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Idea of Surrogates: Anti-Amortize Compute Costs of Large-Scale Simulations

Pay Now, Use Later

Example: control a drone with a
sophisticated fluid dynamics
model

Pre-solve everything before hand
Put a neural network onto the

drone that directly approximates
the solution




Physics-Informed Neural Network
Surrogates




Physics-Informed Neural Networks

PDE L(u(x,t),8) =




Physics-Informed Neural Networks with Expanded Inputs

PINN loss functions
Neural Network: Nf

iA::Zmiaattiit‘; ] 62p 2 82p (ICs omitted for brevity)
" < a2 S ogr !
.. T a:va: BC: @ +p % =0
: : b on 0 5t
: : N
o : : / Oss ddo
dt + Aogo —p
d
> % Oz ¢1+)\1¢1 p=0

e dt
x L] - - - 1 —
\ t dt + apy ’ + Loy 0

(0 J
L) dw
(1) 0) _
+ Qo — Bopg’ =0
~(1) dt
LA
Neural Network: N ADEs DONE « TRUE l’
<e
>ma|’|‘it 4— MSE loss

FALSE




Kosambi-Karhunen-Loeve Theorem for Surrogates of Stochastic Differential

Equations

Theorem. The variables Z; have a joint Gaussian distribution and are stochastically
independent if the original process {X}},is Gaussian.
In the Gaussian case, since the variables Z; are independent, we can say more:

N

lim Z ei(t)Z;(w) = Xy (w)

N—oo "

almost surely.

ldea: expand input space to include Z_i



Neural Operators




Motivation: Green’s Functions

For a general PDE of the form:
(Lou)(x) = f(x), z=e€D
u(x) =0, x€dD

Under fairly general conditions on L, we may define the Green’s function G : D x D — R as
the unique solution to the problem

L.G(x,-) = 0,

where 0, is the delta measure on R? centered at . Note that (3 will depend on the coefficient a
thus we will henceforth denote it as (+,. Then operator F,.,. can be written as an integral
operator of green function:

u(@) = [ Gule,y)f(y) dy

D



Neural Operators

u(r) =0 (If}[f’r“i.’}(.‘}?) - /D k(z,y)v(y) dv(y) + b(.:r)) VreD

Input: function v(x)
Output: function u(x)

Operation: Kernel integration



Neural Operators

Definition 1 (Iterative updates) Define the update to the representation vi — Vi1 by

vir1(x) = ff(”"r'l,?t(ﬂl') + (K(a; (;S)ﬂt)(:;r:)), Ve e D

Reasoning: Green’s Function
requires linearity of the PDE.

Use local linearity => time steps



Training Neural Operators

1. Generate data of PDE solution using classical method

with many different inputs.
2. Train the neural operator to match the input/output
behavior of the PDE solver

Note that a PDE solver is still required!!!



Fourier Neural Operators

MC HAMMER & L 4
@MCHammer

Fourier Neural Operator for Parametric Partial
Differential Equations #Hamm400aos

arxiv.org

a I.Xiv Fourier Neural Operator for Parametric Partia...

The classical development of neural networks
has primarily focused on learning mappings ...

9:26 PM - Oct 22, 2020 O

QO 12k O Reply T, Share

Read 34 replies



Fourier Neural Operators

Fourier layer 2

—> 0 0 0 —>

Fourier layer T

@—F Fourier layer 1

Fourier layer

(a) The full architecture of neural operator: start from input a. 1. Lift to a higher dimension channel space
by a neural network P. 2. Apply four layers of integral operators and activation functions. 3. Project back to
the target dimension by a neural network (). Output u. (b) Fourier layers: Start from input v. On top: apply
the Fourier transform /; a linear transform 1 on the lower Fourier modes and filters out the higher modes;
then apply the inverse Fourier transform F~'. On the bottom: apply a local linear transform .

Figure 2: top: The architecture of the neural operators; bottom: Fourier layer.



Fourier Transformations of Derivative Operators: Conv to Multiplication

A = =, The claim is that
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Fourier Transformations of Derivative Operators: Conv to Multiplication

4.2 Solution to the Poisson Equation

Au=f

Now diagonalize A. Notice that it is diagonal in the Fourier basis, and so
we write the diagonalization of A = F 'DF and get
FIDFu=f
u=F "D 'FF.



Fourier Neural Operators

with ¢ = y/—1 the imaginary unit. By letting x(z,y) = k(z — y) for some k : D — C"*™ in (16)
and applying the convolution theorem, we find that

u(x) = F_l(.?:(ﬁ.) - F(v))(z) Ve D.
We therefore propose to directly parameterize « by its Fourier coefficients. We write

w(xz) = F YRy F(v))(z) VreD (28)



Fourier Neural Operators with NeuralOperators.jl

Fourier Neural Operator

model = Chain(
# 1lift (d + 1)-dimensional vector field to n-dimensional vector field
# here, d == 1 and n == 64
Dense(2, 64),
# map each hidden representation to the next by integral kernel operator
OperatorKernel(64=>64, (16, ), FourierTransform, gelu),
OperatorkKernel(64=>64, (16, ),
OperatorKernel(64=>64, (16, ), FourierTransform, gelu),
OperatorkKernel(64=>64, (16, ),
# project back to the scalar field of interest space
Dense(64, 128, gelu),
Dense(128, 1),

FourierTransform, gelu),

FourierTransform),



Inputs & Output

u(ry)

. u(rz)
u: function —{

U(Tm) \
Network

> G(u)(y) € R

C Stacked DeepONet

Branch net; |—f» @
u(xy) /)f
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DeepONet as a Linear Basis Representation

we propose is shown in Fig. 1C, and the details are as follows. First there is a “trunk™ network, which takes
y as the input and outputs |t1,12,..., f.p]T € [RP. In addition to the trunk network, there are p “branch”

networks, and each of them takes |u(xy),u(x2),... _.?..r,{::f:m)]T as the input and outputs a scalar by € R for
kE=1,2,...,p. We merge them together as in Eq. 1:

P
G(u)(y) = ) bitx.
k=1

The standard DeepONet structure is a linear approximation of
the target operator, where the trunk net and branch net learn
the coefficients and basis. On the other hand, the neural
operator is a non-linear approximation, which makes it
constructively more expressive



DeepONets with NeuralOperators.jl

DeepONet

# tuple of Ints for branch net architecture and then for trunk net,
# followed by activations for branch and trunk respectively
model = DeepONet((32, 64, 72), (24, 64, 72), o, tanh)

Or specify branch and trunk as separate chain from Flux and pass to DeepONet

branch = Chain(Dense(32, 64, o), Dense(64, 72, g))
trunk = Chain(Dense(24, 64, tanh), Dense(64, 72, tanh))

model = DeepONet(branch, trunk)



Physics-Informed DeepONets

DeepONet
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Physics-Informed DeepONets

Training: Table 4 summarizes the computational cost (hours) of training different models The size of different models
as well as network architectures are listed Table 3. All networks are trained using a single A100 card. It can be observed
that training a physics-informed DeepONet model is generally slower than training a conventional DeepONet. This is
expected as physics-informed DeepONets require to compute the PDE residual via automatic differentiation, yielding a
lager computational graph, and, therefore, a higher computational cost.

Case Model Training time (hours)
. Physics-informed neural network 0.12
Gravity pendulum ‘ _

Physics-informed DeepONet 1.63
Linear ODE Physics-informed DeepONet 1.33
Stiff ODE Physics-informed DeepONet 7.60
Wave equation Physics-informed DeepONet 3.00
Diffusion-reaction equation Physics-informed DeepONet 1.48
_ Physics-informed DeepONet 2.17

KDV equation
DeepONet 0.35

Table 4: Computational cost (hours) for training different models across the different benchmarks and architectures
employed in this work. Reported timings are obtained on a single Nvidia V100 GPU.



Physics-Informed Neural Operators

Method

# data samples | # additional PDE instances | Solution error (w) | Time cost
PINNs - - 18.7% 4577s
PINO 0 0 0.9 % 608s
PINO 4k 0 0.9 % 536s
PINO 4k 160k 0.9 % 473s

Table 2: Equation-solving on Kolmogorov flow Re = 500.



Reservoir Computing Methods
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Origins

During the training of
Recurrent Neural
Networks (RNN) was

layer presented the
most changes during
training [1]

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022

observed that only >
the weights in the last

The idea that
immediately came to >
mind was to only train

the last layer

As a result the
following models
were proposed:

e Echo State
Networks
(ESN) [2]

e Liquid State
Machines
(LSM) [3]

25
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Training - ESN

All the input points are passed in the reservoir At every input point corresponds an output
and the corresponding states x(t) are collected vector, collected into a matrix Vi, g€ RLxT
into the state matrix (XERNXT) over the training The output layer (W, ;) is computed at the end
period n=1,...,T. The evolution of the states is as linear regression of the teacher output on the
governed by [5]: reservoir states. The most used approach is
Ridge Regression [06]:
x(t+1)=(1-a)-x(t) + G-f[WX(t)+WinU(t)] Wout = VtargetXT(XXT + BI)-1

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 26
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Architecture - ESN

Input layer (W,,) and reservoir (W) are fixed at the start and do not change

during training. The output layer (W, ) is computed in one shot at the end
of the training

W is built from a sparse Erdos-
Revy matrix, with weight values

W, is a dense random matrix, sampled from an uniform
with weight values sampled from distribution over (-1, 1).
a uniform distribution over (-0,0) All the elements are also

rescaled so that the spectral
radius p < 1 [4].

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 27
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General Structure
Wine RNXM WE RNXN Woute RLXN

u(t)eRM v(t)eRt

> | IR (— R RO| [

x(t)eRN

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 28
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Prediction - ESN

Using the setup described it is
possible to obtain predictions using
the following equations

A\ 4

v(t+1)=g[WouX(1)]

x(t+1)=(1-0)-x(t) + a-fWx(t)+W. v(t)]

Fully autonomous system

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 29
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Reservoir Properties

e To sustain a universal
computation a good Echo State Property [/]:
reservoir needs to exhibit the current state depends on the sequence of
complex and state rich inputs it has been exposed to in a unique way

configuration space
e Systems with increasing

degree of complexity will
be better reservoir Fading Memory Property [2]:

e Better results are obtained the influence of the initial conditions of the
when the system is working dynamics weakens with time.

at the edge of chaos

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 30
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What can be used as a Reservoir?

Reservoir:
Non-linear dynamical system

Bucket of Water: - _
Using different Analog Circuits: Bacteria:
oerturbations as input can A physical reservoir Even E. Coli has been
obtain aood classification approach has also used as a reservoir in
t 98 been explored in [9], [10], obtaining decent
results [8] among others
5
Il
|, To s 1. 11% P Y
i]=
He.

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 31
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Why is Reservoir Computing useful?

e Computationally inexpensive (Compared to standard Deep Learning
approaches)

e More stable: does not show the vanishing gradient problem, typical
Neural Network hurdle

e Engineering freedom: one can just pick a dynamical system as reservoir
and start doing predictions

e Well suited for the prediction of time series in general, and more
specifically chaotic systems. Outperforms state of the art models [11]

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 32



Prediction of Time Series

UFZ HELMHOLTZ UNIVERSITAT
Zentrum fiir Umweltforschung |

The standard approach with time series using
Recurrent Neural Networks (RNNs) or Long
Short Term Memory (LSTM) networks has been
to feed the model an encoding of n prior time
steps as training for the desired output.

As we saw in the training section, no prior
manipulation of the time series is needed for a
Reservoir Computing approach.

[X(t-n), x(t-n-1),..., x(t-1)] > X(t)

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022

33
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Example: Lorenz system

Studied by Edward Lorenz
[12] is known to have
chaotic solutions for certain
parameter values

dx/dt = o(y - x)
dy/dt = x(p-z)-y
dz/dt = xy - Bz

Francesco Martinuzzi - “Reservoir Computing” - 08.06.2022 34
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ESN Results
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Continuous Time Reservoir Computing




10

10°

10
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Challenge: train a surrogate to accelerate an arbitrary highly stiff system

100

200

300

Yi Y- Ys
‘WH WH ‘Wy
W W W
o " f, " A, : f,
W, W, W,
X4 X, X5
Recurrent neural network? No!
1. It's an explicit method! (Euler’s)
e 2. Uniform steps will not capture the spikes!



Stiffness causes a problem even

10* b
102

with many SciML approaches like T
Physics-Informed Neural Networks 2 \

(PINNs)

loss

eigenvalue
[E=Y = [E=Y [
(=] [e=] (=]
o ol S
—
o -
| [==]
- =]

0 1072
Neural networks have difficulties matching highly ill- 0 1000 2000 5000 4000 5000 i
conditioned systems
Optimization techniques like gradient descent are explicit
processes attempting to solving a stiff model 90 8,000e200%%% Roa sfee  feteegeee,
Stiffness in the model can translate to stiffness in the 10° 7 ¥ v
optimization process as it tries to find a manifold 3 ,r'
Timescale separations of 10° and more are common in real Iy 1041
applications = [?
oee . € 1034 1
We need to utilized all of the advanced numerical S '
knowledge for handling stiff systems to work in 102 | Y

10,000 20,000 30,000 40,000

--o-- Stiff (a]_ =1, a,= 4)
Non-stiff (a; =1, a, =1)

tandem with ML! -

Understanding and mitigating gradient pathologies in physics-informed neural networks

Sifan Wang, Yujun Teng, Paris Perdikaris




Idea: Avoid Gradients and Use an Implicit Fit

Adapting: continuous-time echo state networks
Build a random non-stiff ODE and find a
projection to the stiff ODE

Some precedence: echo state networks
Fix a random process and find a projection
to fit the system

. ) W, 3 Fix r' = o(Ar + W,x)
/—{‘[ Predict x(t) = W 7(t)

x ?
9 ‘ Turns into a linear solve
9 " Solve the linear system via SVD
9 to manage the growth factor
Input \_/C;utput ( J J )

Get W,,,; at many parameters of the system

Reservoir

B Predict behavior at new parameters via:
u[n] X[n] Y[n] x(t) = Wout(p)r(t)
Win Wi out Using a Radial Basis Function constructed

Input Reservoir Output from the W,,,; training data



Continuous-Time Echo State Networks

Handle the stiff equations where current methods fail

Prediction vs ground truth Robertson’s Equations

1.00 p
o o — o= o= 2
__'_——0—'—".'__._

Classic stiff ODE
Used to test and break integrators
Volatile early transient

075

@- prediction (species 1)
ground truth (species 1)

Q- prediction (species 2)
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@- prediction (species 3) 'fjl — _()(}—Lffl -+ l(]4fj2 * Y3
ground truth {species 3) - .
yo = 0.041y, — 104;;2 cy3 — 3 - 10° yj

ys = 3-107y3

0.50 |

0.25

o0
00
[¢14]
[$.4]

000 W cec o o & © © © s 8 3
2.5x104 5.0%10% 7.5%10% 1.0%10°




Continuous-Time Echo State Networks

Handle the stiff equations where current methods fail

Prediction vs ground truth

f — Robertson’s Equations
Classic stiff ODE
B e e S Used to test and break integrators

Volatile early transient

0.8F m—1t) . _
ool \:Eiiﬁ 1 = —0.04y1 + 10%y2 - y3
0.2k i ) . = 9
Log'scale Fast 1u Too 0.01 1 100 10k Yo — U.U—LUl — 1“43}2 Y3 — 3 - 1(]" UE
Changes! : . 7 9
9 t s = 3-107y3
0.000010]
No auto-catalyst, °***L ; . . .
. 1p 100p 0.0l 1 100 10k
no dynamics
D:S— /
0.4
0.2
1 1|3I|:||.1 n.;:nl 1 1&:0 1I0k




Continuous-Time Echo State Networks

Handle the stiff equations where current methods fail

A Predicting species 1 concentration B Absolute error Scaling performance of model vs surrogate
0.61 : ‘-‘ @ stiff model »
1.00} — os | : . 125 - surrogate
075 0.4} _ o
o 100
0.3} 2 o
ground truth : o y
0.50 PINN g 7.5 /
LSTM 021 p VL
0.25 | @ ESN prediction points 2
' —— ESN with interpolation 0.1} 3 so rs
--- CTESN - e
: . . ; . 0.0 , w -
0.00 10 102 10° 102 10 10+ 10-? 10° 107 10* 2% >
Time (sec) D Time (sec) rd
e . | X |
Predicting species 2 concentration Absolute error oof e——% * H :
5x10-5 0.000100 20 40 60 80 100
Number of rooms N
4x1075 f !‘ o o
= 0.000075 | After training, 100x faster than
3x10°5 | /;' direct simulation!
I,.’ff 0.000050 |
2x10°5 | i
!
L0 0.000025 |
- o)
T T AR TS ETE ' 0000000 10~ 1072 10° 0 104

Time (sec) Time (sec)

Only CTESNs Capture the Hard Dynamics



ARPA-E: Accelerated Simulation of Building Energy Efficiency

8,000 ODE Highly stiff
vapor-compression
cycle model

. MITSUBISHI
AV N ELECTRIC

Changes for the Better

Compressor Shaft Power (W)

—— truth =
1100 surrogat

i }

1050

1000 |

950 |

Condenser
Fan Speed

0.75

0.50

0.25

0.00

Speed

Evaporator
Fan Speed

Compressor

Expansion
Valve Position

Relative error %

0 25 50 b5 100
Time (sec)

50 75 100
Time (sec)

The Julia implementation is 6x faster than Dymola for the full
cycle simulation.

o Dymola reference model: 35.3 s

« Julia (as close to) equivalent model: 5.8 s

e Could be due to details such as the linear solvers, the refrigerant
property libraries, etc. More benchmarking to come.

Using CTESNSs as surrogates improves simulation times
between 10x-95x over the Julia baseline. Acceleration depends
on the size of the reservoir in the CTESN. The surrogate
approximates 20 of the observables.

Training set Reservoir size Prediction time Speedup over baseline
size

100 1000 0.06 s 95x

1000 2000 0.56 s 10x

Erroris < 5% in all cases.

Total speedup over Dymola: 60-570x




Take Arbitrary Large Models and Automatically Accelerate with CTESNs

1265 ODE model of
spatial cell signaling in
Arabidopsis

i7A BioModels

‘ . ' Fig. 1. A schematic ofthe expression domains of CLAVATAI, CLAV-
ATA3 and WUSCHEL. The solid arrows indicate the regulatory
(indirect) interactions and the dashed arrows show the movement
of the CLV3 protein.

COPASI simulation: crashed upon reading (“not responding”)
MATLAB SBMLToolbox: 870s to read, 1.13s to simulate

Julia vanilla: 60s to read, 0.6s to simulate

Julia surrogatized simulation: ~instant to read, 0.062s to simulate

Wwus In;iucers

Julia vanilla outperforms MATLAB’s SBMLToolbox

CTESN predictions at new parameters have < 5% error, are

Output dimension 8 Relative Error over Time almost instant to read and 100x faster to simulate
: Surrogate Pointwise Error
Truth 1.2 Curve distance
15 | . . . . .
1o | (Julia SBML reader is incomplete: full Jacobians right now
os | and no e-graph simplification. Probably ~10x performance
Lo | | left on the table)

0.6

0.4
)5

0.2

J0 0.0

o T Tl e Total speedup: 100x vs MATLAB SBMLToolbox




The Transformed Models are Just Components: Compose As Normal

Neural Network

100x Faster

28 . ]
>~ Simulation
Electrical ‘ Embed Surrogates
l Energy

a \
A -
A ¥
A ¥
A
A ¥
A ¥
A ¥
=

Desired Adtual .
Dryness Heating Feal Dryness . .
R Elements Elthes - Accelerate large (100,000 ODE) simulations
(nput) (Qutput) . e o .
without retraining by using an accelerated HVAC
- component inside of different building models
Sensor -

Feedback Loop
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Large Building Models 100K Equations, 80x Acceleration

Room 33 Surrogate: T_air - Test Parameter

CTESN
GT

0.00015 |

0.00010 F

0.00005

0.00000

2.50%10° 5.00%10° 7.50%10° 1.00%10°

Relative Error Room 33: T_air - Test Parameter

5.00%10° 7.50%10° 1.00x10°

Rooms Training Reservoir Prediction Speedup
Disturbe set size size time over
d baseline
1 100 200 0.2597 s 77X
3 100 200 0.413s 80x
[ Twall |e [ Twall |e| [ Twall|e| ] Twall |e
Tairl Tair2 Tair3 Taird
[ Twall |e (] Twall |e| . Twall [e . Twall [e
Tair5 Tair6 Tair7 Tair8

Scalable building model with equipment

Relative Error Room 5: intWall - Test Parameter

0,006 -
0.004 - //"
0.002 - Vs
P
0.000 1 < 1 L 1 L
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300 |
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\
\
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\
\
\
100 e e ——
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Total speedup over original : 80x



Extended Mathematical Compiler
Transformations: Abstract Interpretation
More than Differentiation




Automated Sparsity Detection: SparsityDetection.jl and

ModelingToolkit.|l

brusselator_f(x, y, t) = ifelse((((x-0.3)"2 + (y-0.6)"2) <= 0.172) && (¢t >= 1.1), 5., 0.)
limit(a, N) =a==N+1 71 : a==07N : a
function brusselator_2d_loop(du, u, p, t)
A, B, alpha, xyd, dx, N = p; alpha = alpha/dx"2
@inbounds for I in CartesianIndices((N, N))
i, j = Tuple(I)
x, y = xyd[I[11], =xyd[I[2]]
ip1, iml, jpl, jml = limit(i+1, N), limit(i-1, N), limit(j+1, N), limit(j-1, N)
duli,j,1] = alpha*(uliml,j,1] + ulipi,j,1] + uli,jpl,1] + uli,jmi,1] - 4uli,j,1]) +
B + uli,j,11"2*uli,j,2] - (A + 1)#uli,j,1] + brusselator_f(x, y, t)
alpha*(ulimi,j,2] + ulipi,j,2] + uli,jpl,2] + uli,jmi,2] - 4uli,j,2]) +
Avuli,j,1] - uldi,j,11"2#uli,j,2]

duli,j,2]

end
end

_ . A program is just control flow:
https://docs.sciml.ai/lat | - Jacobians: whether two variables interact
est/tutorials/advanced | - Hessians: whether two variables interact nonlinearly

ode example/#Auto
matic-Sparsity- We can generate sparsity patterns from programs via

Detection-1 nonstandard interpretation.

51.714 seconds to 1.185 sl
50x for no effort!



https://docs.sciml.ai/latest/tutorials/advanced_ode_example/#Automatic-Sparsity-Detection-1

Uncertainty Quantification via
Metaprograms

- We have a brand new method for uncertainty quantification in
ODEs. It requires only one ODE solver call and is incredibly efficient.

But, nobody ever wrote the code and nobody ever needs to
because it created itself.

julia

DifferentialEquations.jl and Measurements.jl ¢

B Usage diffeq

@ giordano

Today | was asked whether it was possible to solve in Julia differential equations involving numbers with
uncertainties. Of course the answer is yes. What [ find really amazing about Julia is that the two packages don't
know anything about each other, yet they can work together without any effort. Here 1s an short example based
on this tutorial - https://nbviewer jupyter.org/gist/giordano/e82a3959d8f64301129d64d004e10bde



Linear Error Propagation Theory

Any non-linear differentiable function, f(a, b), of two variables, a and b, can be expanded as

af  of
~ 04+ =L —b
I3 B
hence:
of |* af | of of
2’,:3 v 2 _ 2 2L
71 6a%+bb%+éh%%

where o is the standard deviation of the function f. o, is the standard deviation of a, g}, is the standard deviation of b and o, is the
covariance between a and b.

of of

In the particular case that f = ab — = b, — = a. Then

Oa ob
crfc ~ b0 + a’ cr% + 2abog
or
L) m (%) () +2(2) (3)
(f) ~\ b a ) \p )P

where p,3 is the correlation between a and b.



using DifferentialEquations, Measurements, Plots

pyplot()

g = 9.79 £ 0.02; # Gravitational constants
L =1.00 £ 0.01; # Length of the pendulum

#Initial Conditions
Up = [@ 0, m / 60 £ 0.01] # Initial speed and initial angle
tspan = (0.0, 6.3)

#Define the problem
function simplependulum(du,u,p,t)

6 = u[l]
de = u[2]
du[1l] = db

du[2] = -(g/L)*6
end

#Pass to solvers
prob = ODEProblem(simplependulum, u,, tspan)
sol = solve(prob, Tsit5(), reltol = le-6)

# Analytic solution
U = upf[2] .* cos.(sqrt(g / L) .* sol.t)

plot(sol.t, getindex.(sol.u, 2), label = "Numerical")
plot!(sol.t, u, label = "Analytic")

0.050

0.025

0.000

-0.025

-0.050

—— Numerical
—— Analytic
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Polynomial chaos expansion (PCE) provides a way to represent a random variable Y
with finite variance (i.e., Var(Y’) < oco) as a function of an M-dimensional random
vector X, using a polynomial basis that is orthogonal to the distribution of this
random vector. The prototypical PCE can be written as:

Y =) ¥(X).

1N



1
/ 6z°dx.
0

Exploiting the underlying uniform measure, the integration can be done exactly with a 3-point quadrature rule.

julia> using PolyChaos

julia> opq = Uniform@10rthoPoly(3, addQuadrature = true)
Uniform@10rthoPoly{Array{Float64,1},Uniform@1Measure,Quad{Float64,Array{Float64,1}}}(3, [0.5, ©

julia> integrate(x -> 6x"5, opq)
©.9999999999999993

julia> show(opq)

Univariate orthogonal polynomials

degree: 3
#coeffs: 4
a = [6.5, 0.5, 0.5, 0.5]

B = [1.0, ©.08333333333333333, 0.06666666666666667, 0.06428571428571428]



Another Example: Free Efficient PDE Solvers!

Fgom Sobolev Function Space Theory, we know that we can represent L? functions as vectors in the
L# function space

Example: Fourier decomposition
f(x)=c+ z ay sin(kx) + by, cos(kx)
K

f(x) € L? is the infinite length vector [c, ay, by ]. It is essentially a number in L? space.

An arithmetic on these “numbers” makes sense: how do you add, multiply, divide, etc. functions by
other functions? You can then define this in terms of the coefficients of the decomposition.
* Semigroup theory details how using these functions as numbers gives a mathematically rigorous way of defining
PDEs and their solution

Computationally, you can discretize a function into this space and re-write a PDE in terms of an
ODE on these vector coefficients. This is known as a spectral or finite element method.



DifferentialEquations.jl + ApproxFun.jl

« ApproxFun.jl defines the Fun type which discretizes a function into
a chosen decomposition space and treats it like a number 1ol
* It’s length adaptive: it automatically chooses the number of coefficients to

use in order to specify the function to tolerance.

« DifferentialEquations.jl has ODE solvers which are generic to the
Number and AbstractArray type which are used.

 What happens if you define your PDE using a Fun as an initial
condition, define the PDE by its arithmetic (i.e. write down the ODE

09

o

on the function), and hit solve? 7__][ __x\—/[ __\_

spectral/pseudospectral ODE solvers. Super efficient. Nobody wrote the
code. Works fine.

* You get some of the world’s first adaptive space + adaptive time 06 |- /



A story that merges AD-based compiler
techniques with surrogate generation

(Julia Computing JuliaSim Pitch)




using ModelingToolkit, OrdinaryDiffEqg

@parameters t o p B
@variables x(t) y(t) z(t)
D = Differential(t)

ModelingToolkit.jl — A staged
programming paradigm for
modeling and simulation

[D(D(x)) ~ o*(y-x),
D(y) ~ x*(p-z)-y,
D(z) ~ x*y - B*z]

eqgs

ODESystem(eqgs)

ode _order lowering(sys)

sys

sys

ue

Il
—
o
—~

>
o

=> 2.0,
X =% 1.8,
y => 0.0,
z => 6.0]

p = [0 => 28.0,
p => 10.0,
B => 8/3]

tspan = (©.0,100.0)
prob = ODEProblem(sys,u®@,tspan,p,jac=true)
sol = solve(prob,Tsit5())

using Plots; plot(sol,vars=(x,y))



ModelingToolkit is
Staged Stable
Transformations of
Models

W' = f(u)

u' =

=X
x' = f(u)

Run Transformations

[

_ ——Codegen—p-

In the compiler world, GCC is an example of a compiler with many lowering
steps while LLVM is an example of a compiler with a well-documented IR
designed for stable transformations

using ModelingToolkit, OrdinaryDiffEqg

@parameters t o p B
@variables x(t) y(t) z(t)

D = Differential(t)

[D(D(x)) ~ o*(y-x),
D(y) ~ x*(p-z)-y,
D(z) ~ x*y - B*z]

eqgs

ODESystem(egs)

ode_order_lowering(SQEE:::>

Gives an ODESystem

ue

Il
—
o
—~

x
o

=> 2.0,
X =% 1.8,
y => 0.0,
z => 6.0]

o
]
—
Q
]
W

28.0,
p => 10.0,
B => 8/3]

tspan = (©.0,100.0)

prob = ODEProblem(sys,u®@,tspan,p,jac=true)
sol = solve(prob,Tsit5())
using Plots; plot(sol,vars=(x,y))




What Kinds of Transformations Do You Get? DAE Index Reduction

3;', — Vs Not solvable by standard ' =uv,

v, = ‘' numerical solvers! o —aT casy 1o solvel
y =, I y =v,

U;} =1y—g Differentiate the last equation 'U; =yl — g

twice, do a few substitutions...

0=2x2%+y?—L? 022(U§+U§+y(yT—g)—i—T$2)

If you don’t know the details about why this makes a better numerical simulation, then you should be using ModelingToolkit.



Composable (Acausal) Modeling via Subsystems

equations(rc_model)
16-element Vector{Equation}:
0 ~ resistor.p:i(t) + source.p.i(t)
source.psv(t) ~ resistor,psv(t)
@ ~ capacitor.p+i(t) + resistor.n.i(t)
resistorin,v(t) ~ capacitor.p.v(t)

JuliaSim

= 1.
= L.
= L.

@named resistor = Resistor(R=R)

s B s B a0

Differential(t)(capacitor.v(t)) ~ capacitor.p.i(t)*(capacitor,.C™-1)
@named capacitor = Capacitor(C=C) source.V ~ source.psv(t) - source.n.v(t)
@named source = ConstantVoltage(V=V) @ ~ source.n,i(t) + source.p.i(t)

@named ground = Ground() EREIIAENE) & 2

rc_eqs = [ structural_simplify: the analogue of the

connect(source.p, resistor.p)

standard Dymola/Modia compilation pass

connect(capacitor.n, source.n, ground.g) sys = structural simplify(rc_model)

connect(resistor.n, capacitor.p)

]

equations(sys)
2-element Vector{Equation}:
d rc_model = ODESystem(rc_eqs, ® ~ capacitor.v(t) + resistor:R*capacitor.p:i(t) - source.V
systems=[resistor, capacitor, source, ground]) ] Pifferential(t)(capacitor.v(t)) ~ capacitor.p.i(t)*(capacitor.C"-1)

Describe how the subsystems relate

Build a system of subsystems!




What Kinds of Transformations Do You Get? Moment Closures For Free!

Chemical Reaction Systems as Stochastic Models N kN
using Catalyst, DifferentialEquations, Plots, Latexify Z Sz'in — Zrin:-f; j — ]-:- Py Rr
i=1 i=1

repressilator = @reaction_network begin
hillr(Ps,a,K,n), @ --> my
hillr(Psi,a,K,n), @ --> my dp(n;t

) R
hillr(P,,a,K,n), @ --> m3 dt — Z {ﬂr(ﬂ o ST‘)P(H T Srnt) _ GT(H)P(n:t]

(5,¥), My & 0 r=1

(6,Y), my © O 800 ——— m(t)

— malt)
(6JV)J ms ¢ 0 — ma(t)
> My >my + Py Pa(t)

. Pa(t)
my - m, + P
BJ 2 2 2 600 L P3(t)

B, m3 > my; + P3
U, P --> 0

H, P2 > 0
iy By =-300 400 |
akndypuy;

uo = [0,0,0,20,0,0] -

dprob DiscreteProblem(repressilator, u,, tspan, p)

jprob = JumpProblem(repressilator, dprob, Direct(),
save_positions=(false,false))

sol = solve(jprob, SSAStepper(), saveat=10.) 0
plot(sol) 0 2000 4000 6000 8000 1000(




What Kinds of Transformations Do You Get? Moment Closures For Free!

Chemical Reaction Systems as Stochastic Models

N k;
Z Sz'in —

N

T?'_jX;.j? j:]_?...jR?
i—=1 i=1
dP(n,t) &
G = 2 a0 =8P 5y, 1) —a,(m)P(n, )] Who the heck would want to do
= that by hand?

You can write out the moments...

dP (n,t) - dP(n t)
D =33
n ny o ny

— Z an_ar(n — ST)P(H — S'.r';t) — n.i_ar(n)P(n, t)



What Kinds of Transformations Do You Get? Moment Closures For Free!

using Catalyst

rn = @reaction_network begin dyiyo
dt
dpio1

(c1/072), 2X + Y » 3X d

( c 2 ) 3 X = Y dﬁil 9 9 9 2
(c3*Q, ca), @ & X 7 2k + e 7 4 e pan T 4 3oy — eapo — Coptrr — Caprar — Crpad T — ez 2°

=3+ e Q% — eaprio — Captro — C1 i
=copir0 + Crpn 2 — cppiy
=cafir + €3 + Capiyn + 201 3 Q2 + 20310 — 209 p90 — 2¢4pt0 — €11 Q7 — C1png Q7

d,{!.{]-') 9 ) D _9 ] _9
= Co ln 1 Lo = e 261 L ey ‘< —2¢i 490 ) °
Cs Cp C3 Ca 0O g G2k + e Y 7+ 2ca 11 + 261 11282 c1 1182 €1 a9

using MomentClosure It spits out the ODESystem for the
raw_eqs = generate_raw moment eqs(rn, 2, means and Variances, now go
combinatoric_ratelaw=false) forth and solve!

using Latexify

latexify(raw_eqs)




ModelingToolkit System Example: NonlinearSystem

NonlinearSolve.jl: Unified Nonlinear Solver Interface

flu,p) =0

* Systems can take other AbstractSystems as subsystems
* sturctural_simplify is “universal simplification”

* The syntax is all similar

* Each system has a SciMLProblem type and a unified
solver library

The SciML Common Interface for Julia Equation Solvers
https://scimlbase.sciml.ai/dev/

using ModelingToolkit, NonlinearSolve

@variables x y z
@parameters ¢ p B

eqs = [0 ~ o*(y-x),
0 ~ x*(p-2)-y,
0 ~ x*y - prz]
ns = NonlinearSystem(eqs, [X,Y¥,z], [0,p,B])

guess = [x => 1.0,
)

1 U
> 0.
0.

0]

prob = NonlinearProblem(ns,guess,ps)

sol = solve(prob,NewtonRaphson())



ModelingToolkit System Example: NonlinearSystem

using ModelingToolkit

@parameters t

@variables ul(t) u2(t) u3(t) ud(t) us(t)
eqs = [

~ ul - sin(u5),

~ u2 - cos(ul),

u3 - hypot(ul, u2),

~ u4 - hypot(u2, u3),

~ u5 - hypot(u4, ul),

NonlinearSolve.jl: Unified Nonlinear Solver Interface

flu,p) =0

o O ©®@ ®@ ©®
2

]

sys = NonlinearSystem(eqs, [ul, u2, u3, u4, u5], [])

StrUCturaI—SImpllfy: simple_sys = structural_simplify(sys)
The God of Transforms [EIETENEr=SEES

Newton method cost: O(n*3)
0(143) << O(5"3)!

The SciML Common Interface for Julia Equation Solvers
https://scimlbase.sciml.ai/dev/



Machine Learning Surrogates as Approximate Transformations

Run Transformations

[

——Codegen—p-

i i i ing JuliaSi
If you build a machine learning method that outputs using Juilasim

differential-algebraic equations, then it qualifies as an

" . ” . - ODES 't g
approximate” stable transformation 2YS ystem(...)

prob = ODEProblem(sys, u@, tspan, p)

Take in a differential equation and the outputs to surrogatize over param_space = [...]

Create a new differential equation system that is approximately the surralg = LPCTESN(1eee, output function = (u,t) -> u[1:3])

same input/output mapping (dimensionality reduction) sim = DEProblemSimulation(prob, reltol = le-12, abstol = 1le-12)
Represent that system as an MTK model

odesurrogate = JuliaSimSurrogates.surrogatize(

Because it's approximate, it needs user-intervention. sim,param_space,
. _ surralg,100

We developed the continuous-time echo state network as a surrogate )

method which is robust to stiffness and has these properties.

newsys = ODESystem(odesurrogate)



Surrogatization as Machine Learned Approximate Transformations

Training Data Preparation Build Surrogate
Native
User Model Svmbolic Model Solve with _ra.nT:gadata H% Y
W ] Teanstomatons [—|  Dfferenial b The training data source for a CTESN surrogate does not need
to come from ModelingToolkit, it can come from any
OR timeseries data source.
User Model iU based Training CTESNs on timeseries data sources gives a process
odelica om i'e 0 fraining SU"O ate . . . . .
 aaka - : that merges translation to ModelingToolkit with acceleration!
Sources that we have been experimenting with:
« Functional Markup Units (FMUs) (Dymola, Simulink)
Simaton Complle to FMU « SPICE models for electrical circuits (NgSpice, Xyce)

J====ocy for use with  j&-----------1
external software

L Use natively in a Julia simulation |————

Simulation or Co-simulation

Co-simulation Surrogate

Various PDE tools (COMSOL, Abaqus, etc.)

Surrogate
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340x Acceleration of a Global Optimization by Surrogatizing an FMU
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Use Cloud Resources to Smartly Burst Compute and Amortize Time

Burst the compute to fully parallelize the simulations of the
surrogatization, making that step of the process approximately
the cost of a single simulation

Using this kind of setup, the true time cost to the user to run
the acceleration is roughly ~5x-10x* the simulation time




This Process Can Be Bundled Up As an FMU->FMU Accelerator

“w JuliaSim FMU Surrogates Library

1

Upload FMU

Supported files:fmu

5 LoAaD E» EXPORT C' RESET

Algorithm

Algorithm *

Reservoir Size

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5001

Number of Sample Points

0 y 500 600 700 800 900 1001

Julia

JuliaHub

Contact Us

By moving the model
transformation process to
the runtime itself,
ModelingToolkit can be
used as a transformation
and compilation system by
other front ends.

Other talks at the Modelica
conference also exploit this
feature.
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