
Some more use cases of
neural differential
equations and universal
differential equations

Chris Rackauckas
Director of Modeling and Simulation,
Julia Computing

Research Affiliate, Co-PI of Julia Lab,
Massachusetts Institute of Technology,
CSAIL

Director of Scientific Research,
Pumas-AI

Final Note: Using Compilers and Transformations Beyond Differentiation

Generalizing Automatic Differentiation to Automatic Sparsity
Uncertainty, Stability, and Parallelism, StochasticLifestyle.com

Automatic Sparsity Detection

Compiler-Based Intrusive Uncertainty Quantification

https://www.stochasticlifestyle.com/generalizing-automatic-differentiation-to-automatic-sparsity-uncertainty-stability-and-parallelism/

Discretized PDE
Operators are
Convolutions

Automatically Learning PDEs from Data:
Universal PDEs for Fisher-KPP

Note: due to the
dimensionality of the
operator, it’s more
efficient to use a non-
neural network
operator here!

Neural ODE: Learn the whole model

u’=NN(u) trained on 21 days of data

Can fit, but not enough information to
accurately extrapolate

Does not have the correct asymptotic
behavior

Universal ODE

Replace
Unknown

Portion

Replace
Unknown

Portion

SInDy – Sparse Identification of Dynamical Systems

• Operation[cos(u₁) * -0.0013108600297508188 + cos(u₂) * 0.001048733466930909 + sin(u₃) *
0.002524237642240494 + 4.582000697122147 + u₃ * 48.22745315102507 + u₃ ^ 2 * -
0.5293305992835255 + u₂ * 39.085961651678964 + u₂ * u₃ * -0.6742175940650399 + u₂ * u₃ ^ 2
* 0.0018086945606415868 + u₂ ^ 2 * -0.7760315827702667 + u₂ ^ 2 * u₃ * -
0.00827007707292397 + u₂ ^ 2 * u₃ ^ 2 * -4.8420203054602525e-5 + u₁ * 0.6927075862062384 +
u₁ * u₃ * 2.5477896384187675 + u₁ * u₃ ^ 2 * -0.007633697801342265 + u₁ * u₂ * -
0.8050223920175605 + u₁ * u₂ * u₃ * -0.005893734488035572 + u₁ * u₂ * u₃ ^ 2 * -
4.205818407350913e-5 + u₁ * u₂ ^ 2 * 0.05154776022562611 + u₁ * u₂ ^ 2 * u₃ *
0.00011401535262358879 + u₁ * u₂ ^ 2 * u₃ ^ 2 * -1.8409670007515867e-7 + u₁ ^ 2 * -
1.480917344589218 + u₁ ^ 2 * u₃ * 0.022834435321810845 + u₁ ^ 2 * u₃ ^ 2 * -
7.10505011605666e-5 + u₁ ^ 2 * u₂ * -0.0811262292209696 + u₁ ^ 2 * u₂ * u₃ *
1.2503710381374686e-5 + u₁ ^ 2 * u₂ * u₃ ^ 2 * -1.5835869421530206e-7 + u₁ ^ 2 * u₂ ^ 2 *
0.0003756078420420898 + u₁ ^ 2 * u₂ ^ 2 * u₃ * 2.0403671083190194e-6 + u₁ ^ 2 * u₂ ^ 2 * u₃ ^ 2
* -4.0790059067580516e-10, cos(u₁) * 0.0018236630124880049 + sin(u₃) * -
0.002857556410244201 + 0.738713743952307 + u₃ * -45.316633125282735 + u₃ ^ 2 *
0.4976552341495027 + u₂ * -36.669905096040644 + u₂ * u₃ * 0.63405194300575 + u₂ * u₃ ^ 2 * -
0.001699189499009162 + u₂ ^ 2 * 0.7292234161358288 + u₂ ^ 2 * u₃ * 0.007782847250932861 +
u₂ ^ 2 * u₃ ^ 2 * 4.5537832343115385e-5 + u₁ * -0.662837140886116 + u₁ * u₃ * -
2.3955577736237044 + u₁ * u₃ ^ 2 * 0.007174813124917316 + u₁ * u₂ *

• 0.7564652530371222 + u₁ * u₂ * u₃ * 0.005539740817006857 + u₁ * u₂ * u₃ ^ 2 *
3.952859749575076e-5 + u₁ * u₂ ^ 2 * -0.04846972496409705 + u₁ * u₂ ^ 2 * u₃ * -
0.00010714683124587004 + u₁ * u₂ ^ 2 * u₃ ^ 2 * 1.7315253185547634e-7 + u₁ ^ 2 *
1.3922758705496125 +

• u₁ ^ 2 * u₃ * -0.021478161074782457 + u₁ ^ 2 * u₃ ^ 2 * 6.675620535553527e-5 + u₁ ^ 2 * u₂ *
0.07628907557295377 + u₁ ^ 2 * u₂ * u₃ * -1.174623626431566e-5 + u₁ ^ 2 * u₂ * u₃ ^ 2 *
1.4858536352836396e-7 + u₁ ^ 2 * u₂ ^ 2 * -0.0003531614272747699 + u₁ ^ 2 * u₂

• ^ 2 * u₃ * -1.9178976768869506e-6 + u₁ ^ 2 * u₂ ^ 2 * u₃ ^ 2 * 3.8405659245262027e-10, -
0.04932474700217403 + u₂ * 0.17406814677977456 + u₁ ^ 2 * u₂ * -1.4594144102122378e-6]

Brunton, Steven L., Joshua L. Proctor, and J. Nathan
Kutz. "Discovering governing equations from data by
sparse identification of nonlinear dynamical
systems." Proceedings of the national academy of
sciences 113.15 (2016): 3932-3937.

Universal ODE -> Internal Sparse Regression

Sparse Identification on only the missing term
Operation[u₂ * 0.10234428543435758 + u₁ * u₂ * 0.11371750552005416 +

u₁ ^ 2 * u₂ * 0.12635459799855597] of u=(S/N,I,D/N)

Replace
Unknown

Portion

Replace
Unknown

Portion

Sparsity improves generalizability!

Why is a new foundation needed?
Because off-the-shelf ML tools
will not work

Understanding and mitigating gradient pathologies in physics-
informed neural networks
Sifan Wang, Yujun Teng, Paris Perdikaris

Universal Differential Equations are Powerful Abstractions: Solving 1000
dimensional Hamilton-Jacobi-Bellman via Universal SDEs on a laptop

•

10

Use high order, implicit, adaptive SDE solvers
Train a solution in minutes

Using non-adaptive explicit 0.5th order
Euler-Maruyama matches the state-of-the-art
deep BSDE methods from the literature

Solving high-dimensional partial differential equations using deep
learning
Jiequn Han, Arnulf Jentzen, and Weinan E

Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional
Partial Differential Equations
Maziar Raissi

http://orcid.org/0000-0002-3553-7313

UDE Methods Cover Accelerated Physics-Informed Neural
Network Methods

This methodology can be seen as a universal
differential equation with a multistep
integrator where adaptive=false

The UDE methodology thus gives an
generalization to:
• Implicit methods, SSP methods
• Runge-Kutta-Chebyshev methods
• SDEs, DAEs, DDEs, etc.

A comparative study of physics-informed neural network models for learning
unknown dynamics and constitutive relations Ramakrishna Tipireddy, Paris
Perdikaris, Panos Stinis and Alexandre Tartakovsky

Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems
Maziar Raissi, Paris Perdikaris , and George Em Karniadakis

Our results indicate that the accuracy of the trained neural
network models is much higher for the cases where we only have
to learn a constitutive relation instead of the whole dynamics.

RNN: Euler’s method with fixed
number of layers

Neural ODE: Adaptive ODE solver chooses
number of layers

Neural ODEs can be used on classical machine learning problems to automatically learn the required number of layers
ML Layer: Value is initial condition of ODE, output is solution of ODE at final time

Neural ODEs as Adaptive Layer Methods

Chen, R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018, December). Neural ordinary differential equations.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems (pp. 6572-6583).

It does accelerate the learned dynamics, but training is
expensive (10x slower!) because higher order automatic
differentiation is exponentially expensive.

If you only care about the end, why not learn the easiest dynamics you can?

Kelly, J., Bettencourt, J., Johnson, M.J. and Duvenaud, D., 2020. Learning differential equations that are easy to solve.
arXiv preprint arXiv:2007.04504.

But Solvers “know” a lot about the equation!

Time

X(t)

Propose a
timestep h

Approximate the
solution at t+h
Approximate
the error at t+h

Error is too high, reject!

Propose a new
timestep

Approximate the
error at the new
timestep

Error is small enough. Accept!

Idea: use the solver’s internal
heuristics to regularize out “hard”
dynamics

Adaptive ODE solvers already know “free”
error estimates and stiffness estimators!

How to improve by an order of magnitude: use knowledge of numerical methods!

Method
Train
Loss

Test
Loss

Train Time
(hr)

Prediction
Time (s)

Vanilla NODE 3.48 3.55 1.75 0.53

TayNODE 4.21 4.21 12.3 0.22

SRNODE 3.52 3.58 0.87 0.20

10x Neural ODE training vs previous
regularization, 2x faster prediction
time vs vanilla neural ODE

Add noise and uncertainty quantification to continuous layer
methods via stochastic differential equations

New improved stability SDE solvers with adaptivity
and automatic stiffness detection

Neural SDEs improve generalization. Can we improve them?

Rackauckas, C. and Nie, Q., 2020, September. Stability-optimized high order methods
and stiffness detection for pathwise stiff stochastic differential equations. In 2020
IEEE High Performance Extreme Computing Conference (HPEC) (pp. 1-8). IEEE.
(Quality Submission Award)

Liu, X., Si, S., Cao, Q., Kumar, S. and Hsieh, C.J., 2019. Neural sde: Stabilizing neural ode networks with
stochastic noise. arXiv preprint arXiv:1906.02355.

Method
Train
Accuracy (%)

Test
Accuracy (%)

Train
Time (hr)

Prediction
Time (s)

Vanilla NSDE 98.97 96.95 6.32 15.07

RegNSDE 98.16 96.27 4.19 7.23

Major improvements to Neural SDEs on MNIST

Double Neural SDE prediction speed!

Implicit Layer Machine Learning

Implicit ML: Neural ODEs, Deep Equilibrium Models (DEQs), etc.

Neural ODE Deep Equilibrium Model

Infinite-Time Neural ODEs… Faster?

Infinite Neural ODEs are paradoxically easier to train

Blog post with starter code:
https://julialang.org/blog/2021/10/DEQ/

From Implicit to Implicit-Explicit Machine
Learning

Making a combined ML architecture gives the benefits of both

Animations Show It Works

Cool animations

https://github.com/SciML/FastDEQ.jl

Continuous+Skip DEQ: Much Faster and Robust ML Training

Continuous-Skip DEQs are Fast!

Want to Dig Deeper into the Trade-Offs?

Blog post for more information

Check out this blog post!

	Slide Number 1
	Slide Number 2
	Discretized PDE Operators are Convolutions
	Automatically Learning PDEs from Data: Universal PDEs for Fisher-KPP
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Why is a new foundation needed?�Because off-the-shelf ML tools will not work
	Universal Differential Equations are Powerful Abstractions: Solving 1000 dimensional Hamilton-Jacobi-Bellman via Universal SDEs on a laptop
	UDE Methods Cover Accelerated Physics-Informed Neural Network Methods
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Implicit Layer Machine Learning
	Infinite-Time Neural ODEs… Faster?
	From Implicit to Implicit-Explicit Machine Learning
	Animations Show It Works
	Continuous+Skip DEQ: Much Faster and Robust ML Training
	Want to Dig Deeper into the Trade-Offs?

