
Reduced order model preconditioning for Finite Element Methods
Bastian Schmidt Jørgensen*, Martin Sæbye Carøe*

*Technical University of Denmark (DTU)

Introduction
When using the finite element method to solve PDE problems, one needs to
solve a large system Ax = b, where A is a large sparse and square ma-
trix. We will use the Conjugate Gradient method with Preconditioning (PCG)
and compare different preconditioners for solving the heat equation in 2D. The
preconditioners that we consider are based on Reduced Order Models (ROMs)
where the problem is projected onto a small subspace, where solving the prob-
lem using a direct method is inexpensive.

Model
We consider the following test problem from [1] of solving the heat equation in
2D on a square domain, Ω = [−2.5, 5.1]× [−4.8, 1.1]. Let Γ2 be the lower and
left edges and let Γ1 be the upper and right edges. The model equations are

∆u = 2 sin(x) sin(y) inΩ
du

dn
= n · ∇ sin(x) sin(y) for (x, y) ∈ Γ1

u(x, y) = sin(x) sin(y) for (x, y) ∈ Γ2

(1)

where d
dn

is the normal derivative. One can derive a weak formulation of the
problem on the form.

a(u, v) = l(v) for all v ∈ H̃(Ω).

where a, b and H(Ω) depend on the specifics of the problem. We obtain a
symmetric positive definite matrix A ∈ RM×M of elements aij = a(Ni, Nj)
and a right hand side b ∈ RM of elements bi = l(Ni) where {Ni}M

i=1 is a set of
piecewise linear and continuous basis functions on a uniform grid of Ω with M
nodes. We thus obtain a sparse system Ax = b.

Preconditioned Conjugate Gradient (PCG)
The CG algorithm for solving Ax = b with preconditioner [3],[4], M , finds

x(k) = argminy∈Kk
(y − x)T Ã(y − x),

where Kk = span{b̃, Ãb̃, Ã2b̃, . . . , Ãk−1b̃}, Ã = M−1A and b̃ = M−1b.
The idea with preconditioning is to choose M so that κ(Ã) << κ(A). This will
ensure faster convergence. M = I will yield the normal CG algorithm. Ideally
M−1 should resemble A−1 while being ”cheap”.

A ROM-Based preconditioner
We will construct a preconditioner by choosing an ONB P = [p1, . . . , pm] for
a small subspace, P close to where we expect the true solution to be. The
preconditioner is based on the fact that computing that P TAP resembles the
operator A on P , and that the inverse of P TAP is cheap. The details are given
in [2] p. 1165. We can construct P by computing approximations to the first m
left singular vectors of a matrix X whose columns are approximate solutions of
the system. We will use previous iterates of the PCG to obtain X. This adaptive
PCG method considerably speeds up convergence compared to the regular CG
method. The SVD is approximated using random sampling, see [5].

Multigrid algorithm
The multigrid algorithm is a recursive generalization of the two-grid algorithm
[1]. The idea is to solve the problem on a coarse grid, as this is cheap.

The maximum depth of the problem is
the number of times the grid is coars-
ened until we solve the system directly.

▶ Let x be the initial guess.
▶ Apply Jacobi pre-smoothing

to x

▶ Find residuals and coarsen
these

▶ Solve system on coarse grid
using multigrid algorithm (or
with direct solver when
maximum depth is
reached).

▶ Interpolate to finer grid
▶ Apply post-smoothing

We can use one iteration of the multigrid algorithm as the preconditioner in the
PCG algorithm.

Solution
We compare the following methods: Multigrid algorithm, CG method without
preconditioning, adaptive PCG (APCG), PCG with the preconditioner based on
SVD of the iterates from the (APCG), PCG with multigrid preconditioner (MG-
PCG).
The fastest method for solving the problem was MGPCG. The finite element
solution is shown in figure 2.

Figure 1: Finite element solution to problem (1) with MGPCG solver for the
linear system.

Numerical results

Figure 2: Relative algebraic error plotted versus iteration number, n for the CG,
APCG, PCG using APCG iterates, MGPCG and multigrid only.

The MGPCG algorithm obtains an
error below machine precision in only
18 iterations. The multigrid algorithm
itself converges a little slower than
the MGPCG. The APCG converges
much slower than MGPCG but faster
than CG with only little extra compu-
tational effort. Unsurprisingly, when
using the iterates from the APCG to
create a basis for the preconditioner,
we see fast convergence initially.

For large problems in particular, we
can obtain faster computing times
than MATLABs direct solver for ob-
taining a relative error below 10−4.
With optimized code, this will be even
more apparent. .

0 2 4 6 8 10 12

Nodes/Degrees of freedom 106

0

5

10

15

20

25

T
im

e 
un

til
 0

.0
1%

 r
el

at
iv

e 
er

ro
r 

in
 s

ec
on

ds

Time to 0.01% error Multigrid
Time to 0.01% error PCG
Time with direct solver

Figure 3: Time in seconds for the
different methods to reach 0.01%
relative error.

Environmental impacts
Implementing more efficient algorithms has a huge potential to reduce CO2

emission in the world. This results in a positive impact on UN goal 12. To
produce the solution in Fig. 1, we used 2.306 · 10−8CO2e kg.

Further work
▶ Explore different multigrid methods

▶ V-, W-, F-cycle
▶ Different smoothers: Jacobi, Gauss-Siegel
▶ ”Train” the solver for many different initial (boundary) conditions.

References
[1] A. P. Engsig-Karup, The Spectral/hp-Finite Element Method for Partial Differential Equations, 2017
[2] Pasetto, Damiano Ferronato, Massimiliano Putti, Mario. (2016). A reduced order model-based preconditioner for the efficient solution
of transient diffusion equations: A ROM-BASED PRECONDITIONER FOR TRANSIENT DIFFUSION PDES. International Journal for
Numerical Methods in Engineering. 109.
[3] Jesse L. Barlow, The Preconditioned Conjugate Gradient Method, Lecture 20, Professor from Pennsylvania State University.
[4] Greg Fasshauer, Chapter 16: Preconditioning, Illinois Institute of Technology
[5] Antoine Liutkus (2023). randomized Singular Value Decomposition (https://www.mathworks.com/matlabcentral/fileexchange/47835-
randomized-singular-value-decomposition), MATLAB Central File Exchange. Retrieved January 17, 2023.

Bastian: s194357@student.dtu.dk, Martin: s194317@student.dtu.dk


