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The reflector is modelled as a flat circular Reissner-Mindlin
plate with clamped edges. Modelling is carried out in FEniCS, a
python toolbox for solving partial differential equations using
the Finite Element Method[3]. The solver is adapted from the
work of Jeremy Bleyer[1].

The solver uses a mixed element formulation, where a
Lagrange interpolation is used in the plate deflection and
Crouzeix-Raviart interpolation is used in the plate rotation.
This is necessary to avoid “shear locking” (excess shear stress).

As a first step, the solver is tested against Kirchoff-Love plate
theory, which gives the same displacement for small plate
thickness. A convergence study of the mesh size, where ℎ is
the maximum element height, is seen on the figure to the
right

Varying the load in each subdomain enables the
approximation of various optical modes. The plate has a
hard clamped boundary condition (blue) (deflection and
rotations zero).

To avoid a large influence from the boundary condition,
the domain size has radius 1.5 (blue). The comparisons to
the Zernike modes are made inside the unit domain (red).
In an actual application, only this area would be reflecting.

To reach the desired shape, the problem is solved
iteratively and the difference between the reflector shape
and the wavefront at the center of the actuator is used to
control the load applied in this location through a simple
optimization procedure. After 120 iterations the problem
has converged sufficiently. The computation takes
approximately 45 seconds*.

Chosen mesh size

The Mindlin strong form consists of two equations; force
balance and moment balance, respectively[2]:

−div 𝑸 𝑥, 𝑦 = 𝑓 x, y ,
𝐝𝐢v 𝑴 𝑥, 𝑦 = 𝑸 𝑥, 𝑦 , ∀(𝑥, 𝑦) ∈ Ω ⊂ 𝑅!

With shear force 𝑸 and moments 𝑴.
The strong form assumes (notation explained below):

𝑤 𝑥, 𝑦, 𝑧 = w x, y, 0 , w x, y
𝑢 𝑥, 𝑦, 𝑧 = −𝑧𝛽" 𝑥, 𝑦 , 𝑣 𝑥, 𝑦, 𝑧 − 𝑧𝛽# 𝑥, 𝑦

The Mindlin weak form is given as[2]:

𝑎 𝑤, 𝜷; C𝑤, D𝜷 = ∫$𝜿 (D𝜷)
% 𝑫& 𝜿 𝜷 𝑑Ω +

∫$𝐺𝑡 ∇𝑤 − 𝜷 ⋅ (∇C𝑤 − D𝜷)𝑑Ω

𝑙 C𝑤 = ∫$ 𝑓C𝑤 𝑑Ω

where the operator 𝜅 is defined as:
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𝑡 Thickness
𝐺 Constant
𝑢 Displacement in 𝑥 direction
𝑣 Displacement in 𝑦 direction
C𝑤 Displacement test function in 𝑧 direction
𝑤 Displacement trial function in 𝑧 direction
P𝛽 Rotation test function
𝛽 Rotation trial function

Fig 1: Zernike mode Tilt. The plots from left to right denote: the
Zernike Tilt wavefront error, the displacement of the modelled
reflector, the resultant wavefront when the plate displacement is
subtracted from the Tilt wavefront. L2 indicates the L2 error norm. A
significant reduction in wavefront error is attained.

In any optical system (for instance a telescope) manufacturing
inaccuracies, or atmospheric distortion, means the image
produced is imperfect. To analyze such imperfections, light
may be modelled as wavefronts. As an example, light coming
from an infinitely distant point source is modelled as a plane
wavefront.

More complicated wavefronts may be modelled as a sum of
Zernike Modes (infinite series of polynomials). We will
consider: Tilt, arising from e.g. a tilted sensor in a camera,
Defocus arising e.g. from incorrect spacing and finally Coma, a
higher order optical (Zernike) mode.

The mentioned imperfections can be corrected by reflecting
light off a mirror, which is deformed so as to counteract the
shape of the wavefront.

Fig 2: Zernike mode Defocus. The plots from left to right denote: the
Zernike Defocus wavefront error, the displacement of the modelled
reflector, the resultant wavefront when the plate displacement is
subtracted from the Defocus wavefront. L2 indicates the L2 error
norm. A moderate reduction in wavefront error is attained.

Fig 3: Zernike mode Coma. The plots from left to right denote: the
Zernike Coma wavefront error, the displacement of the modelled
reflector, the resultant wavefront when the plate displacement is
subtracted from the Coma wavefront. L2 indicates the L2 error norm.
A smaller reduction in wavefront error is attained.

1. Numerical Tours of Computational Mechanics with
FEniCS, Jeremyer Bleyer, 2018, https://comet-
fenics.readthedocs.io

2. 9 Finite element methods for the Reissner−Mindlin plate
problem, Rak-54.3200, JN, 2016
https://mycourses.aalto.fi/pluginfile.php/211191/mod_r
esource/content/2/NMSE-16-Lectures9.pdf

3. https://fenicsproject.org/

Method
The reflector consists of a circular plate and 19 actuators.
The actuators are modelled as circular subdomains, each
with a uniform load (black), as shown in the figure below.

In Kirchhoff-Love plate theory, the deflection of a circular
plate subjected to a uniform distributed load is:

𝑤 𝑟 = −
𝑞
64𝐷

𝑎! − 𝑟! !

with load per unit area 𝑞 , radius 𝑎 = 1, and flexural
rigidity 𝐷.

The performance of the modelled reflector was found to be
dependent on the type of optical mode as seen in Fig 1, 2,
3. Some of the largest errors are found on edge of the unit
domain. Here, the hard clamped boundary condition (BC)
counteracts the plate deflection. Using a simply supported
BC would reduce these errors.

The number of actuators, their shape, and relative position
also clearly align with the shape of some wavefronts better
than with others.

The optimization strategy used updates the actuator loads
based on the point error in their center. Loads giving errors
above a certain threshold are updated by a fixed amount.
A better approach would be to use an optimization
metaheuristic where the objective is the L2 error norm.

*Running the simulation on a PC consuming 150 W 
results in a CO2 footprint of 0.31 g.
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