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Solution Methods Galerkin Projection of Linear / Non-linear Models

Objectives of the lecture

Basic principle of stochastic Galerkin projection

Discuss derivation and elementary building blocks of the Galerkin projection

Galerkin linear models and evaluation of non-linearities.

Show examples
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Stochastic problem

We consider a given mathematical modelM of a physical system.

We call data the information that prescribes the physical system among the whole
class spanned byM.

The data can be physical and modeling constants, IC, BC, forcing terms and any
other relevant characteristics.

Denoting u the solution and d the data, one has to solve

M(u; d) = 0.

This notation is formal and encompasses

various types of models: systems of ODE, PDE, integral and algebraic equations,
or more generally mixed type models,

all equations satisfied by u, including governing equations, BC, IC, constitutive
laws, constraints, . . .

all unknowns (scalars, vectors, fields) involved in the model formulation.

It is further assumed that the problem has a unique solution.
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Stochastic problem

We denote V a suitable Hilbert space for the deterministic solution u. It will be
assumed that V is independent of the data and we call

V the deterministic space.

Eventually, the solution needs be discretized.
Let Vh ⊂ V be the discrete deterministic approximation space,

Vh = span {φ1, . . . , φm} .

The corresponding discrete deterministic solution uh is

uh =
m∑

i=1

uiφi = Φ · UT ,

where U = (u1 . . . um) ∈ Rm. The discrete version of the problem is

Mh (U; d) = 0.
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Stochastic problem

We now consider the situation where some of the data are uncertain and considered
as random on a probability space (Θ,Σ, dP).

d → D(θ)

The solution u is now also random: u → U(θ)

U is solution of
M(U(θ); D(θ)) = 0 a.s.

We assume that

1 the problem has a unique solution a.s.
2 the solution U is a second order random quantity.

In the discrete case, we have

Mh(U(θ); D(θ)) = 0 a.s.
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Stochastic problem

Turning to the stochastic discretization, we introduce ξ a set of N random variables with
probability density function pξ and range Ξ.

We denote L2(Ξ, pξ) the space of second order functionals in ξ equipped with the
inner product 〈·, ·〉 and associated norm ‖ · ‖L2(Ξ,pξ).

The availability of a uncertainty model for the data is assumed,
D(θ) = D(ξ(θ))

For the stochastic solution in V ⊗ L2(Ξ, pξ), the weak formulation of the stochastic
problem is

〈M(U(ξ); D(ξ)), β(ξ)〉 = 0 ∀β ∈ L2(Ξ, pξ).
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Stochastic problem

Stochastic discretization
Let SP ⊂ L2(Ξ, pξ) defined as

SP = span{Ψ0, . . . ,ΨP},

where the {Ψk} are orthogonal functionals in ξ, e.g. a PC basis truncated to an order
No.

SP is called the stochastic approximation space

We seek for the approximate stochastic model solution in V ⊗ SP.

U(ξ) ≈ UP(ξ) =
P∑

k=0

uk Ψk (ξ).

A procedure is need for the computation of the stochastic modes uk
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Stochastic Galerkin projection

Galerkin projection

Weak solution of the stochastic problemM(U(ξ); D(ξ)) = 0

Needs adaptation of deterministic codes
Potentially more efficient than NI techniques.

Better suited to improvement (error estimate, optimal and basis reduction, . . . ),
thanks to functional analysis.
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Stochastic Galerkin projection

Stochastic discretization
Let SP ⊂ L2(Ξ, pξ) defined as

SP = span{Ψ0, . . . ,ΨP},

where the {Ψk} are orthogonal functionals in ξ, e.g. a PC basis truncated to an order
No.

SP is called the stochastic approximation space

We seek for the approximate stochastic model solution in V ⊗ SP.

U(ξ) ≈ UP(ξ) =
P∑

k=0

uk Ψk (ξ).

Inserting UP in the weak formulation yields the stochastic residual〈
M(UP(ξ); D(ξ)), β(ξ)

〉
=
〈
R(UP), β

〉
.
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Stochastic Galerkin projection

Galerkin projection [Ghanem & Spanos, 1991]〈
M(UP(ξ); D(ξ)), β(ξ)

〉
=
〈
R(UP), β

〉
.

In general, one cannot find UP ∈ V ⊗ SP such that〈
R(UP), β

〉
= 0 ∀β ∈ L2(Ξ, pξ).

It is then required that R(UP) is orthogonal to the stochastic approximation space:〈
M(UP(ξ); D(ξ)), β(ξ)

〉
= 0 ∀β ∈ SP.

This weak formulation corresponds to the stochastic Galerkin formulation.

The actual formulation is obtained in practice by projecting all model equations on
SP (see examples later).
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Stochastic Galerkin projection

The Galerkin projection results in a set of P + 1 coupled problems for the stochastic
modes uk of the solution.

Find {uk , k = 0, . . . , P + 1} ∈ VP+1 such that〈
M
(

P∑
k=0

uk Ψk (ξ); D(ξ)

)
,Ψl (ξ)

〉
= 0, l = 0, . . . , P.

The size of the Galerkin problem increases with P.

Recall that P = 1 = (N + No)!/N!No! for polynomial truncation at order No.

This can be very costly for complex problems requiring large parametrization and
large expansion order.

Projections on the Ψl of the model equations can be problematic in presence of
non-linearities.
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Stochastic Galerkin projection

The Galerkin projection for the elliptic problem:

Find U(x , ξ) ∈ H1
0 ⊗ L2(Ξ,PΞ) such that

A(U,V ; D) = B(V ) ∀V (x , ξ) ∈ H1
0 ⊗ L2(Ξ,PΞ),

where

A(U,V ; D) = E
[ˆ

Ω
ν(x , ξ)∇U(x , ξ) ·∇V (x , ξ)dx

]
, B(V ) = E

[ˆ
Ω

F (x , ξ)V (x , ξ)dx
]
.

Introducing the PC expansion of U, it comes the coupled set of deterministic problems:

Find {uk}k=0,...,P ∈ (H1
0 )P+1 such that

P∑
l=0

akl (ul , v) = bk (v) ∀v ∈ H1
0 , k = 0, . . . , P,

where

akl (u, v) =

ˆ
Ω
E [ν(x , ξ)Ψk (ξ)Ψl (ξ)]∇u·∇vdx , bk (v) =

ˆ
Ω
E [f (x , ξ)Ψk (ξ)]v(x)dx .
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Stochastic Galerkin projection

Galerkin projection of discrete deterministic problems

The previous development can be applied to models discretized at the deterministic
level.
Seeking for for U(ξ) ≈ UP ∈ Rm ⊗ SP, we obtain Find
{uk , k = 0, . . . , P + 1} ∈ (Rm)P+1 such that〈

Mh

(
P∑

k=0

uk Ψk (ξ); D(ξ)

)
,Ψl (ξ)

〉
= 0, l = 0, . . . , P.

For many models, apply the stochastic discretization before the deterministic
discretization results in the same Galerkin problem as proceeding the reverse way,
provided that Vh is independent of ξ. Exceptions include, e.g.,

Lagrangian formulations [OLM & OK, JCP 2009],

treatment of geometric uncertainties.
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Linear Models

Linear problems are of practical importance in scientific computing, whether as
stand-alone mathematical problems or as ingredients of numerical methods (e.g.
iteration techniques for the resolution of non-linear problems).

In this section, we analyze the

structure of the Galerkin problem arising from the projection of linear models,

and examine implications regarding suitable solution strategies.
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Linear Models

Consider a linear problem discretized at the deterministic level and recast in the matrix
form

[A](ξ)U(ξ) = B(ξ).

Seeking the solution U(ξ) in a subspace Rm ⊗ SP of Rm ⊗ L2(Ξ,PΞ), the Galerkin
projection gives:

P∑
i=0

〈Ψk , [A]Ψi 〉ui = 〈Ψk ,B〉 , k ∈ {0, . . . , P}.

equivalent to the larger (block) system of linear equations [A]00 . . . [A]0P
...

. . .
...

[A]P0 . . . [A]PP


 u0

...
uP

 =

 b0
...

bP

 .

[A]ij the (m ×m) matrix given by [A]ij :=
〈
Ψi , [A]Ψj

〉
, and bi := 〈Ψi ,B〉.
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Linear Models

The linear Galerkin problem couples all the stochastic modes ui ∈ Rm of the
stochastic solution.

It is not possible in general to compute independently the components ui .

The size of the spectral problem is large: m × dimSP = m × (P + 1).

Resolution of the linear Galerkin system can be demanding.

An understanding of the block structured system is instructive to design and apply
well-suited numerical methods.
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Linear Models

A first particular case occurs when the random data have no impact on the linear
operator [A] but only on the right-hand-side B. Then〈

Ψi , [A]Ψj
〉

= [A]
〈
Ψi ,Ψj

〉
= [A]δij

〈
Ψ2

i

〉
and 

[A] [0] . . . [0]

[0] [A]
. . .

...
...

. . .
. . .

. . .
...

...
. . . [A] [0]

[0] . . . . . . [0] [A]




u0
u1
...

uP−1
uP

 =


b0
b1
...

bP−1
bP


The stochastic modes are then ui = [A]−1 〈B,Ψi 〉 /

〈
Ψ2

i

〉
.

It amounts to solve the same linear system [A] for (P + 1) different right-hand sides⇒
single factorization.
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Linear Models

In general, the matrix [A] has a PC expansion

[A](ξ) =
P∑

i=0

[A]i Ψi (ξ) ⇒ [A]ij =
〈
Ψi , [A]Ψj

〉
=

P∑
k=0

[A]k
〈
Ψi ,Ψj Ψk

〉
,

and the Galerkin system can be conveniently recast as
[A]00 . . . [A]0P

...
. . .

...
[A]P0 . . . [A]PP


 u0

...
uP

 =


b0
...

bP

 ,

where bi := 〈B,Ψi 〉 /
〈
Ψ2

i

〉
and

[A]ij :=
P∑

k=0

[A]k Ckji , Cijk :=

〈
Ψi Ψj Ψk

〉
〈Ψk Ψk 〉

.
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Linear Models

The third-order tensor Cijk plays a fundamental role in stochastic Galerkin methods,
especially in non-linear problems.

Cijk is symmetric w.r.t. the two first indices, Cijk = Cjik .

It induces block-symmetry in the spectral problem, [A]ij = [A]ji

Many of the (P + 1)3 entries are zero with many simplifications.

For instance the first block of the Galerkin system reduces to

[A]00 =
P∑

k=0

[A]k Ck00 = [A]0

and the sum for the upper-right block (and lower-left block) actually reduces to
[A]0P = [A]P/

〈
Ψ2

P
〉
.

Many other simplifications occur.

Computational strategy for computation and storage of Cijk will be discussed later
(OK).
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Linear Models

N = 4-dimSP = 35-S = 0.58 N = 6-dimSP = 84-S = 0.41

N = 8-dimSP = 165-S = 0.31 N = 10-dimSP = 286-S = 0.23

Illustration of the sparse structure of the matrices of the linear spectral problem for different dimensions, N, with No = 3. Matrix blocks [A]ij
that are generally non-zero appear as black squares.
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Linear Models

No = 2-dimSP = 21-S = 0.52 No = 3-dimSP = 56-S = 0.49

No = 4-dimSP = 126-S = 0.54 No = 5-dimSP = 252-S = 0.55

Illustration of the sparse structure of the matrices of the linear spectral problem for different expansion orders No, with N = 5. Matrix blocks

[A]ij that are generally non-zero appear as black squares.
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Linear Models

Examples above assumes that [A](ξ) has a full spectrum in SP.

When [A](ξ) has a first-order expansion, the block structure of the linear spectral
problem becomes even sparser.

This behavior motivates the selection, whenever possible, of an approximation
based on a first order operator.
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Linear Models

No = 2-dimSP = 21-S = 0.184 No = 3-dimSP = 56-S = 0.084

No = 4-dimSP = 126-S = 0.043 No = 5-dimSP = 252-S = 0.024

Case of a inear stochastic operator [A](ξ) having a first-order expansion.
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Linear Models

The main difficulty in solving discrete linear spectral problems is the size of the
system.

The structure and sparsity of the linear Galerkin problem suggests iterative
solution strategies.

Iterative solvers (e.g. conjugate gradient techniques for symmetric systems, and
Krylov subspace methods) can be used.

The efficiency of iterative solvers depends on the availability of appropriate
preconditioners which need be adapted to the Galerkin problem.

Construction of the preconditioners can exploit the block-structure of the linear
Galerkin problem.
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Linear Models

Preconditioning with the mean operator

One can expect the diagonal blocks [A]ii of the Galerkin system to be dominant.

[A]ii =
P∑

k=0

[A]k
〈Ψk Ψi Ψi 〉
〈Ψi Ψi 〉

The mean operator [A]0 is always present in this summation.

It is expected to be dominant for reasonable variability in [A](ξ).

It suggests the preconditioner

[P] =


[A]0 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 [A]0

 .
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Linear Models

Owing to the diagonal block structure of [P], only the inversion of [A]0 is required:

[P]−1 =


([A]0)−1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 ([A]0)−1

 .

The preconditioned Galerkin problem can now be expressed as:

[P]−1


[A]00 . . . [A]0P

...
. . .

...
[A]P0 . . . [A]PP




u0
...
...

uP

 = [P]−1


b0
...
...

bP

 .

Resolution of the preconditioned problem also factorizes in a series of P + 1 problems
each with dimension m.
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Galerkin Approximation of Non-Linearities

Many models involve non-linearities of various types and their treatment is critical in
stochastic Galerkin methods

Let {Ψk (ξ)}P
k=0 be an orthogonal basis of SP ⊂ L2(Ξ,PΞ), and f a non-linear

functional u, v , . . .:
u, v , · · · ∈ R 7→ f (u, v , . . . ) ∈ R.

For random arguments, U(ξ),V (ξ), · · · ∈ R⊗ SP, we generally have
f (U,V , . . . ) =: G(ξ) /∈ R⊗ SP, but if G(ξ) ∈ R⊗ L2(Ξ,PΞ) it has an orthogonal
projection on SP,

G (ξ) ≈ Ĝ =
P∑

k=0

gk Ψk , gk =
〈f (U,V , . . . ),Ψk 〉〈

Ψ2
k

〉 .

The problem is therefore to derive efficient strategies to compute the expansion
coefficients gk of Ĝ(ξ) from the expansion coefficients of its arguments U(ξ),V (ξ), . . . .
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Galerkin Approximation of Non-Linearities

Polynomial non-linearities

The product of two quantities appears in many models.

It corresponds to the case G(ξ) = W (ξ) = U(ξ)V (ξ) for U,V ∈ SP having known
expansions. Clearly,

W (ξ) =
P∑

i=0

P∑
j=0

ui vj Ψi (ξ)Ψj (ξ).

and in general W (ξ) /∈ SP though it is in L2(Ξ,PΞ). Therefore, Ŵ , the orthogonal
projection of W on SP, has expansion coefficients

wk =
〈W ,Ψk 〉〈

Ψ2
k

〉 =
P∑

i=0

P∑
j=0

ui vj Cijk .

The result of the orthogonal projection of UV is called the Galerkin product of U and V
and is denoted U ∗ V .
The Galerkin product introduces truncation errors by disregarding the components of
UV orthogonal to SP.
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Galerkin Approximation of Non-Linearities

Polynomial non-linearities

Higher order polynomial non-linearities are also frequent.

Consider first the triple product G(ξ) = U(ξ)V (ξ)W (ξ) One can again perform an
exact Galerkin projection of the triple product:

ÛVW :=
P∑

m=0

ûvwmΨm =
P∑

m=0

Ψm

 P∑
j,k,l=0

Tjklmuj vk wl

 ,

Tjklm ≡
〈
Ψj Ψk Ψl Ψm

〉
〈ΨmΨm〉

.

This exact Galerkin projection of the triple product involves the fourth order
tensor Tjklm.

Tjklm is sparse with many symmetries .

However, computation and storage of Tjklm becomes quickly prohibitive when P
increases.

The exact Galerkin projection can hardly be extended further to higher order
polynomial non-linearities.
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Galerkin Approximation of Non-Linearities

Polynomial non-linearities

It is often preferred to rely on approximations for polynomial non-linearities of order
larger than 2. For the triple product, an immediate approximation is

ÛVW ≈ U ∗ (V ∗W ) = ÛV̂W .

This strategy can be extended to higher degree polynomial non-linearities by using
successive Galerkin products. For instance,

̂ABC . . .D ≈ A ∗ (B ∗ (C ∗ (. . . ∗ D))).

This procedure does not provide the exact Galerkin projection, since every
intermediate product disregards the part orthogonal to SP. Even for the triple product it
is remarked that, in general

U ∗ (V ∗W ) 6= (U ∗ V ) ∗W 6= (U ∗W ) ∗ V .

The order in which the successive Galerkin products are applied affects the result.
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Galerkin Approximation of Non-Linearities

Inverse and square root

Inverse and division are also common non-linearities.

For the inversion, one has to determine the expansion coefficients of the inverse U−1

of U(ξ),

U−1(ξ) =
1

U(ξ)
=

(
P∑

k=0

uk Ψk (ξ)

)−1

,

such that
U−1(ξ)U(ξ) = 1 a.s.

U−1 is sought in SP and the previous equation needs to be interpreted in a weak
sense. Using the Galerkin multiplication tensor, it comes

∑P
j=0 Cj00uj . . .

∑P
j=0 CjP0uj

...
. . .

...∑P
j=0 Cj0Puj . . .

∑P
j=0 CjPPuj




u−1
0
...

u−1
P

 =

 1
...
0

 .

Due to truncature error, the above definition corresponds to the pseudo-spectral
inverse U∗−1of U.
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Galerkin Approximation of Non-Linearities

Inverse and square root
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Pseudo-spectral approximation at different orders of the inverse Y (ξ) = Û−1(ξ) of U(ξ) = 1 + αξ with ξ ∼ N(0, 1): α = 1/5 (left),

1/4 (center) and 1/3 (right). Wiener-Hermite expansions are used.

Extend immediately to the evaluation of U/V
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Galerkin Approximation of Non-Linearities

Inverse and square root

The Galerkin product can also serve to approximate square roots.

Given U(ξ) > 0 we have
U1/2(ξ)U1/2(ξ) = U(ξ).

The approximate U∗1/2 ∈ SP of U1/2 solves
∑P

j=0 Cj00u1/2
j . . .

∑P
j=0 CjP0u1/2

j
...

. . .
...∑P

j=0 Cj0Pu1/2
j . . .

∑P
j=0 CjPPu1/2

j




u1/2
0

...
u1/2

P

 =

 u0
...

uP

 .

This non-linear system can be solved using standard techniques (Newton-Raphson
iterations) Choosing for the initial guess U∗1/2(ξ) = ±√u0 allows for the selection of
the positive or negative square root of U(ξ).
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Galerkin Approximation of Non-Linearities

Absolute values

Application to the approximation of absolute values
U(ξ) = ξ U(ξ) = 1 + ξ/2
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Galerkin Approximation of Non-Linearities

Min and Max operators

Consider the Max (Min) operator

u, v ∈ R 7→ Max(u, v) =

{
u, u ≥ v
v , u < v

In the deterministic case, the Min(u, v) and Max(u, v) are smallest and largest zeros of

x ∈ R 7→ g(x ; u, v) = −(x − u)(x − v)(x − w) ∈ R, w :=
u + v

2
.

For Newton-Raphson iterations the zeros of g are determine through the sequence
{xn}

xn+1 = h(xn) := xn −
g(xn; u, v)

g′(xn, u, v)
= xn +

(xn − u)(xn − v)(xn − w)

3(xn)2 − 6wxn + uv + uw + vw
.



Solution Methods Galerkin Projection of Linear / Non-linear Models

Galerkin Approximation of Non-Linearities

Min and Max operators

In the stochastic case the sequence becomes

X n+1 =X n +
(X n − U)(X n − V )(X n −W )

3 (X n)2 − 6WX n + UV + UW + VW

≈X n + (X n − U) ∗ (X n − V ) ∗ (X n −W ) ∗
(

3
(
X n)∗2

−6W ∗ X n + U ∗ V + U ∗W + V ∗W
)∗−1

.

The selection of the Max (resp. Min) is made from appropriate selection of X 0, through

X 0 = α
√
‖U‖2

PΞ
+ ‖V‖2

PΞ
,

for some α > 1 (resp. α < −1).
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Galerkin Approximation of Non-Linearities

Min and Max operators
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Left: U(ξ1, ξ2) and V (ξ1, ξ2) for which Max(U, V ) is sought. Only a portion of the stochastic domain Ξ is shown for clarity. Right:

convergence of the sequence {Xn} measured by the stochastic norm of ∆Xn = Xn − Xn−1 approximating Max(U, V ).
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Min and Max operators
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First terms of the sequence {Xn} in the pseudo-spectral approximation of Max(U, V ) on a two dimensional stochastic space.

Wiener-Legendre expansions with No = 5.
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Min and Max operators

u(ξ) and v(ξ) No = 2 No = 4
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Convergence with truncation order No of W (ξ) approximating Max(U, V )(ξ). The random variables U(ξ) and V (ξ) are linear in ξ1 and

ξ2 as depicted in the top-left plot.
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For sufficiently differentiable non-linearities one can rely on Taylor series

f (u) = f (û) + (u − û)f ′(û) +
(u − û)2

2
f ′′(û) + · · ·

In the stochastic case, it is common to expand the series about the mean u0 of U, at
which f ′(u0), f ′′(u0), · · · can be evaluated.
Successive powers of δU := U − u0 can be evaluated in a pseudo-spectral fashion

S 3 F (U) ≈ f (u0) + δUf ′(u0) +
δU ∗ δU

2
f ′′(u0) +

δU ∗ δU ∗ δU
6

f ′′′(u0) + · · ·

Convergence of the approximation needs be carefully analyzed.

Impact of the pseudo spectral error is critical.

Radius of convergence often unknown.
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Integration approach for differentiable non-linearities [Debusschere et al, 2004]

If f (·) is analytical with derivative f ′(·), f can be defined as some integral of f ′ along a
deterministic integration path.
Let Y (s, ξ) be a stochastic processes of L2(Ξ,PΞ), and consider G(s, ξ) := f (Y ):

Y = Y (s, ξ) =
P∑

k=0

yk (s)Ψk (ξ), G = G(s, ξ) =
P∑

k=0

gk (s)Ψk (ξ).

Therefore, we have
ˆ s2

s1

∂G
∂s

ds =

ˆ s2

s1

G′
∂Y
∂s

ds

P∑
k=0

Ψk

ˆ s2

s1

dgk

ds
ds =

P∑
k=0

Ψk [gk (s2)− gk (s1)]

=
P∑

i=0

P∑
j=0

Ψi Ψj

ˆ s2

s1

g′i (s)
dyj

ds
ds.
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The integration path is set such that for all k = 0, . . . , P

Y (s1, ξ) = Û, Y (s2, ξ) = U, (1)

we obtain

F (U(ξ))k = F (Û)k +
P∑

i=0

P∑
j=0

Cijk

ˆ uj

ûj

f ′i dyj , ∀k = 0, . . . , P.

Provided that

the PC expansion of F (Û) is known,

the PC expansion of F ′(·) is easily computed along the integration path,

the computation of F (U) amounts to solve a set of coupled ODEs.
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Other non-linearities

Example: exponential f (u) = exp(u).

We simply set Y (s, ξ) = sU(ξ), s1 = 0 and s2 = 1.
Since exp(u)′ = u, we obtain the the set of coupled ODEs:

dgk

ds
=

P∑
i=0

P∑
j=0

Cijk ui gk , k = 0, . . . , P,

to be integrated up to s = 1 from the initial condition

gk (s = 0) = 〈exp 0,Ψk 〉 = δk,0 k = 0, . . . , P.

Standard techniques for ODEs can be used.

Integration and stochastic truncation error control is critical.
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Non-intrusive projections

For general non-linearities F (U,V , . . . ) it is possible to proceed by non-intrusive
projection techniques:

fk :=
〈F (U,V , . . . ),Ψk 〉〈

Ψ2
k

〉 . (2)

Results in hybrid Galerkin / non-intrusive approaches when used in intermediate
step of a Galerkin projection method (case of complex non-linear model).

∇ · (ν(U)∇U) = g with BCs. (3)

Interest can be questionable.
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