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Detailed Elementary problem Examples Applications

Objectives of the lecture

Show concrete and detailed application on a basic example

Present examples of applications involving more complex models

Highlight efficiency and limitations.
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Deterministic model: Heat equation

Heat equation

Consider the linear steady heat equation in an isotropic two-dimensional domain Ω,
with boundary ∂Ω.

x ∈ Ω 7→ u(x) ∈ R is the temperature field satisfying:

∇ · (ν(x)∇u(x)) = −f (x) + BC

where ν > 0 is the thermal conductivity and f ∈ L2(Ω) is a source term.
We consider homogeneous Dirichlet and Neumann conditions over the respective
portions Γd and Γn of the domain boundary ∂Ω = Γd ∪ Γn, i.e.

u(x) = 0, x ∈ Γd
∂u
∂n

= 0, x ∈ Γn.
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Deterministic model: Heat equation

Weak formulation

Let V be the functionals space on Ω such that:

V = {u ∈ H1(Ω) : u = 0 on Γd},

where H1(Ω) is the Sobolev space of square integrable functionals whose first order
derivatives are also square integrable.
The variational problem is:
Find u ∈ V such that

a(u, v) = b(v) ∀v ∈ V,

where a(u, v) and b(v) are bilinear and linear forms respectively defined as:

a(u, v) ≡
ˆ

Ω
ν(x)∇u(x) ·∇v(x)dx , b(v) ≡

ˆ
Ω

f (x)v(x)dx .
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Deterministic model: Heat equation

P − 1 Finite Element discretization

Let T = {Σ1, . . . ,Σne} be a triangulation of Ω with ne non-overlapping triangular
elements Σi .
The P − 1 finite element space Vh consists in linear functions in each Σl , that are
continuous across inter-element boundaries. A function v ∈ Vh is completely defined
by its values at the mesh nodes, and v can be expressed as

vh(x) =
∑
i∈N

vh
i Φi (x),

where N is the set of nodes which are not lying on Γd and Φi (x) are the shape
functions associated to these nodes.

Vh = span {Φi}i∈N .
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Deterministic model: Heat equation

Γn
Γd Ω

Left: sketch of the domain Ω and decomposition of the boundary ∂Ω into Dirichlet Γd
and Neumann Γn regions. Right: example of a finite-element mesh with 508 elements
and 284 nodes.
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Deterministic model: Heat equation

Discrete equations

The Galerkin formulation in Vh is:

Find ui , i ∈ N such that ∑
i∈N

∑
j∈N

ai,j ui vj =
∑
j∈N

bj vj ,

where
ai,j =

ˆ
Ω
ν(x)∇Φi (x) ·∇Φj (x)dx , bi =

ˆ
Ω

f (x)Φi (x)dx .

The problem can be recast as a system of linear equations a1,1 . . . a1,n
...

. . .
...

an,1 . . . an,n


 u1

...
un

 =

 b1
...

bn

 ,

where n = Card(N ). [a] is a (sparse) symmetric positive definite matrix.
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Stochastic formulation of uncertain problem

Stochastic problem

Consider the case of random conductivity and source term, defined on an abstract
probability space (Θ,Σ,P):

ν → ν(x , θ), f → F (x , θ).

Then, u → U(x , θ) satisfies almost surely the stochastic problem

∇ · (ν(x , θ)∇U(x , θ)) = −F (x , θ) x ∈ Ω

U(x , θ) = 0 x ∈ Γd ,

∂U(x , θ)

∂n
= 0 x ∈ Γn.
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Stochastic formulation of uncertain problem

Weak form of the stochastic problem

The functional space for U(x , θ) will be V ⊗ L2(Θ,P). In other words,

U(·, θ) ∈ V, U(x , ·) ∈ L2(Θ,P),

The variational form of the stochastic problem is:
Find U ∈ V ⊗ L2(Θ,P) such that

A(U,V ) = B(V ) ∀V ∈ V ⊗ L2(Θ,P),

where

A(U,V ) ≡ E [a(U,V )] =

ˆ
Θ

[ˆ
Ω
ν(x , θ)∇U(x , θ) ·∇V (x , θ)dx

]
dP(θ),

and

B(V ) ≡ E [b(V )] =

ˆ
Θ

[ˆ
Ω

F (x , θ)V (x , θ)dx
]

dP(θ).
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Stochastic formulation of uncertain problem

Semi-discrete form

introducing the deterministic discretization in Vh it comes

Uh(x , θ) =
∑
i∈N

Ui (θ)Φi (x) ∈
(
Vh ⊗ L2(Θ,P)

)
.

It shows that the semi-discrete solution consists in n = Card(N ) random variables
Ui (θ). They satisfy∑

i∈N

∑
j∈N

E
[
Ai,j (θ)Ui (θ)Vj (θ)

]
=
∑
i∈N

E [Bi (θ)Vi (θ)], ∀Vi (θ) ∈ L2(Θ,P), i ∈ N ,

where
Ai,j (θ) =

ˆ
Ω
ν(x , θ)∇Φi (x) ·∇Φj (x)dx ,

and
Bi (θ) =

ˆ
Ω

f (x , θ)Φi (x)dx .
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Stochastic formulation of uncertain problem

Stochastic discretization

We assume ν and F parameterized with N independent r.v. ξ = {ξ1 · · · ξN} defined on
(Θ,Σ,P):

ν(x , θ) = ν(x , ξ(θ)), F (x , θ) = F (x , ξ(θ)).

Examples of parameterization will be shown later. The space of second-order random
functionals in ξ is spanned by the Polynomial Chaos basis:

S = span{Ψk (ξ)}k=∞
k=0 = L2(R2, pξ),

where the Ψi ’s form a set of orthogonal multidimensional polynomials in ξ:

〈
Ψi ,Ψj

〉
=

ˆ
Ξ

Ψi (η)Ψj (η)pξ(η)dη = δij

〈
Ψ2

i

〉
.

Provided that ν and F are second-order quantities, they have orthogonal
representations:

ν(x , ξ) =
∞∑

k=0

νk (x)Ψk (ξ), F (x , ξ) =
∞∑

k=0

fk (x)Ψk (ξ).
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Stochastic formulation of uncertain problem

Stochastic discretization

Similarly, the expansion of the discrete solution Uh is

Uh(x , ξ) =
∑
i∈N

( ∞∑
k=0

ui,k Ψk (ξ)

)
Φi (x).

The stochastic expansions are truncated to a finite polynomial order No.
Different orders of truncation may be considered for the conductivity, source and
solution.
For simplicity, we use the same truncation order No. It corresponds to a stochastic
approximation space

SP ≡ span{Ψ0, . . . ,ΨP} ⊂ S, P + 1 =
(No + N)!

No!N!
.
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Stochastic Galerkin projection

Stochastic Galerkin problem

The Galerkin problem is obtained by inserting the expansions of ν, F , Uh and test
functions V ∈ Vh ⊗SP into the variational form of the semi discrete stochastic problem.
This results in:
Find ui,k , i ∈ N and k = 0, . . . , P, such that

∑
i,j∈N

P∑
k,l,m=0

〈Ψk Ψl Ψm〉Ak
i,j ui,l vj,m =

∑
i∈N

P∑
k=0

bk
i vi,k ,

∀vi,k , i ∈ N , k = 0, . . . , P

where

Ak
i,j ≡

ˆ
Ω
νk (x)∇Φi (x) ·∇Φj (x)dx , bk

i ≡
〈

Ψ2
k

〉 ˆ
Ω

fk (x)Φi (x)dx .

It involves n × (P + 1) deterministic quantities
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Stochastic Galerkin projection

Stochastic Galerkin problem

Denote uk :=
(
u1,k . . . un,k

)t ∈ Rn the vector of nodal values of the k -th stochastic
mode of the solution.
With this notation, the Galerkin problem becomes:
Find u0, . . . ,uP such that for all k = 0, . . . , P

P∑
l=0

P∑
m=0

〈Ψk Ψl Ψm〉
[
Al
]

um = bk ,

where the matrix
[
Al] has for coefficients Al

i,j and the vector bk =
(
bk

1 . . . b
k
n
)t .
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Stochastic Galerkin projection

Stochastic Galerkin problem

Denote uk :=
(
u1,k . . . un,k

)t ∈ Rn the vector of nodal values of the k -th stochastic
mode of the solution.
This set of systems can be formally expressed as a single system [A]u = B where the
global system matrix [A] has the block structure, corresponding to: A0,0 . . . A0,P

...
. . .

...
AP,0 . . . AP,P


 u0

...
uP

 =

 b0
...

bP

 .

The matrix blocks are given by:

Ai,j =
P∑

m=0

[
Am] 〈Ψi Ψj Ψm

〉
0 ≤ i, j ≤ P.

The system [A]u = B is called the spectral or Galerkin problem.
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Stochastic Galerkin projection

Solution of Stochastic Galerkin problem

Solution method:

The matrix [A] of the Galerkin problem has a block symmetric structure,
Ai,j = Aj,i , since

〈
Ψi Ψj Ψm

〉
=
〈
Ψj Ψi Ψm

〉
.

The blocks are in fact symmetric because Ak
i,j = Ak

j,i , so the matrix [A] is
symmetric.

Standard solution techniques for (large) symmetric linear systems can be reused.

Due to the size of the system, sparse storage is mandatory, even-though many
blocks are zero.
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Stochastic Galerkin projection

Theoretical comments

Existence and uniqueness of the solution:
Properties of the Galerkin system have been the focus of many works. e.g. [Babuska,2002],

[Babuska, 2005], [Frauenfelder, 2005], [Matthies, 2005]

For Dirichlet boundary conditions, the Galerkin system for stochastic elliptic
problems has a unique solution provided that the random conductivity field
satisfies some probabilistic (sufficient) conditions.

For the deterministic discretization with P − 1 finite-elements, these probabilistic
conditions reduce to

1
ν(x , ξ)

∈ L2(Ξ,PΞ),∀x ∈ Ω

For Neumann boundary conditions only, U(x , ξ) is defined up to an arbitrary
random variable and an integral constraint on the source term is necessary for
homogeneous conditions,

ˆ
Ω

F (x , ξ)dx = 0 a.s.
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Example 1: uniform conductivity

We consider Ω = [0, 1]2, with Dirichlet boundary conditions over 3 edges and a Neumann condition
over the left edge x = 1.

Ω

Γd Γn

Left: computational domain Ω and decomposition of the boundary ∂Ω into Dirichlet Γd and Neumann Γn parts. Right: typical finite-element

triangulation of Ω using 512 elements and 289 nodes.
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Example 1: uniform conductivity

Consider first the case of a uniform deterministic source term and constant random conductivity

F (x, θ) = f (x) = 1, ν(x, θ) = β(θ).

The random conductivity β is assumed to be log-normal, with unit median value β = 1 and
coefficient of variation C ≥ 1.

β is parametrized with a unique normalized Gaussian variable ξ1(θ) so N = 1, and the PC
basis is made of the one-dimensional Hermite polynomials.

β(ξ1) = exp (µβ + σβξ1) , µβ = log
(
β
)

and σβ =
log C
2.85

.

The PC coefficients βk have closed form expressions [Ghanem, 1999]:

β(ξ1) =
∞∑

k=0

βk Ψk (ξ1), βk = exp
(
µβ + σ

2
β/2
) σk

β〈
Ψ2

k

〉 .
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Example 1: uniform conductivity

Stochastic modes of the solution for No = 4
Uh
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Example 1: uniform conductivity

Convergence with the expansion order
β being log-normal, so is its inverse, and the expansion of 1/β is consequently given by:(

1
β

)
k

= exp
(
−µβ + σ

2
β/2
) (−σβ)k〈

Ψ2
k

〉 .

The spectrum of the numerical solution should decay as |σβ |k/k!.

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01
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Normalized spectra of the random solution uh
k at node x = (1, 0.5) as computed using different expansion orders.
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Example 1: uniform conductivity

Convergence of pdf
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Computed probability density functions of Uh at x = (1, 0.5) for different expansion orders No as indicated. Top plot: No = 1, . . . , 6.

Bottom plot: same pdfs in log scale for No = 2, . . . , 6 together with the theoretical pdf.
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Example 2: nonuniform conductivity

Consider the random conductivity field defined as:

ν(x, θ) =

{
ν1(θ), x ≤ 0.5
ν2(θ), x > 0.5

ν1 and ν2 are two independent log-normal random variables with respective medians ν1 and
ν2, and coefficients of variation C1 and C2.

Two normalized Gaussian variables ξ1 and ξ2 are used to parametrize the conductivity field.

The stochastic dimension is N = 2, and the stochastic basis consists of two-dimensional
Hermite polynomials.
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Example 2: nonuniform conductivity

The expansion on SP of the random conductivity field,

ν(x, ξ) =
P∑

k=0

νk (x)Ψk (ξ), (1)

has many zero modes νk (x) (due to the independence over distinct sub-domain). Consequently,
some elementary matrices

[
Al
]

are zero, resulting in a sparse block structure for the Galerkin
system.

The sparsity of the full Galerkin matrix system [A] for No = 4, . . . , 6 (dimS = P + 1 = 15, 21 and 28).
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Example 2: nonuniform conductivity

Expectations (top) and standard deviations (bottom) of Uh for No = 5. Left: two random conductivities (N = 2, P = 20). Right: single

random conductivity (N = 1, P = 5).
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Example 2: nonuniform conductivity
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P = 5).
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Example 2: nonuniform conductivity

Stochastic modes
Ψ0 = ψ0(ξ1)ψ0(ξ2)
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Example 2: nonuniform conductivity

Ψ3 = ψ2(ξ1)ψ0(ξ2) Ψ4 = ψ1(ξ1)ψ1(ξ2) Ψ5 = ψ0(ξ1)ψ2(ξ2)
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Ψ6 = ψ3(ξ1)ψ0(ξ2) Ψ7 = ψ2(ξ1)ψ1(ξ2) Ψ8 = ψ1(ξ1)ψ2(ξ2) Ψ9 = ψ0(ξ1)ψ3(ξ2)
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Modes uk (x) of the stochastic solution for the nonuniform conductivity problem.
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Stochastic Galerkin Method

Flow and transport in porous media

Darcy equation: Example

Convection Dispersion Equation: Example

Navier-Stokes and Multiphysics flows

Incompressible Navier-Stokes eq.: Boussinesq More on solvers

Complex flows: Low-Mach Electrophoresis

Lagrangian Models

Navier-Stokes equations: Example

Convection dispersion equations: Example
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Questions & Discussion
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Darcy Equation with uncertain conductivities

With: A. Ern (CERMICS, ENPC) and J.-M. Martinez (CEA/DEN/DM2S/LGLS).
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Couplex-1 Problem (MoMaS) Darcy flow

2D layered medium with highly contrasted permeabilities.
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Couplex-1 Problem (MoMaS) Darcy flow

Darcy velocity: u = −K∇H.
Hydrodynamic load (m): H = P/ρg + z.
Homogeneous Neumann (HN)
Dirichlet (D) BCs.

∇ · (K∇H) = 0

Uncertain but isotropic permeability tensor K (m/year).

K constant in each layer → uncertainty model with 4 RVs.

Permeabilities are independent.
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Uncertainty model for Permeabilities (in m/year):

Layer Median value Distribution uncertainty level
Dogger 25.23 Uniform ±50%

Clay 3.15 10−6 Log-uniform 1 decade
Limestone 6.31 Uniform ±50%

Marl 3.15 10−5 Log-uniform 1 decade

Parameterization:
KD(ξ1), KC(ξ2), KL(ξ3) and KM (ξ4) with (ξ1, . . . , ξ4) ∼ U[−1, 1]4.

N = 4 dimensional polynomial chaos.

Wiener-Legendre expansion of K and solution H.
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Discretizations

Finite element approximation in space (non-conform P1 element -A. Ern-).

Mesh involves 25,390 elements.

Deterministic problem: [k ]h = f ,
[k ] ∈ Rm×m SPD matrix; h (pressure) and f (rhs) ∈ Rm.

Stochastic problem: [K ](ξ)U(ξ) = f ,

Truncated Wiener-Legendre expansion of [K ] and H:

[K ](ξ) ≈
P∑

k=0

[Kk ]Ψk (ξ), H(ξ) ≈
P∑

k=0

Hk Ψk (ξ), SP = span{Ψ0, . . . ,ΨP}.

Galerkin Projection:〈(
P∑

k=0

[Kk ]Ψk (ξ)

)(
P∑

k=0

Hk Ψk (ξ)

)
,V (ξ)

〉
= 〈f ,V (ξ)〉 ∀V (ξ) ∈ Rm × SP

.
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Spectral problem: Large!
P∑

i=0

P∑
j=0

〈
Ψi Ψj ,Ψk

〉
[Ki ]Hj = 〈f ,Ψk 〉 = fδk,0, k = 0, 1, . . . , P

Large linear system of m × (P + 1) equations.

Sparse multiplication tensorM =
〈
Ψi Ψj ,Ψk

〉
/ 〈Ψk ,Ψk 〉

Galerkin system has a (sparse) block structure, where each block has same
non-zero pattern as the deterministic matrix [k ].
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Structure of Galerkin system:
(examples for No = 3 -left- and N = 5 -right-)

N = 4-P = 35 N = 6-P = 84

N = 8-P = 164 N = 10-P = 285

No = 2-P = 20 No = 3-P = 55

No = 4-P = 126 No = 5-P = 251
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Iterative resolution

Exploit orthogonality of the basis:
〈

Ψ0Ψj ,Ψk
〉

= 〈Ψk ,Ψk 〉 δj,k

Hk = [K0]−1

fδk0 −
P∑

i=1

P∑
j=0

〈
Ψk Ψi Ψj

〉
〈Ψk Ψk 〉

[Ki ]Hj

 .
Jacobi type iterations on modes (mean preconditionner).

[K0] corresponds to deterministic [k ] for mean properties:
re-use deterministic solver (PCG).

Factorize [K0] only once.

Parallel evaluation of the rhs.

Convergence decreases with variability in [K ].

Improved preconditionners for stochastic elliptic problems (including mixed
formulations) [Powell et al., 08-10].
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Couplex-1 Results

No = 4 → P + 1 = 69 stochastic modes
Mean pressure field:

E [H] = 〈H(ξ), 1〉 = H0
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Couplex-1 Results

No = 4 → P + 1 = 69 stochastic modes
Standard-deviation in pressure field:

σ2
H = E

[
(H − H0)2

]
= E

[
(
∑P

k=1 Hk )(
∑P

l=1 Hl )
]

=
∑P

k=1 H2
k 〈Ψk ,Ψk 〉 Return
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Convection dispersion equation

With: J.-M. Martinez (CEA/DEN/DM2S/LGLS) and A. Cartalade (CEA/DEN/DM2S).
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1-D Convection dispersion

Model equation A. Cartalade (CEA)

Concentration C(x , t)

φ
∂C
∂t

= −
∂

∂x

[
qy − (φD0 + λ|q|)

∂C
∂x

]
.

IC and BC: C(x , t = 0) = 0, C(x = 0, t) = 1.
Model parameters:

q > 0 : Darcy velocity (1m/day),
φ : fluid fraction (given in ]0, 1[),
D0 : molecular diffusivity (<< 1),
λ : uncertain hydrodynamic dispersion coefficient.

Uncertainty model

Solution method
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1-D Convection dispersion

Model equation

Uncertainty model

λ follows an uncertain power-law: λ = aφb .

a and b independent random variables.

log10(a) ∼ U[−4,−2] and b ∼ U[−3.5,−1].

a(ξ1) = exp(µ1 + σ1ξ1), b = µ2 + σ2ξ2, ξ1, ξ2 ' U[−1, 1].

λ(x , ξ1, ξ2) ≈
∑

k λk (x)Ψk (ξ1, ξ2)

[Debusschere et al, J. Sci. Comp., 2004]

Solution method
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1-D Convection dispersion

Model equation

Uncertainty model

λ follows an uncertain power-law: λ = aφb .

a and b independent random variables.

log10(a) ∼ U[−4,−2] and b ∼ U[−3.5,−1].

a(ξ1) = exp(µ1 + σ1ξ1), b = µ2 + σ2ξ2, ξ1, ξ2 ' U[−1, 1].

λ(x , ξ1, ξ2) ≈
∑

k λk (x)Ψk (ξ1, ξ2)

[Debusschere et al, J. Sci. Comp., 2004]

Solution method
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1-D Convection dispersion

Model equation

Uncertainty model

Solution method

Wiener-Legendre expansion and Galerkin projection:
C(x , t , ξ1, ξ2) =

∑P
k=0 Ck (x , t)Ψk (ξ1, ξ2).

Spectral convergence in the stochastic space with No.

Finite volume deterministic discretization O(∆x2).

Implicit time scheme O(∆t2) (block tri-diagonal system, mean operator
preconditionner).

upwind stabilization of convection term (velocity is certain).
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Convection dispersion equation results

Expectation & standard deviation at x = 0.5

No = 1→ P + 1 = 3, No = 6→ P + 1 = 145.

Convergence with polynomial order No.
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Convection dispersion equation results

Convergence of pdfs at x = 0.5

t = 10h. t = 15h.
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Convection dispersion equation results

Further uncertainty analysis : quartiles & ANOVA (Sobol)

Return
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Application to the Navier-Stokes equations
Boussinesq model

With: O. Knio (JHU, Baltimore), H. Najm & B. Debusschere (SANDIA, Livermore) and R. Ghanem
(USC, Los Angeles).
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Natural convection Boussinesq approximation

Governing equations

Momentum:
∂u
∂t

+ u ·∇u = −∇p +
Pr
√

Ra
∇2u + Prθy

Mass: ∇ · u = 0

Energy:
∂θ

∂t
+ u ·∇θ =

1
√

Ra
∇2θ

Uncertain boundary conditions
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Natural convection Boussinesq approximation

Governing equations

Uncertain boundary conditions

u = 0 on Γ.

∂θ(x , y = 0, 1)/∂y = 0.

θ(x = 0, y) = 1/2.

θ(x = 1, y , ω) = −1/2 + θ′(y , ω).

〈θ′(y)θ′(y ′)〉 = σ2
θ exp[−|y − y ′|/L], θ′ ∼ N(0, σ2

θ).
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Natural convection Boussinesq approximation

Governing equations

Uncertain boundary conditions
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θ(x = 0, y) = 1/2.

θ(x = 1, y , ω) = −1/2 + θ′(y , ω).

〈θ′(y)θ′(y ′)〉 = σ2
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Natural convection Boussinesq approximation

Governing equations

Uncertain boundary conditions

u = 0 on Γ.

∂θ(x , y = 0, 1)/∂y = 0.

θ(x = 0, y) = 1/2.

θ(x = 1, y , ω) = −1/2 + θ′(y , ω).

〈θ′(y)θ′(y ′)〉 = σ2
θ exp[−|y − y ′|/L], θ′ ∼ N(0, σ2
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Natural convection Boussinesq approximation

Governing equations

Uncertain boundary conditions

u = 0 on Γ.

∂θ(x , y = 0, 1)/∂y = 0.

θ(x = 0, y) = 1/2.

θ(x = 1, y , ω) = −1/2 + θ′(y , ω).

〈θ′(y)θ′(y ′)〉 = σ2
θ exp[−|y − y ′|/L], θ′ ∼ N(0, σ2

θ).
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BC and solution representations

θ′(y , ξ) =
N∑

i=1

√
λi θ̃i (y)ξi =

P∑
k=0

θk (y)Ψk (ξ).

(u, p, θ)(ξ) =
P∑

k=0

(u, p, θ)k Ψk (ξ).

ξi ∼ N(0, 1) −→ Hermite polynomials.

Stochastic dimension N.

Expansion order No −→ P + 1 = (N + No)!/(N!No!).

Galerkin projection

Implementation and solver
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BC and solution representations

Galerkin projection

∂uk

∂t
+

P∑
i,j=0

ui ·∇uj

〈
Ψi Ψj ,Ψk

〉
〈Ψk ,Ψk 〉

= −∇pi +
Pr
√

Ra
∇2uk + Prθk y

∂θk

∂t
+

P∑
i,j=0

ui ·∇θj

〈
Ψi Ψj ,Ψk

〉
〈Ψk ,Ψk 〉

=
1
√

Ra
∇2θk

∇ · uk = 0
P + 1 coupled momentum and energy equations.

P + 1 uncoupled divergence constraints and BCs.

Implementation and solver
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BC and solution representations

Galerkin projection

Implementation and solver

Discretization
Uniform grid, staggered arrangement and 2nd order FD

Semi-explicit second order Adams-Bashford time-scheme

Incompressibility Treatment
Prediction / Projection method [Chorin, 1971]

FFT based solver for the elliptic pressure equations

CPU: essentially projection of uncoupled modes:
Stochastic ' (P + 1) × deterministic.
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Convergence and performance (unsteady solver)

N = 4 ∼ 6 is enough for L ≥ 1/3

No = 3→ relative error on
variance < 10−4

∼ 1000 times more efficient than
MC (LHS)

∼ 10 times more efficient than
NISP + GH quadrature (sparse
grid?)

Parallelization

[olm et al, 2001]
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Parallelization

www.digiteo.fr

Olivier Le Maı̂tre, Jean-Marc Martinez Poster n◦2008-41

Parallel Computing for Uncertainty Quantification and Propagation in Numerical Models

ABSTRACT

Uncertainty Quantification (UQ) is becoming a greater concern as capabilities of numerical
codes is steadily increasing. Indeed, because of ever more complex physical models and
accurate computational methods used, the need for a characterization of uncertainties as-
sociated to incomplete knowledge of models’ data (such as boundary conditions, forcing
terms and various models’ constants) is crucial to assess uncertainty in models output, pre-
dictability, respective impacts of different uncertainty sources and support subsequent deci-
sion making processes.
We solve UQ problems in a probabilistic framework through intrusive stochastic spectral
projections. It amounts to the resolution of a large set of coupled equations, called the spec-
tral problem. The objective of the project is to proposed parallelized computational strategies
for the efficient resolution of the spectral problems.

1 Stochastic spectral methods
Consider a modelM with random data D(θ ∈ Θ) defined on a probability space (Θ, Σ, dµ).
The model output, S(θ), is also a random quantity defined on the same probability space and
with a dependence structure with regards to the data prescribed by the modelM:

M(S(θ); D(θ)) = 0 for almost any θ ∈ Θ.

1.1 Stochastic basis
Let ξ(θ) = {ξ1, . . . , ξN} ∈ Ξ a finite set of independent random variables, defined on
(Θ, Σ, dµ), with known probability density function p. We denote L2(Ξ, p) the space of second
order random functionals in ξ,

S ∈ L2(Ξ, p) : E[S2] =

∫

Θ

S2(θ)dµ(θ) =

∫

Ξ

S2(ξ)p(ξ)dξ < +∞.

Approximations are sought on a finite dimensional subspace SP spanned by an orthonormal
basis and equipped with an inner product based on the expectation operator:

L2(Ξ, p) ⊃ SP = span {Ψ0, . . . , ΨP} , 〈ΨiΨj〉 = δi,j.

1.2 Galerkin projection
We assume a parameterization of the data asD(θ) = D(ξ) and S(ξ) ∈ L2(Ξ, p); the expansion
of S on SP is

S(ξ) ≈
P∑

k=0

SkΨk(ξ) ∈ SP .

The deterministic spectral modes Sk fully characterize the random model output. These
spectral modes solve the spectral problem:

Mi (S0, . . . , SP ; D(ξ)) ≡
〈

M
(

P∑

k=0

SkΨk; D(ξ)

)
Ψi

〉
= 0, i = 0, . . . , P.

1.3 Spectral problems
• Set of P + 1 coupled problems → P + 1 times LARGER than the initial deterministic
problem: CPU times and memory requirements are an issue for large scale modelsM.

• Spectral problem usually inherit mathematical properties ofM: rely on efficient deter-
ministic strategies for the resolution, though adaptations are needed.

• Need for efficient computational procedures: preconditionners and parallelization.

2 Test problem: Navier-Stokes equations
Velocity-vorticity form of the stochastic problem on a 2D domain Ωwith boundary ∂Ω:

u(x, ξ)∇ω(x, ξ) − ν(ξ)∇2ω(x, ξ) = f(x, ξ), (∇ ∧ u) · z = ω, u(x ∈ ∂Ω, ξ) = 0,

for random forcing f(x, ξ) and fluid viscosity ν(ξ).
Spectral problem The non linear problemsMk are

P∑

i=0

P∑

j=0

〈ΨiΨjΨk〉ui∇ωj −
P∑

i=0

〈ν(ξ)ΨiΨk〉 ∇2ωi = 〈fΨk〉 ,

(∇ ∧ uk) · z = ωk, uk(x ∈ ∂Ω) = 0.

Deterministic discretization uses a 256×256mesh (square domainΩ) while typical stochastic
discretizations involves a number of modes P + 1 from few tens to few hundreds.

3 Parallel computation
3.1 Parallelization strategy
An iterative method (Newton-like) is used to yield the solution,
through the resolution of a decoupled set of elementary linear prob-
lems of the form (Le Maı̂tre, Computers and Fluids, 2008):

Pk

(
Sl+1

k

)
= Rk

(
Sl

0, . . . , S
l
k

)
.

Sl
k is the estimate of the k-th spectral mode at the l-th iteration.
Right-hand-sides Rk account for the coupling between modes. The
structure of the coupling is triadic and is illustrated on the plots for
a basis with P + 1 = 210 (top: 3D, bottom: projection).

3.2 Parallel implementation
The stochastic modes Sk are distributed on a set of Np processors
using MPI (Message Passing Interface). Each processor has a subset
of modes {Sk} and corresponding elementary problems are solved
locally in parallel. However, assembly of the right-hand-sides Rk

requires information exchange between processors.

4 Results
Computations are performed on the cluster Platine at CEA-CCRT. The following figure
shows typical CPU-time measurements for the test problem using a stochastic basis with
P + 1 = 210. Plotted is the total time (gree line with triangles) as a function of the number of
processors, which is the sum of communication time (red line with squares) and computa-
tional time (blue line with circles). The computational time accounts for the assembly of the
right-hand-side Rk and resolution of elementary problems Pk(S

l+1
k ) = Rk. Communication

time accounts for the time spent exchanging information between processors for the assem-
bly of the right-hand-side.
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It is seen that the communication time in-
creases roughly linearly with Np, since infor-
mation need be dispatched on a larger num-
ber of processors. On the contrary, compu-
tational time decreases roughly as ∼ 1/Np,
as each processor has less elementary prob-
lems to solve. Overall, the total time first de-
creases with rate ∼ 1/Np, reaches a maximal
efficiency (here for Np ∼ 12), and finally lev-
els out, before increasing as the communica-
tion time becomes dominant (Np > 32). The
increase in the communication time with Np

can be reduced by using MPI communicators
of larger size (i.e. dispatching more informa-
tion at once) but it requires larger memory al-
locations.

5 Conclusion and perspectives
So far, numerical experiments on parallel computing for spectral UQ have shown:

• possible reduction with the number of processors of the computational times for large
stochastic basis, compared to the sequential version of the solver

• the efficiency of the parallelization presents an optimumwith the number of processors
which depends on the memory allocated to the processors (function of the size of the
communicators)

• communication times, for the evaluation of modes interaction terms, are predominant
when the number of processors is large, thus limiting the overall efficiency.

Based on these findings, futur investiagtions should consider

• optimized evaluation of the interaction terms between spectral modes. Specifically, the
distribution of the modes on the different processors should be designed to minimize
the amount of information being communicated while balancing the computation load
over the set of processors

• parallelization based on the decomposition of the physical domain (space). Having the
complete spectral expansion of the solution over spatial sub-domains on a processor
will curcumvent the need of communication as interactions will be treated locally.

These aspects are the focus of on-going developments.

Contacts : Olivier Le Maı̂tre olm@limsi.fr · Jean-Marc Martinez jean-marc.martinez@cea.fr

Structure of 〈Ψl Ψm,Ψk 〉
Distribution of modes resolution

Not scalable with increasing P

assembly of rhs needs too many
communications

load balancing

Domain decomposition?



Detailed Elementary problem Examples Applications

Example of velocity modes Ra = 106, L = 1 − σθ = 0.25.

Uncertainty bars L = 1.
σθ = 0.125 σθ = 0.25 σθ = 0.5

[olm et al, 2002]
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Example of temperature modes Ra = 106, L = 1 − σθ = 0.25.

Heat-transfer density
L = 1 − 6= σθ 6= L − σθ = 0.25

[olm et al, 2002]



Detailed Elementary problem Examples Applications

Some issues stochastic CFD models

1 Bifurcation(s) in the uncertain parameter range:
compromise the convergence of spectral expansions
require piecewise polynomial expansions with eventually an adaptive strategy

2 Existence of multiple solutions
what to we want to measure?
how to force the selection of a given solution branch?
common to any approach of UQ.

Return
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Stochactic spectral solvers
for incompressible Navier-Stokes equations



Detailed Elementary problem Examples Applications

Galerkin projection of the Navier-Stokes Equation:
General form of the problem for mode k

∂uk

∂t
+
∑
l,m

Mklmul∇um = −∇pk +
∑
l,m

Mklmνl∇2um + f k , ∇ · uk = 0

whereMklm := 〈Ψl Ψm,Ψm〉
〈Ψm,Ψm〉

Treatment of the nonlinear part:

explicit treatment, e.g. using un
l ∇un

m

semi-implicit, un
l ∇un+1

m , −→ set of linear unsymmetric coupled problems:
stabilization, ?
other semi-implicit form:∑

l,m

Mklmul∇um

n+1

≈ un
0∇un+1

k +
∑

l>0,m

Mklmun
l ∇un

m

−→ mean-flow based stabilization (e.g. upwinding).
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Stochastic unsteady Stoked problem for mode k

∂uk

∂t
+ ∇pk −

∑
l,m

Mklmνl∇2um = Rk , ∇ · uk = 0

Set of P + 1 coupled Stokes-like problems.
Spatial / time discretization results in a discrete system of the form

AX = B, X = (X 0 . . .X P)T , X k := (uk pk )T

A has a block structure and [A]0<k,l<P has a similar or sparser non-zero pattern than
the deterministic Stokes problem.
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Structure of the Galerkin system:

The Galerkin product tensorM is sparse

(examples for No = 3 -left- and N = 5 -right-)

N = 4-P = 35 N = 6-P = 84

N = 8-P = 164 N = 10-P = 285

No = 2-P = 20 No = 3-P = 55

No = 4-P = 126 No = 5-P = 251
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Resolution of the Galerkin system
Rewrite stochastic Stokes problem as

P∑
l=0

P∑
m=0

Mklm[S]l X m = Bk , for k = 0, . . . , P

where [S](ξ) is the operator resulting from the determinsitic discretization of
continuous stokes problem with a viscosity ν(ξ), so

[S](ξ) =
P∑

l=0

[S]l Ψl (ξ).

Note that [A]km =
∑

lMklm[S]l .
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Resolution of the Galerkin system

P∑
l=0

Mk0m[S]0X m +
P∑

l=1

P∑
m=0

Mklm[S]l X m = Bk , for k = 0, . . . , P
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Resolution of the Galerkin system

[S]0X k = Bk −
P∑

l=1

P∑
m=0

Mklm[S]l X m, for k = 0, . . . , P

Suggest Jacobi type iterations

Factorization of [S]0 = E [[S](ξ)] only

Other iterative (Krylov-type) methods with preconditioner P = diag(E [[S]])

Efficiency depends on the variability of [S](ξ)
[Powell et al, 2009]
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Steady problem
Solve the nonlinear set of equations∑

l,m

Mklm

(
ul∇um − νl∇2um

)
+ ∇pk = f k , ∇ · uk = 0.

Very large problem

Iterative approach mandatory (Newton-like)

Construction of approximate tangent operator (matrix-free)

Derive appropriate preconditioners, e.g. based on time-stepper [olm, 2009]
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Steady Flow around a circular cylinder - Vorticity formulation

Uncertain Reynolds: Re = Re(ξ) ∼ LN
(Median above critical value)
stochastic basis:
Wiener-Hermite

Numerical Method:
Newton Iterations (with Unstd. stoch. Stokes prec.)
ψ − ω formulation + influence matrix for BCs

u(ξ)∇ω(ξ)− 1
Re(ξ)
∇2ω(ξ) = 0.

Centered Finite differences O(∆x2)
Uniform mesh (512× 360) and direct FFT-based solvers
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Convergence of Newton iterates

Wiener-Hermite No = 4
L2 Residual of stochastic equation:

u(ξ)∇ω(ξ)− 1
Re(ξ)
∇2ω(ξ) = 0.

Convergence of the mean mode: (first 4 iterations)
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First 4 stoch. modes: ω(x , ξ) =
∑

k ωk (x)Ψk (ξ)

Near wake statistics:

Return
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Stochastic Galerkin Method
for low-Mach approxmation

With: O. Knio (JHU, Baltimore), H. Najm & B. Debusschere (SANDIA, Livermore) and R. Ghanem
(USC, Los Angeles).
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So far we have seen problems with quadratic nonlinearities, but model may involve
more general ones [Debusschere et al, 2003]

Galerkin methods need specific treatment for the projection of nonlinearities
Projection of nonlinearities can be achieved through:

1 Non-intrusive projections (but why mixing Galerkin and non-intrusive approaches?)
2 By means of pseudo-spectral (P-S) calculations

[Debusschere et al, 2004]

Different (P-S) alternative possible: need be carefully verified to check in particular
convergence and consistency.

Example: Low-Mach number model.
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Low-Mach approximation [Majda and Stehian, 1985]

Formulation
∂ρ

∂t
=

1
γT

dP
dt

+
1
T

(
ρu ·∇T −

1

Pr
√

Ra
∇ · (κ∇T )

)
dP
dt

= −γ
ˆ

Ω

1
T

(
ρu ·∇T −

1

Pr
√

Ra
∇ · (κ∇T )

)
dΩ/

ˆ
Ω

1
T

dΩ

∂ρu
∂t

= −
∂ρu2

∂x
−
∂ρuv
∂y

−
∂Π

∂x
+

1
√

Ra
Φx

∂ρv
∂t

= −
∂ρuv
∂x
−
∂ρv2

∂y
−
∂Π

∂y
+

1
√

Ra
Φy −

1
Pr
ρ− 1

2ε

T =
P
ρ

Main difficulties of stochastic extension: [olm et al., 2004]

Stochastic inverses
Mass-conservation (mean sense is not enough).
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Differentiation of the equation of state, combined with energy equation gives :
[Najm, Knio et al, 1998 & 1999]

∂ρ

∂t
=

1
γT

dP
dt

+
1
T

(
ρu ·∇T −

1

Pr
√

Ra
∇ · (κ∇T )

)

dP
dt

= −γ

´
Ω

1
T

(
ρu ·∇T −

1

Pr
√

Ra
∇ · (κ∇T )

)
dΩ

´
Ω

1
T

dΩ

∂ρu
∂t

= −
∂ρu2

∂x
−
∂ρuv
∂y

−
∂Π

∂x
+

1
√

Ra
Φx

∂ρv
∂t

= −
∂ρuv
∂x
−
∂ρv2

∂y
−
∂Π

∂y
+

1
√

Ra
Φy −

1
Pr
ρ− 1

2ε

T =
P
ρ

+ Boundary and Initial Conditions.
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Galerkin Projection
1) insertion of the spectral expansions
2) projection of resulting equations onto the spectral basis:

∂ρk

∂t
= Hk ,

dPk

dt
= Gk

∂ρuk

∂t
= Xk −

∂Πk

∂x
,

∂ρvk

∂t
= Yk −

∂Πk

∂y

Tk =

(
P
ρ

)
k

, k = 0, . . . , P

Strategy : explicit time scheme
Evaluation of non-linearities
Exact enforcement of mass conservation
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Update density and thermodynamic pressure :

ρ
n+1
k = ρ

n
k + ∆t

(
3
2
Hn

k −
1
2
Hn−1

k

)
, Pn+1

k = Pn
k + ∆t

(
3
2
Gn

k −
1
2
Gn−1

k

)

Deduce temperature : T n+1
k =

(
P
ρ

)n+1

k

Predictions on momentum :

(ρu)∗k = (ρu)n
k + ∆t

(
3
2
X n

k −
1
2
X n−1

k

)
, (ρv)∗k = (ρv)n

k + ∆t
(

3
2
Yn

k −
1
2
Yn−1

k

)
Correction step · (decoupled elliptic systems)

∇2Πk = 1
∆t

[
∇ · (ρu)∗k +

∂ρk
∂t

∣∣∣n+1
]
, where ∂ρk

∂t

∣∣∣n+1
=

3ρn+1
k −4ρn

k +ρ
n−1
k

∆t ,

(ρu)n+1
k = (ρu)∗k −∆t ∂Πk

∂x , (ρv)n+1
k = (ρv)∗k −∆t ∂Πk

∂y

un+1
k =

(
(ρu)n+1

ρn+1

)
k
, vn+1

k =

(
(ρv)n+1

ρn+1

)
k
.
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Pressure solvability and mass conservation :

Closed Cavity : the pressure solvability constraint is
ˆ

Ω

∂ρk

∂t
dΩ = 0, k = 0, . . . , P,

i.e.Global Mass Conservation of each modes

Mass conservation enforcement: ∂ρk
∂t = Hk , with

Hk = 1
γT

dPk
dt +

[
1
T

(
ρu ·∇T − 1

Pr
√

Ra
∇ · (κ∇T )

)]
k

Well-posedness requires that dP/dt s.t.

dP
dt

ˆ
Ω

1
γT

dΩ = (δP)T = −
ˆ

Ω

1
T

(
ρu ·∇T −

1

Pr
√

Ra
∇ · (κ∇T )

)
dΩ = S.

Using δP = ST −1 leads to blow-up. Instead inversion of the true Galerkin
product : ∑

l

∑
m

(δP)l TmCijk =
∑

l

Akl (δP)l = Sk ⇒ δP = A−1S.
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Boundary conditions : Stochastic temperature distribution on cold wall

Gaussian, COV = 0.25ε

Correlation length Lc = 1 (exponential kernel);

KL decomposition.

Tc(y, ξ) ≈ 1 + ε +

NKL=4∑
i=1

ε
√
λi fi (y)ξi .

adiabatic wall

ε

cold w
all T

 =
 1 −

ε
plus stochastic fluctuation

gr
av

ity

ho
t w

al
l T

 =
 1

 +
 

Galerkin projection of the BC

∂Tk

∂y
= 0, k = 0, . . . ,P for y = 0, and y = 1

T0(0, y) = 1 + ε, T0(1, y) = 1− ε

Tk (0, y) = 0, Tk (1, y) = ε
√
λk fk (y) for k = 1, . . . ,NKL

Tk (0, y) = Tk (1, y) = 0 for k > NKL
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Validation 1 : Deterministic problem (No = 0)

Convergence with grid resolutionε = 0.6, Ra = 106

Nx × Ny 80× 80 120× 120 160× 160
Nuav 8.744 8.688 8.651

Numin-(hot/cold) (1.057-0.663) (1.064-0.677) (1.064-0.691)
Numax -(hot/cold) (21.81-14.77) (21.00-15.38) (20.70-15.48)

Thermodynamic pressure

0.95

0.96

0.97

0.98

0.99

1

100 1000 10000 1000001e+06

P
/P

c

Ra

0.6

0.4

0.2

solid lines : [Chenoweth & Paolucci, 1986]
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Validation 2 : stochastic problem

Comparison with Boussinesq approximation ε = 0.001, No = 2, NKL = 6,
Ra = 106

N.B. 80×80 N.B. 140×100 Boussinesq 140×100
〈Nuav 〉 9.0794 8.9716 8.9729
σ(Nuav ) 2.4993 2.4602 2.4632

Use 120×100 spatial discretization.
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Influence of ε for Ra = 106, COV = 0.25ε and NKL = 6.

Global heat flux and thermodynamic pressure

No = 1

ε = 0.01
ε = 0.10
ε = 0.20
ε = 0.30

〈Nuav 〉 σ(Nuav ) 〈P〉 σ(P)
8.990 2.479 0.9999 0.0022
9.018 2.531 0.9959 0.0232
9.055 2.591 0.9833 0.0501
9.103 2.653 0.9612 0.0819

No = 2

ε = 0.01
ε = 0.10
ε = 0.20
ε = 0.30

〈Nuav 〉 σ(Nuav ) 〈P〉 σ(P)
8.992 2.472 0.9999 0.0022
9.019 2.529 0.9959 0.0232
9.058 2.598 0.9832 0.0538
9.108 2.676 0.9609 0.0829

[olm et al, 2004]
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Influence of ε (Ra = 106, COV = 0.25ε, NKL = 6)

Standard deviation of T
ε = 0.01 ε = 0.1 ε = 0.2 ε = 0.3
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Differences between Std-fields of T at ε = 0.01 and ε = 0.3.

[olm et al, 2004]
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Electrophoresis Debusschere et al, Phys. Fluids (2003)

Problem Code structure

Multi-physics: NS, diffusion
convection, electro-osmotic flow,
chemistry (finite & infinite rates).

Uncertainties

ζ potential (BCs).

Tension at channel ends.

Reaction rates.

Initial conditions.

Spectral UQ (Galerkin)

Respective influences of 6=
uncertainty sources.

Return
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Stochastic Particle method
for stochastic Navier-Stokes equations

With: Omar Knio (Johns Hopkins University, Baltimore).
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Lagrangian techniques for Navier-Stokes

Particle methods

Solve (incompressible) N-S equations in rotational form.

Theoretically well grounded.

Deal with complex/moving boundary problems, infinite domains, . . .

Immediate extension to low diffusivity/inviscid flows without requiring stabilisation or flux
limiters.

Handle transport and reactions.

Can we extend particle methods to propagate uncertainty?

Zap determ
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2D incompressible Navier-Stokes equations

Rotational Form 

∂ω

∂t
+ ∇ · (uω) = ν∆ω,

∆ψ = −ω,
u = ∇ ∧ (ψez ),
ω(x, 0) = (∇ ∧ u(x, 0)) · ez
u, ω → 0 as |x| → ∞.

Velocity kernel (Biot-Savart)

u =
−1
2π
K ? ω =

−1
2π

ˆ
R2
K(x, y) ∧ (ωez )dy, K(x, y) = (x − y)/|x − y|2.



Detailed Elementary problem Examples Applications

Particle approximation

Smooth approximation

Particles : position X i (t), circulation Γi (t), core size ε :

ω(x, t) =

Np∑
i=1

Γi (t)ζε(x − X i (t)), lim
ε→0

ζε(x) = δ(x).

Solution technique

Split convection and diffusion processes:

Convection : transport particles with flow velocity.

Diffusion : update particle circulations to account for diffusion (Particle Strength Exchange
method).

Zap details
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Solution method

Convection step

dX i

dt
=
−1
2π

Np∑
j=1

ΓjKε(X i ,X j ),
dΓi

dt
= 0.

Kε : regularised Biot-Savart kernel.

Reduce to ODE, but complexity in O(Np2).

Acceleration of velocity computation

Multipoles expansion→ O(Np).
Particle-mesh techniques:

1 Project circulations Γi on an Eulerian mesh.
2 Solve∇2Ψ = −ω (using FFT based solver for instance).
3 Interpolate at X i to obtain particle velocities.
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Solution method

Integral representation of differential operators

Let η(x) a radial function such that ˆ
R2

x2
η(x)dx =

ˆ
R2

y2
η(x) = 2,ˆ

R2
xα1 yα2η(x)dx = 0, 1 ≤ α1 + α2 ≤ m + 1, α1, α2 6= 2,

then for positive integer multi-index β and ηε(x) ≡ η(x/ε)/ε2 we have

∂|β|

∂xβ1
1 . . . ∂xβd

d

f (x) =
1
ε|β|

ˆ
[f (y) + (−1)|β|+1f (x)]η(β)

ε (x − y)dy +O(εm).

Degond & Mas-Gallic (1989), Eldredge et al (2002).
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Solution method

Diffusion term

dΓi

dt
= ν

Np∑
j=1

L(X i − X j )S
[
Γj − Γi

]
.

Use compact functions η so only particles within a few core-size distances contribute.

Summary
dX i

dt
=

−1
2π

Np∑
j=1

ΓjKε(X i ,X j ),

dΓi

dt
= ν

Np∑
j=1

L(X i − X j )S
[
Γj − Γi

]
.
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Direct spectral expansion : the bad way!

Set both particle positions and circulations as uncertain:

X i (t, ξ) =
∑

k

[X i ]k (t)Ψk (ξ), Γi (t, ξ) =
∑

k

[Γi ]k (t)Ψk (ξ).

Apply Galerkin projection to particle problem:

〈
Ψ2

k

〉 d [X i ]k
dt

=
−1
2π

Np∑
j=1

〈
Ψk (ξ)Γj (ξ)Kε(X i (ξ),X j (ξ))

〉
,

〈
Ψ2

k

〉 d [Γi ]k
dt

=

〈
Ψk (ξ)ν(ξ)

Np∑
j=1

L(X i (ξ)− X j (ξ))S
[
Γj (ξ)− Γi (ξ)

]〉
.

Requires stochastic projection of the kernels.

Fast algorithms for velocity estimation are impossible.

Untractable problem
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Continuous stochastic problem: a better approach Let’s go back to the continuous vorticity
equation:

∂ω(ξ)

∂t
+ u(ξ)∇ω(ξ) = ν(ξ)∇2

ω(ξ), ω(x, t, ξ) =
∑

k

[ω]k (x, t)Ψk (ξ).

The Galerkin projection gives:

∂[ω]k
∂t

+
∑

i,j

Cijk [u]i∇[ω]j =
∑

i,j

Cijk [ν]i∇
2[ω]j , Cijk =

〈
Ψi Ψj Ψk

〉〈
Ψ2

k

〉 ,

or, since by convention Ψ0 = 1⇒ C0jk = δjk and

∂[ω]k
∂t

+ [u]0∇[ω]k = −
∑
i 6=0,j

Cijk [u]i∇[ω]j +
∑

i,j

Cijk [ν]i∇
2[ω]j .

Stochastic modes are convected with the mean flow [u]0.

Interactions with other modes are treated as source terms using integral approximations
(PSE).
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Particles with stochastic strengths Γi (t , ξ) =
∑

k [Γi ]k (t)Ψk (ξ).

dX i

dt
= [U i ]0,

d [Γi ]k
dt

= −
Np∑
j=1

P∑
l=1

P∑
m=0

CklmS
{
Gx (X i − X j )

(
[Ui ]l [Γi ]m +

[
Uj
]

l

[
Γj
]

m

)
+ Gy (X i − X j )

(
[Vi ]l [Γi ]m +

[
Vj
]

l

[
Γj
]

m

)}
+

Np∑
j=1

P∑
l=0

P∑
m=0

CklmS[ν]lL(X i − X j )
([

Γj
]

m − [Γi ]m
)
,

[U i ]k =
−1
2π

Np∑
j=1

[
Γj
]

kKε(X i ,X j ).

Kernels are evaluated only once for all modes.

Fast algorithms for velocity computation are still possible.

Formulation is conservative.



Detailed Elementary problem Examples Applications

Lagrangian formulation

Particle method

Particles with

deterministic positions,

stochastic strengths (circulation & heat).

Time-integration: RK-3

Particles convected by the mean flow.

Integral representation of stochastic modes interactions.

Code efficiency

Stable and diffusion free convection step.

Fast algorithms for stochastic velocity calculation (e.g. FFT based, multipole expansion):
O(n log n).

Conservative method (regridding).
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Results (I) Convection of a passive scalar

Stochastic equations

∂c
∂t

+ U ·∇c = 0,

c(x, t, ξ) = exp
[
−‖x − x0‖2

/πd2‖x0‖
]
, x0 = ey ,

U(x, ξ) = −(1 + 0.075ξ)x ∧ ez , ξ ∼ U[−1, 1].

Discretization

Particle positions X i (t), ε = 0.025.

Particle strengths Ci (t, ξ) =
∑

k [Ci ]k (t)Ψk (ξ).

Stochastic basis: Legendre polynomial.

Stochastic order up to No = 20.

RK-3 with ∆t = 2π/400.
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Mean and Standard deviation of c(x, t, ξ).

Mean (top row) and standard deviation (bottom row) of the scalar field after 1 revolution (left) and 2
revolutions (right). No = 20.
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Results (II) Evolution of a radial vortex

Equations

∂ω

∂t
+ u ·∇ω = ν∇2

ω,

ω(x, t = 0) =
exp[−‖x‖2/d ]

πd
,

ν = 0.005 + 0.0025ξ, ξ ∼ U(−1, 1).

Discretization

ε = 0.05, remeshing every 10 iterations.

Simulation for t ∈ [0, 30], ∆t = 0.02 with RK-3.

Velocities computed with particle-mesh scheme hg = ε.

Wiener Legendre expansion with No = 5.

Check the invariants of the flow.
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Mean and Standard deviation of ω(x, t, ξ).

Mean (top row) and standard deviation (bottom row) at different times.
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Results (III) Natural convection problem

Equations

Evolution of a compact hot patch of air in infinite medium.

Boussinesq approximation: incompressible Navier-Stokes + buoyancy terms and heat
transport equation.

Uncertainty and the Rayleigh number in the Ra ∼ U[2.105, 3.105].

Discretization

ε = 1/30.

Simulation for t ∈ [0, 28], ∆t = 0.2 with RK-2.

Remeshing every 4 iterations: Np > 200, 000 at the end of the simulation.

Velocities computed with particle-mesh scheme hg = ε.

Wiener Legendre expansion with up to No = 12.
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Mean and Standard deviation of the temperature field.

Temperature mean (left) and standard deviation (right)at t = 20.
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Mean and Standard deviation of the vorticity field.

Vorticity mean (left) and standard deviation (right)at t = 20.
Return
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