Spectral/hp-FEM for the Helmholtz, Poisson and Laplace Equations in 1D/2D

David Scott Winterrose* s123821@student.dtu.dk
*Technical University of Denmark (DTU)

Spectral/hp-FEM

Linear interpolants are easy to use and implement, but offer only algebraic h-refinement convergence One option is to use piecewise P-order polynomials as basis functions for the approximating solution. This approach opens a new avenue of convergence, namely the p-type, where the order P is increased.

There are two interchangeable ways for representing an approximation locally on any triangular element Modal representation by Proriol's orthonormal basis for the P-order polynomial space
$\phi_{m}(r, s)=\sqrt{2}(1-s)^{j} P_{i}^{(0,0)}\left(2 \frac{1+r}{1-s}-1\right) P_{j}^{(2 i+1,0)}(s)$
on the triangle T given by $-1 \leq r, s$ and $r+s \leq 0$ where the index is $m=j+(P+1) i+1-\frac{1}{2} i(i-1)$ with $0 \leq i, j$ and $i+j \leq P$ being valid subindices. Nodal representation by Lagrange polynomials

$$
\hat{u}(r, s)=\sum_{k=1}^{M_{P}} \hat{u}_{k} N_{k}^{(n)}(r, s), \quad(r, s) \in T
$$

defined by $M_{P}=\frac{1}{2}(P+1)(P+2)$ interpolation nodes $\left\{\left(r_{n}, s_{n}\right)\right\}_{n=1}^{M_{P}}$ adequately placed on the triangle T.

The cardinal property of the interpolating functions establishes a linear relationship between these forms. It is given by the generalized Vandermonde matrix

$$
(\mathcal{V})_{n, m}=\phi_{m}\left(r_{n}, s_{n}\right)
$$

with derivatives defined by

$$
\begin{aligned}
& \left(\mathcal{V}_{r}\right)_{n, m}=\phi_{m, r}\left(r_{n}, s_{n}\right) \\
& \left(\mathcal{V}_{s}\right)_{n, m}=\phi_{m, s}\left(r_{n}, s_{n}\right)
\end{aligned}
$$

To take this from T to any triangular element E_{n} one applies the transfinite interpolation formula

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=-\frac{r+s}{2}\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]+\frac{1+r}{2}\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]+\frac{1+s}{2}\left[\begin{array}{l}
x_{3} \\
y_{3}
\end{array}\right]
$$

Spectral elements

Elemental contributions can be computed exactly by exploiting orthonormality

$$
\begin{aligned}
\int_{E_{n}} N_{i}^{(n)} N_{j}^{(n)} d \mu & =J_{n}\left(\left(\mathcal{V} \mathcal{V}^{T}\right)^{-1}\right)_{i, j} \\
\int_{E_{n}}\left(N_{i}^{(n)}\right)_{x}\left(N_{j}^{(n)}\right)_{x} d \mu & =J_{n}\left(\mathcal{D}_{x}^{T}\left(\mathcal{V} \mathcal{V}^{T}\right)^{-1} \mathcal{D}_{x}\right)_{i, j} \\
\int_{E_{n}}\left(N_{i}^{(n)}\right)_{y}\left(N_{j}^{(n)}\right)_{y} d \mu & =J_{n}\left(\mathcal{D}_{y}^{T}\left(\mathcal{V} \mathcal{V}^{T}\right)^{-1} \mathcal{D}_{y}\right)_{i, j}
\end{aligned}
$$

where the matrices \mathcal{D}_{x} and \mathcal{D}_{y} are

$$
\begin{aligned}
& \mathcal{D}_{x}=r_{x} \mathcal{V}_{r} \mathcal{V}^{-1}+s_{x} \mathcal{V}_{s} \mathcal{V}^{-1} \\
& \mathcal{D}_{y}=r_{y} \mathcal{V}_{r} \mathcal{V}^{-1}+s_{y} \mathcal{V}_{s} \mathcal{V}^{-1}
\end{aligned}
$$

and J_{n} is the Jacobian of the transform $T \rightarrow E_{n}$.

Strong and weak formulations

The Helmholtz, Poisson and Laplace equations can be approached via the general strong form

$$
\begin{aligned}
\left(\lambda_{1} u_{x}\right)_{x}+\left(\lambda_{2} u_{y}\right)_{y}-k u & =-q & & \text { in } \quad \Omega \\
u & =f & & \text { on } \quad \partial \Omega
\end{aligned}
$$

The weak form of this is to find u such that

$$
\int_{\Omega}\left(\lambda_{1} u_{x} v_{x}+\lambda_{2} u_{y} v_{y}\right)+k u v d \mu=\int_{\Omega} q v d \mu
$$

is satisfied for any test function $v \in H_{0}^{1}(\Omega)$.

Convergence rates

We test h and p-type rates on two trial problems In 1 D on $u^{\prime \prime}(x)=e^{4 x}$ in $(-1,1)$ with $u(\pm 1)=0$, and in 2D on a Poisson equation BVP given by

$$
\begin{aligned}
u_{x x}+u_{y y} & =-q & \text { in } \quad\left(0, \frac{2}{3} \pi\right)^{2} \\
u(x, y) & =\cos \left(x^{2}+y^{2}\right) & \text { on } \quad \partial\left(0, \frac{2}{3} \pi\right)^{2}
\end{aligned}
$$

with $q(x, y)=4 \sin \left(x^{2}+y^{2}\right)+4\left(x^{2}+y^{2}\right) \cos \left(x^{2}+y^{2}\right)$ Successive h-refinement is by mesh equipartitioning.

Figure 1: Convergence by equipartitioning the interval $[-1,1]$. Sample plot: Order $P=3$ with 2^{4} elements.

Figure 2: Convergence by equipartitioning the square $\left[0, \frac{2}{3} \pi\right]^{2}$. Sample plot: Order $P=2$ with 2^{7} (left) and 2^{9} (right) elements. Convergence by h-refinement is algebraic with the order depending on P, whereas p-type is exponential with rate depending on h.

Flow surrounding a cylinder

Figure 3: Weights (red) of an order $P=2$ approximation to ϕ with the vertex nodes connected. Error is shown in Figure 4.

As an illustration of both strengths and weaknesses of the $h p$-FEM, we consider a Laplace equation BVP corresponding to a fluid flow velocity potential ϕ surrounding an infinite cylinder

$$
\begin{aligned}
\phi_{x x}+\phi_{y y} & =0 & & \text { in } \quad \Omega \\
\phi(x, y) & =\left(1+\left(R^{2} / r^{2}\right)\right) x & & \text { on } \quad \Gamma
\end{aligned}
$$

where Ω is an annulus with inner radius $R=0.25$ and outer boundary Γ of radius $r=1$.

Geometry and p-convergence

Figure 4: Convergence by mesh refinement near the cylinder. Refinements are the same for each order P

Failure to accurately represent the BVP geometry adds error that can only be lessened by h-refinement. Increasing P adds flexibility in existing elements, but does not lessen error due to a curved geometry. Nodes are added, but the mesh remains unchanged. Thus p-convergence can not replace h-refinement. This is illustrated by the flow surrounding a cylinder, the behaviour of total error is shown in Figure 4. Increasing P without refinement causes higher error.

In general, h and p-types must be combined to have full effect.

