Krylov Methods

C. T. Kelley
 NC State University
 tim_kelley@ncsu.edu
 Research Supported by NSF, DOE, ARO, USACE

DTU ITMAN, 2011

Outline

Krylov Methods Overview

GMRES
Analysis of GMRES
GMRES Implementation
Conjugate Gradient Iteration
Analysis of CG
CG Implementation
Other Krylov Methods
Preconditioning
Exercises

References for Krylov Methods I

- C. T. KELley,

Iterative Methods for Linear and Nonlinear Equations, no. 16 in Frontiers in Applied Mathematics, SIAM, Philadelphia, 1995.

- P. N. Brown and A. C. Hindmarsh, Reduced storage matrix methods in stiff ODE systems, J. Appl. Math. Comp., 31 (1989), pp. 40-91.
- G. H. Golub and C. G. VanLoan, Matrix Computations, Johns Hopkins studies in the mathematical sciences, Johns Hopkins University Press, Baltimore, 3 ed., 1996.
- A. Greenbaum, Iterative Methods for Solving Linear Systems, no. 17 in Frontiers in Applied Mathematics, SIAM, Philadelphia, 1997.

References for Krylov Methods II

- M. R. Hestenes and E. Steifel, Methods of conjugate gradient for solving linear systems, J. of Res. Nat. Bureau Standards, 49 (1952), pp. 409-436.
- B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, 1980.
- Y. SaAd and M. Schultz, GMRES a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comp., 7 (1986), pp. 856-869.
- N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778-795.

References for Krylov Methods III

- R. W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput., 14 (1993), pp. 470-482.
- H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant to $\mathrm{Bi}-\mathrm{CG}$ for the solution of nonsymmetric systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631-644.
- T. A. Manteuffel and S. Parter, Preconditioning and boundary conditions, SIAM J. Numer. Anal., 27 (1990), pp. 656-694.

Krylov Methods

- Krylov iterative methods obtain x_{n} from the history of the iteration.
- The ones with theory do this by minimizing an error or residual function over the affine space

$$
x_{0}+\mathcal{K}_{k}
$$

- x_{0} is the initial iterate
- \mathcal{K}_{k} is the k th Krylov subspace

$$
\mathcal{K}_{k}=\operatorname{span}\left(r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right)
$$

for $k \geq 1$.

Terms and Notation Review

- Equation $A x=b$; Solution $x^{*}=A^{-1} b$
- Error $e=x-x^{*}$
- Residual $b-A x=A e$

GMRES and Conjugate Gradient (CG)

These two methods can be expressed in terms of minimization principles
In GMRES (Generalized Minimum Residual), the k th iteation x_{k} minimizes the residual over $x_{0}+\mathcal{K}_{k}$

$$
\left\|b-A x_{k}\right\|=\min _{x \in x_{0}+\mathcal{K}_{k}}\|b-A x\|
$$

for $\|\cdot\|=\|\cdot\|_{2}$. For CG, A must be spd and x_{k} minimizes the A-norm of the error

$$
\left\|x^{*}-x\right\|_{A}=\min _{x \in x_{0}+\mathcal{K}_{k}}\left\|x^{*}-x\right\|_{A}
$$

where

$$
\|v\|_{A}^{2}=v^{T} A v
$$

General Properties of CG/GMRES

- convergence in N iterations (impractical)
- no need for matrix representation of A only matrix-vector products
- sensitive to conditioning and eigenvalue distribution

Analysis of GMRES

If $x \in x_{0}+\mathcal{K}_{k}$ then

$$
r=b-A x=b-A x_{0}-\sum_{j=0}^{k} \gamma_{j} A^{j} r_{0} \equiv p(A) r_{0}
$$

where $p \in \mathcal{P}_{k}$, the set of k degree residual polynomials.

$$
\mathcal{P}_{k}=\{p \mid p \text { is a polynomial of degree } k \text { and } p(0)=1 .\}
$$

This simple observation is the key to analysis of Krylov methods.

GMRES and Residual Polynomials

Theorem: Let A be nonsingular and let x_{k} be the k th GMRES iteration. Then for all $\bar{p}_{k} \in \mathcal{P}_{k}$

$$
\left\|r_{k}\right\|=\min _{p \in \mathcal{P}_{k}}\left\|p(A) r_{0}\right\| \leq\left\|\bar{p}_{k}(A) r_{0}\right\| .
$$

Proof of Theorem

Let x_{k} the the k th GMRES iteration. Then there is $p_{k} \in \mathcal{P}_{k}$ such that

$$
r_{k}=b-A x_{k}=p_{k}(A) r_{0}
$$

Since any $x \in x_{0}+\mathcal{K}_{k}$ satisfies

$$
r=b-A x=\bar{p}(A) r_{0}
$$

for some $\bar{p} \in \mathcal{P}_{k}$, the minimization principle imples that

$$
\left\|r_{k}\right\|_{2}=\min _{p \in \mathcal{P}_{k}}\left\|p(A) r_{0}\right\| \leq\|b-A x\|=\left\|\bar{p}_{k}(A) r_{0}\right\| .
$$

How to Use This Theorem

- Connect properties of the matrix to a polynomial you understand.
- Manufacture a residual polynomail \bar{p} from that
- Get an upper bound from

$$
\left\|r_{k}\right\| \leq\left\|\bar{p}(A) r_{0}\right\| \leq\|\bar{p}(A)\|\left\|r_{0}\right\|
$$

Consequences of the Minimization Principle: I

Corollary: Let A be nonsingular. Then the GMRES algorithm will find the solution within N iterations.
Proof: The characteristic polynomial of A is $p(z)=\operatorname{det}(A-z l)$. p has degree $N, p(0)=\operatorname{det}(A) \neq 0$ since A is nonsingular, and so

$$
\bar{p}_{N}(z)=p(z) / p(0) \in \mathcal{P}_{N}
$$

is a residual polynomial. The Cayley-Hamilton theroem says that $\bar{p}_{N}(A)=0$, and so

$$
\left\|r_{n}\right\| \leq\left\|\bar{p}_{N}(A)\right\|\left\|r_{0}\right\|=0
$$

Consequences of the Minimization Principle: I

Corollary: If $\|I-A\| \leq \rho<1$ then

$$
\left\|r_{k}\right\| \leq \rho^{k}\left\|r_{0}\right\|_{2}
$$

Proof: Let $\bar{p}_{k}=(1-z)^{k}$ and use the theorem.

Diagonalizable Matrices

A is diagonalizable if there is a nonsingular (possibly complex!) matrix V such that

$$
A=V \wedge V^{-1}
$$

If A is diagonalizable and p is a polynomail then
$p(A)=\sum_{j=0}^{m} a_{j} \gamma_{j} A^{j}=\sum_{j=0}^{m} a_{j}\left(V \Lambda V^{-1}\right)^{j}=V \sum_{j=0}^{m} a_{j} \Lambda^{j} V^{-1}=V p(\Lambda) V^{-1}$
So

$$
\|p(A)\| \leq\|V\|\|p(A)\|\left\|V^{-1}\right\|=\kappa(V) \max _{\lambda \in \sigma(A)}|p(\lambda)|
$$

GMRES Convergence for Diagonalizable Matrices

We just proved ...
Theorem: Let $A=V \wedge V^{-1}$ be a nonsingular diagonalizable matrix. Let x_{k} be the k th GMRES iterate. Then for all $\bar{p}_{k} \in \mathcal{P}_{k}$

$$
\frac{\left\|r_{k}\right\|_{2}}{\left\|r_{0}\right\|_{2}} \leq \kappa_{2}(V) \max _{z \in \sigma(A)}\left|\bar{p}_{k}(z)\right| .
$$

Easy Results for Diagonalizable A: I

If A has m distinct eigenvalues then GMRES will terminate in at most m iterations.
Proof: Use

$$
p(z)=\prod_{i=1}^{m}\left(\frac{\lambda_{i}-\lambda}{\lambda_{i}}\right)
$$

$p(0)=1$ so $p \in \mathcal{P}_{k}$. Since $p\left(\lambda_{i}\right)=0$ for all $i, r_{N}=0$.
This proof is (1) very easy and (2) typical of the way one thinks about Krylov methods.

Easy Results for Diagonalizable A: II

Let $x_{0}=0$ (so $r_{0}=b$) and assume that

- $\sigma(A) \subset(9,11)$
- $\kappa(V)=100$

Then if we let $\bar{p}_{k}(z)=(10-z)^{k} / 10^{k}$ we see that

$$
\frac{\left\|r_{k}\right\|_{2}}{\left\|r_{0}\right\|_{2}} \leq \kappa(V)\left\|p_{k}(A)\right\| \leq(100) 10^{-k}=10^{2-k}
$$

So $\left\|r_{k}\right\| \leq \eta\|b\|$ when

$$
k>2+\log _{10}(\eta)
$$

This tells us that an approximate inverse preconditioner could be useful.

Observations

- A normal implies $\kappa(V)=1$
- If A is not normal and $\kappa(V)$ is large, then $\sigma(A)$ does not tell the whole story.
- The heuristic is that if the eigenvalues are grouped into a few clusters the iteration will perform well.
- If the eigenvalues are clustered near 1 , the GMRES is very happy and A is well-conditioned.

Preconditioning

Preconditioning means to replace $A x=b$ with

$$
B A x=B b(\mathrm{left})
$$

or

$$
A B y=b \text { (right), and then } x=B y
$$

and solve the preconditioned equation with GMRES. The preconditioner B should be

- very inexpensive matrix-vector products
- be a good approximate inverse of (part) of A

Examples coming later.

Left Preconditioning

Solve

$$
B A x=B b
$$

So

- solution to preconditioned equation is still x
- preconditioned residual $B b-B A x=B r$ should be a better indicator of error

Right Preconditioning

Solve

$$
A B z=b
$$

for z. Then set $x=B z$.

- The preconditioned residual is the same as the original residual because $b-A(B z)=b-A x$.
- The solution of the preconditioned problem is different.
- The residual may not be a good indicator of the error in x.

More on preconditioning later. But first ...

Krylov Methods Overview

And now for the software

GMRES Implementation

The k th GMRES iteration is the solution of the linear least squares problem

$$
\min \|A x-b\|
$$

where $x=\sum_{j=0}^{k-1} \gamma_{j} A^{j} r_{0}$
The key to a successsful implementation is to solve this in an efficient and stable way.

A Questionable GMRES Implementation

How about this?

- As the iteration progresses store $A^{j} r_{0}$.
- Let $B_{k}=\left(r_{0}, A r_{0}, \ldots A^{k-1} r_{0}\right)$
- Compute the QR factorization of $B_{k}=Q_{k} R_{k}$
- The $x_{k}=R_{k}^{-1} Q_{k}^{T} b$

What could go wrong?

What could go wrong?

- Accumulating $A^{j} r_{0}$ can be unstable Example $A=\operatorname{diag}(1,2, \ldots, N)$
- The cost of $B_{k}=Q_{k} R_{k}$ is $O\left(N k^{2}\right)$.
- You have to start over with each k and are not reusing the old columns.

Arnoldi Factorization is Better

Suppose one had an orthogonal projector V_{k} onto \mathcal{K}_{k}.
Then any $z \in \mathcal{K}_{k}$ can be written as

$$
z=\sum_{l=1}^{k} y_{l} v_{l}^{k}
$$

where v_{l}^{k} is the /th column of V_{k}.
So we can convert the problem for x_{k} to a problem in R^{k}.
Begin by writing any $x \in x_{0}+\mathcal{K}_{k}$ as

$$
x=x_{0}+V_{k} y
$$

where y is the vector of coefficients of $x-x_{0}$ using the columns of V_{k} as the basis for \mathcal{K}_{k}.

Arnoldi Part II

So if $x_{k}=x_{0}+V_{k} y_{k}$ then

$$
\left\|b-A x_{k}\right\|=\left\|b-A\left(x_{0}+V_{k} y_{k}\right)\right\|_{2}=\left\|r_{0}-A V_{k} y_{k}\right\|_{2} .
$$

So the least squares problem for y is

$$
\min \left\|r_{0}-A V_{k} y\right\|
$$

If we can build V_{k} in a stable way, we have solved the stability problem (but that is not completely simple).
Can we do it efficiently?

Arnoldi Part III

The Gram-Schmidt process will

- build V_{k} incrementally, so $V_{k}=\left(V_{k-1}, v_{k}\right)$,
- enable a fast $Q R$ factorization of $A V_{k}$, and
- be stable (if done correctly).

Orthogonalization is the central part of the Arnoldi method.

Arnoldi Part IV

The algorithm orthogonalizes each $A v_{i}$ against the columns of V_{k-1} to construct v_{k}
$V=\operatorname{arnoldi}\left(x_{0}, b, A, k\right)$
$r_{0}=b-A x_{0} ; v_{1}=r_{0} /\left\|r_{0}\right\|$
for $i=1: k-1$ do

$$
w=A v_{i}
$$

for $j=1: i$ do

$$
h_{j i}=w^{T} v_{j}\left(=\left(A v_{i}\right)^{T} v_{j}\right) ; w=w-h_{j i} v_{j}
$$

end for

$$
h_{k i}=\|w\| ; v_{i+1}=w / h_{k i}
$$

end for
At the end you have V_{k}. Columns orthonormal basis for \mathcal{K}_{k}.

Examine the Arnoldi Loops

What if you divide by zero in

$$
v_{1}=r_{0} /\left\|r_{0}\right\| \text { or } v_{i+1}=w /\|w\| ?
$$

- If $r_{0}=0$, then x_{0} is the solution and the GMRES iteration would terminate.
- If $w=0$, then you have a happy breakdown of the Arnoldi process. This implies that you found the solution as x_{k-1}.
- A well-designed implementation would stop before division by zero.

The Happy Breakdown Theorem

Theorem: Let A be nonsingular, let the vectors v_{j} be generated by the Arnoldi process, and for which

$$
A v_{i}-\sum_{j=1}^{i}\left(\left(A v_{i}\right)^{T} v_{j}\right) v_{j}=0
$$

Then $x=A^{-1} b \in x_{0}+\mathcal{K}_{i}$.

Proof: The Happy Breakdown Theorem

- By hypothesis $A v_{i} \in \mathcal{K}_{i}$, so $A \mathcal{K}_{i} \subset \mathcal{K}_{i}$.
- The columns of V_{i} are an orthonormal basis for \mathcal{K}_{i}, so
- $A V_{i}=V_{i} H$ where H is an $i \times i$ matrix. H is nonsingular since A is.
- Set $\beta=\left\|r_{0}\right\|_{2}$ and $e_{1}=(1,0, \ldots, 0)^{T} \in R^{i}$, then
- $\left\|r_{i}\right\|_{2}=\left\|b-A x_{i}\right\|_{2}=\left\|r_{0}-A\left(x_{i}-x_{0}\right)\right\|_{2}$.
- Now, $x_{i}-x_{0} \in \mathcal{K}_{i}$ so there is $y \in R^{i}$ such that $x_{i}-x_{0}=V_{i} y$.
- Since $r_{0}=\beta V_{i} e_{1}$ and V_{i} is an orthogonal matrix

$$
\left\|r_{i}\right\|_{2}=\left\|V_{i}\left(\beta e_{1}-H y\right)\right\|_{2}=\left\|\beta e_{1}-H y\right\|_{R^{i}}
$$

- Set $y=\beta H^{-1} e_{1}$ to show $r_{i}=0$.

What about H?

- Assuming that there is no breakdown, then

$$
h_{i j}=\left(A v_{j}\right)^{T} v_{i}=0 \text { if } i>j+1 \text {, so } H \text { is upper Hessenberg. }
$$

- So, the Arnoldi process produces $A V_{k}=V_{k+1} H_{k}$.
- This means (with $\beta=\left\|r_{0}\right\|$)

$$
r_{k}=b-A x_{k}=r_{0}-A\left(x_{k}-x_{0}\right)=V_{k+1}\left(\beta e_{1}-H_{k} y_{k}\right)
$$

- Hence $x_{k}=x_{0}+V_{k} y^{k}$, where y^{k} minimizes $\left\|\beta e_{1}-H_{k} y\right\|_{2}$.
- This is great. We can test for termination without wasting a matrix-vector product to compute $b-A x_{k}$ by testing

$$
\left\|r_{k}\right\|=\left\|\beta e_{1}-H_{k} y_{k}\right\|
$$

A Framework for GMRES Implementation

$r=b-A x, v_{1}=r /\|r\|_{2}, \rho=\|r\|_{2}, \beta=\rho, k=0$
while $\rho>\epsilon\|b\|_{2}$ and $k<k m a x$ do
$k=k+1$
Apply Arnoldi to obtain H_{k} and V_{k+1} from V_{k} and H_{k-1} $e_{1}=(1,0, \ldots, 0)^{T} \in R^{k+1}$
Solve $\min \left\|\beta e_{1}-H_{k} y_{k}\right\|_{R^{k+1}}$ for $y_{k} \in R^{k}$.

$$
\rho=\left\|\beta e_{1}-H_{k} y_{k}\right\|_{R^{k+1}}
$$

end while

$$
x_{k}=x_{0}+V_{k} y_{k} .
$$

Orthogonalization: Classical Gram-Schmidt

$$
\begin{gathered}
\text { for } j=1: k \text { do } \\
h_{j k}=\left(A v_{k}\right)^{T} v_{j}
\end{gathered}
$$

end for

$$
\begin{aligned}
& v_{k+1}=A v_{k}-\sum_{j=1}^{k} h_{j k} v_{j} \\
& h_{k+1, k}=\left\|v_{k+1}\right\|_{2} \\
& v_{k+1}=v_{k+1} /\left\|v_{k+1}\right\|_{2}
\end{aligned}
$$

Advantate (huge): the for loop is trivially parallel/vectorizable. Disadvantage: unstable, which means...

Instability in Orthogonalization

- Classical Gram-Schmidt can produce V's with non-orthogonal colums.
- In this case, the reduction to upper Hessenberg form is wrong,
- and $\left\|r_{k}\right\| \neq\left\|\beta e_{1}-H_{k} y_{k}\right\|$.

So we have to fix it.

Classical Gram-Schmidt Twice

for $j=1: k$ do

$$
h_{j k}=\left(A v_{k}\right)^{T} v_{j}
$$

end for

$$
\begin{aligned}
v_{k+1} & =A v_{k}-\sum_{j=1}^{k} h_{j k} v_{j} \\
\text { for } j & =1: k \text { do } \\
\tilde{h}_{j k} & =v_{k+1}^{T} v_{j} \\
h_{j k} & =h_{j k}+\tilde{h}_{j k}
\end{aligned}
$$

end for

$v_{k+1}=v_{k+1}-\sum_{j=1}^{k} \tilde{h}_{j k} v_{j}$
$h_{k+1, k}=\left\|v_{k+1}\right\|$
$v_{k+1}=v_{k+1} /\left\|v_{k+1}\right\|$
Still parallel, but twice the work.

Orthogonalization: Modified Gram-Schmidt (MGS)

$$
\begin{aligned}
& v_{k+1}=A v_{k} \\
& \text { for } j=1: k \text { do } \\
& \quad h_{j k}=v_{k+1}^{T} v_{j} \\
& v_{k+1}=v_{k+1}-h_{j k} v_{j}
\end{aligned}
$$

end for
if Loss of orthogonality then Reorthogonalize
end if
$h_{k+1, k}=\left\|v_{k+1}\right\|_{2}$
$v_{k+1}=v_{k+1} /\left\|v_{k+1}\right\|_{2}$
More stable than CGS, but parallelism is lost.

Test for loss of orthogonality

If

$$
\left\|A v_{k}\right\|_{2}+\delta\left\|v_{k+1}\right\|_{2}=\left\|A v_{k}\right\|_{2}
$$

to working precision, then you should reorthogonalize because there is very little information in v_{k+1}.
MGS and the test is the default in our MATLAB codes, but ...

Observations

- If you have as few as four cores, CGS-twice is faster.
- Storage is the main problem with GMRES.
- Low-storage methods for non-symmetric matrices have problems (more later).

Solving upper-Hessenberg Least Squares Problems

The last thing to do is to solve

$$
\min \left\|\beta e_{1}-H_{k} y\right\| .
$$

We do this by forming the $Q R$ factorization of H_{k} with Givens rotations

Givens Rotations: I

A 2×2 Givens rotation is a matrix of the form

$$
G=\left(\begin{array}{rr}
c & -s \tag{1}\\
s & c
\end{array}\right)
$$

where $c=\cos (\theta), s=\sin (\theta)$ for $\theta \in[-\pi, \pi]$.
G rotates a vector in R^{2} by θ. In particular

$$
G\binom{c}{-s}=\binom{1}{0}
$$

Givens Rotations: II

An $N \times N$ Givens rotation replaces a 2×2 block on the diagonal of the $N \times N$ identity matrix with a 2×2 Givens rotation.

$$
G_{j}=\left(\begin{array}{rrrrrrr}
1 & 0 & & \cdots & & & 0 \tag{2}\\
0 & \ddots & \ddots & & & & \\
& \ddots & c & -s & & & \\
\vdots & & s & c & 0 & & \vdots \\
& & & 0 & 1 & \ddots & \\
& & & & \ddots & \ddots & 0 \\
0 & & & \ldots & & 0 & 1
\end{array}\right)
$$

Columns j and $j+1$ are changed.

Givens Rotations: III

To build the $Q R$ factorization of H_{k}, we apply Givens rotations. Step 1: Multiply H_{k} by a Givens rotation that annihilates h_{21} (and, of course, changes h_{11} and the subsequent columns). We define $G_{1}=G_{1}\left(c_{1}, s_{1}\right)$ by

$$
c_{1}=h_{11} / \sqrt{h_{11}^{2}+h_{21}^{2}} \text { and } s_{1}=-h_{21} / \sqrt{h_{11}^{2}+h_{21}^{2}} .
$$

Then $R_{k} \leftarrow G_{1} H_{k}$ has zero in the 22 entry.
Step 2: Multiply R by $G_{2}\left(c_{2}, s_{2}\right)$ where

$$
c_{2}=h_{22} / \sqrt{h_{22}^{2}+h_{32}^{2}} \text { and } s_{1}=-h_{32} / \sqrt{h_{22}^{2}+h_{32}^{2}} .
$$

Continue ...

Givens Rotations: IV

Continuing we obtain, at the end,

$$
R_{k}=G_{k} \ldots G_{1} H_{k}
$$

is upper triangular. Set

$$
Q_{k}=\left(G_{k} \ldots G_{1}\right)^{T}
$$

and $H_{k}=Q_{k} R_{k}$. Cost $=O(N)$.

Givens Rotations: IV

The implementation stores Q_{k} by

- storing the sequences $\left\{c_{j}\right\}$ and $\left\{s_{j}\right\}$
- computing the action of Q_{k} on a vector $x \in R^{k+1}$ by applying $G_{j}\left(c_{j}, s_{j}\right)$
- and obtain $Q_{k} x=G_{1}\left(c_{k}, s_{k}\right)^{T} \ldots G_{k}\left(c_{1}, s_{1}\right)^{T} x$.
- We overwrite H_{k} with the triangular part of the QR factorization of H_{k}, so
- we do not store H_{k}, rather R_{k}.

Givens Rotations: V

At iteration k you have H_{k-1} overwritten with R_{k-1}

- $g=\rho(1,0, \ldots, 0)^{T} \in R^{k}$
- Compute $h_{j k}$ for $1 \leq j \leq k+1$
- $Q_{k}=I$

1. If $k>1$ apply Q_{k-1} to the k th column of H.
2. $\nu=\sqrt{h_{k, k}^{2}+h_{k+1, k}^{2}}$.
3. $c_{k}=h_{k, k} / \nu, s_{k}=-h_{k+1, k} / \nu$

$$
h_{k, k}=c_{k} h_{k, k}-s_{k} h_{k+1, k}, h_{k+1, k}=0
$$

4. $g=G_{k}\left(c_{k}, s_{k}\right) g$.
5. $Q_{k}^{T}=G_{k} Q_{k-1}^{T}$.
6. $\rho=\left|(g)_{k+1}\right|$.

CG's Minimization Principle

Solve $A x=b$ where A is spd.
For CG, x_{k} minimizes the A-norm of the error

$$
\left\|x^{*}-x\right\|_{A}=\min _{x \in x_{0}+\mathcal{K}_{k}}\left\|x^{*}-x\right\|_{A}
$$

over $x_{0}+\mathcal{K}_{k}$, where

$$
\|v\|_{A}^{2}=v^{\top} A v .
$$

CG and Residual Polymonials

As with GMRES, any $x \in x_{0}+\mathcal{K}_{k}$ can be written

$$
x=x_{0}+\sum_{j=0}^{k-1} \gamma_{j} A^{j} r_{0}
$$

Let $x^{*}=A^{-1} b$ and $e=x^{*}-x$. Since $r=b-A x=A e$,

$$
\begin{aligned}
x^{*}-x & =e=x^{*}-x_{0}-\sum_{j=0}^{k-1} \gamma_{j} A^{j} r_{0} \\
& =e_{0}-\sum_{j=1}^{k} \gamma_{j} A^{j} e_{0}=p(A) e_{0}
\end{aligned}
$$

for some $p \in \mathcal{P}_{k}$.

Minimization Principle

So, if x_{k} is the k th CG iteration

$$
\left\|e_{k}\right\|_{A} \leq\left\|p(A) e_{0}\right\|_{A}
$$

for all $p \in \mathcal{P}_{k}$.
So what does this mean?

What is the A-norm of $p(A)$

Since A is spd, A has a unique spd square root,

$$
A=U \wedge U^{T} \text { and } \sqrt{A}=U \sqrt{\Lambda} U^{T}
$$

SO

$$
\|x\|_{A}^{2}=x^{T} A x=(\sqrt{A} x)^{T}(\sqrt{A} x)=\|\sqrt{A} x\|^{2}
$$

which means

$$
\|p(A) x\|^{2}=\|\sqrt{A} p(A) x\|^{2}=\|p(A)(\sqrt{A} x)\|^{2}
$$

Hence

$$
\|p(A)\|_{A}=\max _{\lambda \in \sigma(A)}|p(\lambda)|
$$

Residual Polynomial Analysis

As with GMRES

$$
\left\|e_{k}\right\|_{A} \leq \max _{\lambda \in \sigma(A)}|p(\lambda)|\left\|e_{0}\right\|_{A}
$$

So, for example, if $\sigma(A) \subset(.9, .1)$ then

$$
\left\|e_{k}\right\|_{A} \leq\left\|e_{0}\right\| 10^{-k}
$$

which we get by using $p(z)=(1-z)^{k}$.

Convergence within N Iterations

Theorem: Let A be spd. Then the CG algorithm will find the solution within N iterations.
Proof: Use

$$
p(z)=\prod\left(\frac{\lambda_{i}-z}{\lambda_{i}}\right)
$$

The Concus-Golub-O'Leary Estimate

Theorem: Let $0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{N}$ be the eigenvalues of A (so $\left.\kappa(A)=\lambda_{N} / \lambda_{1}\right)$. Let x_{k} be the k th CG iteration. Then

$$
\frac{\left\|e_{k}\right\|_{A}}{\left\|e_{0}\right\|_{A}} \leq\left[\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right]^{k} .
$$

This can be pessimistic if the eigenvalues are clustered.

Termination

It's standard to terminate the iteration when the residual is small

$$
\left\|r_{k}\right\| \leq\left\|b-A x_{k}\right\| \leq \eta\left\|r_{0}\right\| .
$$

How is this connected to the A-norm of e ?
Since

$$
\sqrt{\lambda_{1}}\|x\| \leq\|x\|_{A} \leq \sqrt{\lambda_{N}}\|x\|
$$

we have

$$
\frac{\left\|r_{k}\right\|}{\left\|r_{0}\right\|}=\frac{\left\|A e_{k}\right\|}{\left\|A e_{0}\right\|} \leq \sqrt{\kappa(A)} \frac{\left\|\sqrt{A} e_{k}\right\|}{\left\|\sqrt{A} e_{0}\right\|}=\sqrt{\kappa(A)} \frac{\left\|e_{k}\right\|_{A}}{\left\|e_{0}\right\|_{A}}
$$

Example

Let $x_{0}=0$ and assume $\sigma(A) \subset(9,11)$. Using
$p(z)=(10-z)^{k} / 10^{k}$ we see

$$
\left\|e_{k}\right\|_{A} /\left\|e_{0}\right\|_{A} \leq 10^{-k}
$$

So the A-norm of the error will be reduced by a factor of 10^{-3} after 3 iterations.
What about the residual? All we know is that $\kappa(A) \leq 11 / 9$, so

$$
\frac{\left\|r_{k}\right\|}{\left\|r_{0}\right\|} \leq 10^{-k} \sqrt{11 / 9}
$$

and we need 4 iterations to guarantee a residual reduction of 10^{-3}.

Alternative Minimization Principle

Theorem: The k th iterate x_{k} of CG minimizes

$$
\phi(x)=\frac{1}{2} x^{T} A x-x^{T} b
$$

over $x_{0}+\mathcal{K}_{k}$
Remark: Note that if \tilde{x} is any a stationary point,

$$
\nabla \phi(\tilde{x})=A \tilde{x}-b=0
$$

then $\tilde{x}=x^{*}$.

Proof

Note that

$$
\left\|x-x^{*}\right\|_{A}^{2}=\left(x-x^{*}\right)^{T} A\left(x-x^{*}\right)=x^{T} A x-x^{T} A x^{*}-\left(x^{*}\right)^{T} A x+\left(x^{*}\right)^{T} A x^{*} .
$$

Since A is symmetric and $A x^{*}=b$

$$
-x^{T} A x^{*}-\left(x^{*}\right)^{T} A x=-2 x^{T} A x^{*}=-2 x^{T} b
$$

Therefore

$$
\left\|x-x^{*}\right\|_{A}^{2}=2 \phi(x)+\left(x^{*}\right)^{T} A x^{*} .
$$

So x minimizes ϕ over any set if and only if x minimizes $\left\|x-x^{*}\right\|_{A}^{2}$.

CG Implementation

$$
\begin{aligned}
& \operatorname{cg}(x, b, A, \epsilon, k m a x) \\
& \quad r=b-A x, \rho_{0}=\|r\|_{2}^{2}, k=1
\end{aligned}
$$

while $\sqrt{\rho_{k-1}}>\epsilon\|b\|$ and $k<k m a x$ do
if $k=1$ then

$$
p=r
$$

else

$$
\beta=\rho_{k-1} / \rho_{k-2} \text { and } p=r+\beta p
$$

end if
$w=A p$
$\alpha=\rho_{k-1} / p^{T} w$
$x=x+\alpha p$
$r=r-\alpha w$
$\rho_{k}=\|r\|^{2}$
$k=k+1$
end while

CG Implementation: Cost I, two scalar products

$$
\begin{aligned}
& \operatorname{cg}(x, b, A, \epsilon, k m a x) \\
& \quad r=b-A x, \rho_{0}=\|r\|_{2}^{2}, k=1
\end{aligned}
$$

while $\sqrt{\rho_{k-1}}>\epsilon\|b\|$ and $k<k m a x$ do
if $k=1$ then

$$
p=r
$$

else

$$
\beta=\rho_{k-1} / \rho_{k-2} \text { and } p=r+\beta p
$$

end if
$w=A p$
$\alpha=\rho_{k-1} / p^{\top} w$
$x=x+\alpha p$
$r=r-\alpha w$
$\rho_{k}=\|r\|^{2}$
$k=k+1$
end while

CG Implementation: Cost II, three daxpys

$$
\begin{aligned}
& \operatorname{cg}(x, b, A, \epsilon, k m a x) \\
& \quad r=b-A x, \rho_{0}=\|r\|_{2}^{2}, k=1
\end{aligned}
$$

while $\sqrt{\rho_{k-1}}>\epsilon\|b\|$ and $k<k m a x$ do
if $k=1$ then

$$
p=r
$$

else

$$
\beta=\rho_{k-1} / \rho_{k-2} \text { and } p=r+\beta p
$$

end if
$w=A p$
$\alpha=\rho_{k-1} / p^{T} w$
$x=x+\alpha p$
$r=r-\alpha w$
$\rho_{k}=\|r\|^{2}$
$k=k+1$
end while

Cost of CG

Each iteration requires

- one matrix-vector product,
- two scalar products,
- three daxpys,
and the storage of x, b, r, p, w five vectors!
Compare to GMRES (k vectors and $\mathrm{O}(k)$ scalar products).

Preconditioned CG (PCG)

Right (or left) preconditioning is a problem because

$B A$ or $A B$

need not be spd.
The correct way to precondition CG is symmetrically

$$
S A S y=S b
$$

and then $x=S y$. This means that $S^{2}=B$ is the preconditioner. So do you have to compute $S=\sqrt{B}$?

PCG

$\operatorname{pcg}(x, b, A, B, \epsilon, k m a x)$
$r=b-A x, \rho_{0}=\|r\|^{2}, k=1$
while $\sqrt{\rho_{k-1}}>\epsilon\|b\|$ and $k<k m a x$ do
$z=B r$
$\tau_{k-1}=z^{T} r$
if if $k=1$ then

$$
\beta=0 \text { and } p=z
$$

else

$$
\beta=\tau_{k-1} / \tau_{k-2}, p=z+\beta p
$$

end if

$w=A p$
$\alpha=\tau_{k-1} / p^{T} w$
$x=x+\alpha p ; r=r-\alpha w ; \rho_{k}=r^{\top} r$
$k=k+1$
end while

Cost of PCG

Each iteration requires

- one matrix-vector product,
- one preconditioner-vector product,
- three scalar products,
- four daxpys,
and the storage of x, b, r, z, p, w six vectors.

CGNR and CGNE

Conjugate gradient on the normal equations.
Two low-storage + provably convergent methods for nonsymmetric problems.
CGNR: Apply CG to

$$
A^{T} A=A^{T} b
$$

CGNE: Apply CG to

$$
A A^{T} y=b \text { and set } x=A^{T} y
$$

Analysis of CGNR

Apply the minimization property. You miminize

$$
\begin{aligned}
\left\|x^{*}-x\right\|_{A^{T} A}^{2} & =\left(x^{*}-x\right)^{T} A^{T} A\left(x^{*}-x\right)=\left(A x^{*}-A x\right)^{T}\left(A x^{*}-A x\right) \\
& =(b-A x)^{T}(b-A x)^{T}=\|r\|^{2}
\end{aligned}
$$

over $x_{0}+\mathcal{K}_{k}\left(A^{T} A\right)$. Hence the name Conjugate Gradient on the Normal equations to minimize the Residual.

Analysis of CGNE

Same story,

$$
\begin{aligned}
\left\|y^{*}-y\right\|_{A A^{T}}^{2} & =\left(y^{*}-y\right)^{T}\left(A A^{T}\right)\left(y^{*}-y\right) \\
& =\left(A^{T} y^{*}-A^{T} y\right)^{T}\left(A^{T} y^{*}-A^{T} y\right)=\left\|x^{*}-x\right\|^{2}
\end{aligned}
$$

is minimized over $y_{0}+\mathcal{K}_{k}\left(A A^{T}\right)$ at each iterate. Conjugate Gradient on the Normal equations to minimize the Error.

Observations

- CGNR and CGNE need two matrix-vector products
- one is a transpose-vector product hard to do in a matrix-free way
- Condition number is squared, so more iterations are needed
- Classic time-for-storage trade-off.

Other Low-Storage Methods

We discuss Bi-CGSTAB and TFQMR. Their common properties are

- Constant storage
- Two A-vector products per iteration
- No transpose-vector products needed
- Breakdown possible; no complete convergence theory

Bi-CGSTAB

bicgstab $(x, b, A, \epsilon, k m a x)$
$r=b-A x, \hat{r}_{0}=\hat{r}=r, \rho_{0}=\alpha=\omega=1, v=p=0, k=0, \rho_{1}=\hat{r}_{0}^{T} r$
while $\|r\|>\epsilon\|b\|$ and $k<k m a x$ do

$$
\begin{aligned}
& k=k+1 \\
& \beta=\left(\rho_{k} / \rho_{k-1}\right)(\alpha / \omega) \text { (breakdown possible; zero-divide) } \\
& p=r+\beta(p-\omega v) \text { (two daxpys) } \\
& v=A p(\text { matvec }) \\
& \alpha=\rho_{k} /\left(\hat{r}_{0}^{T} v\right) \text { (scalar product }+ \text { breakdown possible; zero-divide) } \\
& s=r-\alpha v, t=A s \text { (daxpy }+ \text { matvec) } \\
& \omega=t^{T} s /\|t\|^{2} ; \rho_{k+1}=-\omega \hat{r}_{0}^{T} t \text { (three scalar products) } \\
& x=x+\alpha p+\omega s \text { (two daxpys) } \\
& r=s-\omega t \text { (daxpy) }
\end{aligned}
$$

end while

Cost of BiCGSTAB

Each iteration requires

- two matrix-vector product,
- four scalar products,
- seven daxpys,
and the storage of $x, b, r, \hat{r}, p, v, s, t$ eight vectors. Breakdown? Pick new x_{0} and try again.

TFQMR

```
\(\operatorname{tfq} \operatorname{mr}(x, b, A, \epsilon, k m a x)\)
    \(k=0 ; w_{1}=y_{1}=r_{0}=b-A x ; u_{1}=v=A y_{1}, d=0 ; \rho_{0}=r_{0}^{T} r_{0} ; \tau=\|r\| ; \theta=0 ; \eta=0\)
    while \(k<k \max\) do
        \(k=k+1 ; \sigma_{k-1}=r_{0}^{T} v\); (scalar product)
        \(\alpha=\rho_{k-1} / \sigma_{k-1}\) (breakdown possible; zero-divide)
        \(y_{2}=y_{1}-\alpha v ; u_{2}=A y_{2}(\) daxpy + matvec \()\)
        for \(j=1,2(m=2 k-2+j)\) (all costs doubled in this loop) do
            \(w=w-\alpha u_{j} ; d=y_{j}+\left(\theta^{2} \eta / \alpha\right) d\) (two daxpys)
            \(\theta=\|w\| / \tau ; c=1 / \sqrt{1+\theta^{2}}\) (scalar product)
            \(\tau=\tau \theta c ; \eta=c^{2} \alpha ;\)
            \(x=x+\eta d\) (daxpy)
            If \(\tau \sqrt{m+1} \leq \epsilon\|b\|\) terminate successfully
    end for
    \(\rho_{k}=r_{0}^{T} w, \beta=\rho_{k} / \rho_{k-1}\) (scalar product + breakdown possible; zero-divide)
    \(y_{1}=w+\beta y_{2}, u_{1}=A y_{1}(\) daxpy + matvec \()\)
    \(v=u_{1}+\beta\left(u_{2}+\beta v\right)\) (two daxpys)
    end while
```


C. T. Kelley Krylov Methods

Classical Stationary Iterative Methods

Recall that

- convert $A x=b$ to $x=M x+c$ with a matrix splitting,
- M_{S} is the iteration matrix for the method
- Harvest a preconditioner with $B A=I-M$ and then

$$
x=M x+c \text { is the same as } B A x=B b .
$$

Example: Jacobi

- Splitting: $A=D+L+U$
- $M=-D^{-1}(L+U)=I-D^{-1} A$
- so $B=D^{-1}$.

Sometimes Jacobi preconditioning works well.

Incomplete Factorizations

If you can store A as a sparse matrix then

- you can start a sparse factorization,
- and discard small elements in the factors,
- or enforce sparsity.

The MATLAB commands ilu and ichol create incomplete LU and Cholseky factorizations.

Integral Equations

- Many integral equations are well conditioned and CG or GMRES do well.
- The transport equation is one example.
- The performance of Kyrlov methods is independent of the discretization.
- WARNING! Sometime preconditioning can still make a difference.

Elliptic PDEs I

Suppose you seek to solve an elliptic boundary value problem.

$$
L u=f
$$

with Dirichlet/Neumann/mixed boundary conditions. If you discretize the PDE to obtain

$$
L_{h} u_{h}=f_{h}
$$

the resulting discrete problem is very poorly conditioned and Krylov methods will be slow.

Elliptic PDEs II

Split $L=L_{1}+L_{0}$, where L_{1} contains the high-order derivatives. If you can find a fast solver for L_{1} with the same type of boundary conditions, then L_{1}^{-1} is a mesh-independent preconditioner. Why? $L_{1}^{-1} L$ is an integral operator. (Manteufel/Parter 1990)

Example of PDE preconditioning

$-\nabla^{2} u+c_{1} u_{x}+c_{2} u_{y}+c_{0} u=f(x, y)$ for $0<x, y<1$

- $u(x, 0)=u(0, y)=u(x, 1)=u(1, y)=0$
- $L_{1} u=-\nabla^{2} u$
- Apply fast Poisson solver $N \log (N)$ work.

Scalability

The scenario:

- Continuous problem: $L u=f$; Discrete problem: $L_{h} u_{h}=f_{h}$.
- $h=1 / N$ spatial mesh width; N^{2} number of mesh points.
- Second order accuracy: $u_{h}-u^{*}=O\left(h^{2}\right)$
- Preconditioner B_{h} is "perfect", i. e. Krylovs needed to reduce error by factor of 10 is N_{k} for all h.
- Cost of $B_{h} L_{h}$ matvec is $O(N)$

Then, given h you can find u_{h} up to truncation error in $O(N)$ work!

Fast Solvers

Pick $h_{0}=2^{p} h$ so that $L_{h_{0}} u_{h_{0}}=f_{h_{0}}$ is easy to solve.
Solve $L_{h_{0}} u_{0}=f_{h_{0}}$
for $I=1$:p do
$h_{I}=h_{I-1} / 2 ; u_{I}=u_{I-1}$
Apply GMRES to $L_{h_{l}} u_{l}=f_{h_{l}}$ with u_{l} as the start. Terminate when residual is reduced by factor of 10 .
Accept u_{l}
end for

Cost Analysis

- A matvec for $h_{l}=2^{\prime} h$ costs $\left.O\left(2^{-l}\right) N^{2}\right)$ operations
- We do at most N_{k} matvecs at each level
- So ...

$$
\begin{aligned}
\text { Cost } & \leq \sum_{l=0}^{p} N_{k}\left(2^{-l} N\right)^{2} \leq \sum_{l=0}^{\infty} N_{k}\left(2^{-l} N\right)^{2} \\
& =N_{k} N \sum_{l=0}^{\infty} 4^{-l}=4 N_{k} N^{2} / 3
\end{aligned}
$$

Exercises

- Modify the pde demo codes klpde2ddemo.m to use BiCGStab and TFQMR. Any problems?
- Write a CGNR code and solve the problem in klpde2ddemo.m with CGNR.
- Solve the source iteration equation with GMRES. What problem would you have if you wanted to solve it with CGNR or CGNE?

