Examples of Applications

Olivier Le Maître ${ }^{1}$ with Colleague \& Friend Omar Knio

UTOPI/
Uncertainty Treatment and
Optimisation in Aerospace Aerospace
Engineering

Handing tipuntuownatie edge of tomontow
PhD course on UQ - DTU

Objectives of the lecture

- Show concrete and detailed application on a basic example
- Present examples of applications involving more complex models
- Highlight efficiency and limitations.
\qquad 클

Table of content

(1) Detailed Elementary problem

- Deterministic model: Heat equation
- Stochastic formulation of uncertain problem
- Stochastic Galerkin projection

2. Examples

- Example 1: uniform conductivity
- Example 2: nonuniform conductivity
(3) Applications

Heat equation

Consider the linear steady heat equation in an isotropic two-dimensional domain Ω, with boundary $\partial \Omega$.
$\boldsymbol{x} \in \Omega \mapsto u(x) \in \mathbb{R}$ is the temperature field satisfying:

$$
\boldsymbol{\nabla} \cdot(\nu(\boldsymbol{x}) \nabla u(\boldsymbol{x}))=-f(\boldsymbol{x}) \quad+B C
$$

where $\nu>0$ is the thermal conductivity and $f \in L_{2}(\Omega)$ is a source term. We consider homogeneous Dirichlet and Neumann conditions over the respective portions Γ_{d} and Γ_{n} of the domain boundary $\partial \Omega=\Gamma_{d} \cup \Gamma_{n}$, i.e.

$$
u(\boldsymbol{x})=0, \quad \boldsymbol{x} \in \Gamma_{d} \quad \frac{\partial u}{\partial n}=0, \quad \boldsymbol{x} \in \Gamma_{n}
$$

Weak formulation

Let \mathcal{V} be the functionals space on Ω such that:

$$
\mathcal{V}=\left\{u \in H^{1}(\Omega): u=0 \text { on } \Gamma_{d}\right\}
$$

where $H^{1}(\Omega)$ is the Sobolev space of square integrable functionals whose first order derivatives are also square integrable.
The variational problem is:
Find $u \in \mathcal{V}$ such that

$$
a(u, v)=b(v) \quad \forall v \in \mathcal{V}
$$

where $a(u, v)$ and $b(v)$ are bilinear and linear forms respectively defined as:

$$
a(u, v) \equiv \int_{\Omega} \nu(\boldsymbol{x}) \nabla u(\boldsymbol{x}) \cdot \nabla v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad b(v) \equiv \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} .
$$

Deterministic model: Heat equation

P - 1 Finite Element discretization

Let $\mathcal{T}=\left\{\Sigma_{1}, \ldots, \Sigma_{\text {ne }}\right\}$ be a triangulation of Ω with ne non-overlapping triangular elements Σ_{i}.
The $P-1$ finite element space \mathcal{V}^{h} consists in linear functions in each Σ_{l}, that are continuous across inter-element boundaries. A function $v \in \mathcal{V}^{h}$ is completely defined by its values at the mesh nodes, and v can be expressed as

$$
v^{h}(\boldsymbol{x})=\sum_{i \in \mathcal{N}} v_{i}^{h} \Phi_{i}(\boldsymbol{x})
$$

where \mathcal{N} is the set of nodes which are not lying on Γ_{d} and $\Phi_{i}(\boldsymbol{x})$ are the shape functions associated to these nodes.

$$
\mathcal{V}^{h}=\operatorname{span}\left\{\Phi_{i}\right\}_{i \in \mathcal{N}}
$$

Left: sketch of the domain Ω and decomposition of the boundary $\partial \Omega$ into Dirichlet Γ_{d} and Neumann Γ_{n} regions. Right: example of a finite-element mesh with 508 elements and 284 nodes.

Deterministic model: Heat equation

Discrete equations

The Galerkin formulation in \mathcal{V}^{h} is:
Find $u_{i}, i \in \mathcal{N}$ such that

$$
\sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} a_{i, j} u_{i} v_{j}=\sum_{j \in \mathcal{N}} b_{j} v_{j},
$$

where

$$
a_{i, j}=\int_{\Omega} \nu(\boldsymbol{x}) \nabla \Phi_{i}(\boldsymbol{x}) \cdot \nabla \Phi_{j}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad b_{i}=\int_{\Omega} f(\boldsymbol{x}) \Phi_{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

The problem can be recast as a system of linear equations

$$
\left(\begin{array}{ccc}
a_{1,1} & \ldots & a_{1, n} \\
\vdots & \ddots & \vdots \\
a_{n, 1} & \ldots & a_{n, n}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)
$$

where $n=\operatorname{Card}(\mathcal{N}) .[a]$ is a (sparse) symmetric positive definite matrix.

Table of content

(1) Detailed Elementary problem

- Deterministic model: Heat equation
- Stochastic formulation of uncertain problem
- Stochastic Galerkin projection
(2) Examples
- Example 1: uniform conductivity
- Example 2: nonuniform conductivity
(3) Applications

Stochastic problem

Consider the case of random conductivity and source term, defined on an abstract probability space (Θ, Σ, P) :

$$
\nu \rightarrow \nu(\boldsymbol{x}, \theta), \quad f \rightarrow F(\boldsymbol{x}, \theta) .
$$

Then, $u \rightarrow U(\boldsymbol{x}, \theta)$ satisfies almost surely the stochastic problem

$$
\begin{cases}\boldsymbol{\nabla} \cdot(\nu(\boldsymbol{x}, \theta) \nabla U(\boldsymbol{x}, \theta))=-F(\boldsymbol{x}, \theta) & \boldsymbol{x} \in \Omega \\ U(\boldsymbol{x}, \theta)=0 & \boldsymbol{x} \in \Gamma_{d} \\ \frac{\partial U(\boldsymbol{x}, \theta)}{\partial n}=0 & \boldsymbol{x} \in \Gamma_{n} .\end{cases}
$$

Weak form of the stochastic problem

The functional space for $U(\boldsymbol{x}, \theta)$ will be $\mathcal{V} \otimes L_{2}(\Theta, P)$. In other words,

$$
U(\cdot, \theta) \in \mathcal{V}, \quad U(\boldsymbol{x}, \cdot) \in L_{2}(\Theta, P)
$$

The variational form of the stochastic problem is:
Find $U \in \mathcal{V} \otimes L_{2}(\Theta, P)$ such that

$$
A(U, V)=B(V) \quad \forall V \in \mathcal{V} \otimes L_{2}(\Theta, P)
$$

where

$$
A(U, V) \equiv \mathbb{E}[a(U, V)]=\int_{\Theta}\left[\int_{\Omega} \nu(\boldsymbol{x}, \theta) \nabla U(\boldsymbol{x}, \theta) \cdot \nabla V(\boldsymbol{x}, \theta) \mathrm{d} \boldsymbol{x}\right] \mathrm{d} P(\theta)
$$

and

$$
B(V) \equiv \mathbb{E}[b(V)]=\int_{\Theta}\left[\int_{\Omega} F(\boldsymbol{x}, \theta) V(\boldsymbol{x}, \theta) \mathrm{d} \boldsymbol{x}\right] \mathrm{d} P(\theta)
$$

Stochastic formulation of uncertain problem

Semi-discrete form

introducing the deterministic discretization in \mathcal{V}^{h} it comes

$$
U^{h}(\boldsymbol{x}, \theta)=\sum_{i \in \mathcal{N}} U_{i}(\theta) \Phi_{i}(\boldsymbol{x}) \in\left(\mathcal{V}^{h} \otimes L_{2}(\Theta, P)\right) .
$$

It shows that the semi-discrete solution consists in $n=\operatorname{Card}(\mathcal{N})$ random variables $U_{i}(\theta)$. They satisfy

$$
\sum_{i \in \mathcal{N}} \sum_{j \in \mathcal{N}} \mathbb{E}\left[A_{i, j}(\theta) U_{i}(\theta) V_{j}(\theta)\right]=\sum_{i \in \mathcal{N}} \mathbb{E}\left[B_{i}(\theta) V_{i}(\theta)\right], \forall V_{i}(\theta) \in L_{2}(\Theta, P), i \in \mathcal{N},
$$

where

$$
A_{i, j}(\theta)=\int_{\Omega} \nu(\boldsymbol{x}, \theta) \nabla \Phi_{i}(\boldsymbol{x}) \cdot \boldsymbol{\nabla} \Phi_{j}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

and

$$
B_{i}(\theta)=\int_{\Omega} f(\boldsymbol{x}, \theta) \Phi_{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

Stochastic discretization

We assume ν and F parameterized with N independent r.v. $\boldsymbol{\xi}=\left\{\xi_{1} \cdots \xi_{\mathrm{N}}\right\}$ defined on (Θ, Σ, P) :

$$
\nu(\boldsymbol{x}, \theta)=\nu(\boldsymbol{x}, \boldsymbol{\xi}(\theta)), \quad F(\boldsymbol{x}, \theta)=F(\boldsymbol{x}, \boldsymbol{\xi}(\theta))
$$

Examples of parameterization will be shown later. The space of second-order random functionals in $\boldsymbol{\xi}$ is spanned by the Polynomial Chaos basis:

$$
\mathcal{S}=\operatorname{span}\left\{\Psi_{k}(\xi)\right\}_{k=0}^{k=\infty}=L_{2}\left(\mathbb{R}^{2}, p_{\xi}\right),
$$

where the Ψ_{i} 's form a set of orthogonal multidimensional polynomials in ξ :

$$
\left\langle\Psi_{i}, \Psi_{j}\right\rangle=\int_{\equiv} \Psi_{i}(\boldsymbol{\eta}) \Psi_{j}(\boldsymbol{\eta}) p_{\xi}(\boldsymbol{\eta}) \mathrm{d} \boldsymbol{\eta}=\delta_{i j}\left\langle\Psi_{i}^{2}\right\rangle
$$

Provided that ν and F are second-order quantities, they have orthogonal representations:

$$
\nu(\boldsymbol{x}, \boldsymbol{\xi})=\sum_{k=0}^{\infty} \nu_{k}(\boldsymbol{x}) \Psi_{k}(\boldsymbol{\xi}), \quad F(\boldsymbol{x}, \boldsymbol{\xi})=\sum_{k=0}^{\infty} f_{k}(\boldsymbol{x}) \Psi_{k}(\boldsymbol{\xi})
$$

Stochastic formulation of uncertain problem

Stochastic discretization

Similarly, the expansion of the discrete solution U^{h} is

$$
U^{h}(\boldsymbol{x}, \boldsymbol{\xi})=\sum_{i \in \mathcal{N}}\left(\sum_{k=0}^{\infty} u_{i, k} \Psi_{k}(\boldsymbol{\xi})\right) \Phi_{i}(\boldsymbol{x})
$$

The stochastic expansions are truncated to a finite polynomial order No. Different orders of truncation may be considered for the conductivity, source and solution.
For simplicity, we use the same truncation order No. It corresponds to a stochastic approximation space

$$
\mathcal{S}^{\mathrm{P}} \equiv \operatorname{span}\left\{\Psi_{0}, \ldots, \Psi_{\mathrm{P}}\right\} \subset \mathcal{S}, \quad \mathrm{P}+1=\frac{(\mathrm{No}+\mathrm{N})!}{\mathrm{No}!\mathrm{N}!}
$$

Stochastic Galerkin projection

Stochastic Galerkin problem

The Galerkin problem is obtained by inserting the expansions of ν, F, U^{h} and test functions $V \in \mathcal{V}^{h} \otimes \mathcal{S}^{\mathrm{P}}$ into the variational form of the semi discrete stochastic problem. This results in:
Find $u_{i, k}, i \in \mathcal{N}$ and $k=0, \ldots, P$, such that

$$
\begin{array}{r}
\sum_{i, j \in \mathcal{N}} \sum_{k, l, m=0}^{\mathrm{P}}\left\langle\Psi_{k} \Psi_{l} \Psi_{m}\right\rangle A_{i, j}^{k} u_{i, l} v_{j, m}=\sum_{i \in \mathcal{N}} \sum_{k=0}^{\mathrm{P}} b_{i}^{k} v_{i, k}, \\
\forall v_{i, k}, i \in \mathcal{N}, k=0, \ldots, \mathrm{P}
\end{array}
$$

where

$$
A_{i, j}^{k} \equiv \int_{\Omega} \nu_{k}(\boldsymbol{x}) \nabla \Phi_{i}(\boldsymbol{x}) \cdot \nabla \Phi_{j}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad b_{i}^{k} \equiv\left\langle\psi_{k}^{2}\right\rangle \int_{\Omega} f_{k}(\boldsymbol{x}) \Phi_{i}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
$$

It involves $n \times(P+1)$ deterministic quantities

Stochastic Galerkin projection

Stochastic Galerkin problem

Denote $\boldsymbol{u}_{k}:=\left(u_{1, k} \ldots u_{n, k}\right)^{t} \in \mathbb{R}^{n}$ the vector of nodal values of the k-th stochastic mode of the solution.
With this notation, the Galerkin problem becomes:
Find $\boldsymbol{u}_{0}, \ldots, \boldsymbol{u}_{\mathrm{P}}$ such that for all $k=0, \ldots, \mathrm{P}$

$$
\sum_{l=0}^{\mathrm{P}} \sum_{m=0}^{\mathrm{P}}\left\langle\Psi_{k} \Psi_{l} \Psi_{m}\right\rangle\left[A^{\prime}\right] \boldsymbol{u}_{m}=\boldsymbol{b}_{k},
$$

where the matrix $\left[A^{\prime}\right]$ has for coefficients $A_{i, j}^{\prime}$ and the vector $\boldsymbol{b}_{k}=\left(b_{1}^{k} \ldots b_{n}^{k}\right)^{t}$.

Stochastic Galerkin projection

Stochastic Galerkin problem

Denote $\boldsymbol{u}_{k}:=\left(u_{1, k} \ldots u_{n, k}\right)^{t} \in \mathbb{R}^{n}$ the vector of nodal values of the k-th stochastic mode of the solution.
This set of systems can be formally expressed as a single system $[\boldsymbol{A}] \boldsymbol{u}=\boldsymbol{B}$ where the global system matrix $[\boldsymbol{A}]$ has the block structure, corresponding to:

$$
\left(\begin{array}{ccc}
\boldsymbol{A}_{0,0} & \cdots & \boldsymbol{A}_{0, \mathrm{P}} \\
\vdots & \ddots & \vdots \\
\boldsymbol{A}_{\mathrm{P}, 0} & \cdots & \boldsymbol{A}_{\mathrm{P}, \mathrm{P}}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{u}_{0} \\
\vdots \\
\boldsymbol{u}_{\mathrm{P}}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{b}_{0} \\
\vdots \\
\boldsymbol{b}_{\mathrm{P}}
\end{array}\right)
$$

The matrix blocks are given by:

$$
\boldsymbol{A}_{i, j}=\sum_{m=0}^{\mathrm{P}}\left[A^{m}\right]\left\langle\Psi_{i} \Psi_{j} \Psi_{m}\right\rangle \quad 0 \leq i, j \leq P
$$

The system $[\boldsymbol{A}] \boldsymbol{u}=\boldsymbol{B}$ is called the spectral or Galerkin problem.

Solution of Stochastic Galerkin problem

Solution method:

- The matrix $[\boldsymbol{A}]$ of the Galerkin problem has a block symmetric structure, $\boldsymbol{A}_{i, j}=\boldsymbol{A}_{j, i}$, since $\left\langle\Psi_{i} \Psi_{j} \Psi_{m}\right\rangle=\left\langle\Psi_{j} \Psi_{i} \Psi_{m}\right\rangle$.
- The blocks are in fact symmetric because $A_{i, j}^{k}=A_{j, i}^{k}$, so the matrix $[\boldsymbol{A}]$ is symmetric.
- Standard solution techniques for (large) symmetric linear systems can be reused.
- Due to the size of the system, sparse storage is mandatory, even-though many blocks are zero.

Theoretical comments

Existence and uniqueness of the solution:
Properties of the Galerkin system have been the focus of many works. e.g. [Babuska, 2002],

```
[Babuska, 2005], [Frauenfelder, 2005], [Matthies, 2005]
```

- For Dirichlet boundary conditions, the Galerkin system for stochastic elliptic problems has a unique solution provided that the random conductivity field satisfies some probabilistic (sufficient) conditions.
- For the deterministic discretization with $P-1$ finite-elements, these probabilistic conditions reduce to

$$
\frac{1}{\nu(\boldsymbol{x}, \boldsymbol{\xi})} \in L_{2}\left(\equiv, P_{\equiv}\right), \forall \boldsymbol{x} \in \Omega
$$

- For Neumann boundary conditions only, $U(\boldsymbol{x}, \boldsymbol{\xi})$ is defined up to an arbitrary random variable and an integral constraint on the source term is necessary for homogeneous conditions,

$$
\int_{\Omega} F(\boldsymbol{x}, \boldsymbol{\xi}) \mathrm{d} \boldsymbol{x}=0
$$

(1) Detailed Elementary problem

- Deterministic model: Heat equation
- Stochastic formulation of uncertain problem
- Stochastic Galerkin projection
(2) Examples
- Example 1: uniform conductivity
- Example 2: nonuniform conductivity
(3) Applications

Example 1: uniform conductivity

We consider $\Omega=[0,1]^{2}$, with Dirichlet boundary conditions over 3 edges and a Neumann condition over the left edge $x=1$.

Left: computational domain Ω and decomposition of the boundary $\partial \Omega$ into Dirichlet Γ_{d} and Neumann Γ_{n} parts. Right: typical finite-element triangulation of Ω using 512 elements and 289 nodes.

Consider first the case of a uniform deterministic source term and constant random conductivity

$$
F(\boldsymbol{x}, \theta)=f(\boldsymbol{x})=1, \quad \nu(\boldsymbol{x}, \theta)=\beta(\theta)
$$

- The random conductivity β is assumed to be log-normal, with unit median value $\bar{\beta}=1$ and coefficient of variation $C \geq 1$.
- β is parametrized with a unique normalized Gaussian variable $\xi_{1}(\theta)$ so $\mathrm{N}=1$, and the PC basis is made of the one-dimensional Hermite polynomials.

$$
\beta\left(\xi_{1}\right)=\exp \left(\mu_{\beta}+\sigma_{\beta} \xi_{1}\right), \quad \mu_{\beta}=\log (\bar{\beta}) \text { and } \sigma_{\beta}=\frac{\log C}{2.85}
$$

- The PC coefficients β_{k} have closed form expressions [Ghanem, 1999]:

$$
\beta\left(\xi_{1}\right)=\sum_{k=0}^{\infty} \beta_{k} \Psi_{k}\left(\xi_{1}\right), \quad \beta_{k}=\exp \left(\mu_{\beta}+\sigma_{\beta}^{2} / 2\right) \frac{\sigma_{\beta}^{k}}{\left\langle\Psi_{k}^{2}\right\rangle}
$$

Example 1: uniform conductivity

Stochastic modes of the solution for $\mathrm{No}=4$

Example 1: uniform conductivity

Convergence with the expansion order
β being log-normal, so is its inverse, and the expansion of $1 / \beta$ is consequently given by:

$$
\left(\frac{1}{\beta}\right)_{k}=\exp \left(-\mu_{\beta}+\sigma_{\beta}^{2} / 2\right) \frac{\left(-\sigma_{\beta}\right)^{k}}{\left\langle\Psi_{k}^{2}\right\rangle}
$$

The spectrum of the numerical solution should decay as $\left|\sigma_{\beta}\right|^{k} / k!$.

Normalized spectra of the random solution u_{k}^{h} at node $\boldsymbol{x}=(1,0.5)$ as computed using different expansion orders.

Example 1: uniform conductivity

Convergence of pdf

Computed probability density functions of U^{h} at $\boldsymbol{x}=(1,0.5)$ for different expansion orders No as indicated. Top plot: No $=1, \ldots, 6$.
Bottom plot: same pdfs in log scale for No $=2, \ldots, 6$ together with the theoretical pdf.

Consider the random conductivity field defined as:

$$
\nu(\boldsymbol{x}, \theta)= \begin{cases}\nu^{1}(\theta), & x \leq 0.5 \\ \nu^{2}(\theta), & x>0.5\end{cases}
$$

- ν^{1} and ν^{2} are two independent log-normal random variables with respective medians $\bar{\nu}^{1}$ and $\bar{\nu}^{2}$, and coefficients of variation C^{1} and C^{2}.
- Two normalized Gaussian variables ξ_{1} and ξ_{2} are used to parametrize the conductivity field.
- The stochastic dimension is $\mathrm{N}=2$, and the stochastic basis consists of two-dimensional Hermite polynomials.

The expansion on \mathcal{S}^{P} of the random conductivity field,

$$
\begin{equation*}
\nu(\boldsymbol{x}, \boldsymbol{\xi})=\sum_{k=0}^{\mathrm{P}} \nu_{k}(\boldsymbol{x}) \Psi_{k}(\boldsymbol{\xi}), \tag{1}
\end{equation*}
$$

has many zero modes $\nu_{k}(\boldsymbol{x})$ (due to the independence over distinct sub-domain). Consequently, some elementary matrices $\left[A^{\prime}\right]$ are zero, resulting in a sparse block structure for the Galerkin system.

The sparsity of the full Galerkin matrix system $[A]$ for $N o=4, \ldots, 6(\operatorname{dim} \mathcal{S}=\mathrm{P}+1=15,21$ and 28$)$.

Example 2: nonuniform conductivity

Expectations (top) and standard deviations (bottom) of U^{h} for $\mathrm{No}=5$. Left: two random conductivities ($\mathrm{N}=2, \mathrm{P}=20$). Right: single random conductivity ($\mathrm{N}=1, \mathrm{P}=5$).

Example 2: nonuniform conductivity

Uncertainty in U^{h} along the line $y=0.5$. Left: two random conductivities $(\mathrm{N}=2, \mathrm{P}=20)$. Right: single random conductivity $(\mathrm{N}=1$, $\mathrm{P}=5$) .

Example 2: nonuniform conductivity

Stochastic modes

$$
\Psi_{0}=\psi_{0}\left(\xi_{1}\right) \psi_{0}\left(\xi_{2}\right)
$$

$$
\Psi_{1}=\psi_{1}\left(\xi_{1}\right) \psi_{0}\left(\xi_{2}\right) \quad \Psi_{2}=\psi_{0}\left(\xi_{1}\right) \psi_{1}\left(\xi_{2}\right)
$$

Example 2: nonuniform conductivity

$$
\Psi_{3}=\psi_{2}\left(\xi_{1}\right) \psi_{0}\left(\xi_{2}\right)
$$

$$
\Psi_{4}=\psi_{1}\left(\xi_{1}\right) \psi_{1}\left(\xi_{2}\right)
$$

$\Psi_{7}=\psi_{2}\left(\xi_{1}\right) \psi_{1}\left(\xi_{2}\right)$
$\Psi_{8}=\psi_{1}\left(\xi_{1}\right) \psi_{2}\left(\xi_{2}\right)$
$\Psi_{9}=\psi_{0}\left(\xi_{1}\right) \psi_{3}\left(\xi_{2}\right)$
$\Psi_{6}=\psi_{3}\left(\xi_{1}\right) \psi_{0}\left(\xi_{2}\right)$

Modes $u_{k}(\boldsymbol{x})$ of the stochastic solution for the nonuniform conductivity problem.

Table of content

(1) Detailed Elementary problem

- Deterministic model: Heat equation
- Stochastic formulation of uncertain problem
- Stochastic Galerkin projection
(2) Examples
- Example 1: uniform conductivity
- Example 2: nonuniform conductivity
(3) Applications

Stochastic Galerkin Method

Flow and transport in porous media

- Darcy equation:
- Convection Dispersion Equation:

Navier-Stokes and Multiphysics flows

- Incompressible Navier-Stokes eq.:
- Complex flows:

Lagrangian Models

- Navier-Stokes equations:
- Example
- Convection dispersion equations:

Questions \& Discussion

Darcy Equation with uncertain conductivities

With: A. Ern (CERMICS, ENPC) and J.-M. Martinez (CEA/DEN/DM2S/LGLS).

2D layered medium with highly contrasted permeabilities.
D

Couplex-1 Problem (MoMaS)

Darcy flow

$$
\nabla \cdot(K \nabla H)=0
$$

- Uncertain but isotropic permeability tensor K ($\mathrm{m} /$ year).
- K constant in each layer \rightarrow uncertainty model with 4 RVs.
- Permeabilities are independent.

Uncertainty model for Permeabilities (in m/year):

Layer	Median value	Distribution	uncertainty level
Dogger	25.23	Uniform	$\pm 50 \%$
Clay	3.1510^{-6}	Log-uniform	1 decade
Limestone	6.31	Uniform	$\pm 50 \%$
Marl	3.1510^{-5}	Log-uniform	1 decade

Parameterization:

$K_{D}\left(\xi_{1}\right), K_{C}\left(\xi_{2}\right), K_{L}\left(\xi_{3}\right)$ and $K_{M}\left(\xi_{4}\right)$ with $\left(\xi_{1}, \ldots, \xi_{4}\right) \sim U[-1,1]^{4}$.

- $N=4$ dimensional polynomial chaos.
- Wiener-Legendre expansion of K and solution H.

Discretizations

- Finite element approximation in space (non-conform P1 element -A. Ern-).
- Mesh involves 25,390 elements.
- Deterministic problem:

$$
[k] h=f,
$$

$[k] \in \mathbb{R}^{m \times m}$ SPD matrix; h (pressure) and f (rhs) $\in \mathbb{R}^{m}$.

- Stochastic problem:
- Truncated Wiener-Legendre expansion of $[K]$ and H :

$$
[K](\boldsymbol{\xi}) \approx \sum_{k=0}^{\mathrm{P}}\left[K_{k}\right] \Psi_{k}(\boldsymbol{\xi}), \quad H(\boldsymbol{\xi}) \approx \sum_{k=0}^{\mathrm{P}} H_{k} \Psi_{k}(\boldsymbol{\xi}), \quad \mathcal{S}^{\mathrm{P}}=\operatorname{span}\left\{\Psi_{0}, \ldots, \Psi_{\mathrm{P}}\right\} .
$$

- Galerkin Projection:

$$
\left\langle\left(\sum_{k=0}^{\mathrm{P}}\left[K_{k}\right] \Psi_{k}(\boldsymbol{\xi})\right)\left(\sum_{k=0}^{\mathrm{P}} H_{k} \Psi_{k}(\boldsymbol{\xi})\right), V(\boldsymbol{\xi})\right\rangle=\langle f, V(\boldsymbol{\xi})\rangle \quad \forall V(\boldsymbol{\xi}) \in \mathbb{R}^{m} \times \mathcal{S}^{\mathrm{P}} .
$$

- Spectral problem:

Large!

$$
\sum_{i=0}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}}\left\langle\Psi_{i} \Psi_{j}, \Psi_{k}\right\rangle\left[K_{i}\right] H_{j}=\left\langle f, \Psi_{k}\right\rangle=f \delta_{k, 0}, \quad k=0,1, \ldots, \mathrm{P}
$$

Large linear system of $m \times(P+1)$ equations.

- Sparse multiplication tensor $\mathcal{M}=\left\langle\Psi_{i} \Psi_{j}, \Psi_{k}\right\rangle /\left\langle\Psi_{k}, \Psi_{k}\right\rangle$
- Galerkin system has a (sparse) block structure, where each block has same non-zero pattern as the deterministic matrix [k].

Structure of Galerkin system:
(examples for No $=3$-left- and $\mathrm{N}=5$-right-)

$\mathrm{N}=4-\mathrm{P}=35$	$\mathrm{N}=6-\mathrm{P}=84$	No $=2-\mathrm{P}=20$	No $=3-\mathrm{P}=55$
$\mathrm{N}=8-\mathrm{P}=164$	$\mathrm{N}=10-\mathrm{P}=285$	No $=4-\mathrm{P}=126$	No $=5-\mathrm{P}=251$

Iterative resolution

- Exploit orthogonality of the basis: $\left\langle\Psi_{0} \Psi_{j}, \Psi_{k}\right\rangle=\left\langle\Psi_{k}, \Psi_{k}\right\rangle \delta_{j, k}$

$$
H_{k}=\left[K_{0}\right]^{-1}\left[f \delta_{k 0}-\sum_{i=1}^{\mathrm{P}} \sum_{j=0}^{\mathrm{P}} \frac{\left\langle\Psi_{k} \Psi_{i} \Psi_{j}\right\rangle}{\left\langle\Psi_{k} \Psi_{k}\right\rangle}\left[K_{i}\right] H_{j}\right] .
$$

- Jacobi type iterations on modes (mean preconditionner).
- $\left[K_{0}\right]$ corresponds to deterministic $[k]$ for mean properties: re-use deterministic solver (PCG).
- Factorize $\left[K_{0}\right]$ only once.
- Parallel evaluation of the rhs.
- Convergence decreases with variability in $[K]$.
- Improved preconditionners for stochastic elliptic problems (including mixed formulations) [Powell et al., 08-10].

Couplex－1

Results

No $=4 \rightarrow P+1=69$ stochastic modes
Mean pressure field：

Couplex-1

Results

No $=4 \rightarrow P+1=69$ stochastic modes
Standard-deviation in pressure field:

$\sigma_{H}^{2}=\mathbb{E}\left[\left(H-H_{0}\right)^{2}\right]=\mathbb{E}\left[\left(\sum_{k=1}^{\mathrm{P}} H_{k}\right)\left(\sum_{l=1}^{\mathrm{P}} H_{l}\right)\right]=\sum_{k=1}^{\mathrm{P}} H_{k}^{2}\left\langle\Psi_{k}, \Psi_{k}\right\rangle$

Convection dispersion equation

With: J.-M. Martinez (CEA/DEN/DM2S/LGLS) and A. Cartalade (CEA/DEN/DM2S).

1-D Convection dispersion

Model equation

A. Cartalade (CEA)

- Concentration $C(x, t)$
- IC and BC:

$$
\begin{array}{r}
\phi \frac{\partial C}{\partial t}=-\frac{\partial}{\partial x}\left[q y-\left(\phi D_{0}+\lambda|q|\right) \frac{\partial C}{\partial x}\right] \\
C(x, t=0)=0, C(x=0, t)=1
\end{array}
$$

- Model parameters:
- $q>0$: Darcy velocity (1m/day),
- ϕ : fluid fraction (given in]0, 1 [),
- D_{0} : molecular diffusivity $(\ll 1)$,
- λ : uncertain hydrodynamic dispersion coefficient.

Uncertainty model

Solution method

1-D Convection dispersion

Model equation

Uncertainty model

- λ follows an uncertain power-law:

$$
\lambda=a \phi^{b}
$$

Solution method

1-D Convection dispersion

Model equation

Uncertainty model

- λ follows an uncertain power-law:

$$
\lambda=a \phi^{b}
$$

- a and b independent random variables.
- $\log _{10}(a) \sim U[-4,-2]$ and $b \sim U[-3.5,-1]$.

$$
a\left(\xi_{1}\right)=\exp \left(\mu_{1}+\sigma_{1} \xi_{1}\right), b=\mu_{2}+\sigma_{2} \xi_{2}, \xi_{1}, \xi_{2} \simeq U[-1,1]
$$

$$
\lambda\left(x, \xi_{1}, \xi_{2}\right) \approx \sum_{k} \lambda_{k}(x) \Psi_{k}\left(\xi_{1}, \xi_{2}\right)
$$

[Debusschere et al, J. Sci. Comp., 2004]

Solution method

1-D Convection dispersion

Model equation

Uncertainty model

Solution method

- Wiener-Legendre expansion and Galerkin projection: $C\left(x, t, \xi_{1}, \xi_{2}\right)=\sum_{k=0}^{\mathrm{P}} C_{k}(x, t) \Psi_{k}\left(\xi_{1}, \xi_{2}\right)$.
- Spectral convergence in the stochastic space with No.
- Finite volume deterministic discretization $\mathcal{O}\left(\Delta x^{2}\right)$.
- Implicit time scheme $\mathcal{O}\left(\Delta t^{2}\right)$ (block tri-diagonal system, mean operator preconditionner).
- upwind stabilization of convection term (velocity is certain).

Expectation \& standard deviation at $x=0.5$

Convergence with polynomial order No.

Convection dispersion equation

Convergence of pdfs at $x=0.5$

$t=10 h$	$t=15 h$

Convection dispersion equation

Further uncertainty analysis : quartiles \& ANOVA (Sobol)

Application to the Navier-Stokes equations

 Boussinesq modelWith: O. Knio (JHU, Baltimore), H. Najm \& B. Debusschere (SANDIA, Livermore) and R. Ghanem (USC, Los Angeles).

Governing equations

- Momentum:

$$
\begin{array}{r}
\frac{\partial \boldsymbol{u}}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}=-\nabla p+\frac{\operatorname{Pr}}{\sqrt{\operatorname{Ra}}} \nabla^{2} \boldsymbol{u}+\operatorname{Pr} \theta \boldsymbol{y} \\
\boldsymbol{\nabla} \cdot \boldsymbol{u}=0 \\
\frac{\partial \theta}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \theta=\frac{1}{\sqrt{\mathrm{Ra}}} \nabla^{2} \theta
\end{array}
$$

- Mass:
- Energy:

Uncertain boundary conditions

Governing equations

Uncertain boundary conditions

Governing equations

Uncertain boundary conditions

Governing equations

Uncertain boundary conditions

Governing equations

Uncertain boundary conditions

$B C$ and solution representations

$$
\begin{gathered}
\theta^{\prime}(y, \boldsymbol{\xi})=\sum_{i=1}^{\mathrm{N}} \sqrt{\lambda_{i}} \widetilde{\theta}_{i}(y) \xi_{i}=\sum_{k=0}^{\mathrm{P}} \theta_{k}(y) \Psi_{k}(\boldsymbol{\xi}) . \\
(\boldsymbol{u}, p, \theta)(\boldsymbol{\xi})=\sum_{k=0}^{\mathrm{P}}(\boldsymbol{u}, p, \theta)_{k} \Psi_{k}(\boldsymbol{\xi}) .
\end{gathered}
$$

- $\xi_{i} \sim N(0,1) \longrightarrow$ Hermite polynomials.
- Stochastic dimension N.
- Expansion order No $\longrightarrow \mathrm{P}+1=(\mathrm{N}+\mathrm{No})$!/($\mathrm{N}!\mathrm{No}!)$.

Galerkin projection

Implementation and solver

$B C$ and solution representations

Galerkin projection

$$
\begin{array}{r}
\frac{\partial \boldsymbol{u}_{k}}{\partial t}+\sum_{i, j=0}^{\mathrm{P}} \boldsymbol{u}_{i} \cdot \boldsymbol{\nabla} \boldsymbol{u}_{j} \frac{\left\langle\Psi_{i} \Psi_{j}, \Psi_{k}\right\rangle}{\left\langle\Psi_{k}, \Psi_{k}\right\rangle}=-\nabla p_{i}+\frac{\operatorname{Pr}}{\sqrt{\mathrm{Ra}}} \nabla^{2} \boldsymbol{u}_{k}+\operatorname{Pr} \theta_{k} \boldsymbol{y} \\
\frac{\partial \theta_{k}}{\partial t}+\sum_{i, j=0}^{\mathrm{P}} \boldsymbol{u}_{i} \cdot \nabla \theta_{j} \frac{\left\langle\Psi_{i} \Psi_{j}, \Psi_{k}\right\rangle}{\left\langle\Psi_{k}, \Psi_{k}\right\rangle}=\frac{1}{\sqrt{\mathrm{Ra}}} \nabla^{2} \theta_{k} \\
\boldsymbol{\nabla} \cdot \boldsymbol{u}_{k}=0
\end{array}
$$

- $\mathrm{P}+1$ coupled momentum and energy equations.
- $P+1$ uncoupled divergence constraints and BCs.

$B C$ and solution representations

Galerkin projection

Implementation and solver

Discretization

- Uniform grid, staggered arrangement and 2nd order FD
- Semi-explicit second order Adams-Bashford time-scheme

Incompressibility Treatment

- Prediction / Projection method [Chorin, 1971]
- FFT based solver for the elliptic pressure equations

CPU: essentially projection of uncoupled modes:

$$
\text { Stochastic } \simeq(P+1) \times \text { deterministic. }
$$

Convergence and performance

(unsteady solver)

- $N=4 \sim 6$ is enough for $L \geq 1 / 3$
- No $=3 \rightarrow$ relative error on variance $<10^{-4}$
- ~ 1000 times more efficient than MC (LHS)
- ~ 10 times more efficient than NISP + GH quadrature (sparse grid?)
- Parallelization

Parallelization

Structure of $\left\langle\Psi_{/} \Psi_{m}, \Psi_{k}\right\rangle$

- Distribution of modes resolution
- Not scalable with increasing P
- assembly of rhs needs too many communications
- load balancing
- Domain decomposition?

Example of velocity modes
MODE 0 Scaled by . $500 \mathrm{E}+00$ MODE 1 Scaled by .300E+01

$$
\mathrm{Ra}=10^{6}, L=1-\sigma_{\theta}=0.25
$$

MODE 6 Scaled by .400E+02 MODE 10 Scaled by .400E+02

Uncertainty bars

$$
L=1 .
$$

| $\sigma_{\theta}=0.125$ | $\sigma_{\theta}=0.25$ | $\sigma_{\theta}=0.5$ |
| :---: | :---: | :---: | :---: | :---: |

Example of temperature modes

T_ $0-[-.497 \mathrm{E}+00, .496 \mathrm{E}+00]$

$\mathrm{T}_{-} 1-[0.000 \mathrm{E}+00, .222 \mathrm{E}+00]$

$$
\begin{aligned}
& \mathrm{Ra}=10^{6}, L=1-\sigma_{\theta}=0.25 .
\end{aligned}
$$

T_3- [-.714E-01,.670E-01]

$$
T_{-} 6-[-.556 \mathrm{E}-02, .386 \mathrm{E}-02] \quad T_{-} 10-[-.137 \mathrm{E}-01, .682 \mathrm{E}-02]
$$

Heat-transfer density

Some issues stochastic CFD models
(1) Bifurcation(s) in the uncertain parameter range:

- compromise the convergence of spectral expansions
- require piecewise polynomial expansions with eventually an adaptive strategy
(2) Existence of multiple solutions
- what to we want to measure?
- how to force the selection of a given solution branch?
- common to any approach of UQ.

Stochactic spectral solvers
 for incompressible Navier-Stokes equations

Galerkin projection of the Navier-Stokes Equation:
General form of the problem for mode k

$$
\frac{\partial \boldsymbol{u}_{k}}{\partial t}+\sum_{l, m} \mathcal{M}_{k l m} \boldsymbol{u}_{l} \nabla \boldsymbol{u}_{m}=-\nabla p_{k}+\sum_{l, m} \mathcal{M}_{k l m} \nu_{l} \nabla^{2} \boldsymbol{u}_{m}+\boldsymbol{f}_{k}, \quad \nabla \cdot \boldsymbol{u}_{k}=0
$$

where $\mathcal{M}_{k l m}:=\frac{\left\langle\Psi_{,}, \Psi_{m}, \Psi_{m}\right\rangle}{\left\langle\Psi_{m}, \Psi_{m}\right\rangle}$
Treatment of the nonlinear part:

- explicit treatment, e.g. using $\boldsymbol{u}_{l}^{r} \boldsymbol{\nabla} \boldsymbol{u}_{m}^{n}$
- semi-implicit, $\boldsymbol{u}_{l}^{n} \nabla \boldsymbol{u}_{m}^{n+1}, \longrightarrow$ set of linear unsymmetric coupled problems: stabilization,?
- other semi-implicit form:

$$
\left(\sum_{l, m} \mathcal{M}_{k l m} \boldsymbol{u}_{l} \nabla \boldsymbol{u}_{m}\right)^{n+1} \approx \boldsymbol{u}_{0}^{n} \nabla \boldsymbol{u}_{k}^{n+1}+\sum_{l>0, m} \mathcal{M}_{k l m} \boldsymbol{u}_{l}^{n} \nabla \boldsymbol{u}_{m}^{n}
$$

\longrightarrow mean-flow based stabilization (e.g. upwinding).

Stochastic unsteady Stoked problem for mode k

$$
\frac{\partial \boldsymbol{u}_{k}}{\partial t}+\nabla p_{k}-\sum_{l, m} \mathcal{M}_{k l m} \nu_{l} \nabla^{2} \boldsymbol{u}_{m}=\boldsymbol{\mathcal { R }}_{k}, \quad \nabla \cdot \boldsymbol{u}_{k}=0
$$

Set of $P+1$ coupled Stokes-like problems. Spatial / time discretization results in a discrete system of the form

$$
\mathbb{A} \boldsymbol{X}=\boldsymbol{B}, \quad \boldsymbol{X}=\left(\boldsymbol{X}_{0} \ldots \boldsymbol{X}_{\mathrm{P}}\right)^{T}, \quad \boldsymbol{X}_{k}:=\left(\boldsymbol{u}_{k} p_{k}\right)^{T}
$$

\mathbb{A} has a block structure and $[\mathbb{A}]_{0<k, l<P}$ has a similar or sparser non-zero pattern than the deterministic Stokes problem.

Structure of the Galerkin system:

- The Galerkin product tensor \mathcal{M} is sparse
(examples for No $=3$-left- and $\mathrm{N}=5$-right-)

$\mathrm{N}=4-\mathrm{P}=35$	$\mathrm{N}=6-\mathrm{P}=84$	No $=2-\mathrm{P}=20$	$\mathrm{No}=3-\mathrm{P}=55$
$\mathrm{N}=8-\mathrm{P}=164$	$\mathrm{N}=10-\mathrm{P}=285$	No $=4-\mathrm{P}=126$	No $=5-\mathrm{P}=251$

Resolution of the Galerkin system

Rewrite stochastic Stokes problem as

$$
\sum_{l=0}^{\mathrm{P}} \sum_{m=0}^{\mathrm{P}} \mathcal{M}_{k l m}[S]_{l} \boldsymbol{X}_{m}=\boldsymbol{B}_{k}, \quad \text { for } k=0, \ldots, \mathrm{P}
$$

where $[S](\xi)$ is the operator resulting from the determinsitic discretization of continuous stokes problem with a viscosity $\nu(\boldsymbol{\xi})$, so

$$
[S](\xi)=\sum_{l=0}^{\mathrm{P}}[S]_{/} \Psi_{l}(\xi) .
$$

Note that $[\mathbb{A}]_{k m}=\sum_{l} \mathcal{M}_{k l m}[S]_{l}$.

Resolution of the Galerkin system

$$
\sum_{l=0}^{\mathrm{P}} \mathcal{M}_{k 0 m}[S]_{0} \boldsymbol{X}_{m}+\sum_{l=1}^{\mathrm{P}} \sum_{m=0}^{\mathrm{P}} \mathcal{M}_{k l m}[S]_{l} \boldsymbol{X}_{m}=\boldsymbol{B}_{k}, \quad \text { for } k=0, \ldots, \mathrm{P}
$$

Resolution of the Galerkin system

$$
[S]_{0} \boldsymbol{X}_{k}=\boldsymbol{B}_{k}-\sum_{l=1}^{\mathrm{P}} \sum_{m=0}^{\mathrm{P}} \mathcal{M}_{k l m}[S]_{l} \boldsymbol{X}_{m}, \quad \text { for } k=0, \ldots, \mathrm{P}
$$

- Suggest Jacobi type iterations
- Factorization of $[S]_{0}=\mathbb{E}[[S](\xi)]$ only
- Other iterative (Krylov-type) methods with preconditioner $\mathbb{P}=\operatorname{diag}(\mathbb{E}[[S]])$
- Efficiency depends on the variability of $[S](\xi)$

Steady problem

Solve the nonlinear set of equations

$$
\sum_{l, m} \mathcal{M}_{k l m}\left(\boldsymbol{u}_{l} \boldsymbol{\nabla} \boldsymbol{u}_{m}-\nu_{l} \nabla^{2} \boldsymbol{u}_{m}\right)+\boldsymbol{\nabla} p_{k}=\boldsymbol{f}_{k}, \quad \boldsymbol{\nabla} \cdot \boldsymbol{u}_{k}=0
$$

- Very large problem
- Iterative approach mandatory (Newton-like)
- Construction of approximate tangent operator (matrix-free)
- Derive appropriate preconditioners, e.g. based on time-stepper

Steady Flow around a circular cylinder - Vorticity formulation

Uncertain Reynolds: $\operatorname{Re}=\operatorname{Re}(\xi) \sim L N$ (Median above critical value) stochastic basis:
Wiener-Hermite

Numerical Method:
Newton Iterations (with Unstd. stoch. Stokes prec.)
$\psi-\omega$ formulation + influence matrix for BCs

$$
\boldsymbol{u}(\xi) \nabla \omega(\xi)-\frac{1}{\operatorname{Re}(\xi)} \nabla^{2} \omega(\xi)=0
$$

Centered Finite differences $\mathcal{O}\left(\Delta x^{2}\right)$
Uniform mesh (512 $\times 360$) and direct FFT-based solvers

Convergence of Newton iterates

Wiener-Hermite No $=4$
L_{2} Residual of stochastic equation:
$\boldsymbol{u}(\xi) \nabla \omega(\xi)-\frac{1}{\operatorname{Re}(\xi)} \nabla^{2} \omega(\xi)=0$

Convergence of the mean mode: (first 4 iterations)

First 4 stoch.

Near wake statistics:

Stochastic Galerkin Method

for low-Mach approxmation

With: O. Knio (JHU, Baltimore), H. Najm \& B. Debusschere (SANDIA, Livermore) and R. Ghanem (USC, Los Angeles).

So far we have seen problems with quadratic nonlinearities, but model may involve more general ones [Debusschere et al, 2003]

- Galerkin methods need specific treatment for the projection of nonlinearities
- Projection of nonlinearities can be achieved through:
(1) Non-intrusive projections (but why mixing Galerkin and non-intrusive approaches?)
(2) By means of pseudo-spectral (P-S) calculations
[Debusschere et al, 2004]
- Different (P-S) alternative possible: need be carefully verified to check in particular convergence and consistency.
- Example: Low-Mach number model.

Low-Mach approximation
[Majda and Stehian, 1985]

- Formulation

$$
\begin{aligned}
\frac{\partial \rho}{\partial t} & =\frac{1}{\gamma T} \frac{d P}{d t}+\frac{1}{T}\left(\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} T-\frac{1}{\operatorname{Pr} \sqrt{\mathrm{Ra}}} \boldsymbol{\nabla} \cdot(\kappa \boldsymbol{\nabla} T)\right) \\
\frac{d P}{d t} & =-\gamma \int_{\Omega} \frac{1}{T}\left(\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} T-\frac{1}{\operatorname{Pr} \sqrt{\mathrm{Ra}} \boldsymbol{\nabla} \cdot(\kappa \boldsymbol{\nabla} T)) d \Omega / \int_{\Omega} \frac{1}{T} d \Omega}\right. \\
\frac{\partial \rho u}{\partial t} & =-\frac{\partial \rho u^{2}}{\partial x}-\frac{\partial \rho u v}{\partial y}-\frac{\partial \Pi}{\partial x}+\frac{1}{\sqrt{\mathrm{Ra}}} \Phi_{x} \\
\frac{\partial \rho v}{\partial t} & =-\frac{\partial \rho u v}{\partial x}-\frac{\partial \rho v^{2}}{\partial y}-\frac{\partial \Pi}{\partial y}+\frac{1}{\sqrt{\mathrm{Ra}}} \Phi_{y}-\frac{1}{\operatorname{Pr}} \frac{\rho-1}{2 \epsilon} \\
T & =\frac{P}{\rho}
\end{aligned}
$$

- Main difficulties of stochastic extension:
- Stochastic inverses
- Mass-conservation (mean sense is not enough).

Differentiation of the equation of state, combined with energy equation gives:

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=\frac{1}{\gamma T} \frac{d P}{d t}+\frac{1}{T}\left(\rho \boldsymbol{u} \cdot \nabla T-\frac{1}{\operatorname{Pr} \sqrt{\mathrm{Ra}}} \boldsymbol{\nabla} \cdot(\kappa \boldsymbol{\nabla} T)\right) \\
& \frac{d P}{d t}=-\gamma \frac{\int_{\Omega} \frac{1}{T}\left(\rho \boldsymbol{u} \cdot \nabla T-\frac{1}{\operatorname{Pr} \sqrt{\mathrm{Ra}}} \boldsymbol{\nabla} \cdot(\kappa \nabla T)\right) d \Omega}{\int_{\Omega} \frac{1}{T} d \Omega} \\
& \frac{\partial \rho u}{\partial t}=-\frac{\partial \rho u^{2}}{\partial x}-\frac{\partial \rho u v}{\partial y}-\frac{\partial \Pi}{\partial x}+\frac{1}{\sqrt{\mathrm{Ra}}} \Phi_{x} \\
& \frac{\partial \rho v}{\partial t}=-\frac{\partial \rho u v}{\partial x}-\frac{\partial \rho v^{2}}{\partial y}-\frac{\partial \Pi}{\partial y}+\frac{1}{\sqrt{\mathrm{Ra}}} \Phi_{y}-\frac{1}{\operatorname{Pr}} \frac{\rho-1}{2 \epsilon} \\
& T=\frac{P}{\rho} \\
& + \text { Boundary and Initial Conditions. }
\end{aligned}
$$

- Galerkin Projection

1) insertion of the spectral expansions
2) projection of resulting equations onto the spectral basis:

$$
\begin{cases}\frac{\partial \rho_{k}}{\partial t}=\mathcal{H}_{k} & , \quad \frac{d P_{k}}{d t}=\mathcal{G}_{k} \\ \frac{\partial \rho u_{k}}{\partial t}=\mathcal{X}_{k}-\frac{\partial \Pi_{k}}{\partial x} & , \quad \frac{\partial \rho v_{k}}{\partial t}=\mathcal{Y}_{k}-\frac{\partial \Pi_{k}}{\partial y} \\ T_{k}=\left(\frac{P}{\rho}\right)_{k} & , \quad k=0, \ldots, \mathrm{P}\end{cases}
$$

- Strategy : explicit time scheme

- Evaluation of non-linearities
- Exact enforcement of mass conservation
- Update density and thermodynamic pressure :

$$
\rho_{k}^{n+1}=\rho_{k}^{n}+\Delta t\left(\frac{3}{2} \mathcal{H}_{k}^{n}-\frac{1}{2} \mathcal{H}_{k}^{n-1}\right), \quad P_{k}^{n+1}=P_{k}^{n}+\Delta t\left(\frac{3}{2} \mathcal{G}_{k}^{n}-\frac{1}{2} \mathcal{G}_{k}^{n-1}\right)
$$

- Deduce temperature : $T_{k}^{n+1}=\left(\frac{P}{\rho}\right)_{k}^{n+1}$
- Predictions on momentum :

$$
(\rho u)_{k}^{*}=(\rho u)_{k}^{n}+\Delta t\left(\frac{3}{2} \mathcal{X}_{k}^{n}-\frac{1}{2} \mathcal{X}_{k}^{n-1}\right),(\rho v)_{k}^{*}=(\rho v)_{k}^{n}+\Delta t\left(\frac{3}{2} \mathcal{Y}_{k}^{n}-\frac{1}{2} \mathcal{Y}_{k}^{n-1}\right)
$$

- Correction step • (decoupled elliptic systems)

$$
\begin{array}{ll}
\nabla^{2} \Pi_{k}=\frac{1}{\Delta t}\left[\nabla \cdot(\rho \boldsymbol{u})_{k}^{*}+\left.\frac{\partial \rho_{k}}{\partial t}\right|^{n+1}\right], & \text { where }\left.\frac{\partial \rho_{k}}{\partial t}\right|^{n+1}=\frac{3 \rho_{k}^{n+1}-4 \rho_{k}^{n}+\rho_{k}^{n-1}}{\Delta t} \\
(\rho u)_{k}^{n+1}=(\rho u)_{k}^{*}-\Delta t \frac{\partial \Pi_{k}}{\partial x}, & (\rho v)_{k}^{n+1}=(\rho v)_{k}^{*}-\Delta t \frac{\partial \Pi_{k}}{\partial y} \\
u_{k}^{n+1}=\left(\frac{(\rho u)^{n+1}}{\rho^{n+1}}\right)_{k}, & v_{k}^{n+1}=\left(\frac{(\rho v)^{n+1}}{\rho^{n+1}}\right)_{k}
\end{array}
$$

Pressure solvability and mass conservation :

- Closed Cavity : the pressure solvability constraint is

$$
\int_{\Omega} \frac{\partial \rho_{k}}{\partial t} d \Omega=0, \quad k=0, \ldots, \mathrm{P}
$$

i.e.Global Mass Conservation of each modes

- Mass conservation enforcement: $\frac{\partial \rho_{k}}{\partial t}=\mathcal{H}_{k}$, with

$$
\mathcal{H}_{k}=\frac{1}{\gamma T} \frac{d P_{k}}{d t}+\left[\frac{1}{T}\left(\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} T-\frac{1}{\operatorname{Pr} \sqrt{\operatorname{Ra}}} \boldsymbol{\nabla} \cdot(\kappa \boldsymbol{\nabla} T)\right)\right]_{k}
$$

Well-posedness requires that $d P / d t$ s.t.

Using $\delta \mathcal{P}=\mathcal{S} \mathcal{T}^{-1}$ leads to blow-up. Instead inversion of the true Galerkin product :

$$
\sum_{l} \sum_{m}(\delta \mathcal{P})_{l} \mathcal{T}_{m} C_{i j k}=\sum_{l} \mathcal{A}_{k l}(\delta \mathcal{P})_{l}=\mathcal{S}_{k} \Rightarrow \delta \mathcal{P}=\mathcal{A}^{-1} \mathcal{S}
$$

Boundary conditions : Stochastic temperature distribution on cold wall

- Gaussian, COV $=0.25 \epsilon$
- Correlation length $L_{C}=1$ (exponential kernel);
- KL decomposition.

$$
T_{c}(y, \boldsymbol{\xi}) \approx 1+\epsilon+\sum_{i=1}^{N_{K L}=4} \epsilon \sqrt{\lambda_{i}} f_{i}(y) \xi_{i}
$$

- Galerkin projection of the BC

$$
\begin{array}{r}
\frac{\partial T_{k}}{\partial y}=0, \quad k=0, \ldots, P \quad \text { for } y=0, \text { and } y=1 \\
T_{0}(0, y)=1+\epsilon, \quad T_{0}(1, y)=1-\epsilon \\
T_{k}(0, y)=0, \quad T_{k}(1, y)=\epsilon \sqrt{\lambda_{k}} f_{k}(y) \quad \text { for } k=1, \ldots, \mathrm{~N}_{K L} \\
T_{k}(0, y)=T_{k}(1, y)=0 \quad \text { for } k>\mathrm{N}_{K L}
\end{array}
$$

Validation 1 : Deterministic problem ($\mathrm{No}=0$)

- Convergence with grid resolution $\epsilon=0.6, \mathrm{Ra}=10^{6}$

$N_{x} \times N_{y}$	80×80	120×120	160×160
$\mathrm{Nu}_{a v}$	8.744	8.688	8.651
$\mathrm{Nu}_{\min }$-(hot/cold)	$(1.057-0.663)$	$(1.064-0.677)$	$(1.064-0.691)$
$\mathrm{Nu}_{\max }$-(hot/cold)	$(21.81-14.77)$	$(21.00-15.38)$	$(20.70-15.48)$

- Thermodynamic pressure

Validation 2 : stochastic problem

- Comparison with Boussinesq approximation $\epsilon=0.001$, $\mathrm{No}=2, \mathrm{~N}_{K L}=6$, $\mathrm{Ra}=10^{6}$

	N.B. 80×80	N.B. 140×100	Boussinesq 140×100
$\left\langle\mathrm{Nu}_{\text {av }}\right\rangle$	9.0794	8.9716	8.9729
$\sigma\left(\mathrm{Nu}_{\text {av }}\right)$	2.4993	2.4602	2.4632

Use 120×100 spatial discretization.

Influence of ϵ for $\mathrm{Ra}=10^{6}, C O V=0.25 \epsilon$ and $\mathrm{N}_{K L}=6$.

- Global heat flux and thermodynamic pressure

$\mathrm{No}=1$				
$\epsilon=0.01$	$\left\langle\mathrm{Nu}_{a v}\right\rangle$	$\sigma\left(\mathrm{Nu}_{a v}\right)$	$\langle P\rangle$	$\sigma(P)$
$\epsilon=0.10$	8.990	2.479	0.9999	0.0022
$\epsilon=0.20$	9.018	2.531	0.9959	0.0232
$\epsilon=0.30$	9.055	2.591	0.9833	0.0501
年				
	9.103	2.653	0.9612	0.0819
$\epsilon=0.01$	$\left\langle\mathrm{Nu}_{a v}\right\rangle$	$\sigma\left(\mathrm{Nu}_{a v}\right)$	$\langle P\rangle$	$\sigma(P)$
$\epsilon=0.10$	8.992	2.472	0.9999	0.0022
$\epsilon=0.20$	9.019	2.529	0.9959	0.0232
$\epsilon=0.30$	9.058	2.598	0.9832	0.0538

Influence of $\epsilon\left(\mathrm{Ra}=10^{6}, \mathrm{COV}=0.25 \epsilon, \mathrm{~N}_{K L}=6\right)$

- Standard deviation of T
$\epsilon=0.01$
$\epsilon=0.1$
$\epsilon=0.2$
$\epsilon=0.3$

- Differences between Std-fields of T at $\epsilon=0.01$ and $\epsilon=0.3$.

Electrophoresis
Debusschere et al, Phys. Fluids (2003)

Multi-physics: NS, diffusion convection, electro-osmotic flow, chemistry (finite \& infinite rates).

Uncertainties

- ζ potential (BCs).
- Tension at channel ends.
- Reaction rates.
- Initial conditions.

Spectral UQ

(Galerkin)
Respective influences of \neq uncertainty sources.

Stochastic Particle method
 for stochastic Navier-Stokes equations

With: Omar Knio (Johns Hopkins University, Baltimore).

Lagrangian techniques for Navier-Stokes

Particle methods

- Solve (incompressible) N-S equations in rotational form.
- Theoretically well grounded.
- Deal with complex/moving boundary problems, infinite domains, ...
- Immediate extension to low diffusivity/inviscid flows without requiring stabilisation or flux limiters.
- Handle transport and reactions.

Can we extend particle methods to propagate uncertainty?

2D incompressible Navier-Stokes equations

Rotational Form

$$
\left\{\begin{array}{l}
\frac{\partial \omega}{\partial t}+\nabla \cdot(\boldsymbol{u} \omega)=\nu \Delta \omega \\
\Delta \psi=-\omega \\
\boldsymbol{u}=\nabla \wedge\left(\psi \boldsymbol{e}_{z}\right) \\
\omega(\boldsymbol{x}, 0)=(\boldsymbol{\nabla} \wedge \boldsymbol{u}(\boldsymbol{x}, 0)) \cdot \boldsymbol{e}_{z} \\
\boldsymbol{u}, \omega \rightarrow 0 \text { as }|\boldsymbol{x}| \rightarrow \infty
\end{array}\right.
$$

Velocity kernel (Biot-Savart)

$$
\boldsymbol{u}=\frac{-1}{2 \pi} \mathcal{K} \star \omega=\frac{-1}{2 \pi} \int_{\mathbb{R}^{2}} \mathcal{K}(\boldsymbol{x}, \boldsymbol{y}) \wedge\left(\omega \boldsymbol{e}_{z}\right) d \boldsymbol{y}, \quad \mathcal{K}(\boldsymbol{x}, \boldsymbol{y})=(\boldsymbol{x}-\boldsymbol{y}) /|\boldsymbol{x}-\boldsymbol{y}|^{2}
$$

Particle approximation

Smooth approximation

Particles : position $\boldsymbol{X}_{i}(t)$, circulation $\Gamma_{i}(t)$, core size ϵ :

$$
\omega(\boldsymbol{x}, t)=\sum_{i=1}^{\mathrm{Np}} \Gamma_{i}(t) \zeta_{\epsilon}\left(\boldsymbol{x}-\boldsymbol{X}_{i}(t)\right), \quad \lim _{\epsilon \rightarrow 0} \zeta_{\epsilon}(\boldsymbol{x})=\delta(\boldsymbol{x}) .
$$

Solution technique

Split convection and diffusion processes:

- Convection : transport particles with flow velocity.
- Diffusion : update particle circulations to account for diffusion (Particle Strength Exchange method).

- Zap details

Solution method

Convection step

$$
\frac{d \boldsymbol{X}_{i}}{d t}=\frac{-1}{2 \pi} \sum_{j=1}^{\mathrm{Np}} \Gamma_{j} \mathcal{K}_{\epsilon}\left(\boldsymbol{X}_{i}, \boldsymbol{X}_{j}\right), \quad \frac{d \Gamma_{i}}{d t}=0
$$

- \mathcal{K}_{ϵ} : regularised Biot-Savart kernel.
- Reduce to ODE, but complexity in $\mathcal{O}\left(\mathrm{Np}^{2}\right)$.

Acceleration of velocity computation

- Multipoles expansion $\rightarrow \mathcal{O}(\mathrm{Np})$.
- Particle-mesh techniques:
(1) Project circulations Γ_{i} on an Eulerian mesh.
(2) Solve $\nabla^{2} \Psi=-\omega$ (using FFT based solver for instance).
(3) Interpolate at $\boldsymbol{X}_{\boldsymbol{i}}$ to obtain particle velocities.

Solution method

Integral representation of differential operators

Let $\eta(\boldsymbol{x})$ a radial function such that

$$
\begin{array}{r}
\int_{\mathbb{R}^{2}} x^{2} \eta(\boldsymbol{x}) d \boldsymbol{x}=\int_{\mathbb{R}^{2}} y^{2} \eta(\boldsymbol{x})=2 \\
\int_{\mathbb{R}^{2}} x^{\alpha_{1}} y^{\alpha_{2}} \eta(\boldsymbol{x}) d \boldsymbol{x}=0, \quad 1 \leq \alpha_{1}+\alpha_{2} \leq m+1, \alpha_{1}, \alpha_{2} \neq 2
\end{array}
$$

then for positive integer multi-index β and $\eta_{\epsilon}(\boldsymbol{x}) \equiv \eta(\boldsymbol{x} / \epsilon) / \epsilon^{2}$ we have

$$
\frac{\partial^{|\beta|}}{\partial x_{1}^{\beta_{1}} \ldots \partial x_{d}^{\beta}} f(\boldsymbol{x})=\frac{1}{\epsilon^{|\beta|}} \int\left[f(\boldsymbol{y})+(-1)^{|\beta|+1} f(\boldsymbol{x})\right] \eta_{\epsilon}^{(\beta)}(\boldsymbol{x}-\boldsymbol{y}) d \boldsymbol{y}+\mathcal{O}\left(\epsilon^{m}\right)
$$

Degond \& Mas-Gallic (1989), Eldredge et al (2002).

Solution method

Diffusion term

$$
\frac{d \Gamma_{i}}{d t}=\nu \sum_{j=1}^{\mathrm{N} p} \mathcal{L}\left(\boldsymbol{X}_{i}-\boldsymbol{X}_{j}\right) S\left[\boldsymbol{\Gamma}_{j}-\Gamma_{i}\right]
$$

- Use compact functions η so only particles within a few core-size distances contribute.

Summary

$$
\begin{aligned}
\frac{d \boldsymbol{X}_{i}}{d t} & =\frac{-1}{2 \pi} \sum_{j=1}^{\mathrm{Np}} \Gamma_{j} \mathcal{K}_{\epsilon}\left(\boldsymbol{X}_{i}, \boldsymbol{X}_{j}\right) \\
\frac{d \Gamma_{i}}{d t} & =\nu \sum_{j=1}^{\mathrm{Np}} \mathcal{L}\left(\boldsymbol{X}_{i}-\boldsymbol{X}_{j}\right) S\left[\Gamma_{j}-\Gamma_{i}\right] .
\end{aligned}
$$

Direct spectral expansion : the bad way!

Set both particle positions and circulations as uncertain:

$$
\boldsymbol{X}_{i}(t, \xi)=\sum_{k}\left[\boldsymbol{X}_{i}\right]_{k}(t) \Psi_{k}(\xi), \quad \Gamma_{i}(t, \xi)=\sum_{k}\left[\Gamma_{i}\right]_{k}(t) \Psi_{k}(\xi)
$$

Apply Galerkin projection to particle problem:

$$
\begin{aligned}
\left\langle\Psi_{k}^{2}\right\rangle \frac{d\left[\boldsymbol{X}_{i}\right]_{k}}{d t} & =\frac{-1}{2 \pi} \sum_{j=1}^{\mathrm{Np}}\left\langle\Psi_{k}(\xi) \Gamma_{j}(\xi) \mathcal{K}_{\epsilon}\left(\boldsymbol{X}_{i}(\xi), \boldsymbol{X}_{j}(\xi)\right)\right\rangle, \\
\left\langle\Psi_{k}^{2}\right\rangle \frac{d\left[\Gamma_{i}\right]_{k}}{d t} & =\left\langle\Psi_{k}(\xi) \nu(\xi) \sum_{j=1}^{\mathrm{Np}} \mathcal{L}\left(\boldsymbol{X}_{i}(\xi)-\boldsymbol{X}_{j}(\xi)\right) S\left[\Gamma_{j}(\xi)-\Gamma_{i}(\xi)\right]\right\rangle .
\end{aligned}
$$

- Requires stochastic projection of the kernels.
- Fast algorithms for velocity estimation are impossible.

Untractable problem

Continuous stochastic problem: a better approach Let's go back to the continuous vorticity equation:

$$
\frac{\partial \omega(\xi)}{\partial t}+\boldsymbol{u}(\xi) \nabla \omega(\xi)=\nu(\xi) \nabla^{2} \omega(\xi), \quad \omega(\boldsymbol{x}, t, \xi)=\sum_{k}[\omega]_{k}(\boldsymbol{x}, t) \Psi_{k}(\xi)
$$

The Galerkin projection gives:

$$
\frac{\partial[\omega]_{k}}{\partial t}+\sum_{i, j} C_{i j k}[\boldsymbol{u}]_{i} \nabla[\omega]_{j}=\sum_{i, j} C_{i j k}[\nu]_{i} \nabla^{2}[\omega]_{j}, \quad C_{i j k}=\frac{\left\langle\Psi_{i} \Psi_{j} \Psi_{k}\right\rangle}{\left\langle\Psi_{k}^{2}\right\rangle}
$$

or, since by convention $\Psi_{0}=1 \Rightarrow C_{0 j k}=\delta_{j k}$ and

$$
\frac{\partial[\omega]_{k}}{\partial t}+[\boldsymbol{u}]_{0} \nabla[\omega]_{k}=-\sum_{i \neq 0, j} C_{i j k}[\boldsymbol{u}]_{i} \nabla[\omega]_{j}+\sum_{i, j} C_{i j k}[\nu]_{i} \nabla^{2}[\omega]_{j}
$$

- Stochastic modes are convected with the mean flow $[\boldsymbol{u}]_{0}$.
- Interactions with other modes are treated as source terms using integral approximations (PSE).

Particles with stochastic strengths $\Gamma_{i}(t, \xi)=\sum_{k}\left[\Gamma_{i}\right]_{k}(t) \Psi_{k}(\xi)$.

$$
\begin{aligned}
\frac{d \boldsymbol{X}_{i}}{d t} & =\left[\boldsymbol{U}_{i}\right]_{0}, \\
\frac{d\left[\Gamma_{i}\right]_{k}}{d t}= & -\sum_{j=1}^{\mathrm{Np}} \sum_{l=1}^{\mathrm{P}} \sum_{m=0}^{\mathrm{P}} C_{k l m} S\left\{\mathcal{G}^{X}\left(\boldsymbol{X}_{i}-\boldsymbol{X}_{j}\right)\left(\left[U_{i}\right]_{l}\left[\Gamma_{i}\right]_{m}+\left[U_{j}\right]_{l}\left[\Gamma_{j}\right]_{m}\right)\right. \\
& \left.+\mathcal{G}^{y}\left(\boldsymbol{X}_{i}-\boldsymbol{X}_{j}\right)\left(\left[V_{i}\right]_{l}\left[\Gamma_{i}\right]_{m}+\left[V_{j}\right]_{l}\left[\Gamma_{j}\right]_{m}\right)\right\} \\
& +\sum_{j=1}^{\mathrm{Np}} \sum_{l=0}^{\mathrm{P}} \sum_{m=0}^{\mathrm{P}} C_{k l m} S[\nu]_{l} \mathcal{L}\left(\boldsymbol{X}_{i}-\boldsymbol{X}_{j}\right)\left(\left[\Gamma_{j}\right]_{m}-\left[\Gamma_{i}\right]_{m}\right) \\
{\left[\boldsymbol{U}_{i}\right]_{k} } & =\frac{-1}{2 \pi} \sum_{j=1}^{\mathrm{Np}}\left[\Gamma_{j}\right]_{k} \mathcal{K}_{\epsilon}\left(\boldsymbol{X}_{i}, \boldsymbol{X}_{j}\right) .
\end{aligned}
$$

- Kernels are evaluated only once for all modes.
- Fast algorithms for velocity computation are still possible.
- Formulation is conservative.

Lagrangian formulation

Particle method

Particles with

- deterministic positions,
- stochastic strengths (circulation \& heat).

Time-integration: RK-3

- Particles convected by the mean flow.
- Integral representation of stochastic modes interactions.

Code efficiency

- Stable and diffusion free convection step.
- Fast algorithms for stochastic velocity calculation (e.g. FFT based, multipole expansion): $\mathcal{O}(n \log n)$.
- Conservative method (regridding).

Stochastic equations

$$
\begin{array}{r}
\frac{\partial c}{\partial t}+\boldsymbol{U} \cdot \boldsymbol{\nabla} c=0 \\
c(\boldsymbol{x}, t, \xi)=\exp \left[-\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2} / \pi d^{2}\left\|\boldsymbol{x}_{0}\right\|\right], \quad \boldsymbol{x}_{0}=\boldsymbol{e}_{y} \\
\boldsymbol{U}(\boldsymbol{x}, \xi)=-(1+0.075 \xi) \boldsymbol{x} \wedge \boldsymbol{e}_{z}, \quad \xi \sim U[-1,1]
\end{array}
$$

Discretization

- Particle positions $\boldsymbol{X}_{i}(t), \epsilon=0.025$.
- Particle strengths $C_{i}(t, \xi)=\sum_{k}\left[C_{i}\right]_{k}(t) \Psi_{k}(\xi)$.
- Stochastic basis: Legendre polynomial.
- Stochastic order up to No $=20$.
- RK-3 with $\Delta t=2 \pi / 400$.

Mean and Standard deviation of $c(\boldsymbol{x}, t, \xi)$.

Mean (top row) and standard deviation (bottom row) of the scalar field after 1 revolution (left) and 2 revolutions (right). $\mathrm{No}=20$.

Equations

$$
\begin{array}{r}
\frac{\partial \omega}{\partial t}+\boldsymbol{u} \cdot \nabla \omega=\nu \nabla^{2} \omega \\
\omega(\boldsymbol{x}, t=0)=\frac{\exp \left[-\|\boldsymbol{x}\|^{2} / d\right]}{\pi d}, \\
\nu=0.005+0.0025 \xi, \quad \xi \sim U(-1,1)
\end{array}
$$

Discretization

- $\epsilon=0.05$, remeshing every 10 iterations.
- Simulation for $t \in[0,30], \Delta t=0.02$ with RK-3.
- Velocities computed with particle-mesh scheme $h_{g}=\epsilon$.
- Wiener Legendre expansion with No $=5$.
- Check the invariants of the flow.

Mean and Standard deviation of $\omega(\boldsymbol{x}, t, \xi)$.

Mean (top row) and standard deviation (bottom row) at different times.

Equations

- Evolution of a compact hot patch of air in infinite medium.
- Boussinesq approximation: incompressible Navier-Stokes + buoyancy terms and heat transport equation.
- Uncertainty and the Rayleigh number in the $\mathrm{Ra} \sim U\left[2.10^{5}, 3.10^{5}\right]$.

Discretization

- $\epsilon=1 / 30$.
- Simulation for $t \in[0,28], \Delta t=0.2$ with RK-2.
- Remeshing every 4 iterations: $\mathrm{Np}>200,000$ at the end of the simulation.
- Velocities computed with particle-mesh scheme $h_{g}=\epsilon$.
- Wiener Legendre expansion with up to No $=12$.

Mean and Standard deviation of the temperature field.

Temperature mean (left) and standard deviation (right)at $t=20$.

Mean and Standard deviation of the vorticity field.

Vorticity mean (left) and standard deviation (right)at $t=20$.

