
ADAPTIVE MESH REFINEMENT
ASGER SØRENSEN, MATIAS FJELDMARK AND NICOLAI RIIS

02623 - The Finite Element Method for Partial Differential Equations

PROBLEM
The goal is to create a partial differential equation
solver that uses an Adaptive Mesh Refinement (AMR)
algorithm. The adaptive algorithm attempts to refine
the mesh only in necessary areas reducing the needed
computation time and degrees of freedom. This is done
by using a special error estimator and then refining
only elements in which the estimated error is larger
than a set tolerance.
Additionally, we show another use of FEM other than
solving PDEs, namely compressing images.

METHOD
Short overview of the AMR algorithm:
1) Create initial mesh
2) Solve BVP with FEM for initial mesh
3) Refine mesh uniformly and mark all elements
4) While there are marked elements

- Solve BVP w. FEM for refined mesh
- Estimate change in error
- Mark elements where error > tolerance
- Locally refine marked elements

IMAGE COMPRESSION USING AMR

Initial structured mesh

0 100 200 300 400 500
0

50

100

150

200

250

300

350

AMR-Mesh - 19278 nodes Approximation

Initial non-structured mesh

0 100 200 300 400 500
0

50

100

150

200

250

300

350

AMR-mesh - 22258 nodes Approximation

Applications of FEM are not restricted to solving partial differential equations. The AMR-algorithm has here been
used to compress a grayscale image. The above image with 385 · 598 = 230230 pixels has been compressed using
the adaptive FEM. For the structured mesh this gives a compression of 74.88% and for the non-structured mesh
71%. The algorithm creates a fine mesh in areas with large changes in pixel values and a coarse mesh in areas with
small changes as seen above.

REFINING ELEMENTS

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

⇒
0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

⇒
0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

⇒
0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

⇒
0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

⇒
0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

To preserve order in the meshgrid, we have constructed
the algorithm so that an edge in an element never has
two neighbouring elements. In the figures we see how
we do a local refinement of the green element. To pre-
serve the order this requires the red element to be re-
fined, which in turn requires the blue element to be
refined. This is done recursively so that the original
green element is refined last and finally a local refine-
ment is completed, and no edge neighbours two ele-
ments.

ERROR ESTIMATE
The AMR algorithm needs an error estimator to mark
elements for refinement.
One can approximate volume below an element as

vol(û(ei)) ≈
∆

3
(û1 + û2 + û3)

where ∆ is the area of ei.

The element ei is refined into, say, e(1)i , . . . , e
(N)
i .

The change in volume is used as an error estimate

∆erri =

∣∣∣∣∣vol(û(ei))−
N∑

k=1

vol(û(e
(k)
i ))

∣∣∣∣∣
Elements where ∆erri > tol are then marked.

SOLVING PDE’S USING AMR AND FEM
PDE problem with Dirichlet Boundary condition

∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y) = 4xye−x2−y2

(y2 + x2 − 3) (x, y) ∈ Ω

u(x, y) = −xye−x2−y2

(x, y) ∈ Γ

Approximation of u(x, y) using an adaptive mesh grid for the Finite Element Method.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

3

4

x

y

−2

−1

0

1

2

−2

0

2

4
−0.2

−0.1

0

0.1

0.2

xy

û(
x,

y)

Areas with high curvature gets more refined than areas with lower curvature.
This saves storage space and computation time compared to uniform refinement methods.

PERFORMANCE

DOF vs. true error

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

Degrees of Freedom

E
rr

or

 

 

Adaptive Refinement
Uniform Refinement

Time vs. true error

0 1 2 3 4 5
−3

−2

−1

0

1

Time (s)

lo
g(

E
rr

or
)

 

 

Adaptive Refinement
Uniform Refinement

In the figures we see how the adaptive al-
gorithm compares to a uniform refinement
algorithm. We see that the two algorithms
do nearly the same until a certain point
at which the adaptive algorithm starts out-
performing the uniform refinement, in re-
spect to both time spent and degrees of free-
dom used. This is due to our very coarse
starting mesh from which the AMR actu-
ally has to refine every single element. The
difference between the two algorithms hap-
pens when the AMR starts only refining
specific elements.


