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Introduction

DG-FEM is a variation of classical FEM Methods where elements are only weakly
coupled. The test functions are polynomial functions on their respective element
and vanish everwhere else. The global solution is therefore not necessarily continu-
ous. Coupling is achieved using a numerical flux between element borders.

This poster aims to present the results of an exploration into the implementation and
properties of DG-FEM methods. A DG-FEM method for the 1D advection equa-
tion was implemented and tested. Higher dimensional and more general diffusion-
advection problems were solved with the help of the Netgen/NGSolve software.

Advection Equation in 1D

Consider the linear advection equation in 1D with periodic boundary conditions

w+ f(u) =0, z€l0,1],
u(—1,t) = u(l,t),
u(z,0) = sin(mx),
where f = au, the exact solution is given by u(z,t) = sin(mx — art). The domain
(—1,1] is divided into K consecutive sub-intervals (elements) of size h := 2. On
each element k, we discretize the differential equation using a nodal spectral galerkin
method with N + 1 Gauss-Lobatto nodes. The elements are coupled by introducing

a numerical flux f*, resulting in a discrete operator £,
K 2

2 y
uy = —EDx(ak) - E/\/l_l[(auk — (au)*)Lf]xf =: Lp(u),

where Lf are the Lagrange polynomials of element k and M, D, are the correspond-
ing mass and differentiation matrices.

With the average operator {u} = “_3“ and the jump operator [u] .= v~ + u™ we
can define the numerical flux

£ = (au)* = {au} +|a

1 —«
2
with a parameter o« > 0. Here, + refers to the exterior of an element, — to the

interior and n* to the corresponding normal vector. This is called upwind flux for
a = 0 and central flux for ae = 1.

[l

In order to solve this semi-discrete problem, we have to decide on a time-stepping
method. Figure 1 shows the eigenvalues of L for N = 16. For a central flux, the
eigenvalues are purely imaginary (which also means there is no dissipation). For
an upwind flux, the eigenvalues also have a real part. It can also be shown that
the magnitude of the largest eigenvalue behaves asymptotically like O(N?) meaning
that heuristically, the time-step At has to be chosen so that At < % where the
constant C' depends on the time-integration method used. Here, a RK4 method
with a suitably small time-step is chosen.

Figure 2 shows that this method converges with order AV 1,
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Figure: Eigenvalues of L;, for N = 16. Figure: Errors for different NV over h.

Netgen/NGSolve

NGSolve is a high performance multiphysics finite element software. It is widely used to analyze
models from solid mechanics, fluid dynamics and electromagnetics. Due to its flexible Python
interface new physical equations and solution algorithms can be implemented easily.

NGSolve takes care of meshing, building the finite element space and the discrete
operators and can efficiently solve the resulting linear systems. Users have to

= Define the problem geometry and boundary conditions.
= Specify a suitable variational formulation of the PDE.
= Time-integrate the resulting discretizations.

In the case of DG methods, NGSolve works with an L? finite element space Vj, con-
sisting of L?-orthogonal element-wise polynomial functions of arbitrary order.

Stationary Diffusion-Advection Equation

Consider now the more general case, D € R, b € C(Q,R?%) and f € L*(Q):
—DAu+V - (bu)=f, ze€QcCR?
u=0, x€ 9.

For w,v € Hi, this can be written in variational formulation as

Alu, v) = /DVqu—/b-qu = /fv = ().

The element-wise DG formulation AP%(u,v) = I(v) for u,v € L? is then given by

APC (4, v) = A% (u,v) + A" (u, v),

A% (u,v) =) /K VuVo — ) /F {nVu}o] =) /F {an}[u]—l—%Z /F ][],
A () ::—Z/KbquJrZ/Fb-nu*v.

with A%/ and A% corresponding to the diffusion and advection term respectively
and a user-definable parameter 5 > 0. Here, K denotes the elements of the mesh
(e.g. triangle, tetrahedon) and F' the faces of those elements.

As in the 1D case we choose an upwind numerical flux u* := b - n{u} + 3|b - n|[u].

Given APY NGSolve constructs a discrete operator A;, and right-hand side I}, such
that the modal coefficients uy, of the solution are given by Ajuy, = 1),

Instationary Diffusion-Advection Equation

Solving the Poisson Equation

Consider the (bi)linear forms AP¢ and [ from above and the time-dependent problem
Ou=DAu+V - (bu)+ f, x €,
u=0, x€od,

with starting condition u(x,0) = ug(x). It's discontinuous Galerkin formulation is

Oy /uv — APY(u,v) + 1(v)

—
=:M (u,v)

NGSolve provides the discretization of M, the mass matrix M, so that the solution
uy, is given by the ODE M, 0uy, = APCuy, + 1,

Using the formulations from before, solving the Poisson equation with NGSolve
—Au = 2y(1 — y) + 33(1 - ZE), (337 y) < [07 1]27
u(z,y) =0, (z,y) € 0[0,1]*

requires specifying a mesh, the linear forms A”¢ and [ and then solving the resulting
inear system. The exact solution is u = z(1 — x)y(1 — y)).

The choice of the parameter 3 is important because if it is chosen too small, AP¢
Is not coercive and the system therefore not solvable. A larger 3 also results in a
smoother solution (Figures 3 and 4).
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Figure: Plot of u, with 5 =2.5, N =1, hy,.. = 0.3. Figure: Plot of u, with 8 =25 N =1, h;,a. = 0.3.

For polygonal geometries the method converges with O(h¥ H1). For other geome-

max

tries, e.g. circles/spheres a geometric error of magnitude O(h) is introduced.

Solving the Time-Dependent Diffusion Advection Equation

Given an initial condition ug we have to advance the semi-discrete system
M0y, = AgGuh + 1y,
iIn time by choosing an appropriate time-stepping method.

For D > 0 and 8 >> 0 the ODE is stiff, meaning implicit methods must be used.
One implicit Euler step for this problem is given by

(M}, + At AP = Myl + 17,
which can be solved efficiently since both M), and A, are sparse matrices.

In a similar fashion, higher-order time-integration methods can be constructed from
singly diagonally implicit Runge-Kutta methods.

Figures 5a-5d show the time-evolution of the diffusion-advection equation for D =
0.05 and b(z,y) = (1 — z,1 — y) with uy = e 32((E-0D)*+(u-01)*
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Figure: Time evolution with At = 0.01, N = 3, hyez = 0.1.



