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Idea of Surrogates: Anti-Amortize Compute Costs of Large-Scale Simulations

Pay Now, Use Later

Example: control a drone with a 
sophisticated fluid dynamics 
model

Pre-solve everything before hand

Put a neural network onto the 
drone that directly approximates 
the solution



Physics-Informed Neural Network 
Surrogates



Physics-Informed Neural Networks



Physics-Informed Neural Networks with Expanded Inputs



Kosambi-Karhunen-Loeve Theorem for Surrogates of Stochastic Differential 
Equations

Idea: expand input space to include Z_i



Neural Operators



Motivation: Green’s Functions



Neural Operators

Input: function v(x)
Output: function u(x)

Operation: Kernel integration



Neural Operators

Reasoning: Green’s Function 
requires linearity of the PDE.

Use local linearity => time steps



Training Neural Operators

1. Generate data of PDE solution using classical method 
with many different inputs.

2. Train the neural operator to match the input/output 
behavior of the PDE solver

Note that a PDE solver is still required!!!



Fourier Neural Operators



Fourier Neural Operators



Fourier Transformations of Derivative Operators: Conv to Multiplication



Fourier Transformations of Derivative Operators: Conv to Multiplication



Fourier Neural Operators



Fourier Neural Operators with NeuralOperators.jl



DeepONet



DeepONet as a Linear Basis Representation

The standard DeepONet structure is a linear approximation of 
the target operator, where the trunk net and branch net learn 
the coefficients and basis. On the other hand, the neural 
operator is a non-linear approximation, which makes it 
constructively more expressive



DeepONets with NeuralOperators.jl



Physics-Informed DeepONets



Physics-Informed DeepONets



Physics-Informed Neural Operators



Reservoir Computing Methods
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Origins

During the training of 
Recurrent Neural 
Networks (RNN) was 
observed  that only 
the weights in the last 
layer presented the 
most changes during 
training [1]

The idea that 
immediately came to 
mind was to only train 
the last layer

As a result the 
following models 
were proposed: 

● Echo State 
Networks
(ESN) [2]

● Liquid State 
Machines
(LSM) [3]
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Training - ESN

All the input points are passed in the reservoir 
and the corresponding states x(t) are collected 
into the state matrix (X∊RNxT) over the training 
period n=1,…,T. The evolution of the states is 
governed by [5]:

At every input point corresponds an output 
vector, collected into a matrix Vtarget∊RLxT. 
The output layer (Wout) is computed at the end 
as linear regression of the teacher output on the 
reservoir states. The most used approach is 
Ridge Regression [6]:

x(t+1)=(1-α)⋅x(t) + α⋅f[Wx(t)+Winu(t)] Wout = VtargetXT(XXT + βI)-1
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Architecture - ESN

W is built from a sparse Erdos-
Revy matrix, with weight values 
sampled from an uniform 
distribution over (-1, 1). 
All the elements are also 
rescaled so that the spectral 
radius ⍴ < 1 [4]. 

Input layer (Win) and reservoir (W) are fixed at the start and do not change 
during training. The output layer (Wout) is computed in one shot at the end 
of the training

Win is a dense random matrix, 
with weight values sampled from 
a uniform distribution over (-σ,σ)
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General Structure

I/R R R/O

S

W∊RNxNWin∊RNxM Wout∊RLxN

x(t)∊RN

u(t)∊RM v(t)∊RL
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Prediction - ESN

v(t+1)=g[Woutx(t)]

x(t+1)=(1-α)⋅x(t) + α⋅f[Wx(t)+Winv(t)]

Using the setup described it is 
possible to obtain predictions using 
the following equations

Fully autonomous system
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Reservoir Properties

● To sustain a universal 
computation a good 
reservoir needs to exhibit 
complex and state rich
configuration space

● Systems with increasing 
degree of complexity will 
be better reservoir

● Better results are obtained 
when the system is working 
at the edge of chaos

Echo State Property [7]:
the current state depends on the sequence of 
inputs it has been exposed to in a unique way

Fading Memory Property [2]:
the influence of the initial conditions of the 
dynamics weakens with time.
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What can be used as a Reservoir?
Reservoir:

Non-linear dynamical system

Bucket of Water:
Using different 
perturbations as input can 
obtain good classification 
results [8]

Analog Circuits:
A physical reservoir 
approach has also  
been explored in [9], 
among others

Bacteria:
Even E. Coli has been
used as a reservoir in  
[10], obtaining decent 
results
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Why is Reservoir Computing useful?

● Computationally inexpensive (Compared to standard Deep Learning 
approaches)

● More stable: does not show the vanishing gradient problem, typical 
Neural Network hurdle

● Engineering freedom: one can just pick a dynamical system as reservoir 
and start doing predictions

● Well suited for the prediction of time series in general, and more 
specifically chaotic systems.  Outperforms state of the art models [11]
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Prediction of Time Series

The standard approach with time series using 
Recurrent Neural Networks (RNNs) or Long 
Short Term Memory (LSTM) networks has been 
to feed the model an encoding of n prior time 
steps as training for the desired output.

[x(t-n), x(t-n-1),..., x(t-1)] x(t)

As we saw in the training section, no prior 
manipulation of the time series is needed for a 
Reservoir Computing approach. 
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Example: Lorenz system

Studied by Edward Lorenz 
[12] is known to have 
chaotic solutions for certain 
parameter values

dx/dt =  σ(y - x)
dy/dt = x(ρ-z)-y
dz/dt =  xy - βz
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ESN Results



Continuous Time Reservoir Computing



Recurrent neural network? No!
1. It’s an explicit method! (Euler’s)
2. Uniform steps will not capture the spikes!

Challenge: train a surrogate to accelerate an arbitrary highly stiff system



Rackauckas, Christopher, and Qing Nie. "Differentialequations. jl–a performant and 
feature-rich ecosystem for solving differential equations in julia." Journal of Open 
Research Software 5.1 (2017).

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation APIs 
for accelerated algorithm development and benchmarking." Advances in Engineering 
Software 132 (2019): 1-6.

Stiffness causes a problem even 
with many SciML approaches like 
Physics-Informed Neural Networks 
(PINNs)

Understanding and mitigating gradient pathologies in physics-informed neural networks

Sifan Wang, Yujun Teng, Paris Perdikaris

1. Neural networks have difficulties matching highly ill-
conditioned systems

2. Optimization techniques like gradient descent are explicit 
processes attempting to solving a stiff model

3. Stiffness in the model can translate to stiffness in the 
optimization process as it tries to find a manifold

4. Timescale separations of 109 and more are common in real 
applications

We need to utilized all of the advanced numerical 
knowledge for handling stiff systems to work in 
tandem with ML!



Some precedence: echo state networks
Fix a random process and find a projection 
to fit the system

Adapting: continuous-time echo state networks
Build a random non-stiff ODE and find a 
projection to the stiff ODE

Idea: Avoid Gradients and Use an Implicit Fit



Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral 
Shah, Alan Edelman, Chris Rackauckas

Continuous-Time Echo State Networks
Handle the stiff equations where current methods fail

Robertson’s Equations

Classic stiff ODE
Used to test and break integrators

Volatile early transient



Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral 
Shah, Alan Edelman, Chris Rackauckas

Continuous-Time Echo State Networks
Handle the stiff equations where current methods fail

Robertson’s Equations

Classic stiff ODE
Used to test and break integrators

Volatile early transient

Log-Scale Fast 
Changes!

No auto-catalyst, 
no dynamics



Accelerating Simulation of Stiff Nonlinear Systems using Continuous-
Time Echo State Networks

Ranjan Anantharaman, Yingbo Ma, Shashi Gowda, Chris Laughman, Viral 
Shah, Alan Edelman, Chris Rackauckas

Continuous-Time Echo State Networks
Handle the stiff equations where current methods fail

After training, 100x faster than 
direct simulation!

Only CTESNs Capture the Hard Dynamics



The Julia implementation is 6x faster than Dymola for the full 
cycle simulation.

● Dymola reference model: 35.3 s 
● Julia (as close to) equivalent model: 5.8 s
● Could be due to details such as the linear solvers, the refrigerant 

property libraries, etc. More benchmarking to come.

Using CTESNs as surrogates improves simulation times 
between 10x-95x over the Julia baseline. Acceleration depends 
on the size of the reservoir in the CTESN. The surrogate 
approximates 20 of the observables.

Error is < 5% in all cases.

8,000 ODE Highly stiff 
vapor-compression 
cycle model 

Total speedup over Dymola: 60-570x

Training set 
size

Reservoir size Prediction time Speedup over baseline

100 1000 0.06 s 95x

1000 2000 0.56 s 10x

ARPA-E: Accelerated Simulation of Building Energy Efficiency



● COPASI simulation: crashed upon reading (“not responding”)
● MATLAB SBMLToolbox: 870s to read, 1.13s to simulate
● Julia vanilla: 60s to read, 0.6s to simulate
● Julia surrogatized simulation: ~instant to read, 0.062s to simulate

Julia vanilla outperforms MATLAB’s SBMLToolbox

CTESN predictions at new parameters have < 5% error, are 
almost instant to read and 100x faster to simulate

(Julia SBML reader is incomplete: full Jacobians right now 
and no e-graph simplification. Probably ~10x performance 
left on the table)

1265 ODE model of 
spatial cell signaling in 
Arabidopsis

Total speedup: 100x vs MATLAB SBMLToolbox

Take Arbitrary Large Models and Automatically Accelerate with CTESNs



The Transformed Models are Just Components: Compose As Normal

Embed Surrogates

Accelerate large (100,000 ODE) simulations 
without retraining by using an accelerated HVAC 

component inside of different building models



Large Building Models 100K Equations, 80x Acceleration

Rooms 
Disturbe
d

Training 
set size

Reservoir 
size

Prediction 
time

Speedup 
over 
baseline

1 100 200 0.2597 s 77x

3 100 200 0.413s 80x

Scalable building model with equipment Total speedup over original : 80x



Extended Mathematical Compiler 
Transformations: Abstract Interpretation 
More than Differentiation



Automated Sparsity Detection: SparsityDetection.jl and 
ModelingToolkit.jl

A program is just control flow:
- Jacobians: whether two variables interact
- Hessians: whether two variables interact nonlinearly

We can generate sparsity patterns from programs via 
nonstandard interpretation.

51.714 seconds to 1.185 s!
50x for no effort!

https://docs.sciml.ai/lat
est/tutorials/advanced
_ode_example/#Auto
matic-Sparsity-
Detection-1

https://docs.sciml.ai/latest/tutorials/advanced_ode_example/#Automatic-Sparsity-Detection-1


Uncertainty Quantification via 
Metaprograms
• We have a brand new method for uncertainty quantification in 

ODEs. It requires only one ODE solver call and is incredibly efficient. 
But, nobody ever wrote the code and nobody ever needs to 
because it created itself.



Linear Error Propagation Theory









Another Example: Free Efficient PDE Solvers!

• From Sobolev Function Space Theory, we know that we can represent 𝐿𝐿2 functions as vectors in the 
𝐿𝐿2 function space

• Example: Fourier decomposition

𝑓𝑓 𝑥𝑥 = 𝑐𝑐 + �
𝑘𝑘

𝑎𝑎𝑘𝑘 sin 𝑘𝑘𝑥𝑥 + 𝑏𝑏𝑘𝑘 cos 𝑘𝑘𝑥𝑥

• 𝑓𝑓 𝑥𝑥 ∈ 𝐿𝐿2 is the infinite length vector [𝑐𝑐, 𝑎𝑎𝑘𝑘 , 𝑏𝑏𝑘𝑘]. It is essentially a number in 𝐿𝐿2 space.
• An arithmetic on these “numbers” makes sense: how do you add, multiply, divide, etc. functions by 

other functions? You can then define this in terms of the coefficients of the decomposition.
• Semigroup theory details how using these functions as numbers gives a mathematically rigorous way of defining 

PDEs and their solution
• Computationally, you can discretize a function into this space and re-write a PDE in terms of an 

ODE on these vector coefficients. This is known as a spectral or finite element method. 



DifferentialEquations.jl + ApproxFun.jl

• ApproxFun.jl defines the 𝐹𝐹𝐹𝐹𝐹𝐹 type which discretizes a function into 
a chosen decomposition space and treats it like a number
• It’s length adaptive: it automatically chooses the number of coefficients to 

use in order to specify the function to tolerance.
• DifferentialEquations.jl has ODE solvers which are generic to the 

Number and AbstractArray type which are used.
• What happens if you define your PDE using a 𝐹𝐹𝐹𝐹𝐹𝐹 as an initial 

condition, define the PDE by its arithmetic (i.e. write down the ODE 
on the function), and hit solve?
• You get some of the world’s first adaptive space + adaptive time 

spectral/pseudospectral ODE solvers. Super efficient. Nobody wrote the 
code. Works fine.



A story that merges AD-based compiler 
techniques with surrogate generation

(Julia Computing JuliaSim Pitch)



, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm 
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

ModelingToolkit.jl – A staged 
programming paradigm for 
modeling and simulation



, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated 
algorithm development and benchmarking." Advances in Engineering Software 132 (2019): 1-
6.

, Christopher, and Qing Nie. "Confederated modular differential equation APIs for accelerated algorithm 
development and benchmarking." Advances in Engineering Software 132 (2019): 1-6.

ModelingToolkit is 
Staged Stable 

Transformations of 
Models

𝐹𝐹′′ = 𝑓𝑓(𝐹𝐹)

𝐹𝐹′ = 𝑥𝑥
𝑥𝑥′ = 𝑓𝑓(𝐹𝐹)

Gives an ODESystem

In the compiler world, GCC is an example of a compiler with many lowering 
steps while LLVM is an example of a compiler with a well-documented IR 
designed for stable transformations 



What Kinds of Transformations Do You Get? DAE Index Reduction

Not solvable by standard 
numerical solvers!

Differentiate the last equation
twice, do a few substitutions…

Easy to solve!

If you don’t know the details about why this makes a better numerical simulation, then you should be using ModelingToolkit.



Composable (Acausal) Modeling via Subsystems

structural_simplify: the analogue of the 
standard Dymola/Modia compilation pass 

Build a system of subsystems!

Describe how the subsystems relate



What Kinds of Transformations Do You Get? Moment Closures For Free!

Chemical Reaction Systems as Stochastic Models



What Kinds of Transformations Do You Get? Moment Closures For Free!

Chemical Reaction Systems as Stochastic Models

You can write out the moments…

Who the heck would want to do 
that by hand?



What Kinds of Transformations Do You Get? Moment Closures For Free!

It spits out the ODESystem for the 
means and variances, now go 
forth and solve!



ModelingToolkit System Example: NonlinearSystem

https://scimlbase.sciml.ai/dev/
The SciML Common Interface for Julia Equation Solvers

NonlinearSolve.jl: Unified Nonlinear Solver Interface

𝑓𝑓 𝐹𝐹, 𝑝𝑝 = 0
• Systems can take other AbstractSystems as subsystems
• sturctural_simplify is “universal simplification”
• The syntax is all similar
• Each system has a SciMLProblem type and a unified 

solver library



ModelingToolkit System Example: NonlinearSystem

https://scimlbase.sciml.ai/dev/
The SciML Common Interface for Julia Equation Solvers

NonlinearSolve.jl: Unified Nonlinear Solver Interface

𝑓𝑓 𝐹𝐹, 𝑝𝑝 = 0

structural_simplify:
The God of Transforms

Newton method cost: O(n^3)
O(1^3) << O(5^3)!



Machine Learning Surrogates as Approximate Transformations

Describe how the subsystems relate

If you build a machine learning method that outputs 
differential-algebraic equations, then it qualifies as an 
“approximate” stable transformation

● Take in a differential equation and the outputs to surrogatize over
● Create a new differential equation system that is approximately the 

same input/output mapping (dimensionality reduction)
● Represent that system as an MTK model

Because it’s approximate, it needs user-intervention.

We developed the continuous-time echo state network as a surrogate 
method which is robust to stiffness and has these properties.



The training data source for a CTESN surrogate does not need 
to come from ModelingToolkit, it can come from any 
timeseries data source.

Training CTESNs on timeseries data sources gives a process 
that merges translation to ModelingToolkit with acceleration!

Sources that we have been experimenting with:

• Functional Markup Units (FMUs) (Dymola, Simulink)
• SPICE models for electrical circuits (NgSpice, Xyce)
• Various PDE tools (COMSOL, Abaqus, etc.)

Surrogatization as Machine Learned Approximate Transformations



340x Acceleration of a Global Optimization by Surrogatizing an FMU



Use Cloud Resources to Smartly Burst Compute and Amortize Time 

Burst the compute to fully parallelize the simulations of the 
surrogatization, making that step of the process approximately 
the cost of a single simulation

Using this kind of setup, the true time cost to the user to run 
the acceleration is roughly ~5x-10x* the simulation time



This Process Can Be Bundled Up As an FMU->FMU Accelerator

By moving the model 
transformation process to 
the runtime itself, 
ModelingToolkit can be 
used as a transformation 
and compilation system by 
other front ends.

Other talks at the Modelica
conference also exploit this 
feature.


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Automated Sparsity Detection: SparsityDetection.jl and ModelingToolkit.jl
	Uncertainty Quantification via Metaprograms
	Linear Error Propagation Theory
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Another Example: Free Efficient PDE Solvers!
	DifferentialEquations.jl + ApproxFun.jl
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70

