
References
Additive Schwarz Preconditioners

Projection Methods and DD

Domain Decompositionand Projection Methods

C. T. Kelley
NC State University

tim kelley@ncsu.edu
Research Supported by NSF, DOE, ARO, USACE

DTU ITMAN, 2011

C. T. Kelley Domain Decomposition and Projection Methods



References
Additive Schwarz Preconditioners

Projection Methods and DD

Outline

References

Additive Schwarz Preconditioners
Two-Level Additive Schwarz

Projection Methods and DD

C. T. Kelley Domain Decomposition and Projection Methods



References
Additive Schwarz Preconditioners

Projection Methods and DD

References

I B. Smith, P. Bjørstad, and W. Gropp, Domain
Decomposition: Parallel Multilevel Methods for Elliptic Partial
Differential Equations, Cambridge University Press,
Cambridge, 1996.

I Y. Saad, Iterative Methods for Sparse Linear Systems,
Prindle, Weber, and Schmidt, New York, 1996.

I J. Mandel, Balancing domain decomposition,
Communications in Applied Numerical Methods 9, (1993),
pp. 233–241.

I E. W. Jenkins, C. T. Kelley, C. T. Miller, and
C. E. Kees, An aggregation-based domain decomposition
preconditioner for groundwater flow, SIAM J. Sci. Comp., 23
(2001), pp. 430–441.

C. T. Kelley Domain Decomposition and Projection Methods



References
Additive Schwarz Preconditioners

Projection Methods and DD
Two-Level Additive Schwarz

Additive Schwarz Preconditioners

Problem: Solve

Lu = f on Ω; u = g on Γ = ∂Ω.

where

I L elliptic (think L = −∇2)

I Ω = ∪p
i=1Ωi

Can we “invert” L on Ωi and build an effective precondtioner?
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Partitioning

I Let A be the matrix representation of a discretization of L

I Suppose Ri is the “restriction” to Ωi (in the sense of
coordinates)

I Ai = RiART
i : restricted operator for the interior grid points in

Ωi

I Bi = RT
i A−1

i Ri

I Ti = BiA

I will put a 1-D example on the board.
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One-level Additive Schwarz

The one-level additive Schwarz preconditioner is

B =

p∑
i=1

Bi

if the domains are disjoint, this is block-Jacobi.
This only a preconditioner. You cannot build a solver from this.
Note: implict boundary conditions in interior are zero!
There are many other types of Schwarz methods. We will stick to
the additive ones.
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Two-Level Additive Schwarz

I ΩC : coarse grid with a few points on each Ωi

I RC : restriction map from Ωh → ΩC (full weighting)

I AC :“coarse grid” operator

I One way is aggreation. Coarse basis are sums of subdomain
basis functions.

I B0 = RT
C A−1

C RC

I B =
∑p

i=0 Bi
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Comments

I The coarse level is necessary to move information between the
subdomains.

I Not hard to program on regular girds.

I Very hard to program on unstructured computer-generated
grids.

I Ideal preconditioning: κ(BA) (or κ(AB) ) independent of h
and H.

I You get idea with the Poisson solve preconditioner and with
MG.
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Notation for Analysis

I h: mesh width for the problem

I H: “size” of the subdomains
I δ: “overlap” of the subdomains

I Zero overlap: poor preconditioner
I δ proportional to H: great but expensive
I δ = O(1) sometimes optimal
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Convergence

I κ(BA) = O(1 + (H/δ)2).

I δ = cH: κ(BA) = O(1) independent of H and h.

I Realistic case: h < δ < ch, so κ(BA) = O(1 + (H/h)2).

I Scalable if you keep H/h fixed as the problem size grows
i.e. number of gridpoints/processor is constant.
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Projection Methods and DD

Let A be N × N and

I S = (1, . . . ,N)

I Si ⊂ S ; ∪p
i=1Si = S

I Si = (mi (1), . . . ,mi (ni ))

I Vi = [emi (1), . . . , emi (ni )] N × ni

ek is coordinate vector.

Here Vi is the subdomain restriction map and we could let

Ai = V T
i AVi ,Bi = V T

i A−1
i Vi .
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Additive Projection Method (look familiar?)

for k = 0, . . . do
for i = 1 : p do

Solve Aiyi = V T
i (b − Axk)

end for
xk+1 = xk +

∑p
i=1 yi

end for
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Residual Reduction

Clearly

rk+1 =

(
I −

p∑
i=1

Pi rk

)
where

Pi = AVi (V
T
i AVi )

−1V T
i

In the very idealized case where the matrices AVi are orthogonal∑
Pi = I

and convergence takes one iteration.
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