
Krylov Methods Overview
GMRES

Conjugate Gradient Iteration
Other Krylov Methods

Preconditioning
Exercises

Krylov Methods

C. T. Kelley
NC State University

tim kelley@ncsu.edu
Research Supported by NSF, DOE, ARO, USACE

DTU ITMAN, 2011

C. T. Kelley Krylov Methods



Krylov Methods Overview
GMRES

Conjugate Gradient Iteration
Other Krylov Methods

Preconditioning
Exercises

Outline

Krylov Methods Overview

GMRES
Analysis of GMRES
GMRES Implementation

Conjugate Gradient Iteration
Analysis of CG
CG Implementation

Other Krylov Methods

Preconditioning

Exercises

C. T. Kelley Krylov Methods



Krylov Methods Overview
GMRES

Conjugate Gradient Iteration
Other Krylov Methods

Preconditioning
Exercises

References for Krylov Methods I

I C. T. Kelley,
Iterative Methods for Linear and Nonlinear Equations, no. 16
in Frontiers in Applied Mathematics, SIAM, Philadelphia,
1995.

I P. N. Brown and A. C. Hindmarsh, Reduced storage
matrix methods in stiff ODE systems, J. Appl. Math. Comp.,
31 (1989), pp. 40–91.

I G. H. Golub and C. G. VanLoan, Matrix Computations,
Johns Hopkins studies in the mathematical sciences, Johns
Hopkins University Press, Baltimore, 3 ed., 1996.

I A. Greenbaum, Iterative Methods for Solving Linear
Systems, no. 17 in Frontiers in Applied Mathematics, SIAM,
Philadelphia, 1997.

C. T. Kelley Krylov Methods



Krylov Methods Overview
GMRES

Conjugate Gradient Iteration
Other Krylov Methods

Preconditioning
Exercises

References for Krylov Methods II

I M. R. Hestenes and E. Steifel, Methods of conjugate
gradient for solving linear systems, J. of Res. Nat. Bureau
Standards, 49 (1952), pp. 409–436.

I B. N. Parlett, The Symmetric Eigenvalue Problem,
Prentice Hall, Englewood Cliffs, 1980.

I Y. Saad and M. Schultz, GMRES a generalized minimal
residual algorithm for solving nonsymmetric linear systems,
SIAM J. Sci. Stat. Comp., 7 (1986), pp. 856–869.

I N. M. Nachtigal, S. C. Reddy, and L. N.
Trefethen, How fast are nonsymmetric matrix iterations?,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778–795.

C. T. Kelley Krylov Methods



Krylov Methods Overview
GMRES

Conjugate Gradient Iteration
Other Krylov Methods

Preconditioning
Exercises

References for Krylov Methods III

I R. W. Freund, A transpose-free quasi-minimal residual
algorithm for non-Hermitian linear systems, SIAM J. Sci.
Comput., 14 (1993), pp. 470–482.

I H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly
converging variant to Bi-CG for the solution of nonsymmetric
systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631–644.

I T. A. Manteuffel and S. Parter, Preconditioning and
boundary conditions, SIAM J. Numer. Anal., 27 (1990),
pp. 656–694.

C. T. Kelley Krylov Methods



Krylov Methods Overview
GMRES

Conjugate Gradient Iteration
Other Krylov Methods

Preconditioning
Exercises

Krylov Methods

I Krylov iterative methods obtain xn from the history of the
iteration.

I The ones with theory do this by minimizing an error or
residual function over the affine space

x0 +Kk

I x0 is the initial iterate

I Kk is the kth Krylov subspace

Kk = span(r0,Ar0, . . . ,A
k−1r0)

for k ≥ 1.
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Terms and Notation Review

I Equation Ax = b; Solution x∗ = A−1b

I Error e = x − x∗

I Residual b − Ax = Ae
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GMRES and Conjugate Gradient (CG)

These two methods can be expressed in terms of minimization
principles
In GMRES (Generalized Minimum Residual), the kth iteation xk

minimizes the residual over x0 +Kk

‖b − Axk‖ = min
x∈x0+Kk

‖b − Ax‖

for ‖ · ‖ = ‖ · ‖2. For CG, A must be spd and xk minimizes the
A-norm of the error

‖x∗ − x‖A = min
x∈x0+Kk

‖x∗ − x‖A

where
‖v‖2A = vTAv .
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General Properties of CG/GMRES

I convergence in N iterations (impractical)

I no need for matrix representation of A only matrix-vector
products

I sensitive to conditioning and eigenvalue distribution

C. T. Kelley Krylov Methods



Krylov Methods Overview
GMRES

Conjugate Gradient Iteration
Other Krylov Methods

Preconditioning
Exercises

Analysis of GMRES
GMRES Implementation

Analysis of GMRES

If x ∈ x0 +Kk then

r = b − Ax = b − Ax0 −
k∑

j=0

γjA
j r0 ≡ p(A)r0

where p ∈ Pk , the set of k degree residual polynomials.

Pk = {p | p is a polynomial of degree k and p(0) = 1.}

This simple observation is the key to analysis of Krylov methods.
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GMRES and Residual Polynomials

Theorem: Let A be nonsingular and let xk be the kth GMRES
iteration. Then for all p̄k ∈ Pk

‖rk‖ = min
p∈Pk

‖p(A)r0‖ ≤ ‖p̄k(A)r0‖.
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Proof of Theorem

Let xk the the kth GMRES iteration. Then there is pk ∈ Pk such
that

rk = b − Axk = pk(A)r0

Since any x ∈ x0 +Kk satisfies

r = b − Ax = p̄(A)r0

for some p̄ ∈ Pk , the minimization principle imples that

‖rk‖2 = min
p∈Pk

‖p(A)r0‖ ≤ ‖b − Ax‖ = ‖p̄k(A)r0‖.
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How to Use This Theorem

I Connect properties of the matrix to a polynomial you
understand.

I Manufacture a residual polynomail p̄ from that

I Get an upper bound from

‖rk‖ ≤ ‖p̄(A)r0‖ ≤ ‖p̄(A)‖‖r0‖
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Consequences of the Minimization Principle: I

Corollary: Let A be nonsingular. Then the GMRES algorithm will
find the solution within N iterations.
Proof: The characteristic polynomial of A is p(z) = det(A− zI ). p
has degree N, p(0) = det(A) 6= 0 since A is nonsingular, and so

p̄N(z) = p(z)/p(0) ∈ PN

is a residual polynomial. The Cayley-Hamilton theroem says that
p̄N(A) = 0, and so

‖rn‖ ≤ ‖p̄N(A)‖‖r0‖ = 0.
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Consequences of the Minimization Principle: I

Corollary: If ‖I − A‖ ≤ ρ < 1 then

‖rk‖ ≤ ρk‖r0‖2.

Proof: Let p̄k = (1− z)k and use the theorem.
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Diagonalizable Matrices

A is diagonalizable if there is a nonsingular (possibly complex!)
matrix V such that

A = V ΛV−1.

If A is diagonalizable and p is a polynomail then

p(A) =
m∑

j=0

ajγjA
j =

m∑
j=0

aj(V ΛV−1)j = V
m∑

j=0

ajΛ
jV−1 = Vp(Λ)V−1

So
‖p(A)‖ ≤ ‖V ‖‖p(A)‖‖V−1‖ = κ(V ) max

λ∈σ(A)
|p(λ)|
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GMRES Convergence for Diagonalizable Matrices

We just proved . . .
Theorem: Let A = V ΛV−1 be a nonsingular diagonalizable matrix.
Let xk be the kth GMRES iterate. Then for all p̄k ∈ Pk

‖rk‖2
‖r0‖2

≤ κ2(V ) max
z∈σ(A)

|p̄k(z)|.
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Easy Results for Diagonalizable A: I

If A has m distinct eigenvalues then GMRES will terminate in at
most m iterations.
Proof: Use

p(z) =
m∏

i=1

(
λi − λ
λi

)
p(0) = 1 so p ∈ Pk . Since p(λi ) = 0 for all i , rN = 0.
This proof is (1) very easy and (2) typical of the way one thinks
about Krylov methods.
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Easy Results for Diagonalizable A: II

Let x0 = 0 (so r0 = b) and assume that

I σ(A) ⊂ (9, 11)

I κ(V ) = 100

Then if we let p̄k(z) = (10− z)k/10k we see that

‖rk‖2
‖r0‖2

≤ κ(V )‖pk(A)‖ ≤ (100)10−k = 102−k .

So ‖rk‖ ≤ η‖b‖ when

k > 2 + log10(η).

This tells us that an approximate inverse preconditioner could be
useful.
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Observations

I A normal implies κ(V ) = 1

I If A is not normal and κ(V ) is large, then σ(A) does not tell
the whole story.

I The heuristic is that if the eigenvalues are grouped into a few
clusters the iteration will perform well.

I If the eigenvalues are clustered near 1, the GMRES is very
happy and A is well-conditioned.
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Preconditioning

Preconditioning means to replace Ax = b with

BAx = Bb (left)

or
ABy = b (right), and then x = By

and solve the preconditioned equation with GMRES. The
preconditioner B should be

I very inexpensive matrix-vector products

I be a good approximate inverse of (part) of A

Examples coming later.
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Left Preconditioning

Solve
BAx = Bb

so

I solution to preconditioned equation is still x

I preconditioned residual Bb − BAx = Br should be a better
indicator of error
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Right Preconditioning

Solve
ABz = b

for z . Then set x = Bz .

I The preconditioned residual is the same as the original
residual because b − A(Bz) = b − Ax .

I The solution of the preconditioned problem is different.

I The residual may not be a good indicator of the error in x .

More on preconditioning later. But first . . .
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And now for the software
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GMRES Implementation

The kth GMRES iteration is the solution of the linear least squares
problem

min ‖Ax − b‖

where x =
∑k−1

j=0 γjA
j r0

The key to a successsful implementation is to solve this in an
efficient and stable way.
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A Questionable GMRES Implementation

How about this?

I As the iteration progresses store Aj r0.

I Let Bk = (r0,Ar0, . . .A
k−1r0)

I Compute the QR factorization of Bk = QkRk

I The xk = R−1
k QT

k b

What could go wrong?
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What could go wrong?

I Accumulating Aj r0 can be unstable
Example A = diag(1, 2, ...,N)

I The cost of Bk = QkRk is O(Nk2).

I You have to start over with each k and are not reusing the old
columns.
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Arnoldi Factorization is Better

Suppose one had an orthogonal projector Vk onto Kk .
Then any z ∈ Kk can be written as

z =
k∑

l=1

ylv
k
l

where vk
l is the lth column of Vk .

So we can convert the problem for xk to a problem in Rk .
Begin by writing any x ∈ x0 +Kk as

x = x0 + Vky ,

where y is the vector of coefficients of x − x0 using the columns of
Vk as the basis for Kk .
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Arnoldi Part II

So if xk = x0 + Vkyk then

‖b − Axk‖ = ‖b − A(x0 + Vkyk)‖2 = ‖r0 − AVkyk‖2.

So the least squares problem for y is

min ‖r0 − AVky‖

If we can build Vk in a stable way, we have solved the stability
problem (but that is not completely simple).
Can we do it efficiently?
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Arnoldi Part III

The Gram-Schmidt process will

I build Vk incrementally, so Vk = (Vk−1, vk),

I enable a fast QR factorization of AVk , and

I be stable (if done correctly).

Orthogonalization is the central part of the Arnoldi method.
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Arnoldi Part IV

The algorithm orthogonalizes each Avi against the columns of
Vk−1 to construct vk

V = arnoldi(x0, b,A, k)

r0 = b − Ax0; v1 = r0/‖r0‖
for i = 1 : k − 1 do

w = Avi

for j = 1 : i do
hji = wT vj(= (Avi )

T vj); w = w − hjivj

end for
hki = ‖w‖; vi+1 = w/hki

end for

At the end you have Vk . Columns orthonormal basis for Kk .
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Examine the Arnoldi Loops

What if you divide by zero in

v1 = r0/‖r0‖ or vi+1 = w/‖w‖?

I If r0 = 0, then x0 is the solution and the GMRES iteration
would terminate.

I If w = 0, then you have a happy breakdown of the Arnoldi
process. This implies that you found the solution as xk−1.

I A well-designed implementation would stop before division by
zero.
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The Happy Breakdown Theorem

Theorem: Let A be nonsingular, let the vectors vj be generated by
the Arnoldi process, and for which

Avi −
i∑

j=1

((Avi )
T vj)vj = 0.

Then x = A−1b ∈ x0 +Ki .
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Proof: The Happy Breakdown Theorem

I By hypothesis Avi ∈ Ki , so AKi ⊂ Ki .

I The columns of Vi are an orthonormal basis for Ki , so

I AVi = ViH where H is an i × i matrix. H is nonsingular since
A is.

I Set β = ‖r0‖2 and e1 = (1, 0, . . . , 0)T ∈ R i , then

I ‖ri‖2 = ‖b − Axi‖2 = ‖r0 − A(xi − x0)‖2.

I Now, xi − x0 ∈ Ki so there is y ∈ R i such that xi − x0 = Viy .

I Since r0 = βVie1 and Vi is an orthogonal matrix

‖ri‖2 = ‖Vi (βe1 − Hy)‖2 = ‖βe1 − Hy‖R i ,

I Set y = βH−1e1 to show ri = 0.
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What about H?

I Assuming that there is no breakdown, then
hij = (Avj)

T vi = 0 if i > j + 1, so H is upper Hessenberg.

I So, the Arnoldi process produces AVk = Vk+1Hk .

I This means (with β = ‖r0‖)

rk = b − Axk = r0 − A(xk − x0) = Vk+1(βe1 − Hkyk).

I Hence xk = x0 + Vkyk , where yk minimizes ‖βe1 − Hky‖2.

I This is great. We can test for termination without wasting a
matrix-vector product to compute b − Axk by testing

‖rk‖ = ‖βe1 − Hkyk‖
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A Framework for GMRES Implementation

r = b − Ax , v1 = r/‖r‖2, ρ = ‖r‖2, β = ρ, k = 0
while ρ > ε‖b‖2 and k < kmax do

k = k + 1
Apply Arnoldi to obtain Hk and Vk+1 from Vk and Hk−1

e1 = (1, 0, . . . , 0)T ∈ Rk+1

Solve min ‖βe1 − Hkyk‖Rk+1 for yk ∈ Rk .
ρ = ‖βe1 − Hkyk‖Rk+1 .

end while
xk = x0 + Vkyk .
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Orthogonalization: Classical Gram-Schmidt

for j = 1 : k do
hjk = (Avk)T vj

end for
vk+1 = Avk −

∑k
j=1 hjkvj

hk+1,k = ‖vk+1‖2
vk+1 = vk+1/‖vk+1‖2

Advantate (huge): the for loop is trivially parallel/vectorizable.
Disadvantage: unstable, which means . . .
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Instability in Orthogonalization

I Classical Gram-Schmidt can produce V ’s with non-orthogonal
colums.

I In this case, the reduction to upper Hessenberg form is wrong,

I and ‖rk‖ 6= ‖βe1 − Hkyk‖.

So we have to fix it.
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Classical Gram-Schmidt Twice

for j = 1 : k do
hjk = (Avk)T vj

end for
vk+1 = Avk −

∑k
j=1 hjkvj

for j = 1 : k do
h̃jk = vT

k+1vj

hjk = hjk + h̃jk

end for
vk+1 = vk+1 −

∑k
j=1 h̃jkvj

hk+1,k = ‖vk+1‖
vk+1 = vk+1/‖vk+1‖

Still parallel, but twice the work.
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Orthogonalization: Modified Gram-Schmidt (MGS)

vk+1 = Avk

for j = 1 : k do
hjk = vT

k+1vj

vk+1 = vk+1 − hjkvj

end for
if Loss of orthogonality then

Reorthogonalize
end if
hk+1,k = ‖vk+1‖2
vk+1 = vk+1/‖vk+1‖2

More stable than CGS, but parallelism is lost.
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Test for loss of orthogonality

If
‖Avk‖2 + δ‖vk+1‖2 = ‖Avk‖2

to working precision, then you should reorthogonalize because
there is very little information in vk+1.
MGS and the test is the default in our MATLAB codes, but . . .
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Observations

I If you have as few as four cores, CGS-twice is faster.

I Storage is the main problem with GMRES.

I Low-storage methods for non-symmetric matrices have
problems (more later).
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Solving upper-Hessenberg Least Squares Problems

The last thing to do is to solve

min ‖βe1 − Hky‖.

We do this by forming the QR factorization of Hk with Givens
rotations
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Givens Rotations: I

A 2× 2 Givens rotation is a matrix of the form

G =

(
c −s
s c

)
(1)

where c = cos(θ), s = sin(θ) for θ ∈ [−π, π].
G rotates a vector in R2 by θ. In particular

G

(
c
−s

)
=

(
1
0

)
.
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Givens Rotations: II

An N × N Givens rotation replaces a 2× 2 block on the diagonal
of the N × N identity matrix with a 2× 2 Givens rotation.

Gj =



1 0 . . . 0

0
. . .

. . .
. . . c −s

... s c 0
...

0 1
. . .

. . .
. . . 0

0 . . . 0 1


. (2)

Columns j and j + 1 are changed.
C. T. Kelley Krylov Methods



Krylov Methods Overview
GMRES

Conjugate Gradient Iteration
Other Krylov Methods

Preconditioning
Exercises

Analysis of GMRES
GMRES Implementation

Givens Rotations: III

To build the QR factorization of Hk , we apply Givens rotations.
Step 1: Multiply Hk by a Givens rotation that annihilates h21 (and,
of course, changes h11 and the subsequent columns). We define
G1 = G1(c1, s1) by

c1 = h11/
√

h2
11 + h2

21 and s1 = −h21/
√

h2
11 + h2

21.

Then Rk ← G1Hk has zero in the 22 entry.
Step 2: Multiply R by G2(c2, s2) where

c2 = h22/
√

h2
22 + h2

32 and s1 = −h32/
√

h2
22 + h2

32.

Continue . . .
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Givens Rotations: IV

Continuing we obtain, at the end,

Rk = Gk . . .G1Hk

is upper triangular. Set

Qk = (Gk . . .G1)T

and Hk = QkRk . Cost = O(N).
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Givens Rotations: IV

The implementation stores Qk by

I storing the sequences {cj} and {sj}
I computing the action of Qk on a vector x ∈ Rk+1 by applying

Gj(cj , sj)

I and obtain Qkx = G1(ck , sk)T . . .Gk(c1, s1)T x .

I We overwrite Hk with the triangular part of the QR
factorization of Hk , so

I we do not store Hk , rather Rk .
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Givens Rotations: V

At iteration k you have Hk−1 overwritten with Rk−1

I g = ρ(1, 0, . . . , 0)T ∈ Rk

I Compute hjk for 1 ≤ j ≤ k + 1

I Qk = I
I

1. If k > 1 apply Qk−1 to the kth column of H.

2. ν =
√

h2
k,k + h2

k+1,k .

3. ck = hk,k/ν, sk = −hk+1,k/ν
hk,k = ckhk,k − skhk+1,k , hk+1,k = 0

4. g = Gk(ck , sk)g .
5. QT

k = GkQ
T
k−1.

6. ρ = |(g)k+1|.
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CG’s Minimization Principle

Solve Ax = b where A is spd.
For CG, xk minimizes the A-norm of the error

‖x∗ − x‖A = min
x∈x0+Kk

‖x∗ − x‖A

over x0 +Kk , where
‖v‖2A = vTAv .

C. T. Kelley Krylov Methods



Krylov Methods Overview
GMRES

Conjugate Gradient Iteration
Other Krylov Methods

Preconditioning
Exercises

Analysis of CG
CG Implementation

CG and Residual Polymonials

As with GMRES, any x ∈ x0 +Kk can be written

x = x0 +
k−1∑
j=0

γjA
j r0

Let x∗ = A−1b and e = x∗ − x . Since r = b − Ax = Ae,

x∗ − x = e = x∗ − x0 −
∑k−1

j=0 γjA
j r0

= e0 −
∑k

j=1 γjA
je0 = p(A)e0

for some p ∈ Pk .

C. T. Kelley Krylov Methods
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Minimization Principle

So, if xk is the kth CG iteration

‖ek‖A ≤ ‖p(A)e0‖A

for all p ∈ Pk .
So what does this mean?
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What is the A-norm of p(A)

Since A is spd, A has a unique spd square root,

A = UΛUT and
√

A = U
√

ΛUT

so
‖x‖2A = xTAx = (

√
Ax)T (

√
Ax) = ‖

√
Ax‖2

which means

‖p(A)x‖2 = ‖
√

Ap(A)x‖2 = ‖p(A)(
√

Ax)‖2

Hence
‖p(A)‖A = max

λ∈σ(A)
|p(λ)|

C. T. Kelley Krylov Methods



Krylov Methods Overview
GMRES

Conjugate Gradient Iteration
Other Krylov Methods

Preconditioning
Exercises

Analysis of CG
CG Implementation

Residual Polynomial Analysis

As with GMRES

‖ek‖A ≤ max
λ∈σ(A)

|p(λ)|‖e0‖A

So, for example, if σ(A) ⊂ (.9, .1) then

‖ek‖A ≤ ‖e0‖10−k

which we get by using p(z) = (1− z)k .
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Convergence within N Iterations

Theorem: Let A be spd. Then the CG algorithm will find the
solution within N iterations.
Proof: Use

p(z) =
∏(

λi − z

λi

)

C. T. Kelley Krylov Methods
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The Concus-Golub-O’Leary Estimate

Theorem: Let 0 < λ1 ≤ λ2 ≤ λN be the eigenvalues of A (so
κ(A) = λN/λ1). Let xk be the kth CG iteration. Then

‖ek‖A
‖e0‖A

≤

[√
κ(A)− 1√
κ(A) + 1

]k

.

This can be pessimistic if the eigenvalues are clustered.
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Termination

It’s standard to terminate the iteration when the residual is small

‖rk‖ ≤ ‖b − Axk‖ ≤ η‖r0‖.

How is this connected to the A-norm of e?
Since √

λ1‖x‖ ≤ ‖x‖A ≤
√
λN‖x‖

we have

‖rk‖
‖r0‖

=
‖Aek‖
‖Ae0‖

≤
√
κ(A)

‖
√

Aek‖
‖
√

Ae0‖
=
√
κ(A)

‖ek‖A
‖e0‖A
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Example

Let x0 = 0 and assume σ(A) ⊂ (9, 11). Using
p(z) = (10− z)k/10k we see

‖ek‖A/‖e0‖A ≤ 10−k .

So the A-norm of the error will be reduced by a factor of 10−3

after 3 iterations.
What about the residual? All we know is that κ(A) ≤ 11/9, so

‖rk‖
‖r0‖

≤ 10−k
√

11/9

and we need 4 iterations to guarantee a residual reduction of 10−3.
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Alternative Minimization Principle

Theorem: The kth iterate xk of CG minimizes

φ(x) =
1

2
xTAx − xTb

over x0 +Kk

Remark: Note that if x̃ is any a stationary point,

∇φ(x̃) = Ax̃ − b = 0

then x̃ = x∗.

C. T. Kelley Krylov Methods
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Proof

Note that

‖x−x∗‖2A = (x−x∗)TA(x−x∗) = xTAx−xTAx∗−(x∗)TAx+(x∗)TAx∗.

Since A is symmetric and Ax∗ = b

−xTAx∗ − (x∗)TAx = −2xTAx∗ = −2xTb.

Therefore
‖x − x∗‖2A = 2φ(x) + (x∗)TAx∗.

So x minimizes φ over any set if and only if x minimizes ‖x − x∗‖2A.
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CG Implementation

cg(x , b,A, ε, kmax)

r = b − Ax , ρ0 = ‖r‖22, k = 1.
while

√
ρk−1 > ε‖b‖ and k < kmax do

if k = 1 then
p = r

else
β = ρk−1/ρk−2 and p = r + βp

end if
w = Ap
α = ρk−1/p

Tw
x = x + αp
r = r − αw
ρk = ‖r‖2
k = k + 1

end while

C. T. Kelley Krylov Methods
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CG Implementation: Cost I, two scalar products

cg(x , b,A, ε, kmax)

r = b − Ax , ρ0 = ‖r‖22, k = 1.
while

√
ρk−1 > ε‖b‖ and k < kmax do

if k = 1 then
p = r

else
β = ρk−1/ρk−2 and p = r + βp

end if
w = Ap
α = ρk−1/p

Tw
x = x + αp
r = r − αw
ρk = ‖r‖2
k = k + 1

end while
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CG Implementation: Cost II, three daxpys

cg(x , b,A, ε, kmax)

r = b − Ax , ρ0 = ‖r‖22, k = 1.
while

√
ρk−1 > ε‖b‖ and k < kmax do

if k = 1 then
p = r

else
β = ρk−1/ρk−2 and p = r + βp

end if
w = Ap
α = ρk−1/p

Tw
x = x + αp
r = r − αw
ρk = ‖r‖2
k = k + 1

end while

C. T. Kelley Krylov Methods
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Cost of CG

Each iteration requires

I one matrix-vector product,

I two scalar products,

I three daxpys,

and the storage of x , b, r , p,w five vectors!
Compare to GMRES (k vectors and O(k) scalar products).
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Preconditioned CG (PCG)

Right (or left) preconditioning is a problem because

BA or AB

need not be spd.
The correct way to precondition CG is symmetrically

SASy = Sb

and then x = Sy . This means that S2 = B is the preconditioner.
So do you have to compute S =

√
B?

C. T. Kelley Krylov Methods
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PCG

pcg(x , b,A,B, ε, kmax)

r = b − Ax , ρ0 = ‖r‖2, k = 1
while

√
ρk−1 > ε‖b‖ and k < kmax do

z = Br
τk−1 = zT r
if if k = 1 then
β = 0 and p = z

else
β = τk−1/τk−2, p = z + βp

end if
w = Ap
α = τk−1/p

Tw
x = x + αp; r = r − αw ; ρk = rT r
k = k + 1

end while
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Cost of PCG

Each iteration requires

I one matrix-vector product,

I one preconditioner-vector product,

I three scalar products,

I four daxpys,

and the storage of x , b, r , z , p,w six vectors.
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CGNR and CGNE

Conjugate gradient on the normal equations.
Two low-storage + provably convergent methods for nonsymmetric
problems.
CGNR: Apply CG to

ATA = ATb

CGNE: Apply CG to

AAT y = b and set x = AT y .

C. T. Kelley Krylov Methods
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Apply the minimization property. You miminize

‖x∗ − x‖2
AT A

= (x∗ − x)TATA(x∗ − x) = (Ax∗ − Ax)T (Ax∗ − Ax)

= (b − Ax)T (b − Ax)T = ‖r‖2

over x0 +Kk(ATA). Hence the name Conjugate Gradient on the
Normal equations to minimize the Residual.
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Same story,

‖y∗ − y‖2
AAT = (y∗ − y)T (AAT )(y∗ − y)

= (AT y∗ − AT y)T (AT y∗ − AT y) = ‖x∗ − x‖2

is minimized over y0 +Kk(AAT ) at each iterate. Conjugate
Gradient on the Normal equations to minimize the Error.

C. T. Kelley Krylov Methods
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Observations

I CGNR and CGNE need two matrix-vector products

I one is a transpose-vector product
hard to do in a matrix-free way

I Condition number is squared, so more iterations are needed

I Classic time-for-storage trade-off.
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Other Low-Storage Methods

We discuss Bi-CGSTAB and TFQMR. Their common properties
are

I Constant storage

I Two A-vector products per iteration

I No transpose-vector products needed

I Breakdown possible; no complete convergence theory

C. T. Kelley Krylov Methods
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Bi-CGSTAB

bicgstab(x , b,A, ε, kmax)

r = b − Ax , r̂0 = r̂ = r , ρ0 = α = ω = 1, v = p = 0, k = 0, ρ1 = r̂T
0 r

while ‖r‖ > ε‖b‖ and k < kmax do
k = k + 1
β = (ρk/ρk−1)(α/ω) (breakdown possible; zero-divide)
p = r + β(p − ωv) (two daxpys)
v = Ap (matvec)
α = ρk/(r̂T

0 v) (scalar product + breakdown possible; zero-divide)
s = r − αv , t = As (daxpy + matvec)
ω = tT s/‖t‖2; ρk+1 = −ωr̂T

0 t (three scalar products)
x = x + αp + ωs (two daxpys)
r = s − ωt (daxpy)

end while

C. T. Kelley Krylov Methods
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Cost of BiCGSTAB

Each iteration requires

I two matrix-vector product,

I four scalar products,

I seven daxpys,

and the storage of x , b, r , r̂ , p, v , s, t eight vectors.
Breakdown? Pick new x0 and try again.
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TFQMR

tfqmr(x, b, A, ε, kmax)

k = 0; w1 = y1 = r0 = b − Ax ; u1 = v = Ay1, d = 0; ρ0 = rT
0 r0; τ = ‖r‖; θ = 0; η = 0

while k < kmax do
k = k + 1; σk−1 = rT

0 v ; (scalar product)
α = ρk−1/σk−1 (breakdown possible; zero-divide)
y2 = y1 − αv ; u2 = Ay2 (daxpy + matvec)
for j = 1, 2 (m = 2k − 2 + j) (all costs doubled in this loop) do

w = w − αuj ; d = yj + (θ2η/α)d (two daxpys)

θ = ‖w‖/τ ; c = 1/
p

1 + θ2 (scalar product)

τ = τθc; η = c2α;
x = x + ηd (daxpy)
If τ
√

m + 1 ≤ ε‖b‖ terminate successfully
end for
ρk = rT

0 w , β = ρk/ρk−1 (scalar product + breakdown possible; zero-divide)
y1 = w + βy2, u1 = Ay1 (daxpy + matvec)
v = u1 + β(u2 + βv) (two daxpys)

end while

C. T. Kelley Krylov Methods
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Classical Stationary Iterative Methods

Recall that

I convert Ax = b to x = Mx + c with a matrix splitting,

I MS is the iteration matrix for the method

I Harvest a preconditioner with BA = I −M and then

x = Mx + c is the same as BAx = Bb.

C. T. Kelley Krylov Methods
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Example: Jacobi

I Splitting: A = D + L + U

I M = −D−1(L + U) = I − D−1A

I so B = D−1.

Sometimes Jacobi preconditioning works well.

C. T. Kelley Krylov Methods
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Incomplete Factorizations

If you can store A as a sparse matrix then

I you can start a sparse factorization,

I and discard small elements in the factors,

I or enforce sparsity.

The MATLAB commands ilu and ichol create incomplete LU
and Cholseky factorizations.
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Integral Equations

I Many integral equations are well conditioned and CG or
GMRES do well.

I The transport equation is one example.

I The performance of Kyrlov methods is independent of the
discretization.

I WARNING! Sometime preconditioning can still make a
difference.
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Elliptic PDEs I

Suppose you seek to solve an elliptic boundary value problem.

Lu = f

with Dirichlet/Neumann/mixed boundary conditions.
If you discretize the PDE to obtain

Lhuh = fh

the resulting discrete problem is very poorly conditioned and
Krylov methods will be slow.
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Elliptic PDEs II

Split L = L1 + L0, where L1 contains the high-order derivatives.
If you can find a fast solver for L1 with the same type of boundary
conditions, then L−1

1 is a mesh-independent preconditioner.
Why? L−1

1 L is an integral operator. (Manteufel/Parter 1990)
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Example of PDE preconditioning

I −∇2u + c1ux + c2uy + c0u = f (x , y) for 0 < x , y < 1

I u(x , 0) = u(0, y) = u(x , 1) = u(1, y) = 0

I L1u = −∇2u

I Apply fast Poisson solver N log(N) work.
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Scalability

The scenario:

I Continuous problem: Lu = f ; Discrete problem: Lhuh = fh.

I h = 1/N spatial mesh width; N2 number of mesh points.

I Second order accuracy: uh − u∗ = O(h2)

I Preconditioner Bh is “perfect”, i. e. Krylovs needed to reduce
error by factor of 10 is Nk for all h.

I Cost of BhLh matvec is O(N)

Then, given h you can find uh up to truncation error in O(N) work!

C. T. Kelley Krylov Methods
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Fast Solvers

Pick h0 = 2ph so that Lh0uh0 = fh0 is easy to solve.
Solve Lh0u0 = fh0

for l=1:p do
hl = hl−1/2; ul = ul−1

Apply GMRES to Lhl
ul = fhl

with ul as the start.
Terminate when residual is reduced by factor of 10.
Accept ul

end for

C. T. Kelley Krylov Methods
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Cost Analysis

I A matvec for hl = 2lh costs O(2−l)N2) operations

I We do at most Nk matvecs at each level

I So . . .

Cost ≤
∑p

l=0 Nk(2−lN)2 ≤
∑∞

l=0 Nk(2−lN)2

= NkN
∑∞

l=0 4−l = 4NkN2/3.
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Exercises

I Modify the pde demo codes klpde2ddemo.m to use BiCGStab
and TFQMR. Any problems?

I Write a CGNR code and solve the problem in klpde2ddemo.m
with CGNR.

I Solve the source iteration equation with GMRES. What
problem would you have if you wanted to solve it with CGNR
or CGNE?
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