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Discretization of the Boltzmann equation in velocity space
using a Galerkin approach
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Abstract

A method for the discretization of the Boltzmann equation in velocity space via a Galerkin procedure with Hermite
polynomials as trial and test functions is proposed. This procedure results in a set of partial differential equations, which is
an alternative to the lattice-Boltzmann equations. These PDEs are discretized using an explicit finite difference scheme and a
numerical example shows the validity of the approach. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The BGK approximation [9] of the Boltzmann equation

∂f

∂t
+ Eξ · ∂f

∂ Ex =−
1

τ

(
f − f eq(ρ, Eu)), (1)

is a mathematical model for the motion of a fluid at the microscopic level. Heref (t, Eξ , Ex) is the particle distribution
function,Eξ the microscopic velocity andτ the relaxation time. It is more general than the Navier–Stokes equations,
but it has also more independent variables. The macroscopic flow properties like densityρ, momentumρ Eu and the
pressure tensorPαβ are given by the following relations [3]:

ρ =
∞∫
−∞

f dEξ, (2)

ρuα =
∞∫
−∞

ξαf dEξ, (3)

Pαβ =
∞∫
−∞

(ξα − uα)(ξβ − uβ)f dEξ. (4)
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The pressure tensor is related to the stressesσαβ by

Pαβ = Ip− σαβ, (5)

wherep = 1
3 tr{Pαβ } = RTρ is the scalar pressure. The solution for a fluid in uniform state is given by the local

equilibrium distribution function:

f eq= ρ

(2πRT )D/2
exp

(
− (Eξ − Eu)

2

2RT

)
, (6)

whereR is the gas-constant,T is the temperature andD the dimension of space. The absolute equilibrium
distribution function is given by settingEu = 0 in equation (6). It has been shown that the continuous lattice-
Boltzmann equation

∂fi

∂t
+ Eξiα

∂fi

∂xα
=−1

τ

(
fi − f̃ eq

i (ρ, Eu)
)

(7)

can be derived from a numerical integration of the Boltzmann Eq. (1) in velocity space [1]. Discretization of Eq. (7)
in space and time with finite difference formulas yields the (discrete) lattice-Boltzmann equation

fi(t +4t, Ex + Eξi4t)− fi(t, Ex)=−1

τ

(
fi(t, Ex)− f̃ eq

i (t, Ex)
)
, (8)

which has been widely used as a computational tool for the simulation of fluid flow. An alternative way, proposed
here, is to use a Galerkin procedure withanalyticalintegration of the Boltzmann equation (1) in velocity space for
obtaining a low order approximation of the Boltzmann equation in velocity space.

2. Hermite polynomials

Hermite polynomials are orthogonal polynomials in the interval[−∞,∞] with respect to the weight function

w = exp(− x2

2 ) [7]:

∞∫
−∞

exp

(
−x

2

2

)
Hi(x)Hj(x)dx = δij

√
2π, (9)

where

H1(x)= 1, H2(x)= x, H3(x)= x
2− 1√

2
, H4(x)= · · · . (10)

Hermite polynomials have the following property:
∞∫
−∞

xnHi(x)dx = 0 if i > n+ 1. (11)

3. Ansatz function

The mass and the momentum equation are given by the velocity momentsψ0= 1 andψ1= Eξ of the Boltzmann
equation (1)

∂

∂t

∫
ψif dEξ +∇ ·

∫
ψi EξfdEξ = 0, i ∈ {0,1}. (12)
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The moments of the collision operator vanish because theψi are collisional invariants [9]. Expanding the
distribution function in Hermite polynomials and exploiting property (11), the mass equation is determined by
Hermite coefficients up to first and the momentum equation up to second order. Therefore we use the following
ansatzwith trial functions of at most second order, restricting the analysis to a 2D problem for simplicity.

f̂ = 1

2πRT
exp

(
−ξ1

2+ ξ22

2RT

) 6∑
k=1

ak(t, x1, x2)ϕk(ξ1, ξ2), (13)

whereak(t, x1, x2) are the coefficients of the expansion andϕk(ξ1, ξ2) the following trial functions:

ϕ1=H1

(
ξ1√
RT

)
H1

(
ξ2√
RT

)
= 1, (14)

ϕ2=H2

(
ξ1√
RT

)
H1

(
ξ2√
RT

)
= ξ1√

RT
, (15)

ϕ3=H1

(
ξ1√
RT

)
H2

(
ξ2√
RT

)
= ξ2√

RT
, (16)

ϕ4=H2

(
ξ1√
RT

)
H2

(
ξ2√
RT

)
= ξ1ξ2
RT

, (17)

ϕ5=H3

(
ξ1√
RT

)
H1

(
ξ2√
RT

)
= 1√

2

(
ξ1

2

RT
− 1

)
, (18)

ϕ6=H1

(
ξ1√
RT

)
H3

(
ξ2√
RT

)
= 1√

2

(
ξ2

2

RT
− 1

)
. (19)

Ansatz(13) is similar to the one suggested by Grad for the ‘13-moment-system’ [3], yet having the following
differences:

– As we are interested in nearly incompressible and isothermal flows, we ignore the energy equation and use
only a second order approximation (Grad used a third order approximation).

– In nearly incompressible flows the macroscopic velocity is much smaller than the average velocity of the
particles. Therefore we expandansatz(13) about theabsoluteequilibrium (Grad expanded about thelocal
equilibrium).

The macroscopic variables in terms of the Hermite coefficients are given by

ρ =
∞x
−∞

f̂ dξ1dξ2= a1, (20)

u1=
∞x
−∞

ξ1f̂ dξ1dξ2= a2
√
RT

a1
, (21)

u2=
∞x
−∞

ξ2f̂ dξ1dξ2= a3
√
RT

a1
, (22)

σ11=−
∞x
−∞

(ξ1− u1)
2f̂ dξ1dξ2+RTρ =−RT

(√
2a5− a

2
2

a1

)
, (23)

σ22=−
∞x
−∞

(ξ2− u2)
2f̂ dξ1dξ2+RTρ =−RT

(√
2a6− a

2
3

a1

)
, (24)
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σ12=−
∞x
−∞

(ξ1− u1)(ξ2− u2)f̂ dξ1dξ2=−RT
(
a4− a2a3

a1

)
. (25)

In contrast to the standard LBGK scheme an inverse relationship can easily be identified:

a1= ρ, (26)

a2= u1ρ√
RT

, (27)

a3= u2ρ√
RT

, (28)

a4= u1u2ρ − σ12

RT
, (29)

a5=
√

2

2

u1
2ρ − σ11

RT
, (30)

a6=
√

2

2

u2
2ρ − σ22

RT
. (31)

Thus one can compute the Hermite coefficients from the macroscopic quantities and vice versa in auniqueway.

4. Galerkin procedure

Inserting ansatz (13) in the Boltzmann equation implies a residual depending on the unknown Hermite
coefficients:

R(a1, . . . , a6, ξ1, ξ2)= ∂f̂
∂t
+ Eξ ∂f̂

∂ Ex +
f̂ − f eq(a1, a2, a3)

τ
. (32)

To approximate the exact solution of the Boltzmann equation, two approaches can be used:
(a) Collocation procedure:

The residual is set to zero at certain quadrature points. Following [1], conservation laws can be forced
to hold exactly if a modified collision operator− 1

τ
(f̂ − f̃ eq) is used, wheref̃ eq is an expansion off eq

using the 6 Hermite polynomials (14)–(19). This procedure results in the continuous lattice-Boltzmann
equation (7).

(b) Galerkin procedure:
The residual is minimized in an integral sense, where the trial functions are also used as test functions:

∞x
−∞

ϕk Rdξ1dξ2= 0, k = 1, . . . ,6. (33)

Using the second approach and explicitly calculating the integrals one obtains the following set of partial
differential equations:

∂a1

∂t
+√RT

(
∂a2

∂x1
+ ∂a3

∂x2

)
= 0, (34)

∂a2

∂t
+√RT

(
∂a1

∂x1
+√2

∂a5

∂x1
+ ∂a4

∂x2

)
= 0, (35)

∂a3

∂t
+√RT

(
∂a4

∂x1
+ ∂a1

∂x2
+√2

∂a6

∂x2

)
= 0, (36)

∂a4

∂t
+√RT

(
∂a3

∂x1
+ ∂a2

∂x2

)
=−1

τ

(
a4− a2a3

a1

)
, (37)
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∂a5

∂t
+√2RT

∂a2

∂x1
=−1

τ

(
a5− a2

2

√
2a1

)
, (38)

∂a6

∂t
+√2RT

∂a3

∂x2
=−1

τ

(
a6− a3

2

√
2a1

)
. (39)

Note, that the spatial differential operator of these equations is linear, but not diagonal as in the lattice-Boltzmann
equations (7). Eqs. (34)–(39) can now be solved numerically using appropriate schemes.

5. Recovering the Navier–Stokes equations

Following the basic idea of Grad [3], the Navier–Stokes equations can be recovered without using the Chapman–
Enskog expansion from system (34)–(39), under the condition that the relaxation time (or the mean free path) and
the Mach number goes to zero. We have three time scalesτ , T0 andT1 with the relationτ � T0� T1. T1 is the
macroscopic time scale where changes in the density and momentum occur.T0 is an intermediate time scale small
enough to consider the values of the macroscopic quantities density and momentum to be independent of time.
Time scaleτ is of the order of the collision time. Consider now an equation with an arbitrary functiong(t) and a
small parameterτ on the time interval[0, T0]:

∂g(t)

∂t
+ g(t)

τ
+C = 0, t ∈ [0, T0], (40)

whereC is a constant. The solution is

g(t)=−τC +C1 exp

(
− t
τ

)
, (41)

whereC1 is a constant. The functiong(t) approaches steady state exponentially with time scaleτ . If in Eqs. (37)–
(39) the parameterτ becomes very small the functionsa1, a2 anda3 (density and momentum) can be considered
to be independent of time on the scaleT0. Thusa4, a5 anda6 are of typeg(t) in Eq. (40). After a few collision
times a quasi equilibrium sets up and the coefficientsa4, a5, a6 in terms of macroscopic variables can be expressed
on a macroscopic time scale as

a4=−τ
(
∂ρu2

∂x1
+ ∂ρu1

∂x2

)
+ u1u2ρ

RT
, (42)

a5=−τ
√

2
∂ρu1

∂x1
+ u1

2ρ√
2RT

, (43)

a6=−τ
√

2
∂ρu2

∂x2
+ u2

2ρ√
2RT

. (44)

Substituting the coefficientsai using (26)–(28) and (42)–(44) in Eqs. (34)–(36) one obtains:

∂ρ

∂t
+ ∂ρu1

∂x1
+ ∂ρu2

∂x2
= 0, (45)

∂ρu1

∂t
+ ∂ρu1

2

∂x1
+ ∂ρu1u2

∂x2
+RT ∂ρ

∂x1
= ∂σ11

∂x1
+ ∂σ12

∂x2
, (46)

∂ρu2

∂t
+ ∂ρu1u2

∂x1
+ ∂ρu2

2

∂x2
+RT ∂ρ

∂x2
= ∂σ12

∂x1
+ ∂σ22

∂x2
, (47)

σαβ =RT τ
(
∂ρuα

∂xβ
+ ∂ρuβ

∂xα

)
. (48)
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Assuming low Mach-number and therefore nearly incompressible flow, this gives the correct relation between the
stresses and the flow field with a kinematic viscosityν = RT τ . Also the equation of state is given byp = RTρ.
From the above considerations it can be seen, that forstationaryproblems the magnitude ofτ is irrelevant for
recovering the correct macroscopic equations, whereas fortransientproblems it has to be small compared to a
typical macroscopic time scale.

6. Numerical discretization in the time-space domain

System (34)–(39) can be written in the from

∂

∂t
Ea +A

∂

∂x1
Ea +B

∂

∂x2
Ea = EC(Ea), (49)

whereEa are the Hermite coefficients,A andB the matrices of the spatial differential operators andEC the nonlinear
source term. System (49) is discretized using a second order upwind scheme in space on a uniform mesh and a
first order explicit Euler scheme in time. Following [2], the matricesA andB are split into matricesA+,A− and
B+,B−, corresponding to their eigenvalues

√
RT ,−√RT ,

√
3RT , −√3RT , 0, 0 for both matrices.

A+ =RΛ+L , A− =RΛ−L . (50)

R is the matrix composed of the right eigenvectors (each column represents an eigenvector) ofA, L is the inverse of
R andΛ+/− = diag{λ+/−1 , . . . , λ

+/−
6 } are diagonal matrices composed of the positive and nonpositive eigenvalues.

Matrix B is decomposed in an equivalent manner. The result is

A+ =√RT



√
3

6
1
2 0 0

√
6

6 0
1
2

√
3

2 0 0
√

2
2 0

0 0 1
2

1
2 0 0

0 0 1
2

1
2 0 0√

6
6

√
2

2 0 0
√

3
3 0

0 0 0 0 0 0


, A− =√RT



−
√

3
6

1
2 0 0 −

√
6

6 0
1
2 −

√
3

2 0 0
√

2
2 0

0 0 −1
2

1
2 0 0

0 0 1
2 −1

2 0 0

−
√

6
6

√
2

2 0 0 −
√

3
3 0

0 0 0 0 0 0


,

B+ =√RT



√
3

6 0 1
2 0 0

√
6

6
0 1

2 0 1
2 0 0

1
2 0

√
3

2 0 0
√

2
2

0 1
2 0 1

2 0 0
0 0 0 0 0 0√
6

6 0
√

2
2 0 0

√
3

3


, B− =√RT



−
√

3
6 0 1

2 0 0 −
√

6
6

0 −1
2 0 1

2 0 0
1
2 0 −

√
3

2 0 0
√

2
2

0 1
2 0 −1

2 0 0
0 0 0 0 0 0
−
√

6
6 0

√
2

2 0 0 −
√

3
3


.

Now the following numerical scheme can be defined [2]:

Ean+1
i,j = Eani,j −

4t
24x

(
A+
(
3Eani,j − 4Eani−1,j + Eani−2,j

)+A−
(− Eani+2,j + 4Eani+1,j − 3Eani,j

)
+ B+

(
3Eani,j − 4Eani,j−1+ Eani,j−2

)+B−
(− Eani,j+2+ 4Eani,j+1− 3Eani,j

))+ EC(Eai,j ),
wheren denotes the time step,4t the time resolution and4x the mesh resolution. The maximum time step is
restricted for reasons of stability. In the caseτ �4x , the time is restricted by4t < 2τ (in accordance with [4]).
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Fig. 1. Boundary conditions for Poiseuille flow.

(a) (b)

Fig. 2. Resulting pressure and velocity for Poiseuille flow (65× 65 grid).

7. Boundary conditions

Macroscopic boundary conditions can be incorporated into the scheme using relations (20)–(25) and (26)–(31):
All Hermite coefficients at the boundary are obtained by linear extrapolation in space from neighboring grid points
at each time step [2]. Relations (20)–(25) are then used to obtain the (extrapolated) macroscopic quantities at the
boundaries. Now allknownmacroscopic quantities are simply set to their prescribed boundary values. The inverse
transformation (26)–(31) gives then the boundary conditions for the next time step. It is possible to incorporate
boundary conditions inρ, uα andσαβ .

8. Example: Poiseuille flow

In first numerical investigations [10] it was shown, that for arbitrary uniform grids the analytical solution of
Couette flow could be reproduced within machine accuracy. Here we will consider the more interesting problem
of Poiseuille flow driven by a true pressure difference. The boundary conditions are sketched in Fig. 1 and the
parameters are chosen as pointed out in Fig. 1. The maximum velocity of the analytical solution isumax= 0.01 m/s.
The velocity profiles for meshes of 9× 9, 17× 17, 33× 33 and 65× 65 nodes are shown in Fig. 3(a). The results
indicate that a higher order numerical viscosity is introduced by the present numerical scheme, but the convergence
rate (see Fig. 3(b), log-scale of the relative error inumax) is quadratic. No edge or inflow/outflow effects are
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(a) (b)

Fig. 3. Results for Poiseuille flow driven by a pressure difference.

observed (Fig. 2). The total error is composed of the discretization and the compressibility error. It should be noted
that the compressibility error is much smaller than the discretization error for this example.

9. Discussion and outlook

The system (34)–(39) offers some advantages over the conventional LB equations. It can be discretized using
any numerical scheme and offers the following possibilities:

– Decoupling of space and time-resolution: The conventional LB scheme is restricted to a certain value of the
parameterτ (and therefore a certain Reynolds-number) due to stability issues. Higher Reynolds-numbers
can only be achieved by increasing the size of the computational domain. This implies a penalty of at least
O(n2)/O(n3) for 2D/3D problems. In the present scheme one has the possibility to decrease the time step to
achieve stability.

– The freedom in the choice of the numerical method gives the possibility to use implicit schemes and
unstructured meshes.

– There is a unique relationship between the macroscopic variables and the Hermite coefficients, so that
boundary conditions are easily implemented. Furthermore a proper implementation of boundary conditions
does not decrease the spatial convergence rate as for example the bounce back procedure in the LBGK scheme.

The extension of the Galerkin procedure outlined in this paper to three-dimensional problems is technically
straightforward. Theansatz requires then 10 trial functions, the Hermite coefficients are related to the 10
independent macroscopic variables density, momentum and the 6 independent components of the stress tensor.
The present analysis can also be used to discretize more complex equations than (1) describing multiphase flow as
discussed in [5,6]. First results are very promising and will be subject to future publications.
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