
Surrogate Methods in
Scientific Machine
Learning and Extending
Mathematical Compilation
Techniques Beyond
Differentiation

Chris Rackauckas
Director of Modeling and Simulation,
Julia Computing

Research Affiliate, Co-PI of Julia Lab,
Massachusetts Institute of Technology,
CSAIL

Director of Scientific Research,
Pumas-AI

Idea of Surrogates: Anti-Amortize Compute Costs of Large-Scale Simulations

Pay Now, Use Later

Example: control a drone with a
sophisticated fluid dynamics
model

Pre-solve everything before hand

Put a neural network onto the
drone that directly approximates
the solution

Physics-Informed Neural Network
Surrogates

Physics-Informed Neural Networks

Physics-Informed Neural Networks with Expanded Inputs

Kosambi-Karhunen-Loeve Theorem for Surrogates of Stochastic Differential
Equations

Idea: expand input space to include Z_i

Neural Operators

Motivation: Green’s Functions

Neural Operators

Input: function v(x)
Output: function u(x)

Operation: Kernel integration

Neural Operators

Reasoning: Green’s Function
requires linearity of the PDE.

Use local linearity => time steps

Training Neural Operators

1. Generate data of PDE solution using classical method
with many different inputs.

2. Train the neural operator to match the input/output
behavior of the PDE solver

Note that a PDE solver is still required!!!

Fourier Neural Operators

Fourier Neural Operators

Fourier Transformations of Derivative Operators: Conv to Multiplication

Fourier Transformations of Derivative Operators: Conv to Multiplication

Fourier Neural Operators

Fourier Neural Operators with NeuralOperators.jl

DeepONet

DeepONet as a Linear Basis Representation

The standard DeepONet structure is a linear approximation of
the target operator, where the trunk net and branch net learn
the coefficients and basis. On the other hand, the neural
operator is a non-linear approximation, which makes it
constructively more expressive

DeepONets with NeuralOperators.jl

Physics-Informed DeepONets

Physics-Informed DeepONets

Physics-Informed Neural Operators

Reservoir Computing Methods

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 25

Origins

During the training of
Recurrent Neural
Networks (RNN) was
observed that only
the weights in the last
layer presented the
most changes during
training [1]

The idea that
immediately came to
mind was to only train
the last layer

As a result the
following models
were proposed:

● Echo State
Networks
(ESN) [2]

● Liquid State
Machines
(LSM) [3]

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 26

Training - ESN

All the input points are passed in the reservoir
and the corresponding states x(t) are collected
into the state matrix (X∊RNxT) over the training
period n=1,…,T. The evolution of the states is
governed by [5]:

At every input point corresponds an output
vector, collected into a matrix Vtarget∊RLxT.
The output layer (Wout) is computed at the end
as linear regression of the teacher output on the
reservoir states. The most used approach is
Ridge Regression [6]:

x(t+1)=(1-α)⋅x(t) + α⋅f[Wx(t)+Winu(t)] Wout = VtargetXT(XXT + βI)-1

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 27

Architecture - ESN

W is built from a sparse Erdos-
Revy matrix, with weight values
sampled from an uniform
distribution over (-1, 1).
All the elements are also
rescaled so that the spectral
radius ⍴ < 1 [4].

Input layer (Win) and reservoir (W) are fixed at the start and do not change
during training. The output layer (Wout) is computed in one shot at the end
of the training

Win is a dense random matrix,
with weight values sampled from
a uniform distribution over (-σ,σ)

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 28

General Structure

I/R R R/O

S

W∊RNxNWin∊RNxM Wout∊RLxN

x(t)∊RN

u(t)∊RM v(t)∊RL

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 29

Prediction - ESN

v(t+1)=g[Woutx(t)]

x(t+1)=(1-α)⋅x(t) + α⋅f[Wx(t)+Winv(t)]

Using the setup described it is
possible to obtain predictions using
the following equations

Fully autonomous system

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 30

Reservoir Properties

● To sustain a universal
computation a good
reservoir needs to exhibit
complex and state rich
configuration space

● Systems with increasing
degree of complexity will
be better reservoir

● Better results are obtained
when the system is working
at the edge of chaos

Echo State Property [7]:
the current state depends on the sequence of
inputs it has been exposed to in a unique way

Fading Memory Property [2]:
the influence of the initial conditions of the
dynamics weakens with time.

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 31

What can be used as a Reservoir?
Reservoir:

Non-linear dynamical system

Bucket of Water:
Using different
perturbations as input can
obtain good classification
results [8]

Analog Circuits:
A physical reservoir
approach has also
been explored in [9],
among others

Bacteria:
Even E. Coli has been
used as a reservoir in
[10], obtaining decent
results

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 32

Why is Reservoir Computing useful?

● Computationally inexpensive (Compared to standard Deep Learning
approaches)

● More stable: does not show the vanishing gradient problem, typical
Neural Network hurdle

● Engineering freedom: one can just pick a dynamical system as reservoir
and start doing predictions

● Well suited for the prediction of time series in general, and more
specifically chaotic systems. Outperforms state of the art models [11]

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 33

Prediction of Time Series

The standard approach with time series using
Recurrent Neural Networks (RNNs) or Long
Short Term Memory (LSTM) networks has been
to feed the model an encoding of n prior time
steps as training for the desired output.

[x(t-n), x(t-n-1),..., x(t-1)] x(t)

As we saw in the training section, no prior
manipulation of the time series is needed for a
Reservoir Computing approach.

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 34

Example: Lorenz system

Studied by Edward Lorenz
[12] is known to have
chaotic solutions for certain
parameter values

dx/dt = σ(y - x)
dy/dt = x(ρ-z)-y
dz/dt = xy - βz

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 35

ESN Results

Continuous Time Reservoir Computing

Recurrent neural network? No!
1. It’s an explicit method! (Euler’s)
2. Uniform steps will not capture the spikes!

Challenge: train a surrogate to accelerate an arbitrary highly stiff system

Rackauckas, Christopher, and Qing Nie. "Differentialequations. jl–a performant and
feature-rich ecosystem for solving differential equations in julia." Journal of Open
Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation APIs
for accelerated algorithm development and benchmarking." Advances in Engineering
Software 132 (2019): 1-6.

Stiffness causes a problem even
with many SciML approaches like
Physics-Informed Neural Networks
(PINNs)

Understanding and mitigating gradient pathologies in physics-informed neural networks

Sifan Wang, Yujun Teng, Paris Perdikaris

1. Neural networks have difficulties matching highly ill-
conditioned systems

2. Optimization techniques like gradient descent are explicit
processes attempting to solving a stiff model

3. Stiffness in the model can translate to stiffness in the
optimization process as it tries to find a manifold

4. Timescale separations of 109 and more are common in real
applications

We need to utilized all of the advanced numerical
knowledge for handling stiff systems to work in
tandem with ML!

Some precedence: echo state networks
Fix a random process and find a projection
to fit the system

Adapting: continuous-time echo state networks
Build a random non-stiff ODE and find a
projection to the stiff ODE

Idea: Avoid Gradients and Use an Implicit Fit

Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral
Shah, Alan Edelman, Chris Rackauckas

Continuous-Time Echo State Networks
Handle the stiff equations where current methods fail

Robertson’s Equations

Classic stiff ODE
Used to test and break integrators

Volatile early transient

Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral
Shah, Alan Edelman, Chris Rackauckas

Continuous-Time Echo State Networks
Handle the stiff equations where current methods fail

Robertson’s Equations

Classic stiff ODE
Used to test and break integrators

Volatile early transient

Log-Scale Fast
Changes!

No auto-catalyst,
no dynamics

Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral
Shah, Alan Edelman, Chris Rackauckas

Continuous-Time Echo State Networks
Handle the stiff equations where current methods fail

After training, 100x faster than
direct simulation!

Only CTESNs Capture the Hard Dynamics

The Julia implementation is 6x faster than Dymola for the full
cycle simulation.

● Dymola reference model: 35.3 s
● Julia (as close to) equivalent model: 5.8 s
● Could be due to details such as the linear solvers, the refrigerant

property libraries, etc. More benchmarking to come.

Using CTESNs as surrogates improves simulation times
between 10x-95x over the Julia baseline. Acceleration depends
on the size of the reservoir in the CTESN. The surrogate
approximates 20 of the observables.

Error is < 5% in all cases.

8,000 ODE Highly stiff
vapor-compression
cycle model

Total speedup over Dymola: 60-570x

Training set
size

Reservoir size Prediction time Speedup over baseline

100 1000 0.06 s 95x

1000 2000 0.56 s 10x

ARPA-E: Accelerated Simulation of Building Energy Efficiency

● COPASI simulation: crashed upon reading (“not responding”)
● MATLAB SBMLToolbox: 870s to read, 1.13s to simulate
● Julia vanilla: 60s to read, 0.6s to simulate
● Julia surrogatized simulation: ~instant to read, 0.062s to simulate

Julia vanilla outperforms MATLAB’s SBMLToolbox

CTESN predictions at new parameters have < 5% error, are
almost instant to read and 100x faster to simulate

(Julia SBML reader is incomplete: full Jacobians right now
and no e-graph simplification. Probably ~10x performance
left on the table)

1265 ODE model of
spatial cell signaling in
Arabidopsis

Total speedup: 100x vs MATLAB SBMLToolbox

Take Arbitrary Large Models and Automatically Accelerate with CTESNs

The Transformed Models are Just Components: Compose As Normal

Embed Surrogates

Accelerate large (100,000 ODE) simulations
without retraining by using an accelerated HVAC

component inside of different building models

Large Building Models 100K Equations, 80x Acceleration

Rooms
Disturbe
d

Training
set size

Reservoir
size

Prediction
time

Speedup
over
baseline

1 100 200 0.2597 s 77x

3 100 200 0.413s 80x

Scalable building model with equipment Total speedup over original : 80x

Extended Mathematical Compiler
Transformations: Abstract Interpretation
More than Differentiation

Automated Sparsity Detection: SparsityDetection.jl and
ModelingToolkit.jl

A program is just control flow:
- Jacobians: whether two variables interact
- Hessians: whether two variables interact nonlinearly

We can generate sparsity patterns from programs via
nonstandard interpretation.

51.714 seconds to 1.185 s!
50x for no effort!

https://docs.sciml.ai/lat
est/tutorials/advanced
_ode_example/#Auto
matic-Sparsity-
Detection-1

https://docs.sciml.ai/latest/tutorials/advanced_ode_example/#Automatic-Sparsity-Detection-1

Uncertainty Quantification via
Metaprograms
• We have a brand new method for uncertainty quantification in

ODEs. It requires only one ODE solver call and is incredibly efficient.
But, nobody ever wrote the code and nobody ever needs to
because it created itself.

Linear Error Propagation Theory

Another Example: Free Efficient PDE Solvers!

• From Sobolev Function Space Theory, we know that we can represent 𝐿𝐿2 functions as vectors in the
𝐿𝐿2 function space

• Example: Fourier decomposition

𝑓𝑓 𝑥𝑥 = 𝑐𝑐 + �
𝑘𝑘

𝑎𝑎𝑘𝑘 sin 𝑘𝑘𝑥𝑥 + 𝑏𝑏𝑘𝑘 cos 𝑘𝑘𝑥𝑥

• 𝑓𝑓 𝑥𝑥 ∈ 𝐿𝐿2 is the infinite length vector [𝑐𝑐, 𝑎𝑎𝑘𝑘 , 𝑏𝑏𝑘𝑘]. It is essentially a number in 𝐿𝐿2 space.
• An arithmetic on these “numbers” makes sense: how do you add, multiply, divide, etc. functions by

other functions? You can then define this in terms of the coefficients of the decomposition.
• Semigroup theory details how using these functions as numbers gives a mathematically rigorous way of defining

PDEs and their solution
• Computationally, you can discretize a function into this space and re-write a PDE in terms of an

ODE on these vector coefficients. This is known as a spectral or finite element method.

DifferentialEquations.jl + ApproxFun.jl

• ApproxFun.jl defines the 𝐹𝐹𝐹𝐹𝐹𝐹 type which discretizes a function into
a chosen decomposition space and treats it like a number
• It’s length adaptive: it automatically chooses the number of coefficients to

use in order to specify the function to tolerance.
• DifferentialEquations.jl has ODE solvers which are generic to the

Number and AbstractArray type which are used.
• What happens if you define your PDE using a 𝐹𝐹𝐹𝐹𝐹𝐹 as an initial

condition, define the PDE by its arithmetic (i.e. write down the ODE
on the function), and hit solve?
• You get some of the world’s first adaptive space + adaptive time

spectral/pseudospectral ODE solvers. Super efficient. Nobody wrote the
code. Works fine.

A story that merges AD-based compiler
techniques with surrogate generation

(Julia Computing JuliaSim Pitch)

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

ModelingToolkit.jl – A staged
programming paradigm for
modeling and simulation

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated
algorithm development and benchmarking." Advances in Engineering Software 132 (2019): 1-
6.

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

ModelingToolkit is
Staged Stable

Transformations of
Models

𝐹𝐹′′ = 𝑓𝑓(𝐹𝐹)

𝐹𝐹′ = 𝑥𝑥
𝑥𝑥′ = 𝑓𝑓(𝐹𝐹)

Gives an ODESystem

In the compiler world, GCC is an example of a compiler with many lowering
steps while LLVM is an example of a compiler with a well-documented IR
designed for stable transformations

What Kinds of Transformations Do You Get? DAE Index Reduction

Not solvable by standard
numerical solvers!

Differentiate the last equation
twice, do a few substitutions…

Easy to solve!

If you don’t know the details about why this makes a better numerical simulation, then you should be using ModelingToolkit.

Composable (Acausal) Modeling via Subsystems

structural_simplify: the analogue of the
standard Dymola/Modia compilation pass

Build a system of subsystems!

Describe how the subsystems relate

What Kinds of Transformations Do You Get? Moment Closures For Free!

Chemical Reaction Systems as Stochastic Models

What Kinds of Transformations Do You Get? Moment Closures For Free!

Chemical Reaction Systems as Stochastic Models

You can write out the moments…

Who the heck would want to do
that by hand?

What Kinds of Transformations Do You Get? Moment Closures For Free!

It spits out the ODESystem for the
means and variances, now go
forth and solve!

ModelingToolkit System Example: NonlinearSystem

https://scimlbase.sciml.ai/dev/
The SciML Common Interface for Julia Equation Solvers

NonlinearSolve.jl: Unified Nonlinear Solver Interface

𝑓𝑓 𝐹𝐹, 𝑝𝑝 = 0
• Systems can take other AbstractSystems as subsystems
• sturctural_simplify is “universal simplification”
• The syntax is all similar
• Each system has a SciMLProblem type and a unified

solver library

ModelingToolkit System Example: NonlinearSystem

https://scimlbase.sciml.ai/dev/
The SciML Common Interface for Julia Equation Solvers

NonlinearSolve.jl: Unified Nonlinear Solver Interface

𝑓𝑓 𝐹𝐹, 𝑝𝑝 = 0

structural_simplify:
The God of Transforms

Newton method cost: O(n^3)
O(1^3) << O(5^3)!

Machine Learning Surrogates as Approximate Transformations

Describe how the subsystems relate

If you build a machine learning method that outputs
differential-algebraic equations, then it qualifies as an
“approximate” stable transformation

● Take in a differential equation and the outputs to surrogatize over
● Create a new differential equation system that is approximately the

same input/output mapping (dimensionality reduction)
● Represent that system as an MTK model

Because it’s approximate, it needs user-intervention.

We developed the continuous-time echo state network as a surrogate
method which is robust to stiffness and has these properties.

The training data source for a CTESN surrogate does not need
to come from ModelingToolkit, it can come from any
timeseries data source.

Training CTESNs on timeseries data sources gives a process
that merges translation to ModelingToolkit with acceleration!

Sources that we have been experimenting with:

• Functional Markup Units (FMUs) (Dymola, Simulink)
• SPICE models for electrical circuits (NgSpice, Xyce)
• Various PDE tools (COMSOL, Abaqus, etc.)

Surrogatization as Machine Learned Approximate Transformations

340x Acceleration of a Global Optimization by Surrogatizing an FMU

Use Cloud Resources to Smartly Burst Compute and Amortize Time

Burst the compute to fully parallelize the simulations of the
surrogatization, making that step of the process approximately
the cost of a single simulation

Using this kind of setup, the true time cost to the user to run
the acceleration is roughly ~5x-10x* the simulation time

This Process Can Be Bundled Up As an FMU->FMU Accelerator

By moving the model
transformation process to
the runtime itself,
ModelingToolkit can be
used as a transformation
and compilation system by
other front ends.

Other talks at the Modelica
conference also exploit this
feature.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Automated Sparsity Detection: SparsityDetection.jl and ModelingToolkit.jl
	Uncertainty Quantification via Metaprograms
	Linear Error Propagation Theory
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Another Example: Free Efficient PDE Solvers!
	DifferentialEquations.jl + ApproxFun.jl
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70

