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General References

I C. T. Kelley, Iterative Methods for Linear and Nonlinear
Equations, no. 16 in Frontiers in Applied Mathematics, SIAM,
Philadelphia, 1995.

I J. W. Demmel, Applied Numerical Linear Algebra, SIAM,
Philadelphia, 1997.

I G. H. Golub and C. G. VanLoan, Matrix Computations,
Johns Hopkins studies in the mathematical sciences, Johns
Hopkins University Press, Baltimore, 3 ed., 1996.

I E. Isaacson and H. B. Keller, Analysis of numerical
methods, Wiley, New York, 1966.

I G. W. Stewart, Introduction to matrix computations,
Academic Press, New York, 1973.
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Background

I assume you have had courses in

I Numerical methods (Gaussian elimination, SVD, QR, . . . )

I Linear Algebra (Vector spaces, norms, inner products, . . . )

I Calculus and differential equations

Some functional analysis would help.
If at any time I use something you are not familiar with, stop me
and I will review.
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Other things you should know

I I have never done this before.

I I may have too much or too little material.

I Some of the codes I will give you are new.
So they may have a few bugs.

I I’ve set too many exercises. You’ll have to be selective or stay
up late.
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What’s in Monday’s Directory

I A copy of today’s lectures in pdf.

I A matlab code gauss.m, which you’ll need for one of the
exercises.

I A copy of a paper that may help.
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Vectors

All vectors are column vectors of dimension N.

x =


ξ1
ξ2
...
ξN

 , y =


η1

η2
...
ηN

 ,∈ RN

Components of vectors use Greek letters.
Scalar product

xT y =
N∑

i=1

ξiηi ,

where xT is the row vector

xT = (ξ1, . . . , ξN).
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Matrices

Matrices are in upper case, columns in lower case.

A =


a11 . . . a1M

a21 . . . a2M
...

. . .
...

aN1 . . . aNM

 = (a1, a2, . . . , aM)

is an M × N matrix.
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Transpose

AT =


a11 . . . a1N

a21 . . . a2N
...

. . .
...

aM1 . . . aMN


is an N ×M matrix. This is consistent with xT being a row vector.
We mostly do real arithmetic. In complex arithmetic we use A#,
the complex conjugate transpose, in place of AT .
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Linear Equations

Ax = b

explicitly

a11ξ1 + · · ·+ a1jξj + · · ·+ a1NξN = b1
...
ai1ξi + · · ·+ aijξj + · · ·+ aiNξN = bi
...
aN1ξ1 + · · ·+ aNjξj + · · ·+ aNNξN = bN

Unless we explicitly say otherwise, A is nonsingular.
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Vector

Our vector norms will be the lp norms

‖x‖p =

 N∑
j=1

|ξj |p
1/p

(1 ≤ p <∞) and ‖x‖∞ = max
1≤j≤N

|ξj |

The l2 norm is connected with the scalar product

xT x = ‖x‖22.
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Matrix Norms

Let ‖ · ‖ be a norm on RN . The Induced Matrix Norm of an N ×N
matrix A is defined by

‖A‖ = max
‖x‖=1

‖Ax‖.

We use induced norms. They have the important property:

‖Ax‖ ≤ ‖A‖‖x‖,

which implies that if Ax = b then

‖A−1‖−1‖x‖ ≤ ‖b‖ ≤ ‖A‖‖x‖.

C. T. Kelley Introduction



Notation and Preliminaries
Stationary Iterative Methods

Poisson’s Equation
Exercises

General References
What you Should Know

Types of linear equations

I Dense: A has very few non-zero entries.

I Sparse: A has many zeros.

I Structured: A has structure which algorithms can use
For example: sparsity, symmetry (A = AT ), connection to
differential or integral equations.

I Unstructured: One must use general methods.
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Structure

I Sparsity

I Symmetry AT = A

I A is symmetric positive definite (spd) if A = AT and
xTAx > 0 for all x 6= 0.
In this case ‖x‖A = (xTAx)1/2 is a vector norm.

I Normality ATA = AAT

I Diagonalizability A = V ΛV−1 where Λ is diagonal.
A is diagonalizable if and only if A has N linearly independent
eigenvectors and then V = (v1, . . . vn).
If A is symmetric then V is orthogonal, VV T = V TV = I .
If A is normal then V is unitary, VV # = V #V = I .
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Direct and Iterative Methods

Direct Methods solve Ax = b in finite time in exact arithmetic.
Examples:

I Gaussian Elimination and other matrix factorizations

I FFT for some problems (Toeplitz, Hankel, PDEs)

Iterative Methods produce a sequence {xn} which (you hope)
converges to x∗ = A−1x . Examples:

I Stationary iterative methods (L1 and L3)

I Krylov methods (L2, 3, 4)

I Multigrid methods (L3)
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Condition Numbers

The Condition Number of A relative to the norm ‖ · ‖ is

κ(A) = ‖A‖‖A−1‖,

where κ(A) is understood to be infinite if A is singular.
κp(A) means relative to the lp norm.
If A is poorly conditioned (say κ > 108) we may not be able to
obtain an accurate solution with any choice of algorithm.
Poor conditioning is a property of A. Algorithms cannot help.
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Termination of Iterations

Most iterative methods terminate when the Residual

r = b − Ax

is sufficiently small. One termination criterion is

‖rk‖
‖r0‖

< τ

where r0 = b − Az0 and z0 is a reference value.
So, what does a small relative residual tell us about the error

e = x∗ − x?
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Residuals, Errors, Conditioning

Theorem: Let b, x , x0 ∈ RN . Let A be nonsingular and let
x∗ = A−1b.

κ(A)−1 ‖r‖
‖r0‖

≤ ‖e‖
‖e0‖

≤ κ(A)
‖r‖
‖r0‖

.

We prove this. Note that

r = b − Ax = Ae

so
‖e‖ = ‖A−1Ae‖ ≤ ‖A−1‖‖Ae‖ = ‖A−1‖‖r‖

and
‖r‖ = ‖Ae‖ ≤ ‖A‖‖e‖.

C. T. Kelley Introduction



Notation and Preliminaries
Stationary Iterative Methods

Poisson’s Equation
Exercises

General References
What you Should Know

So,
‖e‖
‖e0‖

≤ ‖A
−1‖‖r‖

‖A‖−1‖r0‖
= κ(A)

‖r‖
‖r0‖

and
‖e‖
‖e0‖

≥ ‖A‖
−1‖r‖

‖A−1‖‖r0‖
= κ(A)−1 ‖r‖

‖r0‖
as asserted.
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Application of the Theorem

Most of the methods we use will set the reference vector to zero.
Hence

r0 = b and e0 = x∗ = A−1b

and the theorem connects the Relative Residual

‖b − Ax‖
‖b‖

to the Relative Error
‖x∗ − x‖
‖x∗‖

If A is poorly conditioned, then termination on small relative
residuals may be unreliable.
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Stationary Iterative Methods

A Stationary Iterative Method converts Ax = b to x = Mx + c and
the iteration is

xn+1 = Mxn + c

M is called the iteration matrix.
This iteration is also called Richardson Iteration.
The method is called stationary because the formula does not
change as a function of xn.
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Banach Lemma

Let M be N × N. Assume that

‖M‖ < 1

for some induced matrix norm. Then

I (I −M) is nonsingular

I (I −M)−1 =
∑∞

l=0 M l

I ‖(I −M)−1‖ ≤ (1− ‖M‖)−1
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Proof of Banach Lemma: I

We will show that the series

∞∑
l=0

M l = (I −M)−1.

The partial sums

Sk =
k∑

l=0

M l

form a Cauchy sequence in RN×N . To see this note that for all
m > k

‖Sk − Sm‖ ≤
m∑

l=k+1

‖M l‖.

And . . .
C. T. Kelley Introduction
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Proof of Banach Lemma: II

‖M l‖ ≤ ‖M‖l because ‖ · ‖ is a matrix norm that is induced by a
vector norm. Hence

‖Sk − Sm‖ ≤
m∑

l=k+1

‖M‖l = ‖M‖k+1

(
1− ‖M‖m−k

1− ‖M‖

)
→ 0

as m, k →∞. So the series converges. Let

S =
∞∑
l=0

M l

C. T. Kelley Introduction



Notation and Preliminaries
Stationary Iterative Methods

Poisson’s Equation
Exercises

Convergence and the Banach Lemma
Matrix Splittings and Classical Methods

Proof of Banach Lemma: II

Clearly

MS =
∞∑
l=0

M l+1 =
∞∑
l=1

M l = S − I and so

(I −M)S = I and S = (I −M)−1.

Finally

‖(I −M)−1‖ ≤
∞∑
l=0

‖M‖l = (1− ‖M‖)−1.
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Convergence for Stationary Iterative Methods

If ‖M‖ < 1 for any induced matrix norm then the stationary
iteration

xn+1 = Mxn + c

converges for all c and x0 to x∗ = (I −M)−1c
Proof: Clearly

xn+1 =
n∑

l=0

M lc + Mnx0 → (I −M)−1c = x∗.
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Convergence Speed

Let ‖M‖ = α < 1 and x∗ = (I −M)−1c . Then

‖x∗ − xn‖ ≤ αn‖x∗ − x0‖.

Proof:

‖x∗ − xn‖ = ‖
∑∞

l=n M lc −Mnx0‖

= ‖M(
∑∞

l=n−1 M lc −Mn−1x0)‖ = ‖M(x∗ − xn−1)‖

≤ α‖x∗ − xn−1‖ ≤ · · · ≤ αn‖x∗ − x0‖.
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Spectral Radius

The spectrum of M σ(M), is the set of eigenvalues of M. The
spectral radius of M is

ρ(M) = max
λ∈σ(M)

|λ|

Theorem ρ(M) < 1 if and only if ‖M‖ < 1 for some induced
matrix norm.
A stationary iterative method will xn+1 = Mxn + c converges for all
initial iterates and right sides if and only if ρ(M) < 1.
The spectral radius does not depend on any norm.
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Predicting Convergence

Suppose you know that ‖M‖ ≤ α < 1. Then

en+1 = x∗ − xn+1 = (Mx∗ + c)− (Mxn + c) = Men

Hence ‖en‖ ≤ αn‖e0‖ and

‖en‖ ≤ τ‖e0‖ if αn < τ

or n > log(τ)/ log(α).
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Preconditioned Richardson Iteration

If ‖I − A‖ < 1 then one can apply Richardson iteration directly to
Ax = b

xn+1 = (I − A)xn + b

Sometimes one can find a approximate inverse B for which

‖I − BA‖ < 1

and precondition with B to obtain

BAx = Bb and the iteration is xn+1 = (I − BA)xn + Bb
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Approximate Inverse Preconditioning: I

Theorem: If A and B are N × N matrices and B is an approximate
inverse of A, then A and B are both nonsingular and

‖A−1‖ ≤ ‖B‖
1− ‖I − BA‖

, ‖B−1‖ ≤ ‖A‖
1− ‖I − BA‖

,

and

‖A−1 − B‖ ≤ ‖B‖‖I − BA‖
1− ‖I − BA‖

, ‖A− B−1‖ ≤ ‖A‖‖I − BA‖
1− ‖I − BA‖

.
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Approximate Inverse Preconditioning: II

Proof: Let M = I − BA. The Banach Lemma implies that

I −M = I − (I − BA) = BA

is nonsingular. Hence both A and B are nonsingular. Moreover

‖A−1B−1‖ = ‖(I −M)−1‖ ≤ 1

1− ‖M‖
=

1

1− ‖I − BA‖
.
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Approximate Inverse Preconditioning: III

Use A−1 = (I −M)−1B to get the first part

‖A−1‖ ≤ ‖B‖‖(I −M)−1‖ ≤ ‖B‖
1− ‖I − BA‖

.

The second pair of inequalities follows from

A−1 − B = (I − BA)A−1,A− B−1 = B−1(I − BA)

and the first.
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Matrix Splittings

One way to convert Ax = b to Mx = c is to split A

A = A1 + A2

where

I A1 is nonsingular

I A1y = q is easy to solve for all q

and then solve

x = A−1
1 (b − A2x) ≡ Mx + c .

Here M = −A−1
1 A2 and c = A−1

1 b. Remember A−1z means solve
A1y = z , not compute A−1

1 .
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Jacobi Iteration: I

Write Ax = b explicitly

a11ξ1 + . . . a1NξN = β1
...

aN1ξ1 + . . . aNNξN = βN

and solve the ith equation for ξi , pretending the other components
are know. You get

ξi =
1

aii

βi −
∑
j 6=i

aijξj


which is a linear fixed point problem equivalent to Ax = b.
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Jacobi Iteration: II

The iteration is

ξNew
i =

1

aii

βi −
∑
j 6=i

aijξ
Old
j


So what are M and c?

I Split A = A1 + A2, where A1 = D,A2 = L + U,

I D is the diagonal of A, and

I L and U are the (strict) lower and upper triangular parts.

then xNew = D−1(b − (L + U))xOld .
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Jacobi Iteration: III

So the iteration is

xn+1 = −D−1(L + U)xn + D−1b

and the iteration matrix is MJAC = −D−1(L + U).
Is there any reason for ρ(MJAC ) < 1?
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Convergence for Strictly Diagonally Dominant A

Theorem: Let A be an N × N matrix and assume that A is strictly
diagonally dominant. That is for all 1 ≤ i ≤ N

0 <
∑
j 6=i

|aij | < |aii |.

Then A is nonsingular and the Jacobi iteration converges to
x∗ = A−1b for all b.
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Proof: Convergence for Strictly Diagonally Dominant A

Our assumptions imply that aii 6= 0, so the iteration is defined. We
can prove everything else showing that

‖MJAC‖∞ < 1.

Remember that ‖MJAC‖∞ < 1 is the maximum absolute row sum.
By assumptions, the ith row sum of M = MJAC satisfies

N∑
j=1

|mij | =

∑
j 6=i |aij |
|aii |

< 1.

That’s it.
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Observations

I Convergence of Jacobi implies A is nonsingular.

I Showing ‖MJAC‖ < 1 for any norm would do. The l∞ norm
fit the assumptions the best.

I We have said nothing about the speed of convergence.

I Jacobi iteration does not depend on the ordering of the
variables.

I Each ξNew
i can be processed independently of all the others.

So Jacobi is easy to parallelize.
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Gauss-Seidel Iteration

Gauss-Seidel changes Jacobi by updating each entry as soon as the
computation is done. So

ξNew
i =

1

aii

βi −
∑
j<i

aijξ
New
j −

∑
j>i

aijξ
Old
j


You might think this is better, because the most up-to-date
information is in the formula.
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Gauss-Seidel Iteration

One advantage of Gauss-Seidel is that you need only store one
copy of x . This loop does the job with only one vector.

for i=1:N do
sum=0;
for j 6= i do

sum=sum+a(i,j)*x(j)
end for
x(i) = (b(i) + sum)/a(i,i)

end for

C. T. Kelley Introduction



Notation and Preliminaries
Stationary Iterative Methods

Poisson’s Equation
Exercises

Convergence and the Banach Lemma
Matrix Splittings and Classical Methods

Gauss-Seidel Iteration Matrix

From the formula, running for i = 1, . . .N.

ξNew
i =

1

aii

βi −
∑
j<i

aijξ
New
j

∑
j>i

aijξ
Old
j


you can see that

(D + U)xn+1 = b − Lxn

so
MGS = −(D + U)−1L and c = (D + U)−1b.
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Backwards Gauss-Seidel

Gauss-Seidel depends on the ordering. Backwards Gauss-Seidel is

ξNew
i =

1

aii

βi −
∑
j>i

aijξ
New
j −

∑
j<i

aijξ
Old
j


running from i = N, . . . 1. So MBGS = −(D + L)−1U.
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Symmetric Gauss-Seidel

A symmetric Gauss-Seidel iteration is a forward Gauss-Seidel
iteration followed by a backward Gauss-Seidel iteration. This leads
to the iteration matrix

MSGS = MBGSMGS = (D + U)−1L(D + L)−1U.

If A is symmetric then U = LT . In that event

MSGS = (D + U)−1L(D + L)−1U = (D + LT )−1L(D + L)−1LT .
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SOR iteration

Add a relaxation parameter ω to Gauss-Seidel.

MSOR = (D + ωL)−1((1− ω)D − ωU).

Much better performance with good choice of ω.
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Observations

I Gauss-Seidel and SOR depend on order of variables.

I So they are harder to parallelize.

I While they may perform better than simple Jacobi, it’s not a
lot better.

I These methods are not competitive with Krylov methods.

I They require the least amount of storage, and are still used
for that reason.
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Splitting Methods to Preconditioners

Splitting methods can be seen as preconditioned Richardson
iteration.
You want to find the preconditioner B so that the iteration matrix
from the splitting

M = −A−1
1 A2 = I − BA.

So I −M = BA.

C. T. Kelley Introduction



Notation and Preliminaries
Stationary Iterative Methods

Poisson’s Equation
Exercises

Convergence and the Banach Lemma
Matrix Splittings and Classical Methods

Jacobi preconditioning

For the Jacobi splitting A1 = D, A2 = L + U, we get

I −D−1(L + U) = I − BA so

I BA = I + D−1(L + U) = D−1A

I Jacobi preconditioning is multiplication by D−1.

This can be a surprisingly good preconditioner for Krylov methods.
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References for Poisson’s Equation

I P. Henrici, Discrete Variable Methods in Ordinary
Differential Equations, Wiley, New York, 1962.

I R. J. LeVeque, Finite Difference Methods for Ordinary and
Partial Differential Equations, SIAM, 2007.

I I. Stakgold, Green’s Functions and Boundary Value
Problems, Wiley-Interscience, New York, 1979.
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Poisson’s Equation in 1D

One space dimension

−u′′(x) = f (x) for x ∈ (0, 1)

Homogeneous Dirichlet boundary conditions

u(0) = u(1) = 0

Eigenvalue Problem

−u′′(x) = λu(x) for x ∈ (0, 1), u(0) = u(1) = 0
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Solution of Poisson’s Equation

We can diagonalize the operator using the solutions of the
eigenvalue problem

un(x) = sin(nπx)/
√

2, λ = n2π2

{un} is an orthonormal basis for

L2
0 = clL2{u ∈ C ([0, 1]) | u(0) = u(1) = 0}

and the boundary value problem’s solution is

u(x) =
∞∑

n=1

un(x)
1

n2π2

∫ 1

1
un(z)f (z) dz .
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Properties of the Operator

The operator

−d2

dx2
: C 2

0 ([0, 1])→ C ([0, 1]) is

I injective

I symmetric with respect to the L2 scalar product

I has an L2
0 orthonormal basis of eigenfunctions

I has positive eigenvalues
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Solution Operator

The solution of Poisson’s Equation on [0, 1] with homogeneous
Dirichlet boundary conditions is

u(x) =

∫ 1

0
g(x , z)f (z) dz

where

g(x , z) =


x(1− z) 0 < x < z

z(1− x) z < x < 1
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Central Difference Approximation

Add

u(x + h) = u(x) + u′(x)h + u′′(x)h2/2 + u′′′(h)h3/6 + O(h4)

to

u(x − h) = u(x)− u′(x)h + u′′(x)h2/2− u′′′(h)h3/6 + O(h4)

and get

−u′′(x) = (−u(x + h) + 2u(x)− u(x − h))/h2 + O(h2)
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Finite Difference Equations

Equally spaced grid xi = ih, 0 ≤ i ≤ N + 1, h = 1/(N + 1).
Approximate u(xi ) by ξi . Let u = (ξ1, . . . , ξN)T .
Boundary conditions imply that ξ0 = ξN+1 = 0.
Finite difference equations at interior grid points are

−ξi−1 + 2ξi − ξi+1

h2
= bi ≡ f (xi )

for 1 ≤ i ≤ N.
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Matrix Representation

Au = b

where A is tridiagonal and symmetric

A =
1

h2



2 −1 0 . . . 0, 0
−1 2 −1 , 0 . . . 0

0 −1 2 −1, . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . , , 0, −1 2 −1
0 . . . , . . . , , 0 −1 2


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Jacobi and Gauss-Seidel

Jacobi:

for i=1:n do
ξNew
i ← (1/2)(h2bi + ξOld

i−1 + ξOld
i+1)

end for

Gauss-Seidel:

for i=1:n do
ξi ← (1/2)(h2bi + ξi−1 + ξi+1)

end for
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Jacobi Iteration in MATLAB

for ijac=1:N
xnew(1) = .5*(hˆ2 * b(1) + xold(2));
for i=2:N−1

xnew(i) = .5*(hˆ2 * b(i) + xold(i−1) + xold(i+1));
end
xnew(N) = .5*(hˆ2 * b(N) + xold(N−1));
xold=xnew;

end

How would you turn this into Gauss-Seidel with a text editor?
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Jacobi Example

Let’s solve
−u′′ = 0, u(0) = u(1) = 0.

with h = 1/101 and N = 100. The solution is u = 0. We will use
as an intial iterate

u0 = x(1− x) +
1

10
cos(49πx)

We will take 100 Jacobi iterations.
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Final Error as Function of x
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Final Error as Function of x
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Eigenvalues and Eigenvectors

Theorem: A is symmetric positive definite. The eigenvalues are

λn = h−22 (1− cos(πnh)) = π2n2 + O(h2).

The eigenvectors un = (ξn1 , . . . , ξ
n
N)T are given by

ξni =
√

2/h sin(niπh)
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Comments and Proof

I Eigenvalues agree with continuous problem to second order.

I κ(A) = λN/λ1 = O(N2) = O(h−2).

I ξni = un(xi )
√

2/h

Proof: Note that ξn0 = ξnN+1 = 0

−ξni−1 + 2ξni − ξni+1

=
√

2/h(− sin(n(i − 1)πh) + 2 sin(niπh)− sin(n(i − 1)πh))
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End of Proof

Set x = niπh and y = nπh. Use the trig identities

sin(x ± y) = sin(x) cos(y)± sin(y) cos(x)

to get

−ξni−1 + 2ξni − ξni+1 = −sin(x − y) + 2 sin(x)− sin(x + y)

= 2 sin(x)(1− cos(y)) = λnξ
n
i

as asserted.
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Jacobi does Poorly for Poisson

If you apply Jacobi to Poisson’s equation, iteration matrix is

M = −D−1(L + U) = I − D−1(D + L + U) = I − D−1A

as we have seen. For Poisson, D = (2/h2)I so

M = I − D−1A = I − (h2/2)A.

The eigenvalues of M are µn = 1− (h2/2)λn. So

ρ(M) = 1− O(h2)

which is very bad.
The performance gets worse as the mesh is refined!

C. T. Kelley Introduction



Notation and Preliminaries
Stationary Iterative Methods

Poisson’s Equation
Exercises

References for Poisson’s Equation

Observations

I Jacobi (and GS, SOR, . . . ) are not scalable.
I The number of iterations needed to reduce the error by a given

amount depends on the grid.

I Fixing this for PDE problems requires a different approach.

I You can solve the 1D problem in O(N) time with a
tridiagonal solver, but . . .

I direct methods become harder to use for 2D and 3D problems
on complex geometries with unstructured grids.
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Poisson’s Equation in Two Dimensions

Equation: −uxx − uyy = f (x , y) for 0 < x , y < 1

Boundary conditions: u(0, y) = u(x , 0) = u(1, y) = u(x , 1) = 0

I Similar properties to 1-D

I Physical Grid: (xi , xj), xi = i ∗ h.

I Begin with two-dimensional matrix of unknowns
uij ≈ u(xi , xj).

I Must order the unknowns (ie the grid points) to prepare for a
packaged linear solver.
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uxx ≈
1

h2
(u(x − h, y)− 2u(x , y) + u(x + h, y))

uyy ≈
1

h2
(u(x , y − h)− 2u(x , y) + u(x , yh))

which leads to . . .
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Discrete 2D Poisson, Version 1

1

h2
(−Ui−1,j − Ui ,j−1 + 4Uij − Ui+1,j − Ui ,j+1) = fij ≡ f (xi , xj)

Jacobi, Gauss-Seidel, . . . are still easy. Here’s GS

for i=1:N do
for j=1:N do

Uij ← 1
4

(
h2fij + Ui−1,j + Ui ,j−1 + Ui+1,j + Ui ,j+1

)
end for

end for

So how did I order the unknowns?
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Ordering the Unknowns

N2 − N + 1 N2 − N + 2 . . . N2

...
... . . .

...
2N + 1 2N + 2 . . . 3N
N + 1 N + 2 . . . 2N
1 2 . . . N
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Creating a Matrix-Vector Representation

Define
u = (ξ1, . . . , ξN2)T ∈ RN2

by
ξN(i−1)+j = Ui ,j and βN(i−1)+j = Ui ,j

The Matrix representation is

Au = b

where . . .
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Matrix Laplacian in 2D: I

A =
1

h2



T −I 0 . . . 0, 0
−I T −I , 0 . . . 0

0 −I T −I , . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . , , 0, −I T −I
0 . . . , . . . , , 0 −I T


where I is the N × N identity matrix and T is the N × N
tridiagonal matrix
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Discrete Laplacian in 2D: I

T =



4 −1 0 . . . 0, 0
−1 4 −1 , 0 . . . 0

0 −1 4 −1, . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . , , 0, −1 4 −1
0 . . . , . . . , , 0 −1 4


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Mapping the 2D vector to/from a 1D vector

Use the MATLAB reshape command.
Example: N = 3

u2d =

 1 2 3
4 5 6
7 8 9


u1d = reshape(u2d ,N ∗ N, 1) = (1, 4, 7, 2, 5, 8, 3, 6, 9)T

and u2d = reshape(u1d ,N,N).
This means you can do things on the physical grid and still give
solvers linear vectors when they need them.
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Richardson Iteration

Use the trapezoid rule to discretize the integral equation

u(x)− 1

2

∫ 1

0
sin(x − y)u(y) dy = cos(x)

If you write your discrete equation as u −Mu = b, prove that
ρ(M) < 1/2. Write a MATLAB code to demonstrate that the
convergence is independent of the mesh width.
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Poisson Equation

I Compute the eigenvalues and eigenvectors for the 2D discrete
Poission equation.

I Encode the 2D Laplacian as a MATLAB sparse matrix and
use the eigs command to find a few eigenvectors and
eigenvalues to verify your work in the previous exercise.

I Solve the 1D and 2D Poission equations with Jacobi and
Gauss-Seidel with zero boundary data and f ≡ 1 as the right
side. Try more interesting right sides f (x) and f (x , y).
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