Introduction to Scientific
Machine Learning

Chris Rackauckas

Director of Modeling and Simulation,
Julia Computing

Research Affiliate, Co-PI of Julia Lab,
Massachusetts Institute of Technology,
CSAIL

Director of Scientific Research,
Pumas-Al

Scientific Machine Learning: Extrapolating where ML Does Not

Upon denoting x = (¢, x, p, €), we propose the follow-
ing family of UDEs to describe the two-body relativistic

B Ut M L C a n 't dynamics:

‘- 1 + ecos 2
¢ = (MI];UE.‘{)) (1 + Fi(cos(x),p.€)), (5a)

e cos(y))?
d 0 th at? Y = (1 +;i,;fp-"=;’g{)) (1 + Fa(cos(x), p, r:'))._ (5b)

p = Fs(p.e), (5¢)
e = Fu(p,e), (5d)
0.1 | | —— True waveform
— = Learned waveform
. - . Training data
But was also demonstrated with : | ‘
the LIGO Black Hole dynamics . = l | “ Wi |
from the gravitational wave data, 2
and many other examples! 0

Scientific Machine Learning is model-based data-efficient machine learning

How do we simultaneously use both sources of knowledge?

Predictions

0.5

0.4

0.3

0.2

0.1

0.0

QSIR prediction and forecasting: 9 compartment model dat:

0.4

0.3

0.2

0.1

0.0

Outline

Mixing equation discovery into epidemic modeling workflows will revolutionize the field

QSIR prediction and forecasting: SIRHD data

a0
Days since 500 infections

(a)

e

o 20 a0 60 80
Days since 500 infections

[l

Neural ODE prediction and forecasting: SIRHD data

o 20 40 &0 80
Days since 500 infections

(b)

Neural ODE prediction, forecasting: 9 compartment

[} 20 40 60 80
Days since 500 infections

1. Scientific Machine Learning Applications

Domain knowledge with machine learning

'DD@DI@IGD+HGIDI

Data
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15

0 1 2 3 4

2. Scientific Machine Learning Software

Fast and automated simulation and model discovery

First method: Physics-Informed Neural
Networks

Physics-Informed Neural Networks

PDE: L(u(x,t),0) = g
NN(w, b) Ay Y

| Approximate the PDE solution u as a neural network

Make a loss function be that its derivatives must solve
the PDE

Use gradient descent

Now the neural network is u which solves the PDE!

ModelingToolkit's General PDE Solver: Physics-Informed Neural Networks

Easy and Customizable PINN PDE Solving with NeuralPDE.jl, JuliaCon 2021

using ModelingToolkit
import ModelingToolkit: Interval, infimum, supremum

FastChain(FastDense(dim,16,Flux.o),

FastDense(16,16,Flux.o),FastDense(16,1))

@parameters x y
dx = ©.65
discretization = PhysicsInformedNN(chain,GridTraining(dx))
Dxx Differential(x)"2 prob = discretize(pde_system,discretization)

Dyy = Differential(y)~2

@variables u(..)

opt = Optim.BFGS()
res = GalacticOptim.solve(prob, opt, maxiters=100@)

solution

Dxx(u(x,y)) + Dyy(u(x,y)) ~ -sin(pi*x)*sin(pi*y)

[u<QJY) ~ 0.f0, u(IJY) ~ 'Sin(pi$1}&51n(pi#y):
u(x,e) ~ 0.fe, u(x,1) ~ -sin(pi*x)*sin(pi*1)]
domains = [x € Interval(e.0,1.9),
y € Interval(e.0,1.0)]
pde_system = PDESystem(eq,bcs,domains,[x,y],[u])

Why Use Physics-Informed Neural Networks?

PPE_;ﬁE{(j{:E?in f_:g o Problem
NN(w, b) co

Harmonic oscillator —

Neural network
Training step: 10

Exact solution
m—= Neural network prediction
Training data

Physics-informed neural network
Training step: 150

Exact solution

=== Neural network prediction

Mix data and physics loss

Outperforms standard machine learning

Why Use Physics-Informed Neural Networks?

PDE: L(u(x,t),0) = g
NN(w, b) Ay Y

Generality: Easily works for any PDE

Simplicity: Doesn’t require any simulation methods,
just a neural network and automatic differentiation

Why not use a PINN?

Performance.

Second method: Differentiable Simulation
and Universal Differential Equations

Universal (Approximator) Differential Equations

X(t), y(t)

- | @ Measurements

Universal (Approximator) Differential Equations

—UDE Approximation

U(x,y)

L2-Error

I |[— UDE Approximation
| |— True Interaction

Measurement Data

Known and Unknown Relations
r=ax+ U, (0,z,v)
y=—bhy+Us(0,2,y)

Train Model = miny L (0)

Recover Unknowns

= = min ||U(8, X) — OZ|2 + A=

[4 .
1LY
S22y

T
(1]

Build fully symbolic Model
Tr=oar+ &y

= —0y+ Ery

4 5 6
t
o 1 2 3 4 5 6

UODEs show accurate extrapolation and generalization

Trgi;tigg Extrapolated Fit From Incomplete Training Data Upon denoting x = (¢, x, p, €), we propose the follow-
ing family of UDEs to describe the two-body relativistic
dynamics:

@ xdata
O ydata
Estimated x(t)
Estimated y(t)

rue x : 1 > C0Ss 2
A Truey() b = (‘|'ﬂfj;;:g.¥)) (1 + Fi(cos(x),p.€)), (5a)
40 50 1 > COS 2
t ;= (+{;;;gﬂ) (1 + Fa(cos(x),p,€)), (5b)
Extrapolation is successful in Lotka-Volterra... : _* _E .
b= Fa(p,e), (5¢)
e = Fu(p,e), (5d)

0.1+

— True waveform
— — Learned waveform

;. W\‘ W,NNI[\MU M i

But was also demonstrated with
the LIGO Black Hole dynamics
from the gravitational wave data,
and many other examples!

Waveform

|
=
—_

SciML Shows how to build

Earthquake-Safe Buildings

St slabs

Gravity Frame (GF)

M coluems (red)
M- Easl

MF heanns

GF rackers

HBeam coliam joanl

GF loadez]ls

20r CiF coliimis {Blise)
measured data { Phase 1) MF loadesls
1.5 - fany (initial model] M0 (hlack)
== fphy + NN
1L.OF AR OB Shike table
— 5 F '!\ I'"Tl H “ 'Ilii !‘I' Ao A o T 7 =3 - A
= \ J.' A .H- 0 f ' ,'-‘} }'-.'.| }'.. I ,‘H‘. i AR A A p Figure 10: The structural system equipped with a negative stiffness device in between the first
5 0.0F *-s-if'. 2 i i]i H ¥ | RER {1141 'g‘ AVAVA! &Y i i/ \ i A floor and the shake table.
YA %4‘ TN TETRTEY vl i TR Y| v WY
K U i1 i oWy oy v oy }I,,' VoY ¥ v v v
LI A A U .)
L v 'a Wl
-1.0 !
training extrapolation
12 14 o] 20 22 24 Scientific machine learning for earthquake-
e =
' safe buildings
10
!- B il i;: :El i|| L L] l1 n . gm n n n
T AR AABBRARRARMA R 4 o 0 4 Structural identification with physics-
S oladhitfbdiat AR LA R AA AVAVAYAY - . . .
dHFRTRY RTATRIRVA AR ATATAVRTAVATAA informed neural ordinary differential
st WhGOW oMb oW Wy YWy oYYy o .
YRR equations
-“.} ™ L E .] - [
training extrapolation Lal, Zhllu, Mylonas, Charllaos,
L 1 A L i L

i 11 16 E 20 22 2 Nagarajaiah, Satish, Chatzi, Eleni

Time 1 [sec.]
Figure 12: Comparison of time history of the response for displacement x(#) and velocity (1)
for the NSD experiment (Phase 1).

SciML for Predicts Longer Lasting Battery Materials

Researches at CMU used
Universal Differential
Equations to improve models
of Battery Degradation to
Suggest Better Battery
Materials

Universal Battery Performance and Degradation Model
for Electric Aircraft

Alexander Bills, Shashank Sripad, William L. Fredericks,
Matthew Guttenberg, Devin Charles, Evan Frank,
Venkatasubramanian Viswanathan

150

4.5
S 44 /
P r\
ﬁ 3.5 4 1
E 3 * Baseline mission, cycle #1
CellFit
2.5 T T
0 50 100
4.5 Time (min}
S 4- /
%
E 3.5 _F
;D, 3 1 Baseline mission, cycle #800
CellFit
2.5 | |
0 50 100

150

: Neural
Y(t)=A@t) K () Ly(t)? ¢ surrogate
7/ (t)y=sY(t)—dK (t
A(t)=zA(t) La(t)
L::zi /[I. Neural
DAEs diff.eq.
Carnegie T
Mellon FUELS
> DOt
&) EVARVAY CIT R INE
DFT A-CGCNN
julia
=1 T
Eﬁﬁ i ﬁé B/ A\
;[M % Neural
x*” > surrogate
DAEs
Carnegie
Mell()n

L

CITRINE

\\\\\\\\\\\

SciML for Generates Predictive Combustion Models

CRNN
In[A] (Law of Mass Action) _
nj4 v 0 [A]
Y | Y dY
In[B] = v —v;u [B]
[i] exp(x) " .
InfC] & ve®] Mechanism
P® na Ik "o e (D] interpreter
1/RT »f
T InT b (Arrhenius Law) dT
CO~C6
differentiation solving
ODE solver

Figure 8: Schematic showing the structure of the CRNN-HyChem approach.

Fast automated learning of combustion
models for accelerated engineering

Arrhenius.jl: A Differentiable Combustion Simulation Package
Weiqi Ji, Xingyu Su, Bin Pang, Sean Joseph Cassady, Alison M. Ferris, Yujuan Li,
Zhuyin Ren, Ronald Hanson, Sili Deng

SciML for Generates Predictive Models of New Propulsion Devices

(a) ™™\ (b) (e) 1-D PDE on periodic domain
- du ou _
' _ L — (1 — NNy (w) _ -,,2
~4 ‘ . T +uax q(1 —A)ke™™ €U
" a2
> s R _ NN (u)
(; . FT: (1 —A)ke

!

Seek traveling waves
U)=ulx—ct+a)
A(€) =A(x —ct+a)

| Y J l
r(c) Steady wave profile) (d) Transformed profile] (f) Traveling wave Neural ODEs
c=1250m/s ¢ =1250m/s dU 1
—_— _ NN{(U) _ 2
S;__//\T UAfﬁ“it:I‘_b Ef; TS U_C(q(l N)ke eU?)
. T . =a =
SciML predicting the properties > in 1 o
. . : . —=—((1 = ANkeVN1(U) _
of new propulsion devices =z —ct+a f—az—ctta dz C((ke)

Data-Driven Surrogates of Rotating Detonation Engine
Physics with Neural ODEs and High-Speed Camera
Footage

James Koch

SciML for Controlling Qubit Preparation in Quantum Circuits

{ e
TS5 F 0 II
o0
~
=15
0,00 0,05 L}I..'H.I 0,15 0,20
) (d)
= 7 ‘—_‘—“-a_____h
=
=)
=TF e
= 0,00 0,05 0,10 015 0,20
TH
o (k] e fOrwiard pass
L - A revarse pass
: '
n (]
i (]
L ¥
TH1) {lu(s 20}
- controller SDE soiver loss function
L |_|-I'u — - — _'._'F
‘ il L %
. 1‘ wie]}, JIE) I { _ il |
il
WLt

scorg-funclion estimator (maded-blindg)

og

06 ¢

0z

14

0na

a6

a4

a0 b

1000 000 000 a 50 1K 150 a 50
epoch t !

Future quantum computers will be made possible by SciML

Control of stochastic quantum dynamics by differentiable programming

Frank Schafer, Pavel Sekatski, Martin Koppenhofer, Christoph Bruder and Michal
Kloc

SciML for Builds Models of Biological Systems

a F‘m-: ‘]:J. b 16 - , Protein X
h * r %7 ,"; -'rll :'rh': H ’ :1", ;'”
_ promae : * . Ay VA _I" Y 1"\}:
H |g gm F'n:ﬂEinYl n
Better models of gene expression to o Qi D gy S Y R
understand biological systems e ALY RN AT
=% xeh v ’ o Erﬂ | 1l.l.ll.'.| 150 _._2|DD
= - . Time ()
Neural network aided approximation and c d A ; c
. . ! 245 I 40% ! 1028
parameter inference of stochastic models 12 . 015 0191 o
of gene expression = N . = P . §
Qingchao Jiang, Xiaoming Fu, Shifu Yan, Runlai Li, § E 5 n 3 R %0
Wenli Du, Zhixing Cao, Feng Qian, Ramon Grima E £ ’ EMK .
E —
3 : 50 100 150 200 0 15 0 15 0 15

Time () Protein #

Bayesian UODEs: Knowledge-Enhanced Model Discovery with UQ

Result: Probability

of Missing

100

15

Lotka Volterra Neural ODE Lotka Volterra Neural ODE

® Data: Varl ® Data
® Data: Var2 6 ——— Traning: Best fit prediction
Training: Best fit prediction Forecasting: Best fit prediction

Forecasting: Best fit prediction

Training Data End

50 I’E
Mechanisms S
25 F
0+
A Number of ~ Dominant terms Error Mean % | i
Active terms AIC score sampled 1 2 3 a : . Varl ;
0.01 9 u?, u3, s 0.765 404 100
U%Ugj U%Ug, ugul
1 Usg, const function lotka_volterra!(du, u, p, t)
0.1 9 u?, u3, g us 0.764 35 100 X, Yy = U
udu3, uug, udu, a, B, 5, v
U1 Ug, CONst
du[1 dx
1 s w2, u2, 0.764 216 100 AEl S e
uug, Ug Uz du[2] = dy
2 2 u3ug, Uy 0.634 7.2 100
3 1 U U 0.7 4.1 100
1 u%ug 249 1 100 Dandekar, R., Dixit, V., Tarek, M., Garcia-Valadez, A., & Rackauckas, C. (2020). Bayesian Neural Ordinary

Differential Equations. Languages for Inference (LAFI) 2021 - POPL 2021

Demonstration of UDE Epidemic Models

Data: Infected | | Data: Infected Hadden
1.3% 104 == Prediction P e Predicticn
1. i
. Data: Recovered ~ N Data: Recovered Ity Oeipstis]

gzl = Prediction Bx1ge] ™= Prediction - .
Gx 10 "
4=10%
3010 Fx10E ::. / . . + 'fl .r H
5 0
IR > % ¢ & ¥ ¢
Days post 500 infeched Days post 500 infected
India China
15x10°f mmm Data: infecte Meural netwoark ZIR Model
m Prediction
. Cata: Recoversd
L D 1| == Predicticn — g ; i _
Global Covid-19 GSIR Moded
D 10F - l -
] i ——— |
- v i o 3 i | == GOVl messunes
Da ¥s post 500 Infectad . Imp‘}jea
South Korea | . ok
i
Dandekar, Raj, Chris Rackauckas, and George |
9 |:} Weak 1
I

Barbastathis. "A machine learning aided global
diagnostic and comparative tool to assess effect
of quarantine control in Covid-19 spread." Cell
Patterns (2020).

Trachk Cowid-19 data Quarantine strength with time

QSIR Predicts Quarantine Measure Evolution

(- Y —_—
1.0 e = - 1.0 - —~ - —
| S(t) |:\J>< 1(t) |:> — ® Quarantine strength ® Quarantine strength

‘ ’ R(t) ‘ = = Government Lockdown imposed = = Government Lockdown imposed
Q(t) 0.8 == = Inflection point in learnt Q(t) 0.8 == = Inflection point in learnt Q(t)

Q)
{
QW)

Data: Infected
=== Prediction]

B Data: Recovered || .
2.0x10%} . 0.0, 20 40 60 80 004 20 40 60 80

w==_Prediction Days post 500 infected Days post 500 infected

2.5%x10%}

1.5x%10%}

Spain Italy
1.0x10%}

5.0x104F

The QSIR Learns A Simplified SIR

S8 = With Quarantine, and Quarantine

Niicannaine NN Predictions are Within Days of
Italy -\ Reported Changes

]

QSIR is robust to having small amounts of sample data

QSIR prediction and forecasting: SIRHD data Neural ODE prediction and forecasting: SIRHD data
0.5
[Data: Infected -
m Data: Recovered ',l' 'iii . [Data: Infected o .
= o [EBER Rts is robust to having sma
—— Training: Recovered .I| Training: Infected
0.4 J Training: Recoveraed
—— Formcast Forecast
amounts of sample data
0.3
0.50
0.2
0.25 QSIR prediction and forecasting: SIRHD data QSIR prediction and forecasting: SIRHD data
0.1 e
04\~ | [Data: Infected 04| | [Data: Infected
Lt} [Data: Recovered [Data: Recovered
— Toning mfedes — o inievt
s Training: Recovered = Training: Recovered
0.00 i - 03 t 031
0.0 . C_° L L 1 1
o 20 40 &0 80 [i] 20 40 &0 a0 s
- oaf-
Days since 500 infections Days since 500 infections
oil ol
‘ b
(a) (b)

Days since 500 infections Days since 500 infections
- . - . a) train = 30 days b) train = 34 days
QSIR prediction and forecasting: 9 compartment model dat: Neural ODE prediction, forecasting: 9 compartment (2) Y (b) ¥
0 Data: Infected #* T QSIR prediction and forecasting: SIRHD data QSIR prediction and forecasting: SIRHD data
0.4 || B Data: Recovered ”' " [pata: Infected
—— Training: Infected y I 0.6 - | Data: Recovered 04} [Data fectea o4} [Datm tectea
— raining: Recavere g i Training: Infected =kt I Do,
Nl:“!"g- eoovered ' Training: Recoverad :;V:’!\C\E‘Remvemd s Training: Recovered
— Forecast Forecast [ES 03k
03 06 |-
0.2 0.4 -
Days since 500 infections Days since 500 infections
0.1 02 (c) train = 38 days (d) train = 40 days
oo o0 L Figure 5: EpiSciML QSIR model - 9 compartment: Effect of training size on

0 20 s ggo_ o & & 0 e since 2 iections. 0 forecasting performance Figure shows the prediction and forecasting performance of
ays since infections
g s sinee SR Imectons the QSIR model for training data size of (a) 30, (b) 34, (c) 38, (d) 40 data points.

DeepNLME: Integrate neural networks into traditional NLME modeling

DeepNLME is SciML-enhanced modeling for clinical trials

DeepNLME is SciML-enhanced modeling for clinical trials

Mixed-effects modeling

Ly e Fixed effects
PK op — Random effects « Automate the discovery of predictive
covariates and their relationship to

Time Concentration dyn am |CS
k PWP%) « Automatically discover dynamical
« models and assess the fit

Plasmatic
concentration
Response

Response

Residual variability

—3 Observations * Incorporate big data sources, such as
rime genomics and images, as predictive
covariates

Response

> Meanftypical prediction

Interindividual variability

Time

Trends in Pharmacological Sciences

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

7 wt,, Math: Find (8,7n) such that E[n] = 0
1 Sex;, \ Requires special fitting procedures (Pumas)
Covariates Ka - el ik 7

wt Sex; n.
gi — CL — 92(7_01)07594 enz,izj
v i 93 eni,B , _
Structural Model (pre) \
D
w = —Ka[Depot],
Intution: n (the random effects) are a fudge factor d[Centrall I
= Ka|Depot] — —[Central].
Find 6 (the fixed effect, or average effect) such that you dt 4

can predict new patient dynamics as good as possible Dynamics

The Impact of Pumas (PharmacUtical Modeling And Simulation)

il

We have been using Pumas software for our
pharmacometric needs to support our development
decisions and regulatory submissions.

Pumas software has surpassed our expectations on its accuracy and ease of use. We are
encouraged by its capability of supporting different types of pharmacometric analyses
within one software. Pumas has emerged as our "go-to" tool for most of our analyses in
recent months. We also work with Pumas-Al on drug development consulting. We are
impressed by the quality and breadth of the experience of Pumas-Al scientists in
collaborating with us on modeling and simulation projects across our pipeline spanning
investigational therapeutics and vaccines at various stages of clinical development

Husain A. PhD (2020)

Director, Head of Clinical Pharmacology and Pharmacometrics,
Moderna Therapeutics, Inc

modernar

messenger therapeutics

Built on SciML

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

g {wt] Math: Find (8,n) such that E[n] = 0
L | sex; \,
Covariates B Ka - 91677@' 1Fi k.1 7
g; = CL| =16 (=)O 7593633 ’13;27
v i 93 6771, 37 _
Structural Model (pre) “
m = —Ka[Depot],
Intution: n (the random effects) are a fudge factor d[CenEral] I

= Ka|Depot] — —[Central].
Find 6 (the fixed effect, or average effect) such that you dt 4
can predict new patient dynamics as good as possible Dynamics

From Dynamics to Nonlinear Mixed Effects (NLME) Modeling

Goal: Learn to predict patient behavior (dynamics) from simple data (covariates)

wt,, Math: Find (8,7n) such that E[n] = 0
Z T
Sex; \,
Covariates) Ka
Structural Model (pre) \
D
d[Depot] ;?Ot] = —Ka[Depot],
Idea: Parameterize the model such that the models can d[Centrall
be neural networks, where the weights of the neural = Ka|Depot]| —
networks are fixed effects! dt G =N
Dynamics

Indirect learning of unknown functions!

DeepNLME in Practice: Data Mining for Predictive Covariates

model = @model begin
@param begin Automate the discovery of covariate models
B e VECiDPDCﬂEin{lOWEP=[@.1,@.@@98)g29§£943],UDDEF=[5.@,@.5)@.9)5.@]}
0 € PSDDomain(3)
02 add € RealDomain(lower=0.001, init=sqrt(0.388)) Train convolutional neural networks to

pl € NeuralDomain(FastChain(FastDense(2,5@,tanh),FastDense(50,1), (x,p)->x."2)) . . .
p2 € NeuralDomain{FastChain(FastDense(2,5@,tanh),FastDense(50,1), (x,p)->x."2)) Incorporate Images as Covarlates

end Train transformer models to utilize natural
@random begin n ~ MvNormal(Q) end language processing on electronic health
records

@pre begin

Ka = SEX — @ ? 8[1] + n[1] : 6[4] + n[1] « Utilize automated model discovery to prune
K = nn1([92],nl2]],p1)[1] genomics data to find the predictive subset

CL

Vc

SC
end

nn2([O[3]*WT,n[3]],p2)[1]
CL/K
CL/K/WT

@covariates SEX WT

ivars begin conc = Central / SC end

@dynamics DepotslCentrall

@derived begin dv ~ @. Normal(conc, sqrt{c? add)) end

end

|‘ Utilize GPU acceleration for neural networks Currently being tested on clinical trial data

QOutcome

DeepNLME: Automated Construction of Patient-
Specific Pharmacological Models for Individualized

Dosing

Predicted

o data — Truth —Pap average — DespMLME pred

ID: $5d3r ID: zgf3t
1.0
o AT T | AT
0.0 2

1D m2lzo I0: chackd
1.0 -
0.5 m
0.0 T T T

Time (weeks)

Pred values

Model

32272022

Trained

= Data — Truth —Pop average — DeepNLME pred

ID: B8kEI ID: Bmyus
1.0+ -
- .
> M&
o i
£ 0.0
=)
= ID: vaochl ID: i5hdl
a 1.0
NN | RS
0.0 | . | . . . | .
0 1 2 3 4 0 1 2 3 4
Time (weeks)
Pred values
1.5 =
=
210
=

1.0 1.5
Model

0.0 0.5

Won International Society of Pharmacology (ISoP) Mathematics
and Computing Special Interest Group Award at ACoP 2021 (Top

Pharmacology Conference)

Outcome

Predicted

data — Truth -—Pop average -— DeepMLME pred

1D nizlf ID: 9588t

1.0 .

1 ;J ; m
0.0

ID: mhraor ID: h8mgx
w
1.0
o m—
-
0.0-44 . : . : . - . . .
] 1 2 3 4 0 1 2 3 4
Time (weeks)
Pred values

2
b
=
E1

D T

0 1 2
Medel

20

High fidelity surrogates of ocean columns for climate models

Free ocean convection, t = 0038970 s (0.45 days)

3D simulations are
high resolution but
too expensive.

Can we learn faster
models?

Neural Networks Infused into Known Partial Differential Equations

Free convection: 0.00 days

Derive a 1D approximation to
the 3D model o | o
a T | :E;—IOO F -100 t
— = £
Ot N
5 150 -150 |
8
Oceananigans Oceananigans
Incorporate the “convective 0 | ! ™
adjustment” O T g0 perature T (1O)
. _ 2
0 if 0,T >0 loss(T, wT') = [NN(T) — wT|

100 m?/s if ,T <0

Only okay, but why?

Good Engineering Principles: Integral Control!

Free convection (Q = 84 W/m, train): O.OQOgays

0
=50 =50 1072
—_
~ 2
E 100 100 t b —3
J(T'.) o 10
£ o
M S
P o
o —150 -150 | -
o c 10
3 g
LES =
Convective adjustment
-200 } =200 | — Neural DE 10_5
Embedded
—KPP
— TKE mass flux
250 |, : . . Jo om0 156 .
50x10° 0 50x10°1.0x107515x10°2.0x10~> 1965 1970 1975 1980 1985 1990 1995 0 2 a4 6 8
Haat flirv wT (mnle o) Temperature T (°C) Time (davs)

KaT [055(TNNr T) = |TNN(Z' t) o T(Z' t)lz
S oz

—_—" o But how do you fit a neural
w' T network inside of a simulator?

How do we do this effectively?

SciML is a software problem.

There are many different ways, all with engineering trade-offs

Method Stability Stiff Performance Scaling Memory Usage
BacksolveAdjoint Poor 0((5 + p)3) Low. O(1)
InterpolatingAdjoint Good 0 ((s + p)3) High. Requires full continuous solution of forward
-~ Higher. Requires full continuous solution of forward and
QuadratureAdjoint Good 0 (53 + p) La%range r?wltiplier

BacksolveAdjoint 3 . . .
(Checkpointed) Okay 0((5 +p)) +C Medium. O(c) where c is the number of checkpoints

. . . 3
Interpolat.lngAdjomt Good 0((5 + p)) +C Medium. O(c) where c is the number of checkpoints
(Checkpointed)
ReverseDiffAdjoint Best 0 (53 + p) +C Highest. Requires full forward and reverse AD of solve
TrackerAdjoint Best 0 (53 + p) +C Highest. Requires full forward and reverse AD of solve
ForwardLSS/AdjointLSS/N Chaos Not even comparable: expensive. Super duper high OMG.

ILSS

Differentiating Ordinary Differential Equations: The Trick

We with to solve for some cost function G(u, p) evaluated throughout the differential equation, i.e.:

T

Glup) = Glulp)) = [glult,p)i
Lo
To derive this adjoint, introduce the Lagrange multiplier A to form:
T
Ip) =G~ [X~ flu,p,)t
to

Since ' = f(u,p,t), this is the mathematician's trick of adding zero, so then we have that

o dG dI " b
5= o i /t[, (gp + gus)dt /tg N (8" — fus — fp)dt

Differentiating Ordinary Differential Equations: Integration By Parts

for s being the sensitivity, s = j_; . After applying integration by parts to A*s’, we get that:

/tT)* (s'fusfp)dt/tT)*s’dt/tT)* (fus — fp) dt

T T
— \)*(t)s(t)\z; /t A" sdt /t N (fus — fp)dt

To see where we ended up, let's re-arrange the full expression now:

G [T . r [T L.
d—p — (Q'p + gus)dt T |)\ (t)s(t)|t0 - A" sdt — A (qu - fp) dt
to to to

T T
_/ (gp+)*fp)dt+|)*(t)s(t)|f;/ (N + X £ — gu) sdt

Differentiating Ordinary Differential Equations: The Final Form

T - T
a& /t (gp+/*fp)dt+|)*(t)s(t)|t0/t (N 4 X f, — g.) sdt

That was just a re-arrangement. Now, let's require that

df” dg\"
’—__ — [
A= du A (du)

A(T) =0

This means that the boundary term of the integration by parts is zero, and also one of those integral terms are
perfectly zero. Thus, if A satisfies that equation, then we get:

dG .., .dG T .
F A (fu)a(to)+/tﬂ (gp + A" fp) dt

Differentiating Ordinary Differential Equations: Summary

1. Solve ' = f(u,p,1)

2. Solve N = —ﬁ*)\ — (@)*

Differentiating Ordinary Differential Equations: Step 2 Details

2. Solve Moo= _af O dg

du® du)

A(CZ:)O\ How do you get u(t) while solving backwards?

3 options!

1.

u' = f(z,t) forwards, then
u' = —f(z,—t) backwards!

2. Store u(t) while solving forwards (dense output)

3. Check_
Forward pass

k()

k; Kk, k3
| |
| | - -
SRR LR - e L
_/\/\ Backward pass

How the gradient (adjoint) is calculated also matters!

This term is traditionally computed via differentiation and then multiplied to lambda
Reverse-mode embedded implementation: push-forward f(u) pullback lambda
Computational cost O(n) -> O(1) f evaluations and automatically uses optimized
backpropagation!
Six choices for this computation:
\ Numerical
" - Forward-mode
d - Reverse-mode traced compiled graph
g (ReverseDiffVJP(true))

%
VP df
A A — Fast method for scalarized
du du nonlinear equations
- Requires CPU and no branching
(generally used in SciML)
0 - Reverse-mode static
Y,

Fastest method when applicable
Reverse-mode traced

Fast but not GPU compatible
Reverse-mode vector source-to-source

Adjoint Differential Equation © . Best for embedded neural

networks

A(T)

Differentiating Ordinary Differential Equations: Step 3 Details

4G _ ., dG

ik
3. Solve d—p:)*(tg)du (t0)+[tn (g, + Alf,) dt

How do you calculate the integral?
1. Store A(t) while solving backwards (dense output)

2.u"'=—-A"f, + g, where u(T) = 0

What's the trade-off between these ideas?

Some methods are “mathematically
correct”, but “numerically incorrect”

SciML is a software problem.

Machine Learning Neural Ordinary Differential Equations

u' = f(z,t) forwards, then Timeseries is not The adjoint equation is an ODE!
u' = —f(z,—t) backwards! _ L= _ stored, therefore
AR O(1) in memory! da(t) +0f(z(t),t,0)
| 5. = .y — _a(t)
\ dt 0z

How do you get z(t)? One suggestion:
Reverse the ODE

State
| Adjoint State dagug(t) Ofaug
OL —— = — |al(t aglt a:(t)| —————(t
‘ = :\/X dt [() 9() f()] a[zgﬁt]()
JdL 4 v : oL :
OZz(ti+1)
0z(to) :\/ . A 2)
| i | >
to t; tit1 tn

“Adjoints by reversing” also is
unconditionally unstable on some
problems!

Advection Equation:

du aldu)
— - =0
d i dx

Approximating the derivative in x has two choices: forwards or
backwards

If you discretize in the wrong direction you get unconditional

instability Piecewise constant
I_[l'l'_ W Wg
You need to understand the engineering principles and the numerical l initial data
simulation properties of domain to make ML stable on it.
Ui

n
LU

Differentiation of Chaotic Systems: Shadow Adjoints

chaotic systems: trajectories diverge to o(1) error
shadowing lemma guarantees that the solution lies on

the attractor

40

~ —49899 (ForwardDiff)
p=28

~ 472 (Calculus)
p=28

DAY -

" (. =

’ 0 35 %o a5 50 %0 10 z'apsu 40
(2o # Jim (e}

30
30

[

20

10

=20

-10
€T

0

Float64
Float32

10 20 -20 Yy

* Shadowing methods in DiffEqSensitivity.j|

p=28

p=28

~ 1.028 (LSS/AdjointLSS)

~ 0.997 (NILSS)

but

https://frankschae.github.io/post/shadowing/

Problems With Naive Adjoint Approaches On Stiff Equations

How do you get u(t) while solving backwards?
Error grows exponentially... 3 options!

u’' = f(z,t) forwards, then
u' = —f(z,—t) backwards! Unstable

2. Store u(t) while solving forwards (dense output) High memory

3. Checkpointing S More Compute
Forward pass

i 3 kg k ky k3

u'(t) = Au(t), plot the error in the reverse solve: 1.

Error

T~ T~ T -

\/\/\ Backward pass
0 :

Each choices has an engineering trade-off!

—1I00 —l50 6 5IO 1(30
A
Kim, Suyong, Weigqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural

ordinary differential equations." Chaos (2021).

Problems With Naive Adjoint Approaches On Stiff Equations

Error grows exponentially...

u'(t) = Au(t), plot the error in the reverse solve: Compute cost is cubic with parameter size when stiff

Size of reverse ODE system is:
2states + parameters
1620 F Linear solves inside of stiff ODE solvers, ~cubic

Thus, adjoint cost:

Error

0 ((states + parameters) 3)

|

—1I00 —l50 6 5IO 1(30
A
Kim, Suyong, Weigqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural

ordinary differential equations." Chaos (2021).

Problems With Naive Adjoint Approaches On Stiff Equations

dG dG g
e A (tg)—du (to) + (g, + A" f,) dt
t
° Compute cost is cubic with parameter size when stiff
Size of reverse ODE system is:
How do you calculate the integral? 2states + parameters
High memory
1. Store A(t) while So|ving backwards (dense output) Linear solves inside of stiff ODE solvers, ~cubic
I 9% _ Size = Number of Thus, adjoint cost:
2.u"'=-1"f, + g, where u(T) = 0
Parameters
0((States + parameters)3)

3. Use an IMEX integrator and solve u" = —1*f, + g,, explicitly Thus, adjoint cost without extra memory:

4. Our paper describes a 4th way! N O(states® + parameters)

Kim, Suyong, Weigqi Ji, Sili Deng, and Christopher Rackauckas. "Stiff neural
ordinary differential equations." Chaos (2021).

The math has >20 ways to implement.

Every choice makes engineering trade-
offs.

SciML is a software problem.

Non-Stiff ODE: Rigid Body System

Cross-Language ODE Solver Benchmark

Foundation: Fast Differential T

Equation Solvers

—@— DifferentialEquations ji: Vern7
i Fortran: dopri5
Sundials: CVODE
—@— MATLAB: ode45
—@— deSolve: Isoda

Speed

Stochasticity "L | |

—10 —8 —6

10

. . 10 10
Adjoints and Inference Error
5. Parallelism 8 Stiff ODEs: HIRES Chemical Reaction Network
Stiff 2: Hires
DifferentialEquations.jl is generally: |
. =@= Julia: Rosenbrock23 w
« 50x faster than SCle 107 | _El_ Julia: TRBDF2
Julia: radau R
= Hairer: rodas o A
« 50x faster than MATLAB 10720 | | —@- Hairer: radau
=== MATLAB: ode23s =
’ — ->&= MATLAB: ode15s
« 100x faster than R’s deSolve L 525 L [—A- sy LSODA >
g _!- zg:g (?dDe'?nt
When optimally JIT compiling Py/Mat/R 00 | o~ deSotvercoda
@~ Sundials: CVODE
g =
https://github.com/SciML/SciMLBenchmarks.jl 1035 | Ko\"ﬁ)\o\\%__o ol
Rackauckas, Christopher, and Qing Nie. "Differentialequations.jl-a performant and E—e
feature-rich ecosystem for solving differential equations in julia." Journal of Open 10740 b
Research Software 5.1 (2017). !
10°° 1078 1077 10°° 10°° 1074 1073

Rackauckas, Christopher, and Qing Nie. "Confederated modular differential equation Error

APIs for accelerated algorithm development and benchmarking." Advances in
Engineering Software 132 (2019): 1-6.

. . . 1122 Stiff ODEs: BCR Chemical Reaction Network
Foundation: Fast Differential

Equation Solvers \\
—@— TRBDF2
O} onDF

2.25 —3%— CVODE_BDF

\ <~ CVODE_BDF
. . . T Q- KenCarp4
DifferentialEquations.jl is: o ~ T KenCarpa7

2.00

« Faster than C codes like CVODE and
Fortran codes like LSODE/LSODA on
stiff equations

Time (s)

Has symbolic compilers to 107 -

automatically improve numerical ®
stability and performance of user -

code 1020 - |:|

This excludes the extra 2x from °
symbolics and 2x from sparse parallel | . | . . _m .

compilation! 1072 10°

https://github.com/SciML/SciMLBenchmarks.jl

Gowda, Shashi, Yingbo Ma, Alessandro Cheli, Maja Gwozdz, Viral B. Shah, Alan
Edelman, and Christopher Rackauckas. "High-performance symbolic-numerics via
multiple dispatch." To appear in ACM Communications in Computer Algebra (2021).

Ma, Yingbo, Shashi Gowda, Ranjan Anantharaman, Chris Laughman, Viral Shah, and
Chris Rackauckas. "ModelingToolkit: A Composable Graph Transformation System
For Equation-Based Modeling." Submitted (2021).

DiffEqSensitivity.jl: Every adjoint is optimized for a different case

Method Stability Stiff Performance Scaling Memory Usage
BacksolveAdjoint Poor 0((5 + p)3) Low. O(1)
InterpolatingAdjoint Good 0 ((s + p)3) High. Requires full continuous solution of forward
. . 3 Higher. Requires full continuous solution of forward and
QuadratureAdjoint Good 0 (S + p) Lagrange multiplier

BacksolveAdjoint 3 . . .
(Checkpointed) Okay 0((5 +p)) +C Medium. O(c) where c is the number of checkpoints

. . . 3
Interpolat.lngAdjomt Good 0((5 + p)) +C Medium. O(c) where c is the number of checkpoints
(Checkpointed)
ReverseDiffAdjoint Best 0 (53 + p) +C Highest. Requires full forward and reverse AD of solve
TrackerAdjoint Best 0 (53 + p) +C Highest. Requires full forward and reverse AD of solve
ForwardLSS/AdjointLSS/N Chaos Not even comparable: expensive. Super duper high OMG.

ILSS

How the adjoint is calculated also matters!

—@— Forward-Mode DSAAD
Reverse-Mode DSAAD
------------- Interpolating CASA user-Jacobian
Interpolating CASA AD-Jacobian
=) -— Interpolating CASA AD-$v~{T}J$ seeding
Quadrature CASA user-Jacobian
Quadrature CASA AD-Jacobian
-------------- Quadrature CASA AD-$v™~{T}J$ seeding
— - Numerical Differentiation

Gradient
calculations on
a stiff PDE,
varying dt

Rackauckas, Christopher, et al. "A comparison of
automatic differentiation and continuous sensitivity
analysis for derivatives of differential equation
solutions." 2021 IEEE High Performance Extreme
Computing Conference (HPEC), 1-8.

Runtime (s)

10

10

10

100

Sensitivity Scaling on Brusselator

101.5 102.0 102.5 103.0

Number of Parameters

Methods with Reverse-
mode vjp seeding + hew

adjoints give 3 orders of
magntitude improvement!

The SciML ecosystem is the only one with fully-featured

Universal Differential Equations

Feature SciML (Julia) Sundials (C++) PETSc TS (C++) torchdiffeq Jax
5 None (one in progress, ~200
Stiff ODEs and DAEs ~ undreds of methods testedand o oyopE_gDF and D) Y&S (Rosenbrock-W None times slower than SciPy

Adjoint Methods

Parallelism

Event handling

SDEs

Delays

tuned on hundreds of problems

11 choices tuned for different
scenarios, including stabilized
checkpointing, differentiate the
solver, reversing adjoint

GPU, MPI, multithreading

Yes

Lots of methods, including
stabilized, methods for stiff
equations, high strong order, high
weak order

All ODE methods

Stabilized checkpointing,
no AD integration, no chaos
compatibility

GPU, MPI, multithreading

Yes

None

None

methods, BDFs, etc.)

Discrete sensitivity analysis,
no AD integration, no chaos
compatibility

GPU, MPI, and
multithreading

Yes

None

None

Requires reversing the
ODE or differentiate the
solver (tracing)

GPU

None

torchsde, only diagonal
noise (or order 0.5),
requires reversing the
SDE

None

according to the author!)

Requires reversing the ODE

GPU

None

None

None

The performance difference in UDEs is not small

when the right solvers and adjoints are chosen

These ODEs are non-stiff ODEs from astrodynamics, chemical kinetics,

numerical weather prediction, etc. and include scalarized operations Relative time to solve

Number of ODEs 3 28 768 3,072 12,288 49,152 196,608 786,432
DifferentialEquations.jl 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x
DifferentialEquations.jl dopri5 1.0x 1.6x 2.8x 2.7x 3.0x 3.0x 3.9x 2.8x
torchdiffeq dopri5 4,900x 190x 840x 220x 82x 31x 24x 17x

Geometric Brownian Motion of size 4
Spiral Neural ODE (from original Neural ODE paper) The SDE is solved 100 times. The summary of the results is as follows:

e DiffEgFlux defaults: 7.4 seconds e torchsde: 1.87 seconds

o DiffEqFlux optimized: 2.7 seconds ¢ DifferentialEquations.jl: 0.00115 seconds

e torchdiffeq: 288.965871299999 seconds

Note: performance is not necessarily indicative of
large “pure” neural equations

And what about other methods for
Scientific Machine Learning?

Keeping Neural Networks Small Keeps Speed For Inverse Problems

DeepXDE (TensorFlow Physics-Informed NN)

Problem: parameter estimation Best model at step 5700@:

of Lorenz equation from data train loss: 5.91e-03

Ontin (0,3) test loss: 5.86e-03

xy.2) test metric: []
&0
'train' took 362.351454 s
40 DiffEqFlux.jl (Julia UDESs)
opt = Opt(:LN_BOBYQA, 3)

O lower_bounds!(opt,[9.0,20.0,2.8])

upper_bounds!(opt,[11.6,36.0,3.8])
min_objective! (opt, obj_short.cost_function2)

xtol rel!(opt,le-12)

maxeval! (opt, 1eee8)

@time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar)

01

©.032699 seconds (148.87 k allocations: 14.175 MiB)
(2.7636309213683456e-18, [10.0, 28.0, 2.66], :XTOL_REACHED)

Note on Neural Networks “Outperforming” Classical Solvers

Long-time integration of parametric evolution equations with physics-informed DeepONets
Sifan Wang, Paris Perdikaris

Ordinary and partial differential equations (ODEs/PDEs) play a paramount role in analyzing and simulating complex dynamic processes across all corners of science and engineering. In
recent years machine learning tools are aspiring to introduce new effective ways of simulating PDEs, however existing approaches are not able to reliably return stable and accurate
predictions across long temporal horizons. We aim to address this challenge by introducing an effective framework for learning infinite-dimensional operators that map random initial
conditions to associated PDE solutions within a short time interval. Such latent operators can be parametrized by deep neural networks that are trained in an entirely self-supervised
manner without requiring any paired input-output observations. Global long-time predictions across a range of initial conditions can be then obtained by iteratively evaluating the trained
model using each prediction as the initial condition for the next evaluation step. This introduces a new approach to temporal domain decomposition that is shown to be effective in
performing accurate long-time simulations for a wide range of parametric ODE and PDE systems, from wave propagation, to reaction-diffusion dynamics and stiff chemical kinetics, all at a

fraction of the computational cost needed by classical numerical solvers.

Note on Neural Networks “Outperforming” Classical Solvers

ODEs solved

. A
- m= = Numerical solver 7
DeepONet
IR
y
/
/
w
/
»°
/
/
/’
y
/
/’

|
102 103 10

Oh no, we're doomed!

using ModelingToolkit, OrdinaryDiffEq, StaticArrays

@variables t y.(t) ya(t) ys(t)
paramecers kj |'(1 kg
D = Differential(t)

Wait a second?

eqs = [D(y1) ~ -Ka®ya+ks™y2*ys;
D(yz2) ~ kai*yi-ka*y2"2-k3*y,*y;
3(?3) ~ kz:yz 2]

sys = ODESystem(eqs, t)

MNOTI(C \ or
Numerical solver prob = ODEProblem{false}(sys,SA[yi=>1f0,y,=>0f0,y;=>0f0], (0f0,500f0),
DCOPONCt SA[ky=>4F-2,k,=>3f7,k3=>1f4],jac=true)

N = 1000

Julia: Laptop CPU y1s = rand(Float32,N)
DeepONet: Tesla V100 GPU ys2s = 1f-4 .* rand(Float32,N)

y3s = rand(Float32,N)

function prob_func(prob,i,repeat)
remake(prob,p=SA[y1s[i],y2s[i],yss[1]])

Julia’s numerical

solver is faster by :
7 000x lve(monteprob,Rodas5(),EnsembleThreads(),trajectories=1000)
J

monteprob = EnsembleProblem(prob, prob func = prob func, safetycopy=false)

@time solve(monteprob,Rodas5(),EnsembleThreads(),trajectories=1000)

Wait a second?

) A
- m= = Numerical solver //
DeepONet g
P g
p
/
/
w
/
x°
7
/
/
-
7 Julia’s numerical

w solver is faster by

7,000x

107 10
O Ived

Similar story on Fourier
Neural Operator results!

How come so far off?

Code Optimization in Machine Learning vs Scientific Computing

Which Micro-optimizations matter for BLAS1? Which Micro-optimizations matter for BLAS3?

) 167Y5
—3.0 [-, .
10 // ln_z_a L /
10735 y S . .f. d
clentitic codes 10725 |
Yy 3.0
~~ 0(n)and O(n"2 o
5| (n) an n e
g T ,/‘/ .
E st t < 1wt
= ey
operations 5w
6.5 | ~
10 y - / == I: lu—b-{.l L
w07 T mybroadcastturbo! —5.5
5| — _— = gpu 10 " F
wrtr - = gpu o
' : ; : 107°0 ¢
10" 107 10° : *
10755 b P . mul! (OpenBLAS)
mygemmturbo!
10 70 L — * gpu
Which Micro-optimizations matter for BLAS2? WSk — mult gpu
10740 o L L !
. 1 3
Mutation and P 10 10’ 10
07 r —)

Memory management: 10x

N
y Big O(n*3) operations?

Manual SIMD: 5x 1SS L Jus‘t use a GPU
g e Don’t worry about overhead
| You're fine!
S P Simplest code is ~3x from optimized

10" 10% 10°

Time (s)

= = = I B = e
o © © 9 9 © 9 ©°9 g 9
= Pay o o m g ol o - g

What happens when you specialize computations?

Which Micro-optimizations matter for BLAS1?

Scientific codes
O(n) and O(n*2)
operations

mybroadcastturbo!

= gpu

10°

Which Micro-optimizations matter for BLAS2?

lU—d.G _
Mutation and
07 r —
Memory management: 10x
10—5.0 L
Manual SIMD: 5x s |
‘G-; 6.0
E 1w r
E
10—6.5 L
1070 mul! (OpenBLAS)
:nygﬁm\.'a\.rx!
1070k B m?lﬁ gpu
0 17

SimpleChains |l
Doing small network scientific
machine learning in Julia on CPU 5x
faster than PyTorch on GPU
(10x Jax on CPU)

Details in the release blog post

Only for size ~100 layers and below!

What happens when you specialize computations?

Moral of the Story SimpleChainsjl
General computations are generally Doing small network scientific
less optimized machine learning in Julia on CPU 5x

faster than PyTorch on GPU
Physics-informed neural networks
are an extremely general solver... (10x Jax on CPU)
QED

Details in the release blog post
Differentiable simulation scales
extremely well, if and only if you Only for size ~100 layers and below!
work on the implementation issues
which arise in every equation type.

SciML Open Source Software
Organization
sciml.ai

DifferentialEquations.jl: 2x-10x Sundials, Hairer, ...

DiffEqFlux.jl: adjoints outperforming Sundials and PETSc-TS
ModelingToolkit.jl: 15,000x Simulink

Catalyst.jl: >100x SimBiology, gillespy, Copasi

DataDrivenDiffEq.jl: >10x pySindy

NeuralPDE.jl: ~2x DeepXDE* (more optimizations to be done)
NeuralOperators.jl: ~3x original papers (more optimizations required)
ReservoirComputing.jl: 2x-10x pytorch-esn, ReservoirPy, PyRCN
SimpleChains.jl: 5x PyTorch GPU with CPU, 10x Jax (small only!)
DiffEqGPU.jl: Some wild GPU ODE solve speedups coming soon

And 100 more libraries to mention...

If you work in SciML and think optimized and maintained implementations
of your method would be valuable, please let us know and we can add it to
the queue.

Democratizing SciML via pedantic code optimization
Because we believe full-scale open benchmarks matter

SciML 0SS Org is Impacting Many Modeling and Simulation Applications

175x acceleration for Pfizer's quantitative

il sk I'.ﬁ ‘ \ .
RECURSAT Demo "‘Fm | systems Pharmacology team via automated GPU
Results LI acceleration

* Not meeting tip-off requirement 2020: American Conference on Pharmacometrics

about the spacecraft y-axis due to i (AC P) Q I._t A d
high center of mass offset along -z g O uality Awar
2
i i E. le/Oth
dlreCtlon = Muscle Muscle
Dietary/Oral Degradation Synthesis
005 010 015 020 000 G05 010 05 02 000 005 0lo 0L - Leueine g L Transport | —{_Insulin j—>
time (s) time (s) time (s} I | System |
(Glutamine
Separation Velocity e | exchange?)
i Plasma Leucine |« > D —— Leucine
| sioseza t
SLG7A5
CATm & BCATC
_ : '
fhrbeei Gyole |+ BCKDH— KIG
ptAaK w
Fgﬂézﬁ |— BOKi —{ BODK
S
BDKi oA)—
T
BOK)—i BCKDH
I

Leucine +— BCAT —| KIC D Plasma KIC

Modeling Spacecraft Separation Dynamics in Julia — SIAM CSE 2021
Jonathan Diegelman, NASA Launch Services Program and A.l. Solutions ‘

Oral KIC

15,000x acceleration over Simulink using Julia’s ModelingToolkit.jl https://juliacomputing.com/case-studies/pfizer/

Conclusion

Bridging computational science and machine learning helps improve all aspects of discovery

Faster Drug Development jull More efficient batteries
Ty — Neural A

i« surrogate

moderna

—> "
Ly (t /-
L) =11 J»x> Neural
DAEs v diff.eq.
Carnegie |

messenger therapeutics Mellon FUELS
Q(_) AL [eimringE
DFT A-CGCNN — —
T=5Lnmn
Energy Efficient Buildings Climate modeling for improved agriculture
= SR Foovsiudionsi i
e i e ® AgSci ML _‘
] ® Federated learning &
® Game theory and
MITSUBISHI ﬁcomwessor Expansior e S \/ vt
Speed Valve Position \ ® US: ARL

ELECTRIC I

7] E} £
Changes for the Better 1o T) ﬁ:ﬂflsﬁmd Al
Evaporator L$J < | I M A I-EDIDMapS
Fan Speed

CLIMATE MODELING ALLIANCE

& Global: UN

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68

