Krylov Methods

C. T. Kelley NC State University tim_kelley@ncsu.edu Research Supported by NSF, DOE, ARO, USACE

DTU ITMAN, 2011

Image: A ten i

- ∢ ≣ ▶

Outline

Krylov Methods Overview

GMRES

Analysis of GMRES GMRES Implementation

Conjugate Gradient Iteration Analysis of CG CG Implementation

Other Krylov Methods

Preconditioning

Exercises

< 177 ▶

Э

References for Krylov Methods I

► C. T. Kelley,

Iterative Methods for Linear and Nonlinear Equations, no. 16 in Frontiers in Applied Mathematics, SIAM, Philadelphia, 1995.

- P. N. BROWN AND A. C. HINDMARSH, <u>Reduced storage</u> <u>matrix methods in stiff ODE systems</u>, J. Appl. Math. Comp., 31 (1989), pp. 40–91.
- G. H. GOLUB AND C. G. VANLOAN, <u>Matrix Computations</u>, Johns Hopkins studies in the mathematical sciences, Johns Hopkins University Press, Baltimore, 3 ed., 1996.
- A. GREENBAUM, <u>Iterative Methods for Solving Linear</u> <u>Systems</u>, no. 17 in Frontiers in Applied Mathematics, SIAM, Philadelphia, 1997.

References for Krylov Methods II

- M. R. HESTENES AND E. STEIFEL, <u>Methods of conjugate</u> gradient for solving linear systems, J. of Res. Nat. Bureau Standards, 49 (1952), pp. 409–436.
- ► B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, 1980.
- Y. SAAD AND M. SCHULTZ, <u>GMRES a generalized minimal</u> residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comp., 7 (1986), pp. 856–869.
- N. M. NACHTIGAL, S. C. REDDY, AND L. N. TREFETHEN, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 778–795.

・ロン ・回 と ・ ヨ と ・ ヨ と …

References for Krylov Methods III

- R. W. FREUND, <u>A transpose-free quasi-minimal residual</u> algorithm for non-Hermitian linear systems, SIAM J. Sci. Comput., 14 (1993), pp. 470–482.
- H. A. VAN DER VORST, <u>Bi-CGSTAB: A fast and smoothly</u> <u>converging variant to Bi-CG for the solution of nonsymmetric</u> <u>systems</u>, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631–644.
- T. A. MANTEUFFEL AND S. PARTER, Preconditioning and boundary conditions, SIAM J. Numer. Anal., 27 (1990), pp. 656–694.

イロト イヨト イヨト イヨト

3

Krylov Methods

- ▶ Krylov iterative methods obtain *x_n* from the history of the iteration.
- The ones with theory do this by minimizing an error or residual function over the affine space

$$x_0 + \mathcal{K}_k$$

- ► x₀ is the initial iterate
- \mathcal{K}_k is the *k*th Krylov subspace

$$\mathcal{K}_k = \mathsf{span}(\mathit{r}_0, \mathit{Ar}_0, \ldots, \mathit{A}^{k-1}\mathit{r}_0)$$

for $k \geq 1$.

Terms and Notation Review

- Equation Ax = b; Solution $x^* = A^{-1}b$
- Error $e = x x^*$
- Residual b Ax = Ae

イロト イヨト イヨト イヨト

GMRES and Conjugate Gradient (CG)

These two methods can be expressed in terms of minimization principles

In GMRES (Generalized Minimum Residual), the *k*th iteation x_k minimizes the residual over $x_0 + K_k$

$$\|b-Ax_k\|=\min_{x\in x_0+\mathcal{K}_k}\|b-Ax\|$$

for $\|\cdot\| = \|\cdot\|_2$. For CG, A must be spd and x_k minimizes the A-norm of the error

$$||x^* - x||_A = \min_{x \in x_0 + \mathcal{K}_k} ||x^* - x||_A$$

where

$$\|v\|_A^2 = v^T A v.$$

イロト イポト イヨト イヨト

General Properties of CG/GMRES

- convergence in N iterations (impractical)
- no need for matrix representation of A only matrix-vector products
- sensitive to conditioning and eigenvalue distribution

Analysis of GMRES GMRES Implementation

Analysis of GMRES

If $x \in x_0 + \mathcal{K}_k$ then

$$r = b - Ax = b - Ax_0 - \sum_{j=0}^k \gamma_j A^j r_0 \equiv p(A)r_0$$

where $p \in \mathcal{P}_k$, the set of k degree residual polynomials.

 $\mathcal{P}_k = \{p \mid p \text{ is a polynomial of degree } k \text{ and } p(0) = 1.\}$

This simple observation is the key to analysis of Krylov methods.

・ロン ・回 と ・ ヨ と ・ ヨ と

Analysis of GMRES GMRES Implementation

GMRES and Residual Polynomials

<u>Theorem</u>: Let A be nonsingular and let x_k be the kth GMRES iteration. Then for all $\bar{p}_k \in \mathcal{P}_k$

$$||r_k|| = \min_{p \in \mathcal{P}_k} ||p(A)r_0|| \le ||\bar{p}_k(A)r_0||.$$

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

Proof of Theorem

Let x_k the the *k*th GMRES iteration. Then there is $p_k \in \mathcal{P}_k$ such that

$$r_k = b - Ax_k = p_k(A)r_0$$

Since any $x \in x_0 + \mathcal{K}_k$ satisfies

$$r = b - Ax = \bar{p}(A)r_0$$

for some $ar{p} \in \mathcal{P}_k$, the minimization principle imples that

$$||r_k||_2 = \min_{p \in \mathcal{P}_k} ||p(A)r_0|| \le ||b - Ax|| = ||\bar{p}_k(A)r_0||.$$

・ロト ・回ト ・ヨト

Analysis of GMRES GMRES Implementation

How to Use This Theorem

- Connect properties of the matrix to a polynomial you understand.
- Manufacture a residual polynomail \bar{p} from that
- Get an upper bound from

$$||r_k|| \le ||\bar{p}(A)r_0|| \le ||\bar{p}(A)|| ||r_0||$$

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

Consequences of the Minimization Principle: I

<u>Corollary</u>: Let A be nonsingular. Then the GMRES algorithm will find the solution within N iterations.

<u>Proof:</u> The characteristic polynomial of A is p(z) = det(A - zI). p has degree N, $p(0) = det(A) \neq 0$ since A is nonsingular, and so

$$ar{p}_N(z) = p(z)/p(0) \in \mathcal{P}_N$$

is a residual polynomial. The Cayley-Hamilton theroem says that $\bar{p}_N(A) = 0$, and so

$$||r_n|| \leq ||\bar{p}_N(A)|| ||r_0|| = 0.$$

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

Consequences of the Minimization Principle: I

Corollary: If $||I - A|| \le \rho < 1$ then

 $||r_k|| \leq \rho^k ||r_0||_2.$

Proof: Let $\bar{p}_k = (1-z)^k$ and use the theorem.

<ロ> (日) (日) (日) (日) (日)

Analysis of GMRES GMRES Implementation

Diagonalizable Matrices

A is diagonalizable if there is a nonsingular (possibly complex!) matrix V such that

$$A = V \Lambda V^{-1}.$$

If A is diagonalizable and p is a polynomial then

$$p(A) = \sum_{j=0}^{m} a_j \gamma_j A^j = \sum_{j=0}^{m} a_j (V \wedge V^{-1})^j = V \sum_{j=0}^{m} a_j \Lambda^j V^{-1} = V p(\Lambda) V^{-1}$$

So

$$\|p(A)\| \le \|V\| \|p(A)\| \|V^{-1}\| = \kappa(V) \max_{\lambda \in \sigma(A)} |p(\lambda)|$$

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

GMRES Convergence for Diagonalizable Matrices

We just proved ... <u>Theorem</u>: Let $A = V\Lambda V^{-1}$ be a nonsingular diagonalizable matrix. Let x_k be the *k*th GMRES iterate. Then for all $\bar{p}_k \in \mathcal{P}_k$

$$\frac{\|r_k\|_2}{\|r_0\|_2} \le \kappa_2(V) \max_{z \in \sigma(A)} |\bar{p}_k(z)|.$$

イロト イポト イヨト イヨト

1

Analysis of GMRES GMRES Implementation

Easy Results for Diagonalizable A: I

If A has m distinct eigenvalues then GMRES will terminate in at most m iterations.

Proof: Use

$$p(z) = \prod_{i=1}^{m} \left(\frac{\lambda_i - \lambda}{\lambda_i} \right)$$

p(0) = 1 so $p \in \mathcal{P}_k$. Since $p(\lambda_i) = 0$ for all *i*, $r_N = 0$. This proof is (1) very easy and (2) typical of the way one thinks about Krylov methods.

Analysis of GMRES GMRES Implementation

Easy Results for Diagonalizable A: II

Let
$$x_0 = 0$$
 (so $r_0 = b$) and assume that
 $\blacktriangleright \sigma(A) \subset (9, 11)$
 $\blacktriangleright \kappa(V) = 100$
Then if we let $\bar{p}_k(z) = (10 - z)^k / 10^k$ we see that
 $\|r_k\|_2^2 \leq (10)^{10} + (100)^$

$$\frac{\|I_k\|_2}{\|I_0\|_2} \leq \kappa(V) \|p_k(A)\| \leq (100)10^{-k} = 10^{2-k}.$$

So $\|\mathbf{r}_k\| \leq \eta \|\mathbf{b}\|$ when

$$k>2+\log_{10}(\eta).$$

This tells us that an approximate inverse preconditioner could be useful. $\langle \Box \rangle \langle \partial \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Analysis of GMRES GMRES Implementation

Observations

- A normal implies $\kappa(V) = 1$
- If A is not normal and κ(V) is large, then σ(A) does not tell the whole story.
- The heuristic is that if the eigenvalues are grouped into a few clusters the iteration will perform well.
- ► If the eigenvalues are clustered near 1, the GMRES is very happy and *A* is well-conditioned.

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

Preconditioning

Preconditioning means to replace Ax = b with

$$BAx = Bb$$
 (left)

or

$$ABy = b$$
 (right), and then $x = By$

and solve the preconditioned equation with GMRES. The preconditioner B should be

- very inexpensive matrix-vector products
- be a good approximate inverse of (part) of A

Examples coming later.

Analysis of GMRES GMRES Implementation

Left Preconditioning

Solve

BAx = Bb

SO

- solution to preconditioned equation is still x
- ▶ preconditioned residual Bb BAx = Br should be a better indicator of error

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

Right Preconditioning

Solve

$$ABz = b$$

for z. Then set x = Bz.

- ► The preconditioned residual is the same as the original residual because b A(Bz) = b Ax.
- The solution of the preconditioned problem is different.
- ► The residual may not be a good indicator of the error **in** *x*. More on preconditioning later. But first ...

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

And now for the software

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Analysis of GMRES GMRES Implementation

GMRES Implementation

The kth GMRES iteration is the solution of the linear least squares problem

$$\min \|Ax - b\|$$

where $x = \sum_{j=0}^{k-1} \gamma_j A^j r_0$ The key to a successful implementation is to solve this in an efficient and stable way.

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

A Questionable GMRES Implementation

How about this?

- As the iteration progresses store $A^{j}r_{0}$.
- Let $B_k = (r_0, Ar_0, ..., A^{k-1}r_0)$
- Compute the QR factorization of $B_k = Q_k R_k$

• The
$$x_k = R_k^{-1} Q_k^T b$$

What could go wrong?

Analysis of GMRES GMRES Implementation

What could go wrong?

- Accumulating Aⁱr₀ can be unstable
 Example A = diag(1, 2, ..., N)
- The cost of $B_k = Q_k R_k$ is $O(Nk^2)$.
- You have to start over with each k and are not reusing the old columns.

・ロト ・回ト ・ヨト

Analysis of GMRES GMRES Implementation

Arnoldi Factorization is Better

Suppose one had an orthogonal projector V_k onto \mathcal{K}_k . Then any $z \in \mathcal{K}_k$ can be written as

$$z = \sum_{l=1}^{k} y_l v_l^k$$

where v_l^k is the *l*th column of V_k . So we can convert the problem for x_k to a problem in \mathbb{R}^k . Begin by writing any $x \in x_0 + \mathcal{K}_k$ as

$$x = x_0 + V_k y,$$

where y is the vector of coefficients of $x - x_0$ using the columns of V_k as the basis for \mathcal{K}_k .

Analysis of GMRES GMRES Implementation

Arnoldi Part II

So if $x_k = x_0 + V_k y_k$ then

$$||b - Ax_k|| = ||b - A(x_0 + V_k y_k)||_2 = ||r_0 - AV_k y_k||_2.$$

So the least squares problem for y is

$$\min \|r_0 - AV_k y\|$$

If we can build V_k in a stable way, we have solved the stability problem (but that is not completely simple). Can we do it efficiently?

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

Arnoldi Part III

The Gram-Schmidt process will

- build V_k incrementally, so $V_k = (V_{k-1}, v_k)$,
- enable a fast QR factorization of AV_k , and
- be stable (if done correctly).

Orthogonalization is the central part of the Arnoldi method.

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

Arnoldi Part IV

The algorithm orthogonalizes each Av_i against the columns of V_{k-1} to construct v_k $V = \operatorname{arnoldi}(x_0, b, A, k)$ $r_0 = b - Ax_0$; $v_1 = r_0 / ||r_0||$ for $i = 1 \cdot k - 1$ do $w = Av_i$ for i = 1: i do $h_{ii} = w^T v_i (= (Av_i)^T v_i); w = w - h_{ii} v_i$ end for $h_{ki} = ||w||; v_{i+1} = w/h_{ki}$ end for

At the end you have V_k . Columns orthonormal basis for \mathcal{K}_k .

▲御→ ★注→ ★注→ 「注」

Analysis of GMRES GMRES Implementation

Examine the Arnoldi Loops

What if you divide by zero in

$$v_1 = r_0 / \|r_0\|$$
 or $v_{i+1} = w / \|w\|$?

- ► If r₀ = 0, then x₀ is the solution and the GMRES iteration would terminate.
- If w = 0, then you have a happy breakdown of the Arnoldi process. This implies that you found the solution as x_{k−1}.
- A well-designed implementation would stop before division by zero.

イロン イヨン イヨン イヨン

Analysis of GMRES GMRES Implementation

The Happy Breakdown Theorem

Theorem: Let A be nonsingular, let the vectors v_j be generated by the Arnoldi process, and for which

$$Av_i - \sum_{j=1}^i ((Av_i)^T v_j)v_j = 0.$$

Then $x = A^{-1}b \in x_0 + \mathcal{K}_i$.

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

Proof: The Happy Breakdown Theorem

- By hypothesis $Av_i \in \mathcal{K}_i$, so $A\mathcal{K}_i \subset \mathcal{K}_i$.
- The columns of V_i are an orthonormal basis for \mathcal{K}_i , so
- ► AV_i = V_iH where H is an i × i matrix. H is nonsingular since A is.
- Set $\beta = \|r_0\|_2$ and $e_1 = (1, 0, \dots, 0)^T \in R^i$, then

$$||\mathbf{r}_i||_2 = ||\mathbf{b} - A\mathbf{x}_i||_2 = ||\mathbf{r}_0 - A(\mathbf{x}_i - \mathbf{x}_0)||_2.$$

- ▶ Now, $x_i x_0 \in \mathcal{K}_i$ so there is $y \in R^i$ such that $x_i x_0 = V_i y$.
- Since $r_0 = \beta V_i e_1$ and V_i is an orthogonal matrix

$$||r_i||_2 = ||V_i(\beta e_1 - Hy)||_2 = ||\beta e_1 - Hy||_{R^i},$$

イロン イボン イヨン イヨン 三日

• Set
$$y = \beta H^{-1} e_1$$
 to show $r_i = 0$.

Analysis of GMRES GMRES Implementation

What about *H*?

- Assuming that there is no breakdown, then $h_{ij} = (Av_j)^T v_i = 0$ if i > j + 1, so H is upper Hessenberg.
- So, the Arnoldi process produces $AV_k = V_{k+1}H_k$.

• This means (with
$$\beta = ||r_0||$$
)

$$r_k = b - Ax_k = r_0 - A(x_k - x_0) = V_{k+1}(\beta e_1 - H_k y_k).$$

• Hence $x_k = x_0 + V_k y^k$, where y^k minimizes $\|\beta e_1 - H_k y\|_2$.

This is great. We can test for termination without wasting a matrix-vector product to compute b - Ax_k by testing

$$\|r_k\| = \|\beta e_1 - H_k y_k\|$$

ヘロン 人間 とくほど くほとう

Analysis of GMRES GMRES Implementation

A Framework for GMRES Implementation

$$r = b - Ax, v_1 = r/||r||_2, \rho = ||r||_2, \beta = \rho, k = 0$$

while $\rho > \epsilon ||b||_2$ and $k < kmax$ do
 $k = k + 1$
Apply Arnoldi to obtain H_k and V_{k+1} from V_k and H_{k-1}
 $e_1 = (1, 0, \dots, 0)^T \in \mathbb{R}^{k+1}$
Solve min $||\beta e_1 - H_k y_k||_{\mathbb{R}^{k+1}}$ for $y_k \in \mathbb{R}^k$.
 $\rho = ||\beta e_1 - H_k y_k||_{\mathbb{R}^{k+1}}$.
end while

$$x_k = x_0 + V_k y_k.$$

イロト イヨト イヨト イヨト
Analysis of GMRES GMRES Implementation

Orthogonalization: Classical Gram-Schmidt

for
$$j = 1 : k$$
 do
 $h_{jk} = (Av_k)^T v_j$
end for
 $v_{k+1} = Av_k - \sum_{j=1}^k h_{jk}v_j$
 $h_{k+1,k} = ||v_{k+1}||_2$
 $v_{k+1} = v_{k+1}/||v_{k+1}||_2$

Advantate (huge): the for loop is trivially parallel/vectorizable. Disadvantage: unstable, which means . . .

・ロン ・回と ・ヨン・

Analysis of GMRES GMRES Implementation

Instability in Orthogonalization

- Classical Gram-Schmidt can produce V's with non-orthogonal colums.
- In this case, the reduction to upper Hessenberg form is wrong,

• and
$$||r_k|| \neq ||\beta e_1 - H_k y_k||$$
.

So we have to fix it.

- ∢ ≣ ▶

Analysis of GMRES GMRES Implementation

Classical Gram-Schmidt Twice

for
$$j = 1 : k$$
 do
 $h_{jk} = (Av_k)^T v_j$
end for
 $v_{k+1} = Av_k - \sum_{j=1}^k h_{jk} v_j$
for $j = 1 : k$ do
 $\tilde{h}_{jk} = v_{k+1}^T v_j$
 $h_{jk} = h_{jk} + \tilde{h}_{jk}$
end for
 $v_{k+1} = v_{k+1} - \sum_{j=1}^k \tilde{h}_{jk} v_j$
 $h_{k+1,k} = ||v_{k+1}||$
 $v_{k+1} = v_{k+1}/||v_{k+1}||$

Still parallel, but twice the work.

イロン 不同と 不同と 不同と

Analysis of GMRES GMRES Implementation

Orthogonalization: Modified Gram-Schmidt (MGS)

then

$$v_{k+1} = Av_k$$

for $j = 1 : k$ do
 $h_{jk} = v_{k+1}^T v_j$
 $v_{k+1} = v_{k+1} - h_{jk} v_j$
end for
if Loss of orthogonality
Reorthogonalize
end if

$$\begin{split} h_{k+1,k} &= \|v_{k+1}\|_2\\ v_{k+1} &= v_{k+1} / \|v_{k+1}\|_2 \end{split}$$

More stable than CGS, but parallelism is lost.

イロン イヨン イヨン イヨン

Analysis of GMRES GMRES Implementation

Test for loss of orthogonality

lf

$$\|Av_k\|_2 + \delta \|v_{k+1}\|_2 = \|Av_k\|_2$$

to working precision, then you should reorthogonalize because there is very little information in v_{k+1} . MGS and the test is the default in our MATLAB codes, but ...

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

Observations

- ▶ If you have as few as four cores, CGS-twice is faster.
- Storage is the main problem with GMRES.
- Low-storage methods for non-symmetric matrices have problems (more later).

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

Solving upper-Hessenberg Least Squares Problems

The last thing to do is to solve

 $\min \|\beta e_1 - H_k y\|.$

We do this by forming the QR factorization of H_k with <u>Givens</u> rotations

イロト イヨト イヨト イヨト

Analysis of GMRES GMRES Implementation

Givens Rotations: I

A 2×2 Givens rotation is a matrix of the form

$$G = \begin{pmatrix} c & -s \\ s & c \end{pmatrix}$$
(1)

・ロト ・回ト ・ヨト

- < ∃ >

where $c = \cos(\theta)$, $s = \sin(\theta)$ for $\theta \in [-\pi, \pi]$. *G* rotates a vector in R^2 by θ . In particular

$$G\left(\begin{array}{c}c\\-s\end{array}\right)=\left(\begin{array}{c}1\\0\end{array}\right)$$

Analysis of GMRES GMRES Implementation

Givens Rotations: II

An $N \times N$ Givens rotation replaces a 2 \times 2 block on the diagonal of the $N \times N$ identity matrix with a 2 \times 2 Givens rotation.

イロト イヨト イヨト イヨト

Columns j and j + 1 are changed.

Analysis of GMRES GMRES Implementation

Givens Rotations: III

To build the QR factorization of H_k , we apply Givens rotations. Step 1: Multiply H_k by a Givens rotation that annihilates h_{21} (and, of course, changes h_{11} and the subsequent columns). We define $G_1 = G_1(c_1, s_1)$ by

$$c_1 = h_{11}/\sqrt{h_{11}^2 + h_{21}^2}$$
 and $s_1 = -h_{21}/\sqrt{h_{11}^2 + h_{21}^2}$

Then $R_k \leftarrow G_1 H_k$ has zero in the 22 entry. Step 2: Multiply R by $G_2(c_2, s_2)$ where

$$c_2 = h_{22}/\sqrt{h_{22}^2 + h_{32}^2}$$
 and $s_1 = -h_{32}/\sqrt{h_{22}^2 + h_{32}^2}$.

Continue ...

<ロ> (日) (日) (日) (日) (日)

Analysis of GMRES GMRES Implementation

Givens Rotations: IV

Continuing we obtain, at the end,

$$R_k = G_k \ldots G_1 H_k$$

is upper triangular. Set

$$Q_k = (G_k \ldots G_1)^T$$

and $H_k = Q_k R_k$. Cost = O(N).

イロン イヨン イヨン イヨン

Analysis of GMRES GMRES Implementation

Givens Rotations: IV

The implementation stores Q_k by

- storing the sequences $\{c_j\}$ and $\{s_j\}$
- computing the action of Q_k on a vector $x \in R^{k+1}$ by applying $G_j(c_j, s_j)$
- and obtain $Q_k x = G_1(c_k, s_k)^T \dots G_k(c_1, s_1)^T x$.
- We overwrite H_k with the triangular part of the QR factorization of H_k, so
- we do not store H_k , rather R_k .

イロン イヨン イヨン イヨン

Analysis of GMRES GMRES Implementation

Givens Rotations: V

At iteration k you have H_{k-1} overwritten with R_{k-1}

•
$$g = \rho(1, 0, \dots, 0)^T \in R^k$$

• Compute
$$h_{jk}$$
 for $1 \le j \le k+1$

$$\blacktriangleright Q_k = I$$

1. If
$$k > 1$$
 apply Q_{k-1} to the *k*th column of *H*.
2. $\nu = \sqrt{h_{k,k}^2 + h_{k+1,k}^2}$.
3. $c_k = h_{k,k}/\nu$, $s_k = -h_{k+1,k}/\nu$
 $h_{k,k} = c_k h_{k,k} - s_k h_{k+1,k}$, $h_{k+1,k} = 0$
4. $g = G_k(c_k, s_k)g$.
5. $Q_k^T = G_k Q_{k-1}^T$.
6. $\rho = |(g)_{k+1}|$.

Analysis of CG CG Implementation

CG's Minimization Principle

Solve Ax = b where A is spd. For CG, x_k minimizes the A-norm of the error

$$||x^* - x||_A = \min_{x \in x_0 + \mathcal{K}_k} ||x^* - x||_A$$

over $x_0 + \mathcal{K}_k$, where

$$\|v\|_A^2 = v^T A v.$$

<ロ> <同> <同> <三> < 回> < 回> < 三>

< ≣ >

Analysis of CG CG Implementation

CG and Residual Polymonials

As with GMRES, any $x \in x_0 + \mathcal{K}_k$ can be written

$$x = x_0 + \sum_{j=0}^{k-1} \gamma_j \mathcal{A}^j r_0$$

Let $x^* = A^{-1}b$ and $e = x^* - x$. Since r = b - Ax = Ae,

$$\begin{array}{ll} x^* - x &= e = x^* - x_0 - \sum_{j=0}^{k-1} \gamma_j A^j r_0 \\ &= e_0 - \sum_{j=1}^k \gamma_j A^j e_0 = p(A) e_0 \end{array}$$

for some $p \in \mathcal{P}_k$.

イロト イヨト イヨト イヨト

Analysis of CG CG Implementation

Minimization Principle

So, if x_k is the *k*th CG iteration

$$\|e_k\|_A \leq \|p(A)e_0\|_A$$

for all $p \in \mathcal{P}_k$. So what does this mean?

イロト イヨト イヨト イヨト

Analysis of CG CG Implementation

What is the A-norm of p(A)

Since A is spd, A has a unique spd square root,

$$A = U \Lambda U^T$$
 and $\sqrt{A} = U \sqrt{\Lambda} U^T$

so

$$||x||_{A}^{2} = x^{T}Ax = (\sqrt{A}x)^{T}(\sqrt{A}x) = ||\sqrt{A}x||^{2}$$

which means

$$\|p(A)x\|^2 = \|\sqrt{A}p(A)x\|^2 = \|p(A)(\sqrt{A}x)\|^2$$

Hence

$$\|p(A)\|_A = \max_{\lambda \in \sigma(A)} |p(\lambda)|$$

イロン イヨン イヨン イヨン

Analysis of CG CG Implementation

Residual Polynomial Analysis

As with GMRES

$$\|e_k\|_A \leq \max_{\lambda \in \sigma(A)} |p(\lambda)|\|e_0\|_A$$

So, for example, if $\sigma(A) \subset (.9, .1)$ then

 $||e_k||_A \le ||e_0||10^{-k}$

which we get by using $p(z) = (1 - z)^k$.

イロト イヨト イヨト イヨト

Analysis of CG CG Implementation

Convergence within N Iterations

<u>Theorem</u>: Let A be spd. Then the CG algorithm will find the solution within N iterations.

Proof: Use

$$p(z) = \prod \left(\frac{\lambda_i - z}{\lambda_i}\right)$$

イロト イヨト イヨト イヨト

Analysis of CG CG Implementation

The Concus-Golub-O'Leary Estimate

<u>Theorem</u>: Let $0 < \lambda_1 \le \lambda_2 \le \lambda_N$ be the eigenvalues of A (so $\kappa(A) = \lambda_N/\lambda_1$). Let x_k be the *k*th CG iteration. Then

$$\frac{\|\boldsymbol{e}_k\|_A}{\|\boldsymbol{e}_0\|_A} \leq \left[\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}\right]^k$$

This can be pessimistic if the eigenvalues are clustered.

イロト イヨト イヨト イヨト

Analysis of CG CG Implementation

Termination

It's standard to terminate the iteration when the residual is small

$$||r_k|| \le ||b - Ax_k|| \le \eta ||r_0||.$$

How is this connected to the *A*-norm of *e*? Since

$$\sqrt{\lambda_1} \|x\| \le \|x\|_{\mathcal{A}} \le \sqrt{\lambda_{\mathcal{N}}} \|x\|$$

we have

$$\frac{\|r_k\|}{\|r_0\|} = \frac{\|Ae_k\|}{\|Ae_0\|} \le \sqrt{\kappa(A)} \frac{\|\sqrt{A}e_k\|}{\|\sqrt{A}e_0\|} = \sqrt{\kappa(A)} \frac{\|e_k\|_A}{\|e_0\|_A}$$

イロン 不同と 不同と 不同と

Analysis of CG CG Implementation

Example

Let $x_0 = 0$ and assume $\sigma(A) \subset (9, 11)$. Using $p(z) = (10 - z)^k / 10^k$ we see

 $||e_k||_A/||e_0||_A \le 10^{-k}.$

So the A-norm of the error will be reduced by a factor of 10^{-3} after 3 iterations.

What about the residual? All we know is that $\kappa(A) \leq 11/9$, so

$$\frac{\|r_k\|}{\|r_0\|} \le 10^{-k}\sqrt{11/9}$$

and we need 4 iterations to guarantee a residual reduction of 10^{-3} .

イロト イヨト イヨト イヨト

Analysis of CG CG Implementation

Alternative Minimization Principle

Theorem: The *k*th iterate x_k of CG minimizes

$$\phi(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{x}^{\mathsf{T}}\mathbf{b}$$

over $x_0 + \mathcal{K}_k$ Remark: Note that if \tilde{x} is any a stationary point,

$$abla \phi(ilde{x}) = A ilde{x} - b = 0$$

then $\tilde{x} = x^*$.

イロト イヨト イヨト イヨト

Analysis of CG CG Implementation

Proof

Note that

$$\|x - x^*\|_A^2 = (x - x^*)^T A(x - x^*) = x^T A x - x^T A x^* - (x^*)^T A x + (x^*)^T A x^*.$$

Since A is symmetric and $Ax^* = b$

$$-x^{T}Ax^{*} - (x^{*})^{T}Ax = -2x^{T}Ax^{*} = -2x^{T}b.$$

Therefore

$$||x - x^*||_A^2 = 2\phi(x) + (x^*)^T A x^*.$$

So x minimizes ϕ over any set if and only if x minimizes $||x - x^*||_A^2$.

イロト イヨト イヨト イヨト

Analysis of CG CG Implementation

CG Implementation

$$cg(x, b, A, \epsilon, kmax)$$

$$r = b - Ax, \rho_0 = ||r||_2^2, k = 1.$$
while $\sqrt{\rho_{k-1}} > \epsilon ||b||$ and $k < kmax$ do
if $k = 1$ then
$$p = r$$
else
$$\beta = \rho_{k-1}/\rho_{k-2} \text{ and } p = r + \beta p$$
end if
$$w = Ap$$

$$\alpha = \rho_{k-1}/p^T w$$

$$x = x + \alpha p$$

$$r = r - \alpha w$$

$$\rho_k = ||r||^2$$

$$k = k + 1$$
end while

◆ロ> ◆部> ◆注> ◆注>

Analysis of CG CG Implementation

CG Implementation: Cost I, two scalar products

$$cg(x, b, A, \epsilon, kmax)$$

$$r = b - Ax, \rho_0 = ||r||_2^2, k = 1.$$
while $\sqrt{\rho_{k-1}} > \epsilon ||b||$ and $k < kmax$ do
if $k = 1$ then
$$p = r$$
else
$$\beta = \rho_{k-1}/\rho_{k-2} \text{ and } p = r + \beta p$$
end if
$$w = Ap$$

$$\alpha = \rho_{k-1}/p^T w$$

$$x = x + \alpha p$$

$$r = r - \alpha w$$

$$\rho_k = ||r||^2$$

$$k = k + 1$$
end while

イロト イヨト イヨト イヨト

Analysis of CG CG Implementation

CG Implementation: Cost II, three daxpys

$$cg(x, b, A, \epsilon, kmax)$$

$$r = b - Ax, \rho_0 = ||r||_2^2, k = 1.$$
while $\sqrt{\rho_{k-1}} > \epsilon ||b||$ and $k < kmax$ do
if $k = 1$ then
$$p = r$$
else
$$\beta = \rho_{k-1}/\rho_{k-2} \text{ and } p = r + \beta p$$
end if
$$w = Ap$$

$$\alpha = \rho_{k-1}/p^T w$$

$$x = x + \alpha p$$

$$r = r - \alpha w$$

$$\rho_k = ||r||^2$$

$$k = k + 1$$
end while

イロン イヨン イヨン イヨン

Analysis of CG CG Implementation

Cost of CG

Each iteration requires

- one matrix-vector product,
- two scalar products,
- three daxpys,

and the storage of x, b, r, p, w five vectors! Compare to GMRES (k vectors and O(k) scalar products).

Analysis of CG CG Implementation

Preconditioned CG (PCG)

Right (or left) preconditioning is a problem because

BA or AB

need not be spd.

The correct way to precondition CG is symmetrically

$$SASy = Sb$$

and then x = Sy. This means that $S^2 = B$ is the preconditioner. So do you have to compute $S = \sqrt{B}$?

・ロト ・回ト ・ヨト

Analysis of CG CG Implementation

PCG

$$pcg(x, b, A, B, \epsilon, kmax)$$

$$r = b - Ax, \rho_0 = ||r||^2, k = 1$$
while $\sqrt{\rho_{k-1}} > \epsilon ||b||$ and $k < kmax$ do
$$z = Br$$
 $\tau_{k-1} = z^T r$
if if $k = 1$ then
 $\beta = 0$ and $p = z$
else
 $\beta = \tau_{k-1}/\tau_{k-2}, p = z + \beta p$
end if
 $w = Ap$
 $\alpha = \tau_{k-1}/p^T w$
 $x = x + \alpha p; r = r - \alpha w; \rho_k = r^T r$
 $k = k + 1$
end while

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

Analysis of CG CG Implementation

Cost of PCG

Each iteration requires

- one matrix-vector product,
- one preconditioner-vector product,
- three scalar products,
- four daxpys,

and the storage of x, b, r, z, p, w six vectors.

<ロ> <同> <同> <三> < 回> < 回> < 三>

CGNR and CGNE

Conjugate gradient on the normal equations.

Two low-storage + provably convergent methods for nonsymmetric problems.

CGNR: Apply CG to

$$A^T A = A^T b$$

CGNE: Apply CG to

$$AA^Ty = b$$
 and set $x = A^Ty$.

- 4 同 ト 4 臣 ト 4 臣 ト

Analysis of CGNR

Apply the minimization property. You miminize

$$\|x^* - x\|_{A^T A}^2 = (x^* - x)^T A^T A (x^* - x) = (Ax^* - Ax)^T (Ax^* - Ax)$$
$$= (b - Ax)^T (b - Ax)^T = \|r\|^2$$

over $x_0 + \mathcal{K}_k(A^T A)$. Hence the name Conjugate Gradient on the Normal equations to minimize the Residual.

Analysis of CGNE

Same story,

$$||y^* - y||^2_{AA^T} = (y^* - y)^T (AA^T)(y^* - y)$$
$$= (A^T y^* - A^T y)^T (A^T y^* - A^T y) = ||x^* - x||^2$$

is minimized over $y_0 + \mathcal{K}_k(AA^T)$ at each iterate. Conjugate Gradient on the Normal equations to minimize the Error.

- CGNR and CGNE need two matrix-vector products
- one is a transpose-vector product hard to do in a matrix-free way
- Condition number is squared, so more iterations are needed
- Classic time-for-storage trade-off.

A (1) > (1)

Other Low-Storage Methods

We discuss Bi-CGSTAB and TFQMR. Their common properties are

- Constant storage
- Two A-vector products per iteration
- No transpose-vector products needed
- Breakdown possible; no complete convergence theory

< 177 ▶
Bi-CGSTAB

 $bicgstab(x, b, A, \epsilon, kmax)$ r = b - Ax, $\hat{r}_0 = \hat{r} = r$, $\rho_0 = \alpha = \omega = 1$, v = p = 0, k = 0, $\rho_1 = \hat{r}_0^T r$ while $||r|| > \epsilon ||b||$ and k < kmax do k = k + 1 $\beta = (\rho_k / \rho_{k-1})(\alpha / \omega)$ (breakdown possible; zero-divide) $p = r + \beta (p - \omega v)$ (two daxpys) v = Ap (matvec) $\alpha = \rho_k / (\hat{r}_0^T v)$ (scalar product + breakdown possible; zero-divide) $s = r - \alpha v$, t = As (daxpy + matvec) $\omega = t^T s / ||t||^2$; $\rho_{k+1} = -\omega \hat{r}_0^T t$ (three scalar products) $x = x + \alpha p + \omega s$ (two daxpys) $r = s - \omega t$ (daxpy) end while

イロン イ部ン イヨン イヨン 三日

Each iteration requires

- two matrix-vector product,
- four scalar products,
- seven daxpys,

and the storage of $x, b, r, \hat{r}, p, v, s, t$ eight vectors. Breakdown? Pick new x_0 and try again.

r 🖓 🕨

TFQMR

 $tfqmr(x, b, A, \epsilon, kmax)$ $k = 0; w_1 = y_1 = r_0 = b - Ax; u_1 = v = Ay_1, d = 0; \rho_0 = r_0^T r_0; \tau = ||r||; \theta = 0; \eta = 0$ while k < kmax do $k = k + 1; \sigma_{k-1} = r_0^T v;$ (scalar product) $\alpha = \rho_{k-1} / \sigma_{k-1}$ (breakdown possible; zero-divide) $y_2 = y_1 - \alpha v$; $u_2 = Ay_2$ (daxpy + matvec) for j = 1, 2 (m = 2k - 2 + j) (all costs doubled in this loop) do $w = w - \alpha u_i$; $d = y_i + (\theta^2 \eta / \alpha) d$ (two daxpys) $\theta = \|\mathbf{w}\|/\tau$; $c = 1/\sqrt{1+\theta^2}$ (scalar product) $\tau = \tau \theta c; n = c^2 \alpha;$ $x = x + \eta d$ (daxpy) If $\tau \sqrt{m+1} \le \epsilon \|b\|$ terminate successfully end for $\rho_k = r_0^T w, \beta = \rho_k / \rho_{k-1}$ (scalar product + breakdown possible; zero-divide) $y_1 = w + \beta y_2$, $u_1 = Ay_1$ (daxpy + matvec) $v = u_1 + \beta(u_2 + \beta v)$ (two daxpys) end while

イロン イヨン イヨン イヨン

2

Classical Stationary Iterative Methods

Recall that

- convert Ax = b to x = Mx + c with a matrix splitting,
- *M_S* is the iteration matrix for the method
- Harvest a preconditioner with BA = I M and then

$$x = Mx + c$$
 is the same as $BAx = Bb$.

2

Example: Jacobi

• Splitting:
$$A = D + L + U$$

•
$$M = -D^{-1}(L + U) = I - D^{-1}A$$

▶ so
$$B = D^{-1}$$
.

Sometimes Jacobi preconditioning works well.

æ

Incomplete Factorizations

If you can store A as a sparse matrix then

- you can start a sparse factorization,
- and discard small elements in the factors,
- or enforce sparsity.

The MATLAB commands ilu and ichol create incomplete LU and Cholseky factorizations.

- Many integral equations are well conditioned and CG or GMRES do well.
- The transport equation is one example.
- The performance of Kyrlov methods is independent of the discretization.
- WARNING! Sometime preconditioning can still make a difference.

▲ □ ► ▲ □ ►

Suppose you seek to solve an elliptic boundary value problem.

Lu = f

with Dirichlet/Neumann/mixed boundary conditions. If you discretize the PDE to obtain

$$L_h u_h = f_h$$

the resulting discrete problem is very poorly conditioned and Krylov methods will be slow.

イロト イヨト イヨト イヨト

Elliptic PDEs II

Split $L = L_1 + L_0$, where L_1 contains the high-order derivatives. If you can find a fast solver for L_1 with the same type of boundary conditions, then L_1^{-1} is a mesh-independent preconditioner. Why? $L_1^{-1}L$ is an integral operator. (Manteufel/Parter 1990)

イロン イヨン イヨン イヨン

Example of PDE preconditioning

•
$$-\nabla^2 u + c_1 u_x + c_2 u_y + c_0 u = f(x, y)$$
 for $0 < x, y < 1$

•
$$u(x,0) = u(0,y) = u(x,1) = u(1,y) = 0$$

►
$$L_1 u = -\nabla^2 u$$

• Apply fast Poisson solver $N \log(N)$ work.

イロト イヨト イヨト イヨト

æ

Scalability

The scenario:

- Continuous problem: Lu = f; Discrete problem: $L_h u_h = f_h$.
- h = 1/N spatial mesh width; N^2 number of mesh points.
- Second order accuracy: $u_h u^* = O(h^2)$
- ▶ Preconditioner B_h is "perfect", <u>i. e.</u> Krylovs needed to reduce error by factor of 10 is N_k for all h.
- Cost of $B_h L_h$ matvec is O(N)

Then, given h you can find u_h up to truncation error in O(N) work!

イロン イヨン イヨン イヨン

Fast Solvers

Pick $h_0 = 2^p h$ so that $L_{h_0} u_{h_0} = f_{h_0}$ is easy to solve. Solve $L_{h_0} u_0 = f_{h_0}$ for l=1:p do $h_l = h_{l-1}/2$; $u_l = u_{l-1}$ Apply GMRES to $L_{h_l} u_l = f_{h_l}$ with u_l as the start. Terminate when residual is reduced by factor of 10. Accept u_l end for

<ロ> <同> <同> <同> < 同> < 同>

Cost Analysis

- A matvec for $h_l = 2^l h$ costs $O(2^{-l})N^2$) operations
- We do at most N_k matvecs at each level
 So . . .

Cost
$$\leq \sum_{l=0}^{p} N_k (2^{-l}N)^2 \leq \sum_{l=0}^{\infty} N_k (2^{-l}N)^2$$

= $N_k N \sum_{l=0}^{\infty} 4^{-l} = 4 N_k N^2 / 3.$

イロト イヨト イヨト イヨト

æ

- Modify the pde demo codes klpde2ddemo.m to use BiCGStab and TFQMR. Any problems?
- Write a CGNR code and solve the problem in klpde2ddemo.m with CGNR.
- Solve the source iteration equation with GMRES. What problem would you have if you wanted to solve it with CGNR or CGNE?