solution u_{h} is

$$
u_{h}=\sum_{i=1}^{m} u_{i} \phi_{i}=\Phi \cdot \boldsymbol{U}^{T}
$$

where $\boldsymbol{U}=\left(u_{1} \ldots u_{m}\right) \in \mathbb{R}^{m}$. The discrete version of the problem is

$$
\mathcal{M}_{h}(\boldsymbol{U} ; d)=0
$$

We now consider the situation where some of the data are uncertain and considered as random on a probability space $(\Theta, \Sigma, d P)$.

$$
d \rightarrow D(\theta)
$$

- The solution u is now also random: $u \rightarrow U(\theta)$
- U is solution of

$$
\mathcal{M}(U(\theta) ; D(\theta))=0 \quad \text { a.s. }
$$

We assume that
(1) the problem has a unique solution a.s.
(2) the solution U is a second order random quantity.

In the discrete case, we have

$$
\mathcal{M}_{h}(\boldsymbol{U}(\theta) ; D(\theta))=0 \quad \text { a.s. }
$$

Turning to the stochastic discretization, we introduce ξ a set of N random variables with probability density function p_{ξ} and range $\overline{\text {. }}$

We denote $L^{2}\left(\equiv, p_{\xi}\right)$ the space of second order functionals in ξ equipped with the inner product $\langle\cdot, \cdot\rangle$ and associated norm $\|\cdot\|_{L^{2}\left(\equiv, p_{\xi}\right)}$.

The availability of a uncertainty model for the data is assumed,

$$
D(\theta)=D(\xi(\theta))
$$

For the stochastic solution in $\mathcal{V} \otimes \mathrm{L}^{2}\left(\equiv, p_{\xi}\right)$, the weak formulation of the stochastic problem is

$$
\langle\mathcal{M}(U(\boldsymbol{\xi}) ; D(\boldsymbol{\xi})), \beta(\boldsymbol{\xi})\rangle=0 \quad \forall \beta \in L^{2}\left(\equiv, p_{\xi}\right) .
$$

Stochastic discretization
Let $\mathcal{S}^{\mathrm{P}} \subset L^{2}\left(\equiv, p_{\xi}\right)$ defined as

$$
\mathcal{S}^{\mathrm{P}}=\operatorname{span}\left\{\Psi_{0}, \ldots, \Psi_{\mathrm{P}}\right\}
$$

where the $\left\{\Psi_{k}\right\}$ are orthogonal functionals in $\boldsymbol{\xi}$, e.g. a PC basis truncated to an order No.
\mathcal{S}^{P} is called the stochastic approximation space
We seek for the approximate stochastic model solution in $\mathcal{V} \otimes \mathcal{S}^{\mathrm{P}}$.

$$
U(\xi) \approx U^{\mathrm{P}}(\xi)=\sum_{k=0}^{\mathrm{P}} u_{k} \Psi_{k}(\xi)
$$

A procedure is need for the computation of the stochastic modes u_{k}

Galerkin projection

- Weak solution of the stochastic problem $\mathcal{M}(U(\xi) ; D(\xi))=0$
- Needs adaptation of deterministic codes
- Potentially more efficient than NI techniques.
- Better suited to improvement (error estimate, optimal and basis reduction, ...), thanks to functional analysis.

Stochastic discretization
Let $\mathcal{S}^{\mathrm{P}} \subset L^{2}\left(\equiv, p_{\xi}\right)$ defined as

$$
\mathcal{S}^{\mathrm{P}}=\operatorname{span}\left\{\Psi_{0}, \ldots, \Psi_{\mathrm{P}}\right\}
$$

where the $\left\{\Psi_{k}\right\}$ are orthogonal functionals in $\boldsymbol{\xi}$, e.g. a PC basis truncated to an order No.
\mathcal{S}^{P} is called the stochastic approximation space
We seek for the approximate stochastic model solution in $\mathcal{V} \otimes \mathcal{S}^{\mathrm{P}}$.

$$
U(\xi) \approx U^{\mathrm{P}}(\xi)=\sum_{k=0}^{\mathrm{P}} u_{k} \Psi_{k}(\xi)
$$

Inserting U^{P} in the weak formulation yields the stochastic residual

$$
\left\langle\mathcal{M}\left(U^{\mathrm{P}}(\boldsymbol{\xi}) ; D(\boldsymbol{\xi})\right), \beta(\boldsymbol{\xi})\right\rangle=\left\langle R\left(U^{\mathrm{P}}\right), \beta\right\rangle .
$$

Galerkin projection

$$
\left\langle\mathcal{M}\left(U^{\mathrm{P}}(\boldsymbol{\xi}) ; D(\xi)\right), \beta(\boldsymbol{\xi})\right\rangle=\left\langle R\left(U^{\mathrm{P}}\right), \beta\right\rangle .
$$

In general, one cannot find $U^{\mathrm{P}} \in \mathcal{V} \otimes \mathcal{S}^{\mathrm{P}}$ such that

$$
\left\langle R\left(U^{\mathrm{P}}\right), \beta\right\rangle=0 \quad \forall \beta \in L^{2}\left(\equiv, p_{\xi}\right) .
$$

It is then required that $R\left(U^{\mathrm{P}}\right)$ is orthogonal to the stochastic approximation space:

$$
\left\langle\mathcal{M}\left(U^{\mathrm{P}}(\boldsymbol{\xi}) ; D(\boldsymbol{\xi})\right), \beta(\boldsymbol{\xi})\right\rangle=0 \quad \forall \beta \in \mathcal{S}^{\mathrm{P}}
$$

- This weak formulation corresponds to the stochastic Galerkin formulation.
- The actual formulation is obtained in practice by projecting all model equations on \mathcal{S}^{P} (see examples later).

The Galerkin projection results in a set of $\mathrm{P}+1$ coupled problems for the stochastic modes u_{k} of the solution.

Find $\left\{u_{k}, k=0, \ldots, \mathrm{P}+1\right\} \in \mathcal{V}^{\mathrm{P}+1}$ such that

$$
\left\langle\mathcal{M}\left(\sum_{k=0}^{\mathrm{P}} u_{k} \Psi_{k}(\xi) ; D(\xi)\right), \Psi_{l}(\xi)\right\rangle=0, \quad I=0, \ldots, \mathrm{P}
$$

- The size of the Galerkin problem increases with P.
- Recall that $\mathrm{P}=1=(\mathrm{N}+\mathrm{No})!/ \mathrm{N}!\mathrm{No}$! for polynomial truncation at order No.
- This can be very costly for complex problems requiring large parametrization and large expansion order.
- Projections on the Ψ_{l} of the model equations can be problematic in presence of non-linearities.

The Galerkin projection for the elliptic problem:
Find $U(\boldsymbol{x}, \boldsymbol{\xi}) \in H_{0}^{1} \otimes L^{2}\left(\equiv, P_{\equiv}\right)$ such that

$$
A(U, V ; D)=B(V) \quad \forall V(\boldsymbol{x}, \boldsymbol{\xi}) \in H_{0}^{1} \otimes L^{2}\left(\equiv, P_{\equiv}\right)
$$

where

$$
A(U, V ; D)=\mathbb{E}\left[\int_{\Omega} \nu(\boldsymbol{x}, \boldsymbol{\xi}) \nabla U(\boldsymbol{x}, \boldsymbol{\xi}) \cdot \nabla V(\boldsymbol{x}, \boldsymbol{\xi}) d \boldsymbol{x}\right], \quad B(V)=\mathbb{E}\left[\int_{\Omega} F(\boldsymbol{x}, \boldsymbol{\xi}) V(\boldsymbol{x}, \boldsymbol{\xi}) d \boldsymbol{x}\right] .
$$

Introducing the PC expansion of U, it comes the coupled set of deterministic problems:
Find $\left\{u_{k}\right\}_{k=0, \ldots, \mathrm{P}} \in\left(H_{0}^{1}\right)^{\mathrm{P}+1}$ such that

$$
\sum_{l=0}^{\mathrm{P}} a_{k l}\left(u_{l}, v\right)=b_{k}(v) \quad \forall v \in H_{0}^{1}, k=0, \ldots, \mathrm{P},
$$

where
$a_{k l}(u, v)=\int_{\Omega} \mathbb{E}\left[\nu(\boldsymbol{x}, \boldsymbol{\xi}) \Psi_{k}(\boldsymbol{\xi}) \Psi_{l}(\boldsymbol{\xi})\right] \nabla u \cdot \nabla v d \boldsymbol{x}, \quad b_{k}(v)=\int_{\Omega} \mathbb{E}\left[f(\boldsymbol{x}, \boldsymbol{\xi}) \Psi_{k}(\boldsymbol{\xi})\right] v(\boldsymbol{x}) d \boldsymbol{x}$.

Galerkin projection of discrete deterministic problems
The previous development can be applied to models discretized at the deterministic level.
Seeking for for $\boldsymbol{U}(\boldsymbol{\xi}) \approx \boldsymbol{U}^{\mathrm{P}} \in \mathbb{R}^{m} \otimes \mathcal{S}^{\mathrm{P}}$, we obtain Find $\left\{\boldsymbol{u}_{k}, k=0, \ldots, \mathrm{P}+1\right\} \in\left(\mathbb{R}^{m}\right)^{\mathrm{P}+1}$ such that

$$
\left\langle\mathcal{M}_{h}\left(\sum_{k=0}^{\mathrm{P}} \boldsymbol{u}_{k} \Psi_{k}(\xi) ; D(\xi)\right), \Psi_{l}(\xi)\right\rangle=0, \quad I=0, \ldots, \mathrm{P}
$$

For many models, apply the stochastic discretization before the deterministic discretization results in the same Galerkin problem as proceeding the reverse way, provided that \mathcal{V}^{h} is independent of ξ. Exceptions include, e.g.,

- Lagrangian formulations Loгm \& OK, JCP 2009],
- treatment of geometric uncertainties.

Table of content

(1) Solution Methods

- Stochastic problem
- Stochastic Galerkin projection

2) Galerkin Projection of Linear / Non-linear Models

- Linear Models
- Galerkin Approximation of Non-Linearities

Linear problems are of practical importance in scientific computing, whether as stand-alone mathematical problems or as ingredients of numerical methods (e.g. iteration techniques for the resolution of non-linear problems).

In this section, we analyze the
structure of the Galerkin problem arising from the projection of linear models, and examine implications regarding suitable solution strategies.

Consider a linear problem discretized at the deterministic level and recast in the matrix form

$$
[A](\boldsymbol{\xi}) \boldsymbol{U}(\boldsymbol{\xi})=\boldsymbol{B}(\boldsymbol{\xi})
$$

Seeking the solution $\boldsymbol{U}(\xi)$ in a subspace $\mathbb{R}^{m} \otimes \mathcal{S}^{P}$ of $\mathbb{R}^{m} \otimes L^{2}\left(\equiv, P_{\equiv}\right)$, the Galerkin projection gives:

$$
\sum_{i=0}^{\mathrm{P}}\left\langle\Psi_{k},[A] \Psi_{i}\right\rangle \boldsymbol{u}_{i}=\left\langle\Psi_{k}, \boldsymbol{B}\right\rangle, \quad k \in\{0, \ldots, \mathrm{P}\}
$$

equivalent to the larger (block) system of linear equations

$$
\left[\begin{array}{ccc}
{[A]_{00}} & \cdots & {[A]_{\mathrm{OP}}} \\
\vdots & \ddots & \vdots \\
{[A]_{\mathrm{P} 0}} & \cdots & {[A]_{\mathrm{PP}}}
\end{array}\right]\left(\begin{array}{c}
\boldsymbol{u}_{0} \\
\vdots \\
\boldsymbol{u}_{\mathrm{P}}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{b}_{0} \\
\vdots \\
\boldsymbol{b}_{\mathrm{P}}
\end{array}\right)
$$

$[A]_{i j}$ the $(m \times m)$ matrix given by $[A]_{i j}:=\left\langle\Psi_{i},[A] \Psi_{j}\right\rangle$, and $\boldsymbol{b}_{i}:=\left\langle\Psi_{i}, \boldsymbol{B}\right\rangle$.

- The linear Galerkin problem couples all the stochastic modes $\boldsymbol{u}_{i} \in \mathbb{R}^{m}$ of the stochastic solution.
- It is not possible in general to compute independently the components \boldsymbol{u}_{i}.
- The size of the spectral problem is large: $m \times \operatorname{dim} \mathcal{S}^{\mathrm{P}}=m \times(\mathrm{P}+1)$.
- Resolution of the linear Galerkin system can be demanding.
- An understanding of the block structured system is instructive to design and apply well-suited numerical methods.

A first particular case occurs when the random data have no impact on the linear operator $[A]$ but only on the right-hand-side B. Then

$$
\left\langle\Psi_{i},[A] \Psi_{j}\right\rangle=[A]\left\langle\Psi_{i}, \Psi_{j}\right\rangle=[A] \delta_{i j}\left\langle\Psi_{i}^{2}\right\rangle
$$

and

$$
\left[\begin{array}{ccccc}
{[A]} & {[0]} & & \cdots & {[0]} \\
{[0]} & {[A]} & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & {[A]} & {[0]} \\
{[0]} & \cdots & \cdots & {[0]} & {[A]}
\end{array}\right]\left(\begin{array}{c}
\boldsymbol{u}_{0} \\
\boldsymbol{u}_{1} \\
\vdots \\
\boldsymbol{u}_{\mathrm{P}-1} \\
\boldsymbol{u}_{\mathrm{P}}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{b}_{0} \\
\boldsymbol{b}_{1} \\
\vdots \\
\boldsymbol{b}_{\mathrm{P}-1} \\
\boldsymbol{b}_{\mathrm{P}}
\end{array}\right)
$$

The stochastic modes are then $\boldsymbol{u}_{i}=[A]^{-1}\left\langle B, \Psi_{i}\right\rangle /\left\langle\Psi_{i}^{2}\right\rangle$.
It amounts to solve the same linear system $[A]$ for $(P+1)$ different right-hand sides \Rightarrow single factorization.

In general, the matrix $[A]$ has a PC expansion

$$
[A](\xi)=\sum_{i=0}^{\mathrm{P}}[A]_{i} \Psi_{i}(\xi) \Rightarrow[A]_{i j}=\left\langle\Psi_{i},[A] \Psi_{j}\right\rangle=\sum_{k=0}^{\mathrm{P}}[A]_{k}\left\langle\Psi_{i}, \Psi_{j} \Psi_{k}\right\rangle,
$$

and the Galerkin system can be conveniently recast as

$$
\left[\begin{array}{ccc}
{[\bar{A}]_{00}} & \cdots & {[\bar{A}]_{\mathrm{OP}}} \\
\vdots & \ddots & \vdots \\
{[\overline{\bar{A}}]_{\mathrm{P} 0}} & \cdots & {[\bar{A}]_{\mathrm{PP}}}
\end{array}\right]\left(\begin{array}{c}
\boldsymbol{u}_{0} \\
\vdots \\
\boldsymbol{u}_{\mathrm{P}}
\end{array}\right)=\left(\begin{array}{c}
\overline{\mathbf{b}}_{0} \\
\vdots \\
\overline{\mathbf{b}}_{\mathrm{P}}
\end{array}\right)
$$

where $\overline{\boldsymbol{b}}_{i}:=\left\langle B, \Psi_{i}\right\rangle /\left\langle\Psi_{i}^{2}\right\rangle$ and

$$
[\bar{A}]_{i j}:=\sum_{k=0}^{\mathrm{P}}[A]_{k} C_{k j i}, \quad C_{i j k}:=\frac{\left\langle\Psi_{i} \Psi_{j} \Psi_{k}\right\rangle}{\left\langle\Psi_{k} \Psi_{k}\right\rangle} .
$$

Linear Models

The third-order tensor $C_{i j k}$ plays a fundamental role in stochastic Galerkin methods, especially in non-linear problems.

- $C_{i j k}$ is symmetric w.r.t. the two first indices, $C_{i j k}=C_{j i k}$.
- It induces block-symmetry in the spectral problem, $[\bar{A}]_{i j}=[\bar{A}]_{j i}$
- Many of the $(P+1)^{3}$ entries are zero with many simplifications.
- For instance the first block of the Galerkin system reduces to

$$
[\bar{A}]_{00}=\sum_{k=0}^{\mathrm{P}}[A]_{k} C_{k 00}=[A]_{0}
$$

and the sum for the upper-right block (and lower-left block) actually reduces to $[\bar{A}]_{\mathrm{OP}}=[A]_{\mathrm{P}} /\left\langle\Psi_{\mathrm{P}}^{2}\right\rangle$.

- Many other simplifications occur.
- Computational strategy for computation and storage of $C_{i j k}$ will be discussed later (OK).

Linear Models

$$
\mathrm{N}=4-\operatorname{dim} \mathcal{S}^{\mathrm{P}}=35-S=0.58 \quad \mathrm{~N}=6-\operatorname{dim} \mathcal{S}^{\mathrm{P}}=84-S=0.41
$$

Illustration of the sparse structure of the matrices of the linear spectral problem for different dimensions, N, with No $=3$. Matrix blocks $[\bar{A}]_{i j}$ that are generally non-zero appear as black squares.

Linear Models

$$
\text { No }=2-\operatorname{dim} \mathcal{S}^{P}=21-S=0.52 \quad \text { No }=3-\operatorname{dim} \mathcal{S}^{P}=56-S=0.49
$$

Illustration of the sparse structure of the matrices of the linear spectral problem for different expansion orders No , with $\mathrm{N}=5$. Matrix blocks $[\bar{A}]_{i j}$ that are generally non-zero appear as black squares.

- Examples above assumes that $[A](\xi)$ has a full spectrum in \mathcal{S}^{P}.
- When $[A](\xi)$ has a first-order expansion, the block structure of the linear spectral problem becomes even sparser.
- This behavior motivates the selection, whenever possible, of an approximation based on a first order operator.

$$
\text { No }=2-\operatorname{dim} \mathcal{S}^{P}=21-S=0.184 \quad \text { No }=3-\operatorname{dim} \mathcal{S}^{P}=56-S=0.084
$$

Case of a inear stochastic operator $[A](\boldsymbol{\xi})$ having a first-order expansion.

- The main difficulty in solving discrete linear spectral problems is the size of the system.
- The structure and sparsity of the linear Galerkin problem suggests iterative solution strategies.
- Iterative solvers (e.g. conjugate gradient techniques for symmetric systems, and Krylov subspace methods) can be used.
- The efficiency of iterative solvers depends on the availability of appropriate preconditioners which need be adapted to the Galerkin problem.
- Construction of the preconditioners can exploit the block-structure of the linear Galerkin problem.

Preconditioning with the mean operator

- One can expect the diagonal blocks $[\bar{A}]_{i i}$ of the Galerkin system to be dominant.

$$
[\bar{A}]_{i i}=\sum_{k=0}^{\mathrm{P}}[A]_{k} \frac{\left\langle\Psi_{k} \Psi_{i} \Psi_{i}\right\rangle}{\left\langle\Psi_{i} \Psi_{i}\right\rangle}
$$

- The mean operator $[A]_{0}$ is always present in this summation.
- It is expected to be dominant for reasonable variability in $[A](\xi)$.
- It suggests the preconditioner

$$
[P]=\left[\begin{array}{cccc}
{[A]_{0}} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & {[A]_{0}}
\end{array}\right]
$$

Owing to the diagonal block structure of $[P]$, only the inversion of $[A]_{0}$ is required:

$$
[P]^{-1}=\left[\begin{array}{cccc}
\left([A]_{0}\right)^{-1} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \left([A]_{0}\right)^{-1}
\end{array}\right]
$$

The preconditioned Galerkin problem can now be expressed as:

$$
[P]^{-1}\left[\begin{array}{ccc}
{[\bar{A}]_{00}} & \cdots & {[\bar{A}]_{\mathrm{OP}}} \\
\vdots & \ddots & \vdots \\
{[\overline{\bar{A}}]_{\mathrm{P} 0}} & \cdots & {[\bar{A}]_{\mathrm{PP}}}
\end{array}\right]\left(\begin{array}{c}
\boldsymbol{u}_{0} \\
\vdots \\
\vdots \\
\boldsymbol{u}_{\mathrm{P}}
\end{array}\right)=[P]^{-1}\left(\begin{array}{c}
\boldsymbol{b}_{0} \\
\vdots \\
\vdots \\
\boldsymbol{b}_{\mathrm{P}}
\end{array}\right)
$$

Resolution of the preconditioned problem also factorizes in a series of $\mathrm{P}+1$ problems each with dimension m.

Table of content

(1) Solution Methods

- Stochastic problem
- Stochastic Galerkin projection

2) Galerkin Projection of Linear / Non-linear Models

- Linear Models
- Galerkin Approximation of Non-Linearities

Many models involve non-linearities of various types and their treatment is critical in stochastic Galerkin methods

Let $\left\{\Psi_{k}(\boldsymbol{\xi})\right\}_{k=0}^{\mathrm{P}}$ be an orthogonal basis of $\mathcal{S}^{\mathrm{P}} \subset L_{2}\left(\equiv, P_{\equiv}\right)$, and f a non-linear functional u, v, \ldots :

$$
u, v, \cdots \in \mathbb{R} \mapsto f(u, v, \ldots) \in \mathbb{R}
$$

For random arguments, $U(\boldsymbol{\xi}), V(\boldsymbol{\xi}), \cdots \in \mathbb{R} \otimes \mathcal{S}^{\mathrm{P}}$, we generally have $f(U, V, \ldots)=: G(\xi) \notin \mathbb{R} \otimes \mathcal{S}^{\mathrm{P}}$, but if $G(\xi) \in \mathbb{R} \otimes L_{2}\left(\equiv, P_{\equiv}\right)$ it has an orthogonal projection on \mathcal{S}^{P},

$$
G(\xi) \approx \widehat{G}=\sum_{k=0}^{\mathrm{P}} g_{k} \Psi_{k}, \quad g_{k}=\frac{\left\langle f(U, V, \ldots), \Psi_{k}\right\rangle}{\left\langle\Psi_{k}^{2}\right\rangle} .
$$

The problem is therefore to derive efficient strategies to compute the expansion coefficients g_{k} of $\hat{G}(\xi)$ from the expansion coefficients of its arguments $U(\xi), V(\xi), \ldots$

Polynomial non-linearities

The product of two quantities appears in many models.

It corresponds to the case $G(\xi)=W(\xi)=U(\xi) V(\xi)$ for $U, V \in \mathcal{S}^{\mathrm{P}}$ having known expansions. Clearly,

$$
W(\xi)=\sum_{i=0}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}} u_{i} v_{j} \Psi_{i}(\xi) \Psi_{j}(\xi)
$$

and in general $W(\xi) \notin \mathcal{S}^{\mathrm{P}}$ though it is in $L_{2}\left(\equiv, P_{\equiv}\right)$. Therefore, \widehat{W}, the orthogonal projection of W on \mathcal{S}^{P}, has expansion coefficients

$$
w_{k}=\frac{\left\langle W, \Psi_{k}\right\rangle}{\left\langle\Psi_{k}^{2}\right\rangle}=\sum_{i=0}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}} u_{i} v_{j} C_{i j k} .
$$

The result of the orthogonal projection of $U V$ is called the Galerkin product of U and V and is denoted $U * V$.
The Galerkin product introduces truncation errors by disregarding the components of $U V$ orthogonal to \mathcal{S}^{P}.

Polynomial non-linearities

Higher order polynomial non-linearities are also frequent.
Consider first the triple product $G(\boldsymbol{\xi})=U(\xi) V(\xi) W(\xi)$ One can again perform an exact Galerkin projection of the triple product:

$$
\begin{array}{r}
\widehat{U V W}:=\sum_{m=0}^{\mathrm{P}} \widehat{U V W}_{m} \Psi_{m}=\sum_{m=0}^{\mathrm{P}} \Psi_{m}\left(\sum_{j, k, l=0}^{\mathrm{P}} T_{j k l m} u_{j} v_{k} w_{l}\right) \\
T_{j k l m} \equiv \frac{\left\langle\Psi_{j} \Psi_{k} \Psi_{l} \Psi_{m}\right\rangle}{\left\langle\Psi_{m} \Psi_{m}\right\rangle}
\end{array}
$$

- This exact Galerkin projection of the triple product involves the fourth order tensor $T_{j k l m}$.
- $T_{j k l m}$ is sparse with many symmetries .
- However, computation and storage of $T_{j k l m}$ becomes quickly prohibitive when P increases.
- The exact Galerkin projection can hardly be extended further to higher order polynomial non-linearities.

Polynomial non-linearities

It is often preferred to rely on approximations for polynomial non-linearities of order larger than 2. For the triple product, an immediate approximation is

$$
\widehat{U V W} \approx U *(V * W)=\widehat{U \widehat{V W}}
$$

This strategy can be extended to higher degree polynomial non-linearities by using successive Galerkin products. For instance,

$$
\widehat{A B C \ldots D} \approx A *(B *(C *(\ldots * D)))
$$

This procedure does not provide the exact Galerkin projection, since every intermediate product disregards the part orthogonal to \mathcal{S}^{P}. Even for the triple product it is remarked that, in general

$$
U *(V * W) \neq(U * V) * W \neq(U * W) * V
$$

The order in which the successive Galerkin products are applied affects the result.

Inverse and square root

Inverse and division are also common non-linearities.
For the inversion, one has to determine the expansion coefficients of the inverse U^{-1} of $U(\xi)$,

$$
U^{-1}(\xi)=\frac{1}{U(\xi)}=\left(\sum_{k=0}^{\mathrm{P}} u_{k} \Psi_{k}(\xi)\right)^{-1}
$$

such that

$$
U^{-1}(\xi) U(\xi)=1 \quad \text { a.s. }
$$

U^{-1} is sought in \mathcal{S}^{P} and the previous equation needs to be interpreted in a weak sense. Using the Galerkin multiplication tensor, it comes

$$
\left(\begin{array}{ccc}
\sum_{j=0}^{\mathrm{P}} C_{j 00} u_{j} & \ldots & \sum_{j=0}^{\mathrm{P}} C_{j \mathrm{PP} 0} u_{j} \\
\vdots & \ddots & \vdots \\
\sum_{j=0}^{\mathrm{P}} C_{j 0 \mathrm{P}} u_{j} & \cdots & \sum_{j=0}^{\mathrm{P}} C_{j \mathrm{PP}} u_{j}
\end{array}\right)\left(\begin{array}{c}
u_{0}^{-1} \\
\vdots \\
u_{\mathrm{P}}^{-1}
\end{array}\right)=\left(\begin{array}{c}
1 \\
\vdots \\
0
\end{array}\right) .
$$

Due to truncature error, the above definition corresponds to the pseudo-spectral inverse U^{*-1} of U.

Galerkin Approximation of Non-Linearities

Inverse and square root

Pseudo-spectral approximation at different orders of the inverse $Y(\xi)=\widehat{U^{-1}}(\xi)$ of $U(\xi)=1+\alpha \xi$ with $\xi \sim \mathrm{N}(0,1): \alpha=1 / 5$ (left), $1 / 4$ (center) and $1 / 3$ (right). Wiener-Hermite expansions are used.

Extend immediately to the evaluation of U / V

Inverse and square root

The Galerkin product can also serve to approximate square roots.
Given $U(\xi)>0$ we have

$$
U^{1 / 2}(\xi) U^{1 / 2}(\xi)=U(\xi)
$$

The approximate $U^{* 1 / 2} \in \mathcal{S}^{\mathrm{P}}$ of $U^{1 / 2}$ solves

$$
\left(\begin{array}{ccc}
\sum_{j=0}^{\mathrm{P}} C_{j 00} u^{1 / 2}{ }_{j} & \cdots & \sum_{j=0}^{\mathrm{P}} C_{j \mathrm{P} 0} u^{1 / 2}{ }_{j} \\
\vdots & \ddots & \vdots \\
\sum_{j=0}^{\mathrm{P}} C_{j 0 \mathrm{P}} u^{1 / 2}{ }_{j} & \cdots & \sum_{j=0}^{\mathrm{P}} C_{j \mathrm{PP}} u^{1 / 2}{ }_{j}
\end{array}\right)\left(\begin{array}{c}
u^{1 / 2}{ }_{0} \\
\vdots \\
u^{1 / 2}{ }_{\mathrm{P}}
\end{array}\right)=\left(\begin{array}{c}
u_{0} \\
\vdots \\
u_{\mathrm{P}}
\end{array}\right) .
$$

This non-linear system can be solved using standard techniques (Newton-Raphson iterations) Choosing for the initial guess $U^{* 1 / 2}(\xi)= \pm \sqrt{U_{0}}$ allows for the selection of the positive or negative square root of $U(\xi)$.

Galerkin Approximation of Non-Linearities

Absolute values

Application to the approximation of absolute values

$$
U(\xi)=\xi \quad U(\xi)=1+\xi / 2
$$

Convergence with No of the pseudo-spectral approximation on $\mathcal{S}^{\text {No }}$ of $Y(\xi)=|U(\xi)|$ for different $u(\xi)$. Top plots: $\xi \sim \mathrm{N}(0,1)$ and Wiener-Hermite expansions. Bottom plots: $\xi \sim \mathcal{U}(-1,1)$ and Wiener-Legendre expansions.

Galerkin Approximation of Non-Linearities

Min and Max operators

Consider the Max (Min) operator

$$
u, v \in \mathbb{R} \mapsto \operatorname{Max}(u, v)= \begin{cases}u, & u \geq v \\ v, & u<v\end{cases}
$$

In the deterministic case, the $\operatorname{Min}(u, v)$ and $\operatorname{Max}(u, v)$ are smallest and largest zeros of

$$
x \in \mathbb{R} \mapsto g(x ; u, v)=-(x-u)(x-v)(x-w) \in \mathbb{R}, \quad w:=\frac{u+v}{2}
$$

For Newton-Raphson iterations the zeros of g are determine through the sequence $\left\{x^{n}\right\}$

$$
x^{n+1}=h\left(x^{n}\right):=x^{n}-\frac{g\left(x^{n} ; u, v\right)}{g^{\prime}\left(x^{n}, u, v\right)}=x^{n}+\frac{\left(x^{n}-u\right)\left(x^{n}-v\right)\left(x^{n}-w\right)}{3\left(x^{n}\right)^{2}-6 w x^{n}+u v+u w+v w}
$$

Min and Max operators

In the stochastic case the sequence becomes

$$
\begin{aligned}
X^{n+1}= & X^{n}+\frac{\left(X^{n}-U\right)\left(X^{n}-V\right)\left(X^{n}-W\right)}{3\left(X^{n}\right)^{2}-6 W X^{n}+U V+U W+V W} \\
\approx & X^{n}+\left(X^{n}-U\right) *\left(X^{n}-V\right) *\left(X^{n}-W\right) *\left(3\left(X^{n}\right)^{* 2}\right. \\
& \left.-6 W * X^{n}+U * V+U * W+V * W\right)^{*-1} .
\end{aligned}
$$

The selection of the Max (resp. Min) is made from appropriate selection of X^{0}, through

$$
X^{0}=\alpha \sqrt{\|U\|_{P \equiv}^{2}+\|V\|_{P \equiv}^{2}},
$$

for some $\alpha>1$ (resp. $\alpha<-1$).

Galerkin Approximation of Non-Linearities

Min and Max operators

Left: $U\left(\xi_{1}, \xi_{2}\right)$ and $V\left(\xi_{1}, \xi_{2}\right)$ for which $\operatorname{Max}(U, V)$ is sought. Only a portion of the stochastic domain \equiv is shown for clarity. Right: convergence of the sequence $\left\{X^{n}\right\}$ measured by the stochastic norm of $\Delta X^{n}=X^{n}-X^{n-1}$ approximating $\operatorname{Max}(U, V)$.

Galerkin Approximation of Non-Linearities

Min and Max operators

$$
n=0
$$

$$
n=1
$$

$$
n=2
$$

$\operatorname{Max}(\mathrm{u}, \mathrm{v}) \quad$ _ x^{n}

$\operatorname{Max}(u, v) \quad$ _ $x^{n}-$

of the sequence $\left\{X^{n}\right\}$ in the pseudo-spectral approximation of $\operatorname{Max}(U, V)$ on a two dimensional stochastic space.

Galerkin Approximation of Non-Linearities

Min and Max operators

Convergence with truncation order No of $W(\boldsymbol{\xi})$ approximating $\operatorname{Max}(U, V)(\boldsymbol{\xi})$. The random variables $U(\boldsymbol{\xi})$ and $V(\boldsymbol{\xi})$ are linear in ξ_{1} and ξ_{2} as depicted in the top-left plot.

Other non-linearities

For sufficiently differentiable non-linearities one can rely on Taylor series

$$
f(u)=f(\hat{u})+(u-\hat{u}) f^{\prime}(\hat{u})+\frac{(u-\hat{u})^{2}}{2} f^{\prime \prime}(\hat{u})+\cdots
$$

In the stochastic case, it is common to expand the series about the mean u_{0} of U, at which $f^{\prime}\left(u_{0}\right), f^{\prime \prime}\left(u_{0}\right), \cdots$ can be evaluated.
Successive powers of $\delta U:=U-u_{0}$ can be evaluated in a pseudo-spectral fashion

$$
\mathcal{S} \ni F(U) \approx f\left(u_{0}\right)+\delta U f^{\prime}\left(u_{0}\right)+\frac{\delta U * \delta U}{2} f^{\prime \prime}\left(u_{0}\right)+\frac{\delta U * \delta U * \delta U}{6} f^{\prime \prime \prime}\left(u_{0}\right)+\cdots
$$

- Convergence of the approximation needs be carefully analyzed.
- Impact of the pseudo spectral error is critical.
- Radius of convergence often unknown.

Galerkin Approximation of Non-Linearities

Other non-linearities

Integration approach for differentiable non-linearities If $f(\cdot)$ is analytical with derivative $f^{\prime}(\cdot), f$ can be defined as some integral of f^{\prime} along a deterministic integration path.
Let $Y(s, \boldsymbol{\xi})$ be a stochastic processes of $L^{2}\left(\equiv, P_{\equiv}\right)$, and consider $G(s, \boldsymbol{\xi}):=f(Y)$:

$$
Y=Y(s, \boldsymbol{\xi})=\sum_{k=0}^{\mathrm{P}} y_{k}(s) \Psi_{k}(\boldsymbol{\xi}), \quad G=G(s, \boldsymbol{\xi})=\sum_{k=0}^{\mathrm{P}} g_{k}(s) \Psi_{k}(\boldsymbol{\xi})
$$

Therefore, we have

$$
\begin{aligned}
\int_{s_{1}}^{s_{2}} \frac{\partial G}{\partial s} \mathrm{~d} s & =\int_{s_{1}}^{s_{2}} G^{\prime} \frac{\partial Y}{\partial s} \mathrm{~d} s \\
\sum_{k=0}^{\mathrm{P}} \Psi_{k} \int_{s_{1}}^{s_{2}} \frac{\mathrm{~d} g_{k}}{\mathrm{~d} s} \mathrm{~d} s & =\sum_{k=0}^{\mathrm{P}} \Psi_{k}\left[g_{k}\left(s_{2}\right)-g_{k}\left(s_{1}\right)\right] \\
& =\sum_{i=0}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}} \Psi_{i} \Psi_{j} \int_{s_{1}}^{s_{2}} g_{i}^{\prime}(s) \frac{\mathrm{d} y_{j}}{\mathrm{~d} s} \mathrm{~d} s .
\end{aligned}
$$

Other non-linearities

The integration path is set such that for all $k=0, \ldots, \mathrm{P}$

$$
\begin{equation*}
Y\left(s_{1}, \boldsymbol{\xi}\right)=\hat{U}, \quad Y\left(s_{2}, \boldsymbol{\xi}\right)=U \tag{1}
\end{equation*}
$$

we obtain

$$
F(U(\xi))_{k}=F(\hat{U})_{k}+\sum_{i=0}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}} C_{i j k} \int_{\hat{u}_{j}}^{u_{j}} f_{i}^{\prime} \mathrm{d} y_{j}, \quad \forall k=0, \ldots, \mathrm{P} .
$$

Provided that

- the PC expansion of $F(\hat{U})$ is known,
- the PC expansion of $F^{\prime}(\cdot)$ is easily computed along the integration path, the computation of $F(U)$ amounts to solve a set of coupled ODEs.

Other non-linearities

Example: exponential $f(u)=\exp (u)$.
We simply set $Y(s, \boldsymbol{\xi})=s U(\xi), s_{1}=0$ and $s_{2}=1$.
Since $\exp (u)^{\prime}=u$, we obtain the the set of coupled ODEs:

$$
\frac{\mathrm{d} g_{k}}{\mathrm{~d} s}=\sum_{i=0}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}} c_{i j k} u_{i} g_{k}, \quad k=0, \ldots, \mathrm{P}
$$

to be integrated up to $s=1$ from the initial condition

$$
g_{k}(s=0)=\left\langle\exp 0, \Psi_{k}\right\rangle=\delta_{k, 0} \quad k=0, \ldots, \mathrm{P}
$$

- Standard techniques for ODEs can be used.
- Integration and stochastic truncation error control is critical.

Other non-linearities

Non-intrusive projections

- For general non-linearities $F(U, V, \ldots)$ it is possible to proceed by non-intrusive projection techniques:

$$
\begin{equation*}
f_{k}:=\frac{\left\langle F(U, V, \ldots), \Psi_{k}\right\rangle}{\left\langle\Psi_{k}^{2}\right\rangle} \tag{2}
\end{equation*}
$$

- Results in hybrid Galerkin / non-intrusive approaches when used in intermediate step of a Galerkin projection method (case of complex non-linear model).

$$
\begin{equation*}
\nabla \cdot(\nu(U) \nabla U)=g \text { with BCs. } \tag{3}
\end{equation*}
$$

- Interest can be questionable.

Questions \& Discussion

気 $4 \equiv$ 플

