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Objectives of the lecture

o Show concrete and detailed application on a basic example

o Present examples of applications involving more complex models
o Highlight efficiency and limitations.
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(1) Detailed Elementary problem

o Deterministic model: Heat equation

o Stochastic formulation of uncertain problem
o Stochastic Galerkin projection

(@ Examples
o Example 1: uniform conductivity
o Example 2: nonuniform conductivity

Q Applications
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with boundary 9.

Consider the linear steady heat equation in an isotropic two-dimensional domain €,

X € Q — u(x) € Ris the temperature field satisfying:

V- (v(x)Vu(x)) = —f(x) +BC
where v > 0 is the thermal conductivity and f € L,(Q2) is a source term.
We consider homogeneous Dirichlet and Neumann conditions over the respective
portions 'y and ', of the domain boundary 9Q =Ty Uy, i.e.

0
u(x) =0, xely d

=0, xelp.
an cln

RN Ge



Let V be the functionals space on  such that:

V={ueH(Q):u=00nTg},

where H'(Q) is the Sobolev space of square integrable functionals whose first order
derivatives are also square integrable.

The variational problem is:
Find u € V such that

a(u, v) = b(v) Yvevy,

where a(u, v) and b(v) are bilinear and linear forms respectively defined as:

a(u, v) = /Q VX)VU(X) - TV(X)dx, b(v) = /Q F(X)V(x)dx.
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Let 7 = {X4,..., Xne} be a triangulation of Q with ne non-overlapping triangular
elements X ;.

The P — 1 finite element space V" consists in linear functions in each ¥, that are
continuous across inter-element boundaries. A function v € V" is completely defined
by its values at the mesh nodes, and v can be expressed as

Vi) = > vioi(x),

ieN

where A is the set of nodes which are not lying on 'y and ®;(x) are the shape
functions associated to these nodes.

VI = span{®;};c -

Limsi
] = =

RN Ge



Deterministic model: Heat equation

Left: sketch of the domain © and decomposition of the boundary 6X2 into Dirichlet I'y
and 284 nodes.
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and Neumann I, regions. Right: example of a finite-element mesh with 508 elements




The Galerkin formulation in V" is:
Find u;, i € N such that

iEN jeN
where

DD auvi= by,

jeN

a = /Q HX)VO;(x) - Vo(x)dx, by = /Q £(X)®;(x)dx

The problem can be recast as a system of linear equations

a

, an Uy by
an1

an,n

Un bn
where n = Card(NV). [a] is a (sparse) symmetric positive definite matrix.
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probability space (©, ¥, P):

Consider the case of random conductivity and source term, defined on an abstract

v — v(X,0), f— F(x,0).
Then, u — U(x, 0) satisfies almost surely the stochastic problem

V - (v(x,0)V U(x,0)) = —F(x,0)

xXeQ

U(x,0)=0 xely,

w:() xern_
on
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The functional space for U(x, 0) willbe V ® L>(©, P). In other words,

U(76) € V, U(X7 ) € L2(97 P)a
The variational form of the stochastic problem is:
Find U € V ® Lx(©, P) such that

A(U, V) =B(V)
where

YV eV®Ly(O,P),

A(U,V)=EJa(U, V)] :/ [/ﬂ v(x,0)VU(x,90) - VV(x,e)dx} dP(0),
e
and

B(V) = E[b(V)] = /e [ /Q F(x,0)V(x,0)dx] dP(6).
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introducing the deterministic discretization in V/ it comes

U(x,0) = 3" Ui(0)®i(x) € (vh ® Ly(O, P)) .
ieN
U;(0). They satisfy

It shows that the semi-discrete solution consists in n = Card(\') random variables
D D E[AOUO)V(0)] = > E[B(0)Vi(0)], VVi(0) € La(O, P), i € N,
IEN JeEN

where

ieN

and

Aij(0) = /Q v(X,0)V®;(x) - V&;(x)dx,

B;(6) = /9 f(x, 0)d;(x)dx.
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Stochastic formulation of uncertain problem

We assume v and F parameterized with N independent r.v. £ = {&; - - - é&n} defined on
(97 z? P):

V(x70) = V(X,ﬁ(e)), F(X, 9) = F(X, 5(9))

Examples of parameterization will be shown later. The space of second-order random
functionals in £ is spanned by the Polynomial Chaos basis:

S = span{Vk(&)}i=5° = La(B?, pe),
where the W;’s form a set of orthogonal multidimensional polynomials in &:
Wiw) = [ wimywmpe(nan = 5; (V).

Provided that v and F are second-order quantities, they have orthogonal
representations:

v(x,6) = > uk()Wk(€),  F(x,€) = fi(x)Wx().
k=0 k=0
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Similarly, the expansion of the discrete solution U is

oo
U(x,6) = (Z Ui,k"’k(ﬁ)) ®i(x).
ieEN \k=0

The stochastic expansions are truncated to a finite polynomial order No.

Different orders of truncation may be considered for the conductivity, source and
solution.

For simplicity, we use the same truncation order No. It corresponds to a stochastic
approximation space

. _ (No+N)!
S =span{Vy,...,¥p} CS, P+1= " No!NI'
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The Galerkin problem is obtained by inserting the expansions of v, F, U" and test

functions V € V" @ SP into the variational form of the semi discrete stochastic problem.
This results in:

Find uj «, i € Nand k =0, ..., P, such that

P

P
Z Z <wk"ul\um> A;(,jui,lvj,m = Z Zb’/,(vl.J(7

iJEN k,1,m=0 iEN k=0
YV ks ieN, k=0,...,P
where

A= /Q () VPi(x) - Vi(x)ax, bl = (VF) /Q Fe(X)®i(X)dx.

Itinvolves n x (P + 1) deterministic quantities
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Denote Uy = (Uj k... u,,,k)' € R" the vector of nodal values of the k-th stochastic
mode of the solution.

With this notation, the Galerkin problem becomes:
Find ug, ..., up such thatforallk =0,...,P

M-~

zp: <\|’k‘U/\|/m) |:A’] Um = by,

m=0

|l
o

where the matrix [A'] has for coefficients A] ; and the vector by = (b} ... bk)".

Limsi
i ] = =
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Denote uy := (Uj k. .. u,,,k)’ € R" the vector of nodal values of the k-th stochastic
mode of the solution.
This set of systems can be formally expressed as a single system [A]Ju = B where the
global system matrix [A] has the block structure, corresponding to:

Ao’o P AO,P Ug bo

AP,O I Ap,p Up bp
The matrix blocks are given by:

P
A= [AM(V¥Vm) 0<ij<P.

m=0

The system [A]u = B is called the spectral or Galerkin problem.

Limsi
i ]
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Solution method:

o The matrix [A] of the Galerkin problem has a block symmetric structure,
A=A, since <\V,'\Uj\llm> = <\Uj\|/i\|lm>_

© The blocks are in fact symmetric because Af; = Af

\\i» s0 the matrix [A]is
symmetric.

o Standard solution techniques for (large) symmetric linear systems can be reused.

o Due to the size of the system, sparse storage is mandatory, even-though many
blocks are zero.




Stochastic Galerkin projection

Existence and uniqueness of the solution:

Properties of the Galerkin system have been the focus of many works. eg. (sabuska, 20021,
[Babuska, 2005], [Frauenfelder, 2005], [Matthies, 2005]

o For Dirichlet boundary conditions, the Galerkin system for stochastic elliptic
problems has a unique solution provided that the random conductivity field
satisfies some probabilistic (sufficient) conditions.

o For the deterministic discretization with P — 1 finite-elements, these probabilistic
conditions reduce to

1 = _
o6 e Lp(Z,P=),vyx e Q

o For Neumann boundary conditions only, U(x, &) is defined up to an arbitrary

random variable and an integral constraint on the source term is necessary for
homogeneous conditions,

/ F(x,&)dx =0 a.s.
Q
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Example 1: uniform conductivity

over the left edge x = 1.

Q

We consider Q = [0, 1]?, with Dirichlet boundary conditions over 3 edges and a Neumann condition

triangulation of Q2 using 512 elements and 289 nodes.

Left: computational domain © and decomposition of the boundary 9 into Dirichlet I' y and Neumann ' parts. Right: typical finite-element
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Example 1: uniform conductivity

Consider first the case of a uniform deterministic source term and constant random conductivity
F(x,0) = f(x) =1,

v(x,0) = B(0).
o The random conductivity 3 is assumed to be log-normal, with unit median value 8 = 1 and
coefficient of variation C > 1.

B(&1) = exp (up + 05é1),

O pis parametrized with a unique normalized Gaussian variable £1(6) so N = 1, and the PC
basis is made of the one-dimensional Hermite polynomials.

— log C
g = log (ﬁ) and og =
@ The PC coefficients 3 have closed form expressions [Ghanem, 1999]:

2.85°
B(&1) = iﬁk“’k(&),

k
o
Bk = exp (,ug + 02/2) _B_
k=0

i)
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0000000000000000 00®000000000

1: uniform

Stochastic mod%s of the solution for No = 4
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Convergence with the expansion order

B being log-normal, so is its inverse, and the expansion of 1/ is consequently given by:

—os)k
(5), =oe Coneeetre) T~

The spectrum of the numerical solution should decay as |03/ /k!.

&
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Normalized spectra of the random solution ul'(’ atnode x = (1, 0.5) as computed using different expansion orders.
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Convergence of pdf

10 10 T T T
8 I 4
1k 4
. 8T 7 o eoretical -~
g 2 0.1F
4 - .
i
it
5L | 0.01 [y
1 i
0 0.001 4
0 01 02 03 04 05 06
uh
Computed probability density functions of Uhatx = (1, 0.5) for different expansion orders No as indicated. Top plot: No = 1, . . . , 6.
Bottom plot: same pdfs in log scale for No = 2, . . . , 6 together with the theoretical pdf.
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Consider the random conductivity field defined as:

[ V'(9), x<05
v(x,0) = { V2(8), x> 05

o ' and v? are two independent log-normal random variables with respective medians 7' and
72, and coefficients of variation C' and C2.

@ Two normalized Gaussian variables £ and &, are used to parametrize the conductivity field.

@ The stochastic dimension is N = 2, and the stochastic basis consists of two-dimensional
Hermite polynomials.
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Detailed Elementary problem Examples Applications
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2 . ivity

The expansion on S* of the random conductivity field,

P

v(x,€) = > vk(X)Wk(8), O

k=0
has many zero modes v (x) (due to the independence over distinct sub-domain). Consequently,

some elementary matrices [A’] are zero, resulting in a sparse block structure for the Galerkin
system.

The sparsity of the full Galerkin matrix system [A] for No = 4, . . . , 6 (dim S = P+ 1 = 15,21 and 28).
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2 . ity

Stochastic modes

Vo = vpo(&1)v0(€2)

A R
VA g
y g
g
iy iy A
Sl

Aaﬂy;‘m{}{ 1
vy

y
* 10

Vi = 91(&1)vo(€2) Vo = 9o(&1)¢1(€2)




Detailed Elementary problem Examples
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2: i ivity
Vs = 1po(&1)12(&2)

W3 = ¢2(&1)0(€2) Yy = P1(&1)Y1(&2)

R,

AN
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Vi
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Applications

Vo = 9o(&1)v3(€2)

Ve = P3(&1)v0(€2) V7 = P2(&1)¢1(&2) Vg = P1(&1)v2(€2)
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Stochastic Galerkin Method

Flow and transport in porous media

o Darcy equation:

o Convection Dispersion Equation:

> Example

Navier-Stokes and Multiphysics flows

» Example

o Incompressible Navier-Stokes eq.:
o Complex flows:

» Electrophoresis
Lagrangian Models

o Navier-Stokes equations:

o Convection dispersion equations:

> Example

» Example
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Questions & Discussion

«O» «Fr «=»r <

>
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Darcy Equation with uncertain conductivities

With: A. Ern (CERMICS, ENPC) and J.-M. Martinez (CEA/DEN/DM2S/LGLS).

RN Ge



2D layered medium with highly contrasted permeabilities.

HN Marl Ky HN

Limestone K, D

D
I
-
HN Clay K. |HN
D Dogger K, D
HN
25,000 m

wee9
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HN | Marl

K, HN
| K D Darcy velocity: u=—-KVH.
- . % Hydrodynamic load (m): H=P/pg+z.
wl Clay K. BN Homogeneous Neumann (HN)
‘ Dirichlet (D) BCs.
b Dogger Ko | D
HN
25,000 m B

o Uncertain but isotropic permeability tensor K (m/year).
o K constant in each layer

— uncertainty model with 4 RVs.
o Permeabilities are independent.
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Uncertainty model for Permeabilities (in m/year):

Layer Median value | Distribution | uncertainty level
Dogger 25.23 Uniform +50%
Clay 3.1510°6 Log-uniform 1 decade
Limestone 6.31 Uniform +50%
Marl 3.1510-5 Log-uniform 1 decade
Parameterization:
Kp(&1), Ko(€2), Ki(és) and Ky(&s) with (1, ..., &) ~ U[—1,1]%.
o N = 4 dimensional polynomial chaos.
o Wiener-Legendre expansion of K and solution H.
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Discretizations

o Finite element approximation in space (non-conform P1 element -A. Ern-).
@ Mesh involves 25,390 elements.

o Deterministic problem: [klh = f,
[k] € R™*M SPD matrix; h (pressure) and f (rhs) € R™.
o Stochastic problem: [KI(&)U(g) = f,

o Truncated Wiener-Legendre expansion of [K] and H:

P

[KI(€) = D IKJWk(€), H(E) = > HeWk(§), S' =span{Ws, ..., Wp}.
k=0

k=0

o Galerkin Projection:

<(Z[Kk]w(s)> (Z HNk(&)) : V<e)> = (f, V(&) VV(&) eR"xS".
k=0 k=0

Limsi
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o Spectral problem:

PP
(Wiv;, W) [KilH) = (f, Wk) = fok,o,
=0 =0

Large!

k=0,1,...,P
Large linear system of m x (P + 1) equations.

o Sparse multiplication tensor M = (W;W;, W) / (W, W)

o Galerkin system has a (sparse) block structure, where each block has same
non-zero pattern as the deterministic matrix [].
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Detailed Elementary problem Examples
0000000000000000 000000000000

Structure of Galerkin system:
(examples for No = 3 -left- and N = 5 -right-)

Applications

N=4-P=35 N =6-P =84 No = 2-P =20

N =8-P = 164




Iterative resolution

o Exploit orthogonality of the basis: (Wow;, Wi ) = (W, Wy) 6«

i=1 j=0 (\IlW)

He = [Ko] ™' {féko - Z Z Qvivy), ,]H,} .

o Jacobi type iterations on modes (mean preconditionner).

o [Kp] corresponds to deterministic [k] for mean properties:
re-use deterministic solver (PCG).
o Factorize [Kp] only once.

o Parallel evaluation of the rhs.
o Convergence decreases with variability in [K].

o Improved preconditionners for stochastic elliptic problems (including mixed
formulations) [Powell et al., 08-10].
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No =4 — P+ 1 = 69 stochastic modes
Mean pressure field:

64 colors

339.9252

275.9859
0.001

4.0162

212.0465

196.0617

E[H] = (H(§),1) = Ho
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No =4 — P+ 1 = 69 stochastic modes
Standard-deviation in pressure field:

32 colors

0.1389056

0.1250151

0.1111245

0.9723393F-01

0.8334337E-01

0.69452812-01

0.55562258-01

0.4167169E-01

0.27781126-01

0.13890568-01

0

of =B [(H = Ho)?| =B [(SF_, HO(ZE, H)] = Sy HE (Wi W)




Convection dispersion equation

With: J.-M. Martinez (CEA/DEN/DM2S/LGLS) and A. Cartalade (CEA/DEN/DM2S).

RN Ge



1-D Convection dispersion
Model equation

o Concentration C(x, t)

A. Cartalade (CEA)
aC 3]
¢E B ==
o IC and BC:
o Model parameters:

oC
— (¢Dg + A — .
ay — (Do +Alal) 5
o g > 0: Darcy velocity (1m/day),
o ¢ : fluid fraction (given in ]0, 1]),

C(x,t=0)=0,C(x=0,t) =1.
o Dy : molecular diffusivity (<< 1),

o X : uncertain hydrodynamic dispersion coefficient
Uncertainty model

Solution method

RN Ge



1-D Convection dispersion
Model equation

Uncertainty model

o X follows an uncertain power-law

=)

Solution method
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1-D Convection dispersion

Model equation

Uncertainty model

o )\ follows an uncertain power-law:

o aand b independent random variables.
0 logyp(a) ~ U[—4,—2] and b ~ U[-3.5, —1].

=)

a(&1) = exp(py + 01&1), b= p2 + 0282, &1, &2 ~ U[—1,1]

[ A0 61, €2) = T M(X)Vk(E1, &2)

[Debusschere et al,
Solution method

J. Sci. Comp., 2004]
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1-D Convection dispersion

Model equation

Uncertainty model

Solution method

o Wiener-Legendre expansion and Galerkin projection:
Cx, t,&1,€2) = ko Cu(X, DWk(&1, &2).

o Spectral convergence in the stochastic space with No.

o Finite volume deterministic discretization O(Ax?).

o Implicit time scheme O(A#?) (block tri-diagonal system, mean operator
preconditionner).

o upwind stabilization of convection term (velocity is certain).
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Expectation & standard deviation at x = 0.5

0.16
0.14
0.12

0.1
0.08
0.06
0.04
i 0.02

L L L 0
0 5 10 15 20 25

t (hour)

<c(x=0.5,t)>
6(c(x=0.5,t))

0 5 10 15 20 25
t (hour)

No=1—P+1=3,No=6 =P+ 1=145.

Convergence with polynomial order No.




Convergence of pdfs at x = 0.5

t =10h.

pdf(C)

pdf(C)

pa(C)

pdf(C)
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Further uncertainty analysis : quartiles & ANOVA (Sobol)
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Application to the Navier-Stokes equations

Boussinesq model

(USC, Los Angeles).

With: O. Knio (JHU, Baltimore), H. Najm & B. Debusschere (SANDIA, Livermore) and R. Ghanem
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Governing equations

o Momentum:

o Mass:

ou Pr
— 4+u-Vu=-Vp+ —V2u+Pd
ot * P+ vRa + Py
V-u=0
o Energy: a6 +u- Vo= V26
ay: ot " VRa
Uncertain boundary conditions

RN Ge



Governing equations

Uncertain boundary conditions

Insulated
N @
= 0
= o)
0 1E
£ b g
Insulated




Governing equations

Uncertain boundary conditions

Insulated
N @
E 2 g
z = =
= ]
£ b g
Insulated

ou=0onT.
0 90(x,y =0,1)/0y = 0.

O(x=0,y)=1/2.




Governing equations

Uncertain boundary conditions

Hot wall

ou=0onT.
0 90(x,y =0,1)/0y = 0.
O(x=0,y)=1/2.

Insulated
@
B S
E =
g £
°h g,
Insulated

Ox=1,y,w)=—1/2+06'(y,w).




Governing equations

Uncertain boundary conditions

Hot wall

Insulated
N @
A ou=0onT.
2 % o 94(x,y =0,1)/9y = 0.
>
< — —
g ;_ 0(x=0,y)=1/2.
= Ox=1,y,w)=—1/2+06'(y,w).
Insulated

| O'W)'(Y)) = ofexpl-ly —y'|/L], 6" ~ N(0,5%).




BC and solution representations

N P
0'(y,€) =D VN0i()&i =D 0k(y)Wk(€)
i=1 k=0

P

(U, P, 0)(&) = Z(u7 p; e)kwk(s)

k=0

9 & ~ N(0,1) — Hermite polynomials.
o Stochastic dimension N.

o Expansion order No — P + 1 = (N + No)!/(N!No!).
Galerkin projection

Implementation and solver

RN Ge



BC and solution representations

Galerkin projection
<‘V Vi ‘Vk> 2
- Vu; =-V —V uy + Prb,
+/2:0 T (W, w) '+\/_ ek
aek ’ (Vv w1
+ - Vo, =
,]ZO 1 (Wi, Vi) vRa
V-u,=0
o P+ 1 coupled momentum and energy equations.
o P+ 1 uncoupled divergence constraints and BCs
Implementation and solver J

RN Ge



Detailed Elementary problem Examples
0000000000000000 000000000000

BC and solution representations

Applications

Galerkin projection

Implementation and solver
Discretization
o Uniform grid, staggered arrangement and 2nd order FD
o Semi-explicit second order Adams-Bashford time-scheme
Incompressibility Treatment
o Prediction / Projection method [chorin, 19711
o FFT based solver for the elliptic pressure equations
CPU: essentially projection of uncoupled modes:

Stochastic ~ (P + 1) x deterministic.




Convergence and performance (unsteady solver)
1000 T T

- ,E » o N =4~ 6is enough for L > 1/3
c X - q

2 ol . © No = 3 — relative error on

& - variance < 10—*

5 ot s o ~ 1000 times more efficient than
% ol HD - 2 x] MC (LHS)

23 = . -

E L slope 1 o ~ 10 times more efficient than

2 slope 1.1~ NISP + GH quadrature (sparse
5 p:

. L | grid?)
T R o Parallelization
1 10 100
P

[olm et al, 2001]
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Parallelization

Structure of (W W, W)
o Distribution of modes resolution
o Not scalable with increasing P

o assembly of rhs needs too many
communications

o load balancing

o Domain decomposition?
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Example of velocity modes
MODE 0 Scaled by .S00E+00
T —

Ra=10%L=1 — 0y = 0.25.
MODE 1 Scaled by .300E+01 MODE 3 Scaled by .500E+01 MODE 6 Scaled by .400E+02 MODE 10 Scaled by .400E+02
Uncertainty bars L=1
op = 0.125 op =0.25 op =05
v
2

xu
[olm et al, 2002]
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Example of temperature modes

T_ 0~ [-49TE+00,.496E+00] T_ 1= [0.000E+00,.222E+00]

Heat-transfer density

T_ 3 [~ 714E-01,.670E-01]

T_ 6 [-556E-02,386E-02]

Ra=108,L=1 — oy = 0.25.

T_10- [-.137E-01,.682E-02]

000556 |
| o

000152
000287
000422

[=1- Zo,

PDF(Nu) 01
°© o e o o o o 0.09 R
o & S & b 8 v & 0.08 1
2 T T T T T T 0.07 R
) = 0.06 R
[ A z
T 0.05 9
]
o o 0.04 R
0.03 R
o 0.02 q
z . 0.01 R
o
< o
- -10 5 10 15 20 25 30
o Nu
N
o
N -
o
w 1 1 1 1 1 1
(=]
t al, 2002]

0.00682
0.00389
0.000963
000197
~0.00489
000782
00107
00137




Some issues stochastic CFD models

@ Bifurcation(s) in the uncertain parameter range:

o compromise the convergence of spectral expansions
o require piecewise polynomial expansions with eventually an adaptive strategy
@ Existence of multiple solutions

o what to we want to measure?

o how to force the selection of a given solution branch?
o common to any approach of UQ.




Stochactic spectral solvers
for incompressible Navier-Stokes equations

«O» «Fr «=»r <

>
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Galerkin projection of the Navier-Stokes Equation:
General form of the problem for mode k

ou

aftk + ZMk/mU/VUm =-Vpk+ ZMklmVlvzum +f, V-ug=0
I,m I,m

where My, = YYim,Ym)

Vm,Vm)
Treatment of the nonlinear part:

o explicit treatment, e.g. using ufVup,

o semi-implicit, u;’Vu’,;“, — set of linear unsymmetric coupled problems:
stabilization, ?

o other semi-implicit form:

n+1
> Myt Vum ~ugvut + > Mynulvup,
I,m I>0,m

— mean-flow based stabilization (e.g. upwinding).
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Stochastic unsteady Stoked problem for mode k

ouy
K L Vo —
ot + Vpg

I,m

ZMk/mI//VZUm =Ry, V-ux= 0
Set of P + 1 coupled Stokes-like problems.

Spatial / time discretization results in a discrete system of the form

AX=B, X=(Xo...Xp)", Xy :=(uxpx)"
A has a block structure and [A]o<k, /<p has a similar or sparser non-zero pattern than
the deterministic Stokes problem.
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Detailed Elementary problem Examples Applications
0000000000000000 000000000000

Structure of the Galerkin system:
o The Galerkin product tensor M is sparse
(examples for No = 3 -left- and N = 5 -right-)

N=4-P=35 N =6-P =84 No =2-P =20




Resolution of the Galerkin system
Rewrite stochastic Stokes problem as

P P

> > MumlSiXm =By, fork=0,...,P
1=0 m=0

where [S](&) is the operator resulting from the determinsitic discretization of
continuous stokes problem with a viscosity v(&), so

P
[S1(8) = > _[SIvi(8)

par
Note that [Alxm = 32 Mym[S]/-

RN Ge



Resolution of the Galerkin system

P P P
z Myom[SloXm +
1=0

Z Z Mm[SliXm =Bk, fork=0,...,P
I=1 m=0

RN Ge



Resolution of the Galerkin system

P P

[SloXk =Bk — > _ > Mm[S|iXm, fork=0,...,P
I=1 m=0

o Suggest Jacobi type iterations
o Factorization of [S]y = E [[S](&)] only

o Other iterative (Krylov-type) methods with preconditioner P = diag(E [[S]])
o Efficiency depends on the variability of [S](&)

[Powell et al, 2009]
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Steady problem
Solve the nonlinear set of equations

ZMklm (U/VUm - V/V2um) +Vpxk="Ff, V- uc=0.

I,m

o Very large problem
o lterative approach mandatory (Newton-like)
o Construction of approximate tangent operator (matrix-free)

o Derive appropriate preconditioners, e.g. based on time-stepper [olm, 2009]
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Detailed Elementary problem Examples
0000000000000000 000000000000

Steady Flow around a circular cylinder - Vorticity formulation

Uncertain Reynolds: Re = Re(&) ~ LN

(Median above critical value) -
stochastic basis:

Wiener-Hermite

Numerical Method:
Newton Iterations (with Unstd. stoch. Stokes prec.)
1 — w formulation + influence matrix for BCs

0.05

0.04

0.03

Applications

U(E)Ve(€) — gy V2w(€) = 0.

Centered Finite differences O(Ax?)
Uniform mesh (512 x 360) and direct FFT-based solvers

100




Convergence of Newton iterates

1 T
0.01 - |
Wiener-Hermite No = 4 _oe ]
L, Residual of stochastic equation: S teos| ]
= fe10 | +
u(ﬁ)Vw(E) — #(g)vzw(g) =0. fet2 | ]
1e-14 | 4
e T 4 6 s 10 w2

Convergence of the mean mode: (first 4 iterations)

i ] = =
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First 4 stoch. —====-

k(X)Wk(€)

Near wake statistics:

u, P, pdf

1.2

0.8
06
0.4
0.2

-0.2
-0.4

<ust 3o,
P(u(x)<0) --
pdf(u(x)=0) -~

x/D




Stochastic Galerkin Method

for low-Mach approxmation

(USC, Los Angeles).

With: O. Knio (JHU, Baltimore), H. Najm & B. Debusschere (SANDIA, Livermore) and R. Ghanem
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So far we have seen problems with quadratic nonlinearities, but model may involve
more general ones [Debusschere et al, 2003]
o Galerkin methods need specific treatment for the projection of nonlinearities
o Projection of nonlinearities can be achieved through:
@ Non-intrusive projections (but why mixing Galerkin and non-intrusive approaches?)
@ By means of pseudo-spectral (P-S) calculations

o Different (P-S) alternative possible: need be carefully verified to check in particular
convergence and consistency.

[Debusschere et al, 2004]
o Example: Low-Mach number model.
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Low-Mach approximation [Majda and Stehian, 1985]

o Formulation

op 1 dP n 1 ( 1 )
ot ~Tat ' T Prx/_
U / ! (u vT - v (HVT)) dﬂ// —dQ
a T\’ Pr \/
Apu Apu?  Bpuv  oN 1
—_ = ——— —— — — 4+ ——0,
ot ox oy ox v/Ra
dov. _ _dpwv _0pv® oM 1 o 1p—1
at ox dy 9y  VRa ' Pr 2
r = P
P
o Main difficulties of stochastic extension: [olm et al., 2004]

o Stochastic inverses
o Mass-conservation (mean sense is not enough).
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Differentiation of the equation of state, combined with energy equation gives :
[Najm, Knio etal, 1998 & 1999]

ap 1 dP 1
—_ = u-vVvi — ——V - (kVT
at ST " (” v " ))
1 1
o Ja T (pu- VT - ﬁv-(nvr)) aQ
@ -
fn —dQ
opu _apu2_apuv_ar|Jr L
at ox ay ax  Ra
dov. _ _dpwv _0pv® _Om 1 o 1p—t
at ax ay 9y  vRa ’ Pr 2
r = °F
14
+ Boundary and Initial Conditions.
o =] = S = DA




o Galerkin Projection
1) insertion of the spectral expansions
2) projection of resulting equations onto the spectral basis:

Opk dPc

Bt Coa

Opuk _ _ oMy DpVk _ _ oM
at T ex 0 Tat KT ey

rk=(f) . k=0,...p
P/ k

o Strategy : explicit time scheme
o Evaluation of non-linearities
o Exact enforcement of mass conservation
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o Update density and thermodynamic pressure :

1 3 1
= (G- ) = o (o8- et)
o Deduce temperature : 7,*" (

_ E)I’I+‘|
P )k
o Predictions on momentum :
. 3 1.
(0l = (g + at (G7 — g0

« 3 1
S8 ) o = v+ (e - v
o Correction step - (decoupled elliptic systems)

Vi = 4 [V (pu); +

n+1 n, n—1
Apk n+1 apy |1 3p —4pytp
ot , where =5k =
N * ANy Nl * Ny
(pu)k = (pU)k — At X (Pv)k = (pV)k — At By
un+1 _ (pu)n+1 vn+1 _ (PV)n+1
k - pn+1 ’ k - pn+1
k




Pressure solvability and mass conservation

o Closed Cavity : the pressure solvability constraint is

3]
Pk ga =0, k=0,.
0 Ot
i.e.Global Mass Conservation of each modes

..,P,
o Mass conservation enforcement:

k = Hy, with
1 dP
Hk =37 :'tk + |: (

Prf (kY T))] k
Well-posedness requires that dP/dt s.t
dP

1 1 1
* (577)T:—/7(pu~VT—
QT

—dQ V- (kVT))dQ=S8
dt Jo 4T - ))
Using 67 = ST~ leads to blow-up. Instead inversion of the true Galerkin

ST TOP), TaCik = > Au (6P), = Sk = 6P = A7'S
I m

product : B
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Boundary conditions : Stochastic temperature distribution on cold wall

o Gaussian, COV = 0.25¢
o Correlation length L = 1 (exponential kernel);
o KL decomposition.

Ny =4

Ty, &) m1+et Y eV/Nfi(y)&
i=1

o Galerkin projection of the BC

— =0, k=0,...,P

To(0,y) =1+e¢,
Tc(0,y) =0, Ti(1,¥) = eV Ah(y)

adiabatic wall
o
w
+
—
1]
[
s
2
=
o
=
S

fory=0,andy =1

To(1,y)=1—¢
fOI'k=1,...,NKL

Tk(0,y) =Te(1,y) =0  fork > Nyr

1 1lem pjod

uonenonyy anseyaols snyd
3-T



Validation 1 : Deterministic problem (No = 0)

o Convergence with grid resolutione = 0.6, Ra = 108

N, < N, 80 x 80 120 x 120 760 x 160
Ntz 8.744 5.688 8.651
Num-(hocold) | (1.057-0.663) | (1.064-0.677) | (1.064-0.691)
Numax-(novcold) | (21.81-14.77) | (21.00-15.38) | (20.70-15.48)

o Thermodynamic pressure

1 ¢ 2
SO S
0.99 3
g 0098 %
& i
0.97
\V 0.6
0.96 f\ﬁ/r *
0.95 bromh WL il w il
100 1000 10000100000 1e+06
Ra

ms: [Chenoweth & Paolucci, 1986]
] = =
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Validation 2 : stochastic problem

o Comparison with Boussinesq approximation ¢ = 0.001, No = 2, Ng; = 6,
Ra = 108
N.B. 80x80 | N.B.140x100 | Boussinesq 140x100
(Nuay) 9.0794 8.9716 8.9729
o(Nuay) 2.4993 2.4602 2.4632

Use 120x 100 spatial discretization.
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Influence of ¢ for Ra = 108, COV = 0.25¢ and Ny, = 6.

o Global heat flux and thermodynamic pressure

No=1
(Nugy)  o(Nua) (P) o(P)

e =0.01 8.990 2.479 0.9999  0.0022
e=0.10 9.018 2.531 0.9959  0.0232
e =0.20 9.055 2.591 0.9833  0.0501
e =0.30 9.103 2.653 0.9612 0.0819
No =2
(Nuay) o (Nuay) (P) a(P)
e =0.01 8.992 2.472 0.9999  0.0022
e=0.10 9.019 2.529 0.9959  0.0232
e=0.20 9.058 2.598 0.9832  0.0538
e =0.30 9.108 2.676 0.9609  0.0829

[olm et al, 2004]
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Influence of e (Ra = 108, COV = 0.25¢, N, = 6)

o Standard deviation of T
e = 0.01 e=0.1 e=0.2

0 0 0 o
0 010203040506070809 1 0 010203040506070809 1 0 010203040506070809 1 0 010203040506070809 1

o Differences between Std-fields of T at e = 0.01 and ¢ = 0.3.

-0.0081

[olm et al, 2004]
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Electrophoresis

Problem

Ly

Lx

Debusschere et al, Phys. Fluids (2003)

Code structure

Species

\ Momentum Transport

Electrostatic
Field Solver

Multi-physics: NS, diffusion
convection, electro-osmotic flow,
chemistry (finite & infinite rates).

Uncertainties
o ¢ potential (BCs).
o Tension at channel ends.
o Reaction rates.
o Initial conditions.

Spectral UQ (Galerkin)

Respective influences of #
uncertainty sources.

it
N)
pe)
i)



Stochastic Particle method
for stochastic Navier-Stokes equations

With: Omar Knio (Johns Hopkins University, Baltimore).
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Particle methods

@ Solve (incompressible) N-S equations in rotational form.
O Theoretically well grounded.
O Deal with complex/moving boundary problems, infinite domains, . ..

O Immediate extension to low diffusivity/inviscid flows without requiring stabilisation or flux
limiters.

@ Handle transport and reactions.

Can we extend particle methods to propagate uncertainty?

» Zap determ

Limsi
(=] = = =
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Rotational Form

% + V. (uw) = vAw,
At = —w,

U=V A(yez),

w(x,0) = (V A u(x,0) - e,
u,w—0 as|x| — oco.

Velocity kernel (Biot-Savart)

U= —K+w=
27 “

;—7: /Rz K(X,y) A (wez)dy, K(x,y) = (x = y)/Ix — y[*.
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Smooth approximation

Particles : position X;(t), circulation I';(t), core size € :

Solution technique

Np
w(x, 1) = S Ti(t)Ce(x = Xi(1),  fim Cc(x) = 5(x).
i=1

Split convection and diffusion processes:

@ Convection : transport particles with flow velocity.
method).

o Diffusion : update particle circulations to account for diffusion (Particle Strength Exchange

RN Ge




Convection step

ax _ 1
at

al ar;
2 ;rﬂcs(x"’xj)» -
j=

— =0.
dt
o K. : regularised Biot-Savart kernel.

o Reduce to ODE, but complexity in O(Np?).

Acceleration of velocity computation

o Multipoles expansion — O(Np).
o Particle-mesh techniques:

@ Project circulations I'; on an Eulerian mesh.

@ Solve V2W = —w (using FFT based solver for instance).
@ Interpolate at X; to obtain particle velocities.
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Integral representation of differential operators
Let n(x) a radial function such that

[, Enax = [ ynx) =2
/]Rz X1y 2n(x)dx =0, 1< ar+ap < m+1, a1,00 2,
then for positive integer multi-index 3 and 7 (x) = n(x/¢)/e? we have
18l
8x1'31 .

1 m
oxps ) = Al 1) + (0 1001 (x ~ y)ay + O™

Degond & Mas-Gallic (1989), Eldredge et al (2002).
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Diffusion term

dr; 5
Ttl =vy LX—X)S[r;—T].
j=1
@ Use compact functions n so only particles within a few core-size distances contribute.
Summary N
X S kX x)
dt - 271_ i:1 e R4 VA
ar;
at

Np
v L(Xi— X)S [ — 1]
j=1

RN Ge



Set both particle positions and circulations as uncertain:

Xi(t,€) = D Xl (HWk(€), Tilt,€) = > [T (HWk().
k k

Apply Galerkin projection to particle problem:

. 1 N
(ug) e _ 2—;;<wk(§)r,~(s>rce(xi(s),xi(s))>,
<‘|’i> d[ril,

A

Np
Wk(€)(€) D L(Xi(€) — X;(€)S [1;(€) - Ti(&)] > .
j=1
@ Requires stochastic projection of the kernels.
@ Fast algorithms for velocity estimation are impossible.
Untractable problem
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equation:

Continuous stochastic problem: a better approach Let’s go back to the continuous vorticity
Ow (

) | u(E)Vule) = O VPw(e), wlx b,

=D [l (X HVk(E)
k
The Galerkin projection gives:
a[‘*’]k
ot

+ Z Cik[u]; V[w] = Z Cik[v]; v [w]l, Cik =
inj
or, since by convention Vg

1= Cojk = 5jk and
a["-’]k

+ W Vvl =

(Wi

RGN

= > Cilu], VWl + > Cilv], VP [w,
i#0,j ij

O Stochastic modes are convected with the mean flow [u],
(PSE).

@ Interactions with other modes are treated as source terms using integral approximations

RN Ge



Particles with stochastic strengths I';(¢, &)
ax

2ok Ml (DWk(E).
at = [Ui]O7
dIril, oy x
T = — ZIZZCK/mS{g X X/) ([UI]I[rI]m [ ] [ ]m)
j=1 1=1 m=0
+ gXi- X,) (VLI + Vi1, [T )
Np P
+ > Z CrimSIVLL(X; — X)) ([T, — [Film) »
=1 =0 m=0
Np
Wil = -

o D Ml Ke(Xi, X))
j=1
o Kernels are evaluated only once for all modes

o Fast algorithms for velocity computation are still possible
o Formulation is conservative
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Lagrangian formulation

Particle method
Particles with
Q deterministic positions,

O stochastic strengths (circulation & heat).
Time-integration: RK-3
O Particles convected by the mean flow.

O Integral representation of stochastic modes interactions.

Code efficiency

O Stable and diffusion free convection step.

O Fast algorithms for stochastic velocity calculation (e.g. FFT based, multipole expansion):
O(nlog n).

@ Conservative method (regridding).
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Results (1) Convection of a passive scalar

Stochastic equations

ac
— +U-Vec=0,
ot +
o(x, 1,€) = exp [~lIx — xol*/nIxoll] , X0 = ey,

U(x,€) = —(1+0.0756)x A &;, £ ~ U[—1,1].

Discretization

O Particle positions Xi(t), e = 0.025.

O Particle strengths C;(t, &) = >, [Cil, (H)Wk(E)-
O Stochastic basis: Legendre polynomial.

@ Stochastic order up to No = 20.

o RK-3 with At = 27/400.
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Mean and Standard deviation of c(x, t, £).

8 ! l exacv:I '8 o exac‘j
mputed -------- computed ----
]
—D

0.5 0.5 /X

0 I I L 0 I I I
-1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.
15 T T 15 T T T T T
exact
mputed -

| /—\\p ........ |

05 | q 0.5 |

!

0
-1.5

-1

1
-0.5

0

0.5

1

1.5

0
-1.5

-1

|
-0.5

0

I
0.5

1

1.5

Mean (top row) and standard deviation (bottom row) of the scalar field after 1 revolution (left) and 2
revolutions (right). No = 20.
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Results (I1) Evolution of a radial vortex

Equations

% +u~Vw=uV2w7
_ 2
W, t=0) = exp[— || X|| /d]’
wd
v = 0.005 + 0.0025¢, & ~ U(—1,1).

Discretization

@ e = 0.05, remeshing every 10 iterations.

O Simulation for t € [0, 30], At = 0.02 with RK-3.

O Velocities computed with particle-mesh scheme hy = e.
@ Wiener Legendre expansion with No = 5.

@ Check the invariants of the flow.
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Detailed Elementary problem Examples
0000000000000 000 000000000000
Mean and Standard deviation of w(x, t, £).
2 T T 1 T T T
1.8 computed | computed
. exact: [} exact: t=10 0
1.6 . 1 0.8 .
1.4 a4 s
o o
A 12 = , 08 exact: L]
3 1 - 3
v v
0.8 q 0.4
0.6 B
0.4 B 0.2
0.2 B
0 0
0 0.5 1 1.5 0 0.5 1 1.5
r r
0.16 T T 0.16 T T T
computed computed
exact: o exact: t=10 o
exact . 15 o
0.12 exact a7 0.12 20 &
exact o 25 O
= exact = = exact:t=30 =
g 0.08 £ 0.08
© ©
0.04 0.04
0 ! . 0
0 0.5 1 1.5 0 0.5 1 1.5
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Detailed Elementary problem Examples Applications
0000000000000 000000000000

Results (111) Natural convection problem

Equations

O Evolution of a compact hot patch of air in infinite medium.

O Boussinesq approximation: incompressible Navier-Stokes + buoyancy terms and heat
transport equation.

O Uncertainty and the Rayleigh number in the Ra ~ U[2.10°, 3.10°].

Discretization

e =1/30.

Simulation for t € [0, 28], At = 0.2 with RK-2.

Remeshing every 4 iterations: Np > 200, 000 at the end of the simulation.
Velocities computed with particle-mesh scheme hg = e.

© 0 0 0 ©

Wiener Legendre expansion with up to No = 12.




Detailed Elementary problem Examples Applications
0000000000000 000 000000000000

Mean and Standard deviation of the temperature field.

03 0.1
. 0.0¢
0.2% 0.08
02 0.07
0.06
0.1% 0.05
0.04
01 0.03
0.05 0.0z
0.01

0 0

o 1 2 3 4 0o 1 2 3 4

Temperature mean (left) and standard deviation (right)at ¢t = 20.




Detailed Elementary problem Examples
0000000000000 000 000000000000

Mean and Standard deviation of the vorticity field.

0 1 2 3 4
Vorticity mean (left) and standard deviation (right)at t = 20.

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Applications
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