
Replicating Data for Better Performances in X10

Marina Andrić1, Rocco De Nicola1, and Alberto Lluch Lafuente2

1 IMT Institute for Advanced Studies Lucca, Italy
2 DTU Compute, Technical University of Denmark, Denmark

Abstract. Linguistic primitives for replica-aware coordination offer suit-
able solutions to the challenging problems of data distribution and lo-
cality in large-scale high performance computing. The data replication
mechanisms that had previously been designed to extend Klaim with
replicated tuples are now used to experiment with X10, a parallel pro-
gramming language primarily targeting clusters of multi-core processors
linked in a large-scale system via high-performance networks. Our ap-
proach aims at allowing the programmer to specify and coordinate the
replication of shared data items by taking into account the desired consis-
tency properties. The programmer can hence exploit such flexible mecha-
nisms to adapt data distribution and locality to the needs of the applica-
tion, in order to improve performance in terms of concurrency and data
access. We investigate issues related to replica consistency and provide a
performance analysis, which includes scenarios where replica-based spec-
ifications and relaxed consistency provide significant performance gains.

1 Introduction

Parallel and distributed computing systems are more and more frequently used
to solve complex computational problems. Now, when more computing power
is needed, one does not buy a faster uniprocessor but another processor or an-
other million processors, and connects them with a high-speed communication
network. Or, perhaps, one rents them instead, by resorting to cloud computing
services. This gives one whatever number of computer cycles he can desire but
poses the problem of how to use those computer cycles effectively by dividing
the available work into chunks that can be executed simultaneously without in-
troducing undesirable indeterminacy or waiting for conditions that may never
materialize.

One of the key issues in parallel and distributed computing is the partitioning
and exchange of data between computational entities. Better performances are
achieved with increased data locality and minimized data communication.

Increasing data locality can be achieved by replicating data, but this comes
at a high price in terms of synchronization in case replicated data need to be kept
consistent. As a matter of fact the trade-off between consistency and performance
is one of the big dilemmas in distributed and parallel computing and is one of the
main topics of research of the High Performance Computing (HPC) community.



The recent years have seen the advent of technologies that provide software
engineers and programmers with flexible mechanisms to conveniently specify
data locality, communication and consistency to the benefit of their applications.

A pragmatical example for large-scale distributed services is the Google
Cloud Storage [10] service, that allows users to geographically specify data
locality (to reduce cost and speed up access) and provides different consistency
levels (e.g. strong and eventual consistency) for different operations (e.g. single
data and list operations). Indeed, many modern distributed systems are based
on optimistic data replication techniques for achieving high availability and per-
formance (see e.g. the discussion in [2]). In such systems it is vital for the pro-
grammer to know when consistency can be sacrificed for the sake of performance
without compromising the application’s expected functionality. One guidance for
common weak memory models in distributed computing can be found in [7].

One response to this problem has been to move to a fragmented memory
model. Multiple processors are programmed largely as if they were unipro-
cessors, but are meant to interact via message-passing middlewares such as
MPI [15]. One disadvantage is that programmers must explicitly manage the
interaction between multiple processes and coordinate their data exchange; large
data-structures that are conceptually unitary must be thought of as fragmented
across different nodes. The Partitioned Global Address Space (PGAS) model has
then been proposed, see. e.g. Titanium [17], to permit the programmer to think
of a single computation running across multiple processors, sharing a global ad-
dress space and relying on zone-based memory management. All data resides at
some processor, which is said to have affinity to the data. Each processor may
operate directly on the data it contains but must use some indirect mechanism to
access or update data at other processors. Some kind of global barriers are used
to ensure that processors remain synchronized. More recently a new language,
X10, has been proposed that can be considered as one of the first member of the
second generation of PGAS languages. It extends the PGAS model with asyn-
chrony (yielding the APGAS programming model) by introducing the notion of
places as an abstraction for a computational context with a locally synchronous
view of shared memory. An X10 computation runs over a large collection of
places. Each place hosts some data and runs one or more activities. Activities
can be dynamically created. Activities are lightweight threads of execution. An
activity may synchronously (and atomically) use one or more memory locations
in the place in which it resides.

This programming model facilitates the development of distributed applica-
tions having a body of data which is shared between a few or all components.
Such data can range from simple variables to large arrays, structured types or
multimedia objects. To reduce the number of accesses to a single point in the sys-
tem, programmers often do decompose such large objects into sub-parts, which
are then distributed and processed in parallel, or move a copy of the shared data
to the sites that use it, thus forming local replicas at each site.

Data locality and data consistency are indeed two key aspects in the design of
distributed and parallel systems and software. A proper design of those aspects



can bring significant performance advantages, e.g. in terms of minimization of
communication between computational entities. In our view, data locality and
data consistency issues cannot be fully hidden to the programmer of the high
performance applications of the future. Programmers should be equipped with
suitable primitives to deal with those aspects in a natural and flexible way.
Early works presented in [6] and [9] pointed to the importance of this aspect
and developed a theory of sharing which captures the behavior of programs
with respect to shared data into the framework of process algebra. The core
theory can describe programs performing read and write access to unitary pieces
of shared data. Extensions allow shared data to be decomposed and atomic
copies to be made, reflecting the common operations of parallel programs. The
authors tackled the problem of decomposition strategies of shared data, from
the performance perspective, and replication of commonly-read state.

Our contribution to this approach, applied to the distributed tuple space
coordination paradigm, was recently presented in [1]. We introduced RepliKlaim,
a tuple-based coordination language which enriches the Klaim language [5] with
primitives for replica-aware coordination, in order to offer suitable solutions to
the challenging problems of data distribution and locality in large-scale high per-
formance computing. In particular, RepliKlaim allows the programmer to spec-
ify and coordinate replication of shared data items and the desired consistency
properties. The programmer can hence exploit such flexible mechanisms to adapt
data distribution and locality to the needs of the application, in order to improve
performance in terms of concurrency and data access. We provided also a perfor-
mance analysis, which includes scenarios where replica-based specifications and
relaxed consistency provide significant performance gains.

In this work we describe our initial attempt at exporting our approach to
X10, a general purpose object-oriented, scale-out programming language. The
main motivation for turning our attention to X10 are its similarities with Klaim.
Indeed, both languages consider localities as a first-class citizen and offer prim-
itives for asynchronous parallel computations and code mobility.

We hope that the results of our preliminary work are sufficiently interesting
to stimulate research on X10 aiming at adding to the language specific primitives
or libraries would enable programmers to easily manipulate replicated data while
choosing the appropriate level of consistency.

Structure of the paper. The rest of the paper is organised as follows. Section 2
introduces X10, by providing an overview of the underlying programming model
and by presenting the basic features of the language through small examples.
Section 3 reports on a number of performance experiments by making different
assumptions on the size of the data and on the number of available processing
units. In section 4 we draw conclusions and sketch possible directions for future
work.



2 X10 in a nutshell

X10 is a programming language primarily targeting clusters of multi-core proces-
sors linked in a large-scale system via a high-performance network, consequently
concurrency and distribution are the main focus of the language design. The
design philosophy of X10 is based on a belief that future server systems will
consist of multi-core SMP nodes with non-uniform memory hierarchies inter-
connected in scalable clusters referred to as Non-Uniform Cluster Computing
(NUCC) systems. The goal of the designers of X10 was to create a language
that would combine ease of programming of object-oriented languages and ef-
ficiency of high-performance languages. Using the words of the designers, their
goal was “to increase programmer productivity for NUCC without compromising
performance”.

The programming model of X10 is called (asynchronous) partitioned global
address space, i.e. (A)PGAS. The PGAS model combines data locality (parti-
tioning) of a distributed memory model and global address space of a shared
memory model. In PGAS each processor has private memory for local data and
shared memory for globally shared data. APGAS enriches the PGAS model with
two additional concepts: places, which provide an explicit mechanism for data
and code locality, and asynchronous invocation, which allows forking a task, pos-
sibly at a remote place. These two notions are reminiscent of the locality/node
concept and of the eval operation in Klaim [5], where the command eval(S)@l

is used to spawn a new process at locality l to remotely execute S. The Klaim
command eval(S)@self is instead used to execute S locally. As a matter of
fact, these similarities between X10 and Klaim have inspired our interest in in-
vestigating the transfer of our approach from replica-aware programming [1] to
X10.

The code snippet written in X10 below (Listing 1.1) presents a slight simpli-
fication and adaptation of the case study used in our experimental evaluation.
We shall use this simplified version of our case study in the rest of the section
to introduce some key ingredients of X10, necessary to understand our work.

Listing 1.1. GlobalRef usage

1 var a:A = new A();
2 val y = GlobalRef[A](a);
3 val places = Place.places ();
4
5 at(places (0)) async {
6 atomic y(). update ();
7 }
8
9 at(places (1)) async {

10 val temp = at(y.home) y(). getData ();
11 }
12
13 at(places (2)) async {
14 at(y.home) atomic y(). update ();
15 }



A variable a, actually an object of class A, is going to be created in a place (0)
and shared with two other places (1 and 2), through a global reference y. Parallel
computations at the three places perform different operations on a (through the
reference y): an (atomic) update (local in place 0 and remote in place 2) and a
remote read (in place 1).

As one can observe in the example, data items in X10 can be mutable (var,
e.g a) or immutable (val, e.g. the reference y). The set of places is fixed before
program execution. Places cannot be dynamically created in the current version
of X10. To set the number of places, one needs to set a value to X10 NPLACES

program environment variable prior to the program execution. The program
starts executing in Place.places()(0), other places can be addressed in a sim-
ilar fashion by their integer numbers. Each X10 place is indented to map to a
hardware data-coherent unit, such as an SMP node in a multi-core machine.
Functions are first-class data and as such they can be stored, passed between
activities and so on. X10 provides several primitives for coordinating access to
shared mutable data. Among the others we would like to mention atomic blocks.
Specifically, atomic S is used to guarantee execution of a statement S, following
certain restrictions, as if it was a single step, with respect to other concurrently
executing atomic blocks in the same place. It is used for the update in the ex-
ample above to avoid race situations.

The main X10 construct for concurrency within a place is the async con-
struct. The main form of async is async S that starts a new activity to execute
a statement S in the same place of the executing process. Remote execution is
achieved by means of the at construct. For example, the activity that executes
at(P) S is place-shifted, meaning that its execution is suspended in the current
place and shifted to place P where S will be executed. After completion of S

control comes back to the current place, with the result of S. One needs to be
careful when using the at construct as it can potentially lead to high costs as the
objects used in S (and depending objects) are copied to place P. This behavior
can be altered by using global references (GlobalRefs) as we do in our example,
which we will explain further below.

Parallelism across places can be achieved by combining async and at to
spawn a new activity at a remote place, e.g. at(P) async S creates a new ac-
tivity at place P to execute statement S. This is used in our example to spawn
the parallel remote activities on places 1 and 2. To synchronize activities one of
the mechanisms offered by X10 is a finish S construct. An activity that exe-
cutes finish S will execute S and then wait for all the activities spawned by S

to terminate.

It is worth mentioning that the activities running in a place may access (read,
modify) data items located at that place with the efficiency of on-chip access.
Accesses to remote places can be significantly longer, sometimes even orders of
magnitude longer, as we will see in Section 3.

As we have already mentioned, careless use of at can result in copying and
transmitting very large data structures. In order to avoid this copying, one has



to create and use global value references GlobalRefs. In particular, val ref =

GlobalRef[T](v) creates a reference to a value v of type T and stores it in ref.
Retrieval of a value is done by operation ref(). In such a way, manipulating
data with references across different places will not involve copying, however
operating on referenced values requires a place-shift to the home place of the
reference, that is obtained with ref.home.

To illustrate this important programming concepts, we present in the code
snippet below (Listing 1.2) a “wrong” variant of our previous example (i.e. the
one on Listing 1.1):

Listing 1.2. Value copying

1 val a:A = new A();
2 val places = Place.places ();
3
4 at(places (0)) async {
5 atomic a.update ();
6 }
7
8 at(places (1)) async {
9 val temp = a.getData ();

10 }
11
12 at(places (2)) async {
13 atomic a.update ();
14 }

Contrary to the previous example, no global reference is used to operate on
variable a. The effect is that all places will operate on local copies of a, possibly
introducing unwanted inconsistencies. This is due to the already explained data
copying that the at construct entails.

As a final example, consider the following semi-formal X10 specification,
which permits implementing, in a programmed manner, the kind of data repli-
cation we promote in our work:

Listing 1.3. Program replicas

1 val places = Place.places ();
2
3 val lock = new Lock ();
4 val lockRef = GlobalRef[Lock](lock);
5
6 val replicas : DistArray[A] =
7 DistArray.make[A](Dist.makeUnique(places), (Point)=> new A());
8
9 for (q in places) at(q) async {

10 dataAccess ();
11 }

To replicate an object of class A we use X10’s inbuilt distributed array class,
DistArray, that represents a generic multidimensional array distributed over
multiple places. There are various strategies available for initializing such array.
In this case we choose the unique distribution, which stores one data element



(Point) per place in a designated region. In order to replicate an instance of
class A across all the available places we initialized each Point to an instance of
class A and region to the set of all available places in the execution (line 6).

All places perform the same kind of access to the data in parallel, specified
by function dataAccess:

Listing 1.4. Data access function

1 for (var i:Long = 0; i < NUM_AC; i++) async {
2 with probability p update{
3 at(lock.home) lock (). take ();
4 for (r in places) at (r) async {
5 replicas(r.id()). update ();
6 }
7 at(lock.home) lock (). release ();
8 }
9 with probability 1-p read{

10 val temp = replicas(q.id()). getData ();
11 }
12 }

In this model, each actual access to data is done by a separate activity, that
is spawned in a loop (line 1). The number of concurrently running activities
can be up to some pre-defined NUM AC number. Furthermore, each activity can
perform either an update or a read access, with a pre-defined probability p.
Update access is performed in a way that all replicas are updated to ensure
consistency (lines 4-6). Of course, such an update of all replicas can follow
different strategies. For instance, one can aim at strong consistency or weak
consistency with the use of appropriate locks (as shown above) or, else, one can
execute the updates in sequential order or as parallel activities (as we do above).
A lock variable is used to synchronize data accesses. The read access is simply
performed against a local replica (line 10).

As we will show in Section 3, we tune parameters p and NUM AC to compare
program performances with respect to different ratios of read/update access,
levels of concurrency, as well as size of accessed data. The example above is
instrumental to convey our main idea: if updates are infrequent with respect
to reads, then replicating data in X10 specifications yields more performant
applications.

Due to the limited space, we have focused here on the main X10 constructs
and concepts that are relevant to understanding the experiments we performed.
X10 is still under development at IBM in collaboration with academia. There
are two runtime frameworks available, Native X10 and Managed X10 that are
respectively based on C++ and Java backends. The semantics of the language
has been formalized in [16] along with a resilient version [4]. A core calculus
with X10’s main constructs for parallelism async and finish is presented in [14].
Cogumbreiro et al. developed Armus [3], a verification tool that detects bar-
rier deadlocks for Java and X10 programs. Gligoric et al. attempted to develop
a model checking tool [8] for X10 based on the Java Path Finder tool for
model checking Java programs. A line of work focuses on compiling and porting



200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
Update/read ratio = 0.25

NUM_AC

T
im

e 
(s

ec
)

200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
Update/read ratio = 0.2

NUM_AC

T
im

e 
(s

ec
)

200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
Update/read ratio = 0.1

NUM_AC

T
im

e 
(s

ec
)

200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
Update/read ratio = 0.01

NUM_AC

T
im

e 
(s

ec
)

 

 

 no−replicas

 replicas

Fig. 1. (Ratio): The two strategies with shared data of size ≈ 3MB

programs to X10, specifically, [13] reports on compiling Matlab to X10 for high
performance computing. The work in [11] presents a kernel benchmark suite
implementing distributed algorithms in X10. A complete list of X10 related pub-
lications can be found online at the official website [12].

3 Experiments

In this section we describe the practical experiments that we have performed
in X10 in order to support the claim that explicit use of replicas can provide
significant performance improvements. We present a number of examples, discuss
the implemented replica consistency protocol, and conclude by analyzing the
obtained results.

Hypothesis. As we have already stated in the Introduction (Section 1) the main
motivation behind our experiments is to show that better data locality and min-
imized communication can be achieved by replicating data in X10. In a classical,
non-replicated scenario, local read access is granted only to activities residing at
the same place of the data. Remote read access to data involves network data
transfer cost, which is not negligible, and increases with the size of accessed data,
as we will experimentally confirm. Data replication can be seen as an optimiza-
tion that can remedy this problem. However, replications calls for consistency
protocols, that introduce the costs of performing the same update access on each



0.050.10.150.20.25
0

0.5

1

1.5

2

2.5

3

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC = 200

0.050.10.150.20.25
0

0.5

1

1.5

2

2.5

3

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC = 300

0.050.10.150.20.25
0

0.5

1

1.5

2

2.5

3

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC = 400

0.050.10.150.20.25
0

0.5

1

1.5

2

2.5

3

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC = 500

 

 

 no−replicas

 replicas

Fig. 2. (Access number): The two strategies with shared data of size ≈ 3MB

replica. We have performed a set of experiments that provide indications about
the situations when such optimization is beneficial and the level of impact it
can have on performance. Our experimental results show how the ratio between
frequencies of updates and reads, the degree of concurrent data accesses and the
size of data affects the performance of two different versions of a program: a
standard one that does not use replicas and the one with replicas.

For evaluating our test examples, we used the X10 compiler targeting the Java
backend (a.k.a. the Managed X10), version X10-2.5.0-linux/x86 64 on OS Ubuntu
14.4. All results are obtained on hardware with 2 processors Intel(R) Xeon(R)

CPU E5620 @ 2.40GHz, each one with 4 cores and 2 threads per core, with
40GB of RAM. The full implementation of our case studies is available for down-
load at http://sysma.imtlucca.it/wp-content/uploads/2015/05/Source_

X10_example.rar.

Experiments: Configuration of the Scenario. The main idea of the scenario we
have tested is that concurrent activities running across multiple places are oper-
ating (performing read and update accesses) on the same piece of data, which is
considered to be shared data between a number of places. We compare perfor-
mances of two variants which we refer to as no-replicas and replicas. The essence
of the program with replicas has been already introduced through examples 1.3
and 1.4. In contrast to the replicated variant, the non-replicated one excludes

http://sysma.imtlucca.it/wp-content/uploads/2015/05/Source_X10_example.rar
http://sysma.imtlucca.it/wp-content/uploads/2015/05/Source_X10_example.rar


200 250 300 350 400 450 500
0

5

10

15

20

25
Update/read ratio = 0.25

NUM_AC

T
im

e 
(s

ec
)

200 250 300 350 400 450 500
0

5

10

15

20

25
Update/read ratio = 0.2

NUM_AC

T
im

e 
(s

ec
)

200 250 300 350 400 450 500
0

5

10

15

20

25
Update/read ratio = 0.1

NUM_AC

T
im

e 
(s

ec
)

200 250 300 350 400 450 500
0

5

10

15

20

25
Update/read ratio = 0.01

NUM_AC

T
im

e 
(s

ec
)

 

 

 no−replicas

 replicas

Fig. 3. (Ratio): The two strategies with shared data of size ≈ 30MB

creation of replicas, hence every access is directed towards a single centralized
data variable, as promoted in example 1.1.

As we have already mentioned, to give more elaborate results we tune three
parameters in our implementations:

• The ratio of update/read rates;
• The number of shared data accesses per place NUM AC; and
• The size of shared data.

Update and read rates are used to compute the probability p with which
update can happen inside our dataAccess function, and it is calculated by the
formula:

p = update rate/(update rate + read rate)

For calculating p we use the following pairs of update and read rates: {(1, 100),
(1, 10), (1, 5), (1, 4)}. The number NUM AC is a number of data accesses/con-
currently spawned activities per place and takes values 200, 300, 400 and 500.
As an example, if the update/read ratio is 1/5 and NUM AC is 400, it means that
there are approximately 80 update and 320 read accesses to shared data per
place. Finally, the size of shared data in one case of our experiments is ≈3MB
and ≈30MB in the other.

The two strategies (programs no-replicas and replicas) that we compare are
described as follows.



0.050.10.150.20.25
0

5

10

15

20

25

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC =200

0.050.10.150.20.25
0

5

10

15

20

25

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC =300

0.050.10.150.20.25
0

5

10

15

20

25

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC =400

0.050.10.150.20.25
0

5

10

15

20

25

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC =500

 

 

 no−replicas

 replicas

Fig. 4. (Access number): The two strategies with shared data of size ≈ 30MB

Program no-replicas: the implementations of these programs are based on the
standard approach that does not involve replication of shared data. The basic
idea is that shared data is stored at a single place, with no replicas. Local access
to the shared data is granted only to activities running at that place, while other
accesses are done remotely, via place-shifting.

Program replicas: In this variant, the shared data is replicated at each place.
Presence of replicas call for the use of consistency protocols. In these implemen-
tations the level of consistency for replicated data is weak. This means that the
interleaving of actions is allowed as update of replicas does not happen instan-
taneously across all the places. Particularly, when one replica is updated at a
certain place, multiple activities update in parallel remaining replicas in non-
atomic way. During this process, local reads can occur at remote places, before
all replicas have the same values. Interleaving of two or more update operations
is not allowed, as this would lead to undesirable and unpredictable results. We
forbid such behavior by means of a synchronization lock, that is acquired before
performing the update operations, and released at the end (see Listings 1.3 and
1.4).

Experiments: Data and Interpretation. The results of our experiments are given
in terms of dependencies between the ratio of updates and reads performed by
all activities (Fig. 1, 3) or the number of accesses NUM AC (Fig. 2, 4), represented
on x axis, and time taken by activities to complete their computations, on y axis.



Time is expressed in seconds and it is obtained as the average of 10 executions.
Fig. 1 and 2 correspond to results obtained for size of shared data of ≈ 3MB,
while Fig. 3 and 4 correspond to results obtained for the size of ≈ 30MB.

Here we present initial results obtained for a 4 and 8 places scenario, we plan
to extend the experiments in the future to 16 and larger number of places.

From the presented results we can conclude that the performance benefit
of replication tends to grow with the increasing number of total accesses and
decreasing update/read ratio. Furthermore, the greater the size of shared data,
the more desirable it is to replicate it.

The results obtained for 8 places can be found in Appendix. As it can be seen
from the figures, preserving consistency across many replicas can be expensive.
However, replication still brings good pays off when the size of data is either
large enough (Fig 5(c)) or the update/read ration is small enough (Fig. 5(a)).

We have to add that our initial attempts to scale the experiments to 16
places failed at runtime with a ”Place(0): TOO MANY THREADS” error. After a
first, superficial, analysis, we come to the conclusion that the problem is mainly
due to a centralized lock variable and to the large number (more than a thou-
sand) of activities competing for it. This should have created congestion at home
place of the lock i.e. place 0. In the future, we shall devise different models and
experimental settings that take this issue into account.

4 Conclusions

Performance-vs-consistency is an inherent and classical dilemma in distributed
and parallel computing, from local highly parallel systems (e.g. a multi-core ma-
chine) to widely distributed concurrent systems (e.g. a world-spread data center).
The resolution of such a dilemma is often delegated to run-time frameworks and
middlewares and is hidden to programmers. For some applications, however, pro-
grammers would benefit from having some control on such design decisions which
significantly define the user-perception on the application’s Quality-of-Service.

We are investigating programming abstractions for dealing with a key instru-
ment in the performance-vs-consistency dilemma, namely replication of data. In
a first stage of our investigation [1], we focused on a language mainly targeted
at largely distributed systems, and we proposed RepliKlaim, an extension of the
Klaim language [5], with the notion of replicated tuples and with specific com-
munication operations for dealing with them.

In this paper we have tried to apply the lessons we learned when consid-
ering Klaim to highly parallel systems. In particular, we have focused on X10,
a language for high-performance computing that shares with Klaim a couple of
important features such as importance assigned to explicit localities and to code
mobility. Like Klaim, the language X10 follows the APGAS programming model
which allows for remote operation on shared data, possibly involving transfer
and local replication of data. We have performed experiments similar in spirit to
those we presented in [1], comparing different strategies for operating on shared



data. The results we have obtained show the benefit of replicating data in specific
scenarios, especially when the size of shared data is very large.

Our main goal with these investigations is to identify suitable programming
abstractions for dealing with replicated data in high-performance applications.
In [1], for example, we proposed a primitive outα(t)@P, to specify an operation
that places replicas of a tuple t in all places P using the consistency level α
(either weak or strong). Similarly, one could conceive convenient X10 constructs
like e.g. share X with P to specify that the data item X is meant to be shared
with the set of places P, and additional features to specify the level of consistency
(e.g. weak, strong) desired when invoking methods on X. We do not necessarily
advocate that programming languages like X10 should be equipped with first-
class primitives supporting those abstractions. In many cases, suitable macros
or libraries can be sufficient to provide programmers with mechanisms to specify
and control data replication in a natural and disciplined manner.

As future work, we plan to introduce scalability tests, by extending the cur-
rent framework to consider a larger number of places and of CPU cores. We shall
consider both situations where more than one place is hosted on each CPU core
and the issues of lock variables on shared data that prevented us from carrying
out the planned experiments for 16 cores.

We are particularly interested in considering different (i.e. weaker) consis-
tency models and implementations for obtaining such models. As we stated in
the Introduction (Section 1) one of the most popular consistency models used
in practical applications is eventual consistency. It is argued that this model is
the weakest that can be accepted. In the present model, we restrict concurrent
updates to replicas by means of a lock, while this is not the case when looking
only for eventual consistency.



A Results for eight-places scenario

200 250 300 350 400 450 500
0

2

4

6

8

10

12

14
Update/read ratio = 0.25

NUM_AC

T
im

e 
(s

ec
)

200 250 300 350 400 450 500
0

2

4

6

8

10

12

14
Update/read ratio = 0.2

NUM_AC

T
im

e 
(s

ec
)

200 250 300 350 400 450 500
0

2

4

6

8

10

12

14
Update/read ratio = 0.1

NUM_AC

T
im

e 
(s

ec
)

200 250 300 350 400 450 500
0

2

4

6

8

10

12

14
Update/read ratio = 0.01

NUM_AC

T
im

e 
(s

ec
)

 

 

 no−replicas

 replicas

(a) (Ratio): The two strategies with shared data of size ≈ 3MB

0.050.10.150.20.25
0

2

4

6

8

10

12

14

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC = 200

0.050.10.150.20.25
0

2

4

6

8

10

12

14

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC = 300

0.050.10.150.20.25
0

2

4

6

8

10

12

14

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC = 400

0.050.10.150.20.25
0

2

4

6

8

10

12

14

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC = 500

 

 

 no−replicas

 replicas

(b) (Access number): The two strategies with shared data of size ≈ 3MB



200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50
Update/read ratio = 0.25

NUM_AC

T
im

e 
(s

ec
)

200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50
Update/read ratio = 0.2

NUM_AC

T
im

e 
(s

ec
)

200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50
Update/read ratio = 0.1

NUM_AC

T
im

e 
(s

ec
)

200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

45

50
Update/read ratio = 0.01

NUM_AC

T
im

e 
(s

ec
)

 

 

 no−replicas

 replicas

(c) (Ratio): The two strategies with shared data of size ≈ 30MB

0.050.10.150.20.25
0

5

10

15

20

25

30

35

40

45

50

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC =200

0.050.10.150.20.25
0

5

10

15

20

25

30

35

40

45

50

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC =300

0.050.10.150.20.25
0

5

10

15

20

25

30

35

40

45

50

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC =400

0.050.10.150.20.25
0

5

10

15

20

25

30

35

40

45

50

Update/read ratio

T
im

e 
(s

ec
)

NUM_AC =500

 

 

 no−replicas

 replicas

(d) (Access number): The two strategies with shared data of size ≈ 30MB

Fig. 5. Scenario with 8 places



References

1. M. Andric, R. De Nicola, and A. Lluch-Lafuente. Replica-based high-performance
tuple space computing. In T. Holvoet and M. Viroli, editors, Proc. COORDINA-
TION 2015 - Coordination Models and Languages, volume 9037 of Lecture Notes
in Computer Science, pages 3–18. Springer, 2015.

2. A. Bouajjani, C. Enea, and J. Hamza. Verifying eventual consistency of optimistic
replication systems. In Proc. 41st Annual ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, POPL ’14, pages 285–296, 2014.

3. T. Cogumbreiro, R. Hu, F. Martins, and N. Yoshida. Dynamic deadlock verifi-
cation for general barrier synchronisation. In Proc. 20th ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming, PPoPP 2015, pages 150–160,
2015.

4. S. Crafa, D. Cunningham, V. A. Saraswat, A. Shinnar, and O. Tardieu. Semantics
of (resilient) X10. CoRR, abs/1312.3739, 2013.

5. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for Agents
Interaction and Mobility. Transactions on Software Engineering, 24(5):315–330,
1998.

6. S. A. Dobson and C. P. Wadsworth. Towards a theory of shared data in distributed
systems. In I. Jelly, I. Gorton, and P. R. Croll, editors, Software Engineering for
Parallel and Distributed Systems, volume 50 of IFIP Conference Proceedings, pages
170–182. Chapman & Hall, 1996.

7. A. D. Fekete and K. Ramamritham. Consistency models for replicated data. In
Replication: Theory and Practice, pages 1–17, 2010.

8. M. Gligoric, P. C. Mehlitz, and D. Marinov. X10X: model checking a new pro-
gramming language with an ”old” model checker. In 2012 IEEE Fifth Interna-
tional Conference on Software Testing, Verification and Validation, Montreal, QC,
Canada, April 17-21, 2012, pages 11–20, 2012.

9. D. Goodeve, S. Dobson, J. Nash, J. Davy, P. Dew, M. Kara, and C. P. Wadsworth.
Towards a model for shared data abstraction with performance. Journal of Parallel
and Distributed Computing, 49, 1998.

10. Google-Storage. Web site for Google Storage: https://cloud.google.com/storage/,
2015.

11. S. Gupta and V. K. Nandivada. Imsuite: A benchmark suite for simulating dis-
tributed algorithms. J. Parallel Distrib. Comput., 75:1–19, 2015.

12. IBM. Web site for X10: http://x10-lang.org/x10-community/publications-using-
x10.html, 2015.

13. V. Kumar and L. J. Hendren. MIX10: compiling MATLAB to X10 for high perfor-
mance. In Proc. 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA 2014, part of SPLASH 2014,
pages 617–636, 2014.

14. J. K. Lee and J. Palsberg. Featherweight X10: a core calculus for async-finish
parallelism. In Proceedings of the 15th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, PPOPP 2010, pages 25–36, 2010.

15. Open-MPI. Web site for MPI: http://www.open-mpi.org/, 2015.
16. V. A. Saraswat and R. Jagadeesan. Concurrent clustered programming. In Proc.

CONCUR 2005 - Concurrency Theory, pages 353–367, 2005.
17. K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,

P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-
performance java dialect. Concurrency: Practice and Experience, 10(11-13):825–
836, 1998.


	 Replicating Data for Better Performances in X10 

