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Final Note: Using Compilers and Transformations Beyond Differentiation

Generalizing Automatic Differentiation to Automatic Sparsity  
Uncertainty, Stability, and Parallelism, StochasticLifestyle.com

Automatic Sparsity Detection

Compiler-Based Intrusive Uncertainty Quantification

https://www.stochasticlifestyle.com/generalizing-automatic-differentiation-to-automatic-sparsity-uncertainty-stability-and-parallelism/


Discretized PDE 
Operators are 
Convolutions



Automatically Learning PDEs from Data: 
Universal PDEs for Fisher-KPP

Note: due to the 
dimensionality of the 
operator, it’s more 
efficient to use a non-
neural network 
operator here!



Neural ODE: Learn the whole model

u’=NN(u) trained on 21 days of data

Can fit, but not enough information to 
accurately extrapolate

Does not have the correct asymptotic 
behavior



Universal ODE

Replace 
Unknown 
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Replace 
Unknown 
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SInDy – Sparse Identification of Dynamical Systems

• Operation[cos(u₁) * -0.0013108600297508188 + cos(u₂) * 0.001048733466930909 + sin(u₃) * 
0.002524237642240494 + 4.582000697122147 + u₃ * 48.22745315102507 + u₃ ^ 2 * -
0.5293305992835255 + u₂ * 39.085961651678964 + u₂ * u₃ * -0.6742175940650399 + u₂ * u₃ ^ 2 
* 0.0018086945606415868 + u₂ ^ 2 * -0.7760315827702667 + u₂ ^ 2 * u₃ * -
0.00827007707292397 + u₂ ^ 2 * u₃ ^ 2 * -4.8420203054602525e-5 + u₁ * 0.6927075862062384 + 
u₁ * u₃ * 2.5477896384187675 + u₁ * u₃ ^ 2 * -0.007633697801342265 + u₁ * u₂ * -
0.8050223920175605 + u₁ * u₂ * u₃ * -0.005893734488035572 + u₁ * u₂ * u₃ ^ 2 * -
4.205818407350913e-5 + u₁ * u₂ ^ 2 * 0.05154776022562611 + u₁ * u₂ ^ 2 * u₃ * 
0.00011401535262358879 + u₁ * u₂ ^ 2 * u₃ ^ 2 * -1.8409670007515867e-7 + u₁ ^ 2 * -
1.480917344589218 + u₁ ^ 2 * u₃ * 0.022834435321810845 + u₁ ^ 2 * u₃ ^ 2 * -
7.10505011605666e-5 + u₁ ^ 2 * u₂ * -0.0811262292209696 + u₁ ^ 2 * u₂ * u₃ * 
1.2503710381374686e-5 + u₁ ^ 2 * u₂ * u₃ ^ 2 * -1.5835869421530206e-7 + u₁ ^ 2 * u₂ ^ 2 * 
0.0003756078420420898 + u₁ ^ 2 * u₂ ^ 2 * u₃ * 2.0403671083190194e-6 + u₁ ^ 2 * u₂ ^ 2 * u₃ ^ 2 
* -4.0790059067580516e-10, cos(u₁) * 0.0018236630124880049 + sin(u₃) * -
0.002857556410244201 + 0.738713743952307 + u₃ * -45.316633125282735 + u₃ ^ 2 * 
0.4976552341495027 + u₂ * -36.669905096040644 + u₂ * u₃ * 0.63405194300575 + u₂ * u₃ ^ 2 * -
0.001699189499009162 + u₂ ^ 2 * 0.7292234161358288 + u₂ ^ 2 * u₃ * 0.007782847250932861 + 
u₂ ^ 2 * u₃ ^ 2 * 4.5537832343115385e-5 + u₁ * -0.662837140886116 + u₁ * u₃ * -
2.3955577736237044 + u₁ * u₃ ^ 2 * 0.007174813124917316 + u₁ * u₂ * 

• 0.7564652530371222 + u₁ * u₂ * u₃ * 0.005539740817006857 + u₁ * u₂ * u₃ ^ 2 * 
3.952859749575076e-5 + u₁ * u₂ ^ 2 * -0.04846972496409705 + u₁ * u₂ ^ 2 * u₃ * -
0.00010714683124587004 + u₁ * u₂ ^ 2 * u₃ ^ 2 * 1.7315253185547634e-7 + u₁ ^ 2 * 
1.3922758705496125 + 

• u₁ ^ 2 * u₃ * -0.021478161074782457 + u₁ ^ 2 * u₃ ^ 2 * 6.675620535553527e-5 + u₁ ^ 2 * u₂ * 
0.07628907557295377 + u₁ ^ 2 * u₂ * u₃ * -1.174623626431566e-5 + u₁ ^ 2 * u₂ * u₃ ^ 2 * 
1.4858536352836396e-7 + u₁ ^ 2 * u₂ ^ 2 * -0.0003531614272747699 + u₁ ^ 2 * u₂ 

• ^ 2 * u₃ * -1.9178976768869506e-6 + u₁ ^ 2 * u₂ ^ 2 * u₃ ^ 2 * 3.8405659245262027e-10, -
0.04932474700217403 + u₂ * 0.17406814677977456 + u₁ ^ 2 * u₂ * -1.4594144102122378e-6]

Brunton, Steven L., Joshua L. Proctor, and J. Nathan 
Kutz. "Discovering governing equations from data by 
sparse identification of nonlinear dynamical 
systems." Proceedings of the national academy of 
sciences 113.15 (2016): 3932-3937.



Universal ODE -> Internal Sparse Regression

Sparse Identification on only the missing term
Operation[u₂ * 0.10234428543435758 + u₁ * u₂ * 0.11371750552005416 + 

u₁ ^ 2 * u₂ * 0.12635459799855597] of u=(S/N,I,D/N)

Replace 
Unknown 

Portion

Replace 
Unknown 

Portion

Sparsity improves generalizability!



Why is a new foundation needed?
Because off-the-shelf ML tools 
will not work

Understanding and mitigating gradient pathologies in physics-
informed neural networks
Sifan Wang, Yujun Teng, Paris Perdikaris



Universal Differential Equations are Powerful Abstractions: Solving 1000 
dimensional Hamilton-Jacobi-Bellman via Universal SDEs on a laptop

•

10

Use high order, implicit, adaptive SDE solvers
Train a solution in minutes

Using non-adaptive explicit 0.5th order 
Euler-Maruyama matches the state-of-the-art
deep BSDE methods from the literature

Solving high-dimensional partial differential equations using deep 
learning
Jiequn Han, Arnulf Jentzen, and Weinan E

Forward-Backward Stochastic Neural Networks: Deep Learning of High-dimensional 
Partial Differential Equations
Maziar Raissi

http://orcid.org/0000-0002-3553-7313


UDE Methods Cover Accelerated Physics-Informed Neural 
Network Methods

This methodology can be seen as a universal 
differential equation with a multistep 
integrator where adaptive=false

The UDE methodology thus gives an 
generalization to:
• Implicit methods, SSP methods
• Runge-Kutta-Chebyshev methods
• SDEs, DAEs, DDEs, etc.

A comparative study of physics-informed neural network models for learning 
unknown dynamics and constitutive relations Ramakrishna Tipireddy, Paris 
Perdikaris, Panos Stinis and Alexandre Tartakovsky

Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems 
Maziar Raissi, Paris Perdikaris , and George Em Karniadakis

Our results indicate that the accuracy of the trained neural 
network models is much higher for the cases where we only have 
to learn a constitutive relation instead of the whole dynamics.



RNN: Euler’s method with fixed 
number of layers

Neural ODE: Adaptive ODE solver chooses 
number of layers

Neural ODEs can be used on classical machine learning problems to automatically learn the required number of layers
ML Layer: Value is initial condition of ODE, output is solution of ODE at final time

Neural ODEs as Adaptive Layer Methods

Chen, R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018, December). Neural ordinary differential equations. 
In Proceedings of the 32nd International Conference on Neural Information Processing Systems (pp. 6572-6583).



It does accelerate the learned dynamics, but training is 
expensive (10x slower!) because higher order automatic 
differentiation is exponentially expensive.

If you only care about the end, why not learn the easiest dynamics you can?

Kelly, J., Bettencourt, J., Johnson, M.J. and Duvenaud, D., 2020. Learning differential equations that are easy to solve. 
arXiv preprint arXiv:2007.04504.



But Solvers “know” a lot about the equation!

Time

X(t)

Propose a 
timestep h

Approximate the 
solution at t+h
Approximate 
the error at t+h

Error is too high, reject!

Propose a new 
timestep

Approximate the 
error at the new 
timestep

Error is small enough. Accept!

Idea: use the solver’s internal 
heuristics to regularize out “hard” 
dynamics

Adaptive ODE solvers already know “free” 
error estimates and stiffness estimators!



How to improve by an order of magnitude: use knowledge of numerical methods!

Method
Train 
Loss

Test 
Loss

Train Time 
(hr)

Prediction 
Time (s)

Vanilla NODE 3.48 3.55 1.75 0.53

TayNODE 4.21 4.21 12.3 0.22

SRNODE 3.52 3.58 0.87 0.20

10x Neural ODE training vs previous 
regularization, 2x faster prediction 
time vs vanilla neural ODE



Add noise and uncertainty quantification to continuous layer 
methods via stochastic differential equations

New improved stability SDE solvers with adaptivity 
and automatic stiffness detection

Neural SDEs improve generalization. Can we improve them?

Rackauckas, C. and Nie, Q., 2020, September. Stability-optimized high order methods 
and stiffness detection for pathwise stiff stochastic differential equations. In 2020 
IEEE High Performance Extreme Computing Conference (HPEC) (pp. 1-8). IEEE.
(Quality Submission Award)

Liu, X., Si, S., Cao, Q., Kumar, S. and Hsieh, C.J., 2019. Neural sde: Stabilizing neural ode networks with 
stochastic noise. arXiv preprint arXiv:1906.02355.



Method
Train 
Accuracy (%)

Test 
Accuracy (%)

Train 
Time (hr)

Prediction 
Time (s)

Vanilla NSDE 98.97 96.95 6.32 15.07

RegNSDE 98.16 96.27 4.19 7.23

Major improvements to Neural SDEs on MNIST

Double Neural SDE prediction speed!



Implicit Layer Machine Learning

Implicit ML: Neural ODEs, Deep Equilibrium Models (DEQs), etc.

Neural ODE Deep Equilibrium Model



Infinite-Time Neural ODEs… Faster?

Infinite Neural ODEs are paradoxically easier to train

Blog post with starter code: 
https://julialang.org/blog/2021/10/DEQ/



From Implicit to Implicit-Explicit Machine 
Learning

Making a combined ML architecture gives the benefits of both



Animations Show It Works

Cool animations

https://github.com/SciML/FastDEQ.jl



Continuous+Skip DEQ: Much Faster and Robust ML Training

Continuous-Skip DEQs are Fast!



Want to Dig Deeper into the Trade-Offs?

Blog post for more information

Check out this blog post!
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