
Modelling and Analyzing Adaptive Self-Assembly
Strategies with Maude

Roberto Bruni, Andrea Corradini, Fabio Gadducci

Dipartimento di Informatica, Università di Pisa, Italy
{ bruni,andrea,gadducci}@ di. unipi. it

Alberto Lluch Lafuente

IMT Institute for Advanced Studies Lucca, Italy

{ alberto. lluch}@ imtlucca. it

Andrea Vandin

Department of Electronic and Computer Science, University of Southampton, UK,
IMT Institute for Advanced Studies Lucca, Italy

{ a. vandin}@ soton. ac. uk

Abstract

Building adaptive systems with predictable emergent behavior is a difficult task
and it is becoming a critical need. The research community has accepted the chal-
lenge by introducing approaches of various nature: from software architectures
to programming paradigms and analysis techniques. Our white-box conceptual
approach to adaptive systems based on the notion of control data promotes a
clear distinction between the application and the adaptation logic. In this paper
we propose a concrete instance of our approach based on (i) a neat identification
of control data; (ii) a hierarchical architecture that provides the basic structure to
separate the adaptation and application logics; (iii) computational reflection as
the main mechanism to realize the adaptation logic; (iv) probabilistic rule-based
specifications and quantitative verification techniques to specify and analyze
the adaptation logic. We show that our solution can be naturally realized in
Maude, a Rewriting Logic based framework, and illustrate our approach by
specifying, validating and analysing a prominent example of adaptive systems:
robot swarms equipped with self-assembly strategies.

Keywords: Adaptation, Autonomic Computing, Self-assembly, Ensembles,
Maude, Reflective Russian Dolls, Statistical Model Checking, PVeStA, MAPE-K

Research partly supported by the European IP 257414 ASCENS, the European STReP
600708 QUANTICOL, and the Italian PRIN 2010LHT4KM CINA.

Preprint submitted to Science of Computer Programming November 19, 2013

{bruni,andrea,gadducci}@di.unipi.it
{alberto.lluch}@imtlucca.it
{a.vandin}@soton.ac.uk

1. Introduction

One of todays’ grand challenges in Computer Science is to engineer autonomic
systems. First, autonomic components run in unpredictable environments,
and thus must be engineered by relying on the smallest possible amount of
assumptions, i.e. as adaptive components. Second, there is no crisp distinction
between failure and success, because the non-deterministic behaviour of such
systems prevents an absolute winning strategy to exist. Third, efforts spent in the
accurate analysis of handcrafted adaptive components are unlikely to pay back,
because the results are scarcely reusable when components are often updated or
extended with new features. It is no surprise that no general formal framework
for adaptive systems exists that is widely accepted. Instead, several adaptation
models and guidelines occur in the literature that offer ad-hoc solutions, often
tailored to specific application domains or programming languages.

In [1] we have proposed a conceptual framework for adaptation that provides
simple guidelines for a clean structuring of self-adaptive systems. Here we
instantiate our conceptual approach to a concrete architecture whose main
characteristics are (i) a white-box approach to adaptation based on the notion
of control data [1] that clearly identifies the adaptation logic; (ii) a hierarchical
architecture inspired by the MAPE-K reference model [2], that provides the
basic structure of the adaptation logic; (iii) computational reflection as the
main mechanism to realize the adaptation logic [3]; (iv) probabilistic rule-based
specifications and quantitative verification techniques to specify and analyze the
adaptation logic.

We show that our proposal can be naturally realized in Maude [4], a framework
based on Rewriting Logic [5], since (i) Maude’s algebraic approach facilitates the
formalization of control data; (ii) hierarchical architectures such as the Reflective
Russian Dolls model [6] have been promoted and shown to be suitable to specify
adaptive systems in Maude; (iii) Maude efficiently supports computational
reflection; and (iv) it is a rule-based language for which probabilistic extensions
and analysis techniques are available. Of course, our approach can be realized in
any other framework providing the necessary support for (i)–(iv).

More precisely, we describe a methodology to instantiate our generic architec-
ture for prototyping well-engineered self-adaptive components in specific systems
or scenarios. Our main case study consists of modelling, debugging, analyz-
ing and comparing self-assembly strategies of robots cooperating for different
purposes, including morphogenesis (where robots assemble to form predefined
shapes) and obstacle avoidance (e.g., hole-crossing while navigating towards
a light source [7]). This is achieved by exploiting MESSI (Maude Ensemble
Strategies Simulator and Inquirer), an integrated toolset supporting: (1) the
modeling of robotic self-assembly strategies with PMaude [8] (a probabilistic
extension of Maude), (2) debugging them via animated simulations, and (3)
analysing and comparing their performances using the parallel statistical model
checker PVeStA [9]. For a brief and informal presentation of MESSI, including
animations and the source code, we refer to the MESSI website [10].

The work reported in this paper is primarily addressed to strategy designers

2

for swarm-robotics and to Maude researchers. For the latter, we provide a
principled development methodology that is based on a state-of-the-art Maude
toolset and that can be reused and extended to support the specification and
analysis of adaptive systems. For the former audience, the possibility to rapidly
develop self-adaptive systems and to quantitatively analyze them at the early
stages of development is very important. Indeed, for example, the robots used
in the experiments reported in [7] require specialized programming skills and
their testing in real world environments involves long time consumption (six
hours or more for each run). Additionally, only a limited number of robots is
typically available (e.g. in [7] only 6 out of the 25 existing robots were used) due
to maintenance costs. Also, their hardware and software are frequently updated,
making it harder to build and to maintain sophisticated simulators that can take
as input exactly the same code to be run on the robots. Even when this has
been attempted, the real world tests can differ substantially from the simulated
runs. Thus, early analysis on prototypes, even if performed on a quite abstract
representation of the real system, can at least speed-up testing and debugging,
and dispense the programmers from coding lowest-performance strategies.

Contribution and Synopsis. In §2 we present the robotic scenario and the self-
assembly strategy that will be used as a running example along the paper. In
§3 we start by overviewing the inspiring principles of our generic multi-layered
approach for adaptive systems (§3.1), then we define our proposal in detail
(§3.2), and finally we describe a concrete instance of the generic architecture
tailored to the robotic case study (§3.3). This architecture is instantiated to
an implementation of the strategies of the case study in §4, based on MESSI,
a Maude tool developed to that purpose [10]. The general guidelines and
principles used in Maude for modelling self-adaptive systems (including logical
reflection) are briefly described in §4.1. In §4.2 we provide details of the Maude
implementation, stressing the modularity of the methodology. Such modularity
is fully exploited in §5, where we validate our approach by presenting several
strategies, heavily reusing components developed for the running example. Next
in §6 we describe how to exploit our approach for the analysis of self-assembly
strategies. In §7 we discuss related work, and finally in §8 we present some
concluding remarks and we hint at ongoing research avenues. Although we
assume the reader to have some familiarity with the Maude framework [4], we
briefly explain the most relevant Maude technicalities whenever this is needed.

A preliminary version of the present work was presented in [11].

2. Case Study: Self-Assembling Robot Swarms

Self-assembling robotic systems are formed by independent robots capable
to connect physically to form assemblies (or ensembles) when the environment
prevents them from reaching their goals individually. Self-assembly is a contin-
gency mechanism for environments where versatility is a critical issue and the
size and morphology of the assembly cannot be known in advance. Self-assembly

3

Figure 2: Basic self-assembly response strategy (as proposed in [7]).

units must be designed in a modular way and their logic must be more sophisti-
cated than, say, that of cheaper pre-assembled units. Such features make the
self-assembling robot swarms a challenging scenario to engineer.

In [7] different self-assembly strategies are proposed to carry out tasks that
range from hill-crossing and hole-crossing to robot rescue. We focus on the
hole-crossing scenario as a running case study, where “robots may need to cross
a hole while they navigate to a light source” and “a single unit by itself will fall
off into the crevice, but if it is a connected body, falling can be prevented”.

Figure 1: An s-bot.

The experiments described in [7] were conducted on the
SWARM-BOT robotic platform [12], whose constituents are
called s-bots (see Fig. 1). Each s-bot has a traction system that
combines tracks, wheels and a motorised rotation system, has
several sensors (including infra-red proximity sensors to detect
obstacles, ground facing proximity sensors to detect holes, and
a camera turret with 360 degrees view), and is surrounded
by a transparent ring that contains eight RGB colored LEDs
distributed uniformly around the ring. The LEDs can serve
as a mean of communication with nearby s-bots. For example,
the green and red colors can be used to signal the willingness
to connect to an existing ensemble or to create a new one,
respectively. The ring can also be grasped by other s-bots thanks to a gripper.
S-bots have a maximal speed of 30 cm/s and a diameter of 12 cm, and they
are able to perceive six different colors: red, green, blue, magenta, yellow and
cyan. The experiments reported in [7] concern alternative strategies in different
scenarios (with holes of different size and random initial positions of the s-bots)
and were repeated for each strategy within each scenario (from a minimum of 20
times and 2 s-bots to a maximum of 60 times and 6 s-bots).

Running case study: Basic self-assembly response strategy. We focus on the basic
self-assembly response strategy, where each s-bot moves independently (blue
light) until a hole is found, in which case it tries to aggregate (green light) to a

4

nearby assembly, if some is available, or it becomes the seed of a new assembly
(red light). A finite state machine representing this strategy is shown in Fig. 2:
it is executed independently by each s-bot. States are depicted as bird-eye
views of an s-bot (the eight small circles on the border represent the LEDs),
where we indicate the name of the state (e.g. IP or AS) and the (initial letter of
the) color of each LED (e.g. R for red). The boxed label near each state (like
MOVE TOWARDS LIGHT) is the name of the controller implementing its behaviour,
to be detailed in §3.3.1. Transitions are labelled with their firing condition.

In the starting state IP (Independent Phototaxis) each s-bot turns on its
blue LEDs, and navigates towards the target light source, avoiding the obstacles
(e.g. walls or s-bots). If an s-bot detects a hole, or sees a green or red s-bot, then
it switches to state AP (Anti Phototaxis), i.e. it turns on its green LEDs and
retreats away from the direction of the light. After the expiration of a timeout,
the s-bot passes to state AGG (Aggregate): it randomly moves searching for a
red (preferably) or a green s-bot. If it sees a red s-bot, it switches to state SA

(Self Assemble), assembles (grabs) to the red s-bot, turns on its red LEDs and
switches to state W (Wait). If it sees a green s-bot, with probability Prob(seed)

it switches to state AS (Assembly Seed), turns on its red LEDs, and becomes the
seed of a new ensemble. Once in state AS, the s-bot waits until a timeout expires
and switches to state W, unless it sees another red s-bot, in which case it reverts
to state AGG. Once no green s-bot is visible, assembled “waiting” s-bots switch
to state CP (Connected Phototaxis) and navigate to the light source. We also
consider a state GR (GoalReached), with yellow LEDs to which the s-bots evolve
when they reach the target. It is not shown in Fig. 2 to keep the picture simple.

3. An Architectural Approach to Adaptive Systems

In this section we propose a generic multi-layer architecture for the design of
adaptive systems. We start discussing the inspiring principles and the motivations
for the design choices in §3.1. Next we describe the architecture in detail in §3.2,
and finally we present a concrete instance for the robotic case study in §3.3.

3.1. Inspiring Guidelines and Motivations

The main characteristics of our approach, enumerated as (i)–(iv) in the
Introduction, have been inspired by some complementary considerations that
we sketch here and elaborate upon in the next subsections: (i) since one of
our goals is to highlight the adaptive behaviour of the modelled systems, we
commit ourselves to a white-box perspective on adaptation, ensuring that the
intended adaptive behaviour is explicitly identified in the architecture; (ii) a clear
distinction in an adaptive system between the application and the adaptation
logics naturally brings to a hierarchical structure, where a base-level adaptive
component is controlled by an adaptation manager, as neatly represented in the
paradigmatic MAPE-K architecture. By pushing this structuring farther, we
envision the possibility of dealing with several levels of adaptivity, leading to
a so-called adaptation tower ; (iii) among the several computational paradigms

5

that can be used to program adaptive systems, we think that a well-structured
use of computational reflection is at the same time very powerful and natural to
use; (iv) in the realm of modelling and analyzing the specification of adaptive
systems, declarative, rule-based styles and quantitative analysis techniques are
very natural and widely used in practice.

3.1.1. A White-Box Perspective on Adaptation Based on Control Data

According to largely accepted informal definitions, a software system is “self-
adaptive” if it can modify its behaviour as a reaction to a change in its context
of execution, e.g. in order to better achieve its goals. This definition reflects
the point of view of an external observer, and it can be considered a black-box
(i.e. behavioral, observational) perspective on adaptation. We believe that such a
perspective is of little use for design purposes, where modularization and reuse are
critical aspects, because the black-box view disregards the internal mechanisms
by which the adaptive behavior is achieved. As a paradigmatic example related
to our case study, some authors consider that “obstacle avoidance may count as
adaptive behaviour if [...] obstacles appear rarely. [...] If the normal environment
is [...] obstacle-rich, then avoidance becomes [...] normal behaviour rather than
an adaptation” [13]. Therefore under the black-box perspective the same activity
(obstacle avoidance) is a form of adaptation in some contexts, but not in others.

In [1] we proposed a white-box conceptual framework that requires to identify
a set of data, called control data, that are supposedly used to control the deviation
from the ordinary behavior of a component. Then we define adaptation as the
run-time modification of the control data, and a component is deemed adaptable
if its control data can be modified at run-time. Further, a component is adaptive
if it is adaptable and its control data are modified at run-time, at least in some
of its executions; and it is self-adaptive if it can modify its own control data.

The nature of control data can greatly vary depending on the degree of
adaptivity of the system and on the computational formalisms used to implement
it. Examples of control data include configuration variables, variations in context-
oriented programming [14], policies in policy-driven languages (e.g. [15]), aspects
in aspect-oriented languages (e.g. [16]), and even entire programs, in models of
computation exhibiting higher-order or reflective features (e.g. [17, 18]).

3.1.2. Hierarchical Structure and the MAPE-K Architecture

Figure 3: Control data in MAPE.

Modularity, composability and re-usability
are key issues for the success of software models
and system architectures. A paradigmatic exam-
ple is the MAPE-K architecture [2], according
to which a self-adaptive system is made of two
neatly separated components: a base component
implementing the application logic, and a man-
ager component that realizes a control loop that
monitors the execution through sensors, analyses
the collected data, plans an adaptation strategy,

6

and finally executes the adaptation of the managed component through effec-
tors. All the phases of the control loop access a shared knowledge repository.
Fig. 3 shows an instance of the MAPE-K architecture, where additionally we
highlighted the control data of the managed component: they are identified as
the data that are modified by the execute phase of the control loop. When the
manager component itself is adaptive, the construction can be iterated, making
the architecture compositional in a layered way, which allows one to build towers
of adaptive components (see Fig. 6, left).

3.1.3. Computational Reflection

Computational reflection is widely accepted as one of the key instruments
to model and build self-adaptive systems (cf. [19, 17, 3]). It is even promoted
as a necessary criterion for any self-adaptive software system in [20], where the
authors argue that most methodologies and frameworks proposed for the design
and development of self-adaptive systems rely on some form of reflection, even
when this is not made explicit.

As explained in [3], computational reflection provides two fundamental mech-
anisms to realize adaptive systems: introspection to let a system observe its
own behavior, and intercession to let a system modify its own behavior. Indeed,
computational reflection can be used to realize (self)-adaptation in a pretty
intuitive way. Since reflection allows to manipulate programs as first-class ob-
jects, a program can read (i.e., introspect) and modify (i.e., intercede) its own
code during execution. Obviously, this powerful mechanism comes at some price.
First, it may require an additional computational overhead. In our approach
this is not a major concern, since we only consider the phases of modeling and
analyzing adaptive systems, and not of deploying them. Second, an unrestricted
use of computational reflection could make a system monolithic and extremely
difficult to analyze with standard techniques. However, we argue that a local-
ized and structured use of reflection, conforming for example to the MAPE-K
architecture, can be very useful for the design of adaptive systems. In fact,
the manager component can use reflection to manipulate the code of the base
component (which, incidentally, becomes in this case the control data), typically
replacing such code with a different one when certain conditions arise. Actually,
the manager could even run the base component for a few steps in a sort of
simulation mode, before deciding whether to replace it or not: this last scenario
is very hard to implement without resorting to reflection.

3.1.4. Rule-based specifications and quantitative analysis

Adaptive systems are very often equipped with strategies based on reactive
behaviors and probabilistic algorithms. This is particularly evident in the
field of swarm computing due to the successful adoption of popular bio-inspired
techniques from the field of Artificial Intelligence, such as ant colony optimization.

In general, reactive behaviors are naturally specified in rule-based languages.
More specifically, since our goal is to architecture the specification and rapid
prototyping of adaptive systems in general and of swarm robotic strategies in
particular, a declarative style of programming is valuable here, as it allows the

7

designer to concentrate on the high-level (typically reactive) logic of the system
behaviour, abstracting from low level (typically procedural) operational details.
Furthermore, in the case of swarm robotic strategies both the behaviour of the
individual components and the interactions among them are rather simple, even
if the emerging behaviour of the swarm can be quite sophisticated. The use of
rule-based programming is therefore very adequate (and indeed popular) in this
framework, using rules to describe the basic reactions of a component to some
elementary stimuli from the environment.

The use of probabilistic algorithms implies that our systems will be intrin-
sically stochastic. For those systems, it may be neither possible nor useful to
prescribe that a certain property is met exactly or that a given goal is achieved
completely, but it is more realistic to reason about to what extent a property or
a goal is reached, after fixing suitable metrics. Therefore quantitative analysis
appears as the natural way to analyze such systems.

These considerations allow us to identify as a preferred specification formalism
a flexible rule-based programming language, equipped with quantitative analysis
tools. As anticipated, Maude perfectly meets these requirements.

3.2. A Generic Architecture for Self-Adaptive Systems

We describe here a generic architecture for adaptive components, which
combines the key ingredients (i)–(iv) of our approach. We first focus on the
structure of layers and their interactions, abstracting from our case study.

3.2.1. Intra-layer architecture

Figure 4: Intra-layer.

Each layer is a component having the structure illustrated
in Fig. 4. Its main constituents are: knowledge (K), effects
(E), rules (R) and managed component (M). Some of them
are intentionally on the boundary of the component, since
they are part of its interface. The managed component is
a lower-level layer having the same structure: clearly, this
part is void in the innermost layer. The knowledge represents the information
available in the layer. It can contain data that represent the internal state of
the component or assumptions about the component’s surrounding environment.
The effects are the actions that the component is willing to perform on its
enclosing context. The rules determine the local behaviour of the layer, and in
particular which effects are generated on the basis of the knowledge and of the
interaction with the managed component.

It is important to stress already at this high level of abstraction that we will
consider the rules R as the control data of a layer. Typical rules update the
knowledge of the managed component, execute it and collect its effects. In this
case the layer acts as a sort of interpreter. In other cases rules can act upon the
rules of the managed component, modifying them: since such rules are control
data, the rules modifying them trigger an adaptation.

8

Figure 5: Inter-layer architecture (left), ordinary flow (center), adaptation flow (right).

3.2.2. Inter-layer architecture

Layers are organized hierarchically: each one contains its knowledge, effects,
rules and, in addition, the managed underlying layer. An example with three
layers is depicted in the leftmost diagram of Fig. 5. Fig. 6 shows the correspon-
dence between the layers and the three control loops in a MAPE-K adaptation
tower. Of course, the architecture does not impose a specific number of layers,
and a new layer can always be added on top of existing ones. The outermost
layer interacts with the environment: its knowledge includes information about
the environment, as perceived by the component, while its effects represent
the actions actually performed by the component. Each layer elaborates its
knowledge and propagates it to the lower one, if any. In general, we may think
that while descending the hierarchy, the knowledge becomes simpler, and the
generated effects more elementary.

The diagram in the middle of Fig. 5 shows the control and data flow of
ordinary behaviors (without adaptations). Knowledge is propagated down to
the core (layer 0) and the effects are collected up to the surface (layer 2). This
flow of information is governed by the rules of each layer. Knowledge and effects
are subject to modifications before each propagation. For example, layer 2 may
decide to propagate to layer 1 only part of the knowledge perceived from the
environment, possibly after pre-processing it. Symmetrically, layer 1 may decide
to filter part of the effects generated by layer 0 before the propagation to layer 2.

The rightmost diagram of Fig. 5 corresponds to a phase of adaptation. Here
the outermost layer triggers an adaptation at layer 1 by exploiting computational
reflection. The result is that the rules of layer 2 change (among other things) the
rules of layer 1 (as shown by the arrow crossing the corresponding R attribute).

3.3. Instantiation of the Architecture to the Robotic Case Study

The concrete architecture of our case study has three layers (see Fig. 6,
top-right), which correspond naturally to the way the behaviour of s-bots and
the strategies are described in [7]. Moreover, the execution environment of the
s-bots is realized by a discrete-event simulator which consists of three parts: the
orchestrator, the scheduler and the arena.

9

Figure 6: Architecture as an instance of the framework.

Layer 0 (kernel). This layer models the core functionalities of an s-bot (see [7,
§3]). The rules implement basic movements and the actioning of the gripper.
They are defined once, independently of the strategy or scenario at hand. Layer
0 is similar to what some authors call hardware abstraction layer (see e.g. [21]).

Layer 1 (basic control). This layer represents the basic controller managing the
s-bot core functionalities, according to the context. The controller may allow to
move only in some directions (e.g. towards a light source) or to search for an
s-bot to grab. This layer is inhabited by the individual states of state machines
modelling the self-assembly strategies, as the one of Fig. 2 (see [7, §5 and §7]).

Layer 2 (adaptation). This is the layer of the adaptation manager, which reacts to
changes in the environment by activating a suitable basic controller. Intuitively,
this layer corresponds to the entire state machine modelling a self-assembly
strategy (e.g. Fig. 2), and it takes care of the transitions between its states. This
is done by constantly monitoring the environment and the managed component
M (layer 1), and by executing adaptation phases when needed, which means
changing the rules of M . Different strategies can be implemented by modifying
this layer only, as shown in §5.

Implementation details for each layer are outlined in §4.2, together with
Maude code snippets. Of course, other layers could be added to the s-bot
architecture. For example, a fourth layer could realize a meta-adaptation logic,
which triggers an adaptation of layer 2 by changing the adaptation strategy.

Orchestrator. The orchestrator takes care of the actual execution of the actions
required to manage the effects generated by an s-bot. For instance, it decides if
an s-bot can actually move towards the direction it is willing to move (indicated
by the effects emitted by the outermost layer of the component).

10

Scheduler. An ordinary discrete-event scheduler activates the scheduled events,
allowing an s-bot or the orchestrator to perform its next action. The emission of
an effect e by the outermost layer of a component c causes the scheduling of the
event “execute effect e on c at time time+ t”, where t can be thought of as the
time to execute the effect (e.g. the time required to perform a movement). Such
events are handled by the orchestrator. Moreover, for every handled event of a
component c the orchestrator also schedules a new event of the form “generate
next effect at time time+ t′” for c.

Arena. The arena defines the scenario where s-bots run. We abstracted the
arena into a discrete grid, very much like a chessboard. Each cell of the grid has
different attributes regarding for example the presence of holes or light sources.
A cell may also contain in its attributes (at most) one s-bot, meaning that the
s-bot is in that position of the arena. Each s-bot can perform an action on (e.g.
grip) or move to each of the eight cells surrounding the cells where it resides.

3.3.1. Mapping the Self-Assembly Strategy over the Architecture

Roughly, starting from the finite state machine representing an adaptation
strategy, like the basic self-assembly strategy in Fig. 2, we map the automaton to a
layer 2 abstraction, its states to layer 1 abstractions and core s-bot functionalities
to layer 0 abstractions.

The three layers differ in their sets of rules and in the managed components,
but they share part of the signature for knowledge and effects. In particular,
knowledge includes predicates about properties of the ground (wall, hole, free),
the presence of s-bots in the surrounding (their LED emissions), and the direction
of the light source (the goal). Generable effects include requests of movements
or grabbing of s-bots in adjacent cells (handled by the execution environment),
as well as color emissions towards a direction (i.e. the color emitted by a LED).

Knowledge and effects are currently implemented as plain sets of predicates.
More sophisticated forms of knowledge representation based on some inference
mechanism (like prolog specifications, epistemic logics, ontologies or constraints)
are possible but they are not necessary in the presented case study.

Predefined basic controllers for layer 1. We provide a library of predefined
basic controllers, implementing basic behaviours for layer 1, summarized in
Table 1 and used as building blocks in the definition of the strategies. The
IDLE controller implements the trivial behaviour of idle s-bots, typical of wait-
ing states. Controller MOVE TOWARDS LIGHT implements the movement of the
s-bot (if not hindered) towards the direction of the light source. Controller
MOVE PREFERABLY TOWARDS LIGHT is similar to the previous one, but if the di-
rections towards the light source contain obstacles, then movements in other
directions are allowed to try to avoid such obstacles. The fourth controller
(MOVE AWAY FROM LIGHT) allows the s-bot to move in directions opposite to the
ones from which the light source is perceived, while MOVE IN ANY DIRECTION

allows to randomly move in any direction without obstacles. The behaviour

11

Name Brief description
IDLE An idle s-bot: it neither moves, nor grabs.

MOVE TOWARDS LIGHT The s-bot moves towards the light source if possible,
otherwise it stays idle if hindered.

MOVE PREFERABLY The s-bot moves towards the light source if possible,
TOWARDS LIGHT otherwise it moves in one of the directions with no obstacle.

MOVE AWAY FROM LIGHT The s-bot retreats away from the light by randomly
choosing one of the free directions opposite to light.

MOVE IN ANY DIRECTION The s-bot navigates in any randomly chosen free direction.

GRAB ADMISSIBLE LED The s-bot does not move, but grabs a LED with a
grippable color as specified in its knowledge if near
enough. If more than one grippable LED is perceived,
then the one to be grabbed is randomly chosen.

OUTFLANK EFFECT The s-bot navigates, if possible, in a randomly chosen
free direction not opposite to the ones from where
it perceives a given effect, as specified in its knowledge.

Table 1: Some predefined basic controllers for layer 1.

“grip a LED of a given color” (controller GRAB ADMISSIBLE LED) prohibits move-
ments but allows to grip other s-bots (or other sources of color emissions) if
near enough, in order to form ensembles. The set of grippable colors has to be
explicitly specified in the knowledge of the s-bot.

The last controller OUTFLANK EFFECT implements a behaviour that allows
to outflank a given color emission, i.e. to move without departing from the
perceived effect. It can be used in scenarios where constraints are imposed on
the morphology of the ensemble. For example, a suitable color can be used to
inform an s-bot that it is near to a line-shaped ensemble, and it has to reach the
tail of the line before connecting to it. As for the case of the grippable colors,
the set of effects to be outflanked has to be specified in the s-bot’s knowledge.

The controllers we just described were used to implement the states of
the state machines modelling the self-assembly strategies. The correspondence
between the states of the basic self-assembly response strategy and our controllers
is depicted in Fig. 2. For example, the state IP (Independent Phototaxis) is
governed by the basic controller MOVE PREFERABLY TOWARDS LIGHT, while state
SA (Self Assemble) is governed by GRAB ADMISSIBLE LED.

4. MESSI: Maude Ensemble Strategies Simulator and Inquirer

We discuss here the suitability of Maude [4] as a framework to realize our
generic approach (§4.1) and then we describe our implementation (§4.2). Such
implementation is called MESSI, and it realizes the architecture of §3.2 and its
instantiation for robotic scenarios discussed in §3.3. In this section we focus on
our running case study, while other strategies are discussed in §5.

4.1. Rewriting Logic, Maude and the Reflective Russian Dolls

As we have already mentioned in the Introduction, Maude is a convenient
setting to realize our solution since it allows us to address its key aspects (i)–(iv).
Indeed: (i) Maude’s algebraic approach facilitates the formalization of control
data; (ii) hierarchical architectures such as the Russian Dolls model have been

12

promoted and shown to be suitable to specify adaptive systems in Maude; (iii)
Maude efficiently supports computational reflection; (iv) Maude is a rule-based
language for which probabilistic extensions and analysis techniques are available.

Maude’s theoretical foundations are based on Rewriting Logic (RL), a powerful
computational and logical framework that has been exploited to represent a
variety of programming and modeling languages, and where different logics
and automated deduction procedures have been represented, mechanized, and
reasoned about [5].

A rewrite theory R = (Σ;E;R) consists of an equational theory (Σ;E) and
a set of (possibly conditional) rewrite rules R, where (Σ;E) specifies the terms
(e.g. the states of a system and their constituents) by means of operations and
equations, and the rules in R specify the dynamics.

Rewriting Logic includes logical reflection capabilities. At the ground level,
a rewrite theory R allows to infer a computation step R ` t→ t′ from a term
t (representing, for example, a program state) to a term t′ (representing the
program state after a one-step execution). A universal theory U may let one
infer the computation U ` (R, t) → (R, t′) at the “meta-level” where theories
and terms are meta-represented as terms. The process can be repeated as U
itself is a rewrite theory, leading to what is called a tower of reflection.

Note that since a theory can be represented by a term, it is possible to
specify (meta-)rules that change the (meta-representation of the) theory, as
[r] : (R, t)→ (R′, t′), so that reduction continues with a different rewrite theory
R′. Pretty obviously, this mechanism enables a powerful form of adaptation, by
literally changing the behavior of a system specified as a rewrite theory.

The Maude system [4] provides an implementation of RL, supporting in a
systematic and efficient way logical reflection, and providing a rich collection of
analysis tools. Roughly, Maude specifications are made of modules (which can be
functional modules, rewrite theories, or object-oriented modules), and powerful
module composition operations, including parameterized modules, are supported.
With the META-LEVEL module Maude provides a library to transform modules
to terms with sort Module (i.e. modules at the meta-level), so that they can be
manipulated as any other term, as well as operations to execute meta-terms (e.g.
systems’ states brought to the meta-level). Actually, as any term can be brought
to the meta-level, this mechanism can be iterated.

The hierarchical structuring of layers can also be specified easily in Maude,
by exploiting the object-oriented syntax, explicitly supported by the framework.

It is fair recalling here that the reflection mechanism of RL has been exploited
in [17] to formalize a model for distributed object reflection, suitable for the
specification of adaptive systems (see also the discussion in §7). The model,
called Reflective Russian Dolls (RRD), has a structure of layered configurations
of objects, where each layer can control the execution of objects in the lower layer.
The Maude implementation of our generic architecture can also be considered
as an instance of the RRD architecture, where each layer can inject specific
adaptation logic in the wrapped components.

A last strong motivation for the use of Maude is the availability of a rich
toolset for the analysis of specifications. In particular, given the stochastic nature

13

1 < bot1 : AC2 | K: gripper(open) on(right ,none) towards(right ,light) ...,
2 E: emit(up,Green) go(right) ...,
3 R: mod_is ... endm ,
4 M: < bot1 : AC1 | K: ..., E: ..., R: ...,
5 M: < bot1 : AC0 | K:..., E:..., R:... > > >

Listing 1: The overall structure of a sample s-bot.

of adaptive systems, we have found very convenient to use the statistical model
checker PVeStA [9] to conduct quantitative analysis of our model, parametric
with respect to the desired level of statistical confidence, in order to evaluate
the effectiveness of the collective robot strategies.

4.2. Implementation Details

We now move our attention to MESSI. In the following, the most relevant
notation and features of Maude are explained as they are introduced.

4.2.1. On the structure of adaptive components and of the simulator

We rely on Maude’s object-like signature (see [4, Chapter 8]) that allows
us to model concurrent systems as collections of objects (configurations), each
having an identifier, a class and a set of attributes. An object with identifier
oid, class cid and list of attributes attrs is written < oid : cid | attrs >.

As discussed in §3.3, we use a three-layered architecture to model an s-bot.
Three classes are introduced for the different layers, namely AC0, AC1 and AC2.
Listing 1 depicts the overall structure of an s-bot. Each layer is implemented as
an object with attributes for knowledge (K), effects (E), rules (R) and managed
component (M): the first two are plain sets of predicates, the third one is a meta-
representation of a Maude module containing the specification of the behaviour
of the layer, and the fourth one is an object (the inner layer). As a design choice,
the objects implementing the layers of an s-bot carry the same identifier (see
e.g. the three occurrences of bot1 in Listing 1, lines 1, 4 and 5).

The simulation of s-bots ensembles takes place in a virtual arena. The arena
is a set of objects of class Cell. Each cell can contain among the attributes (at
most) one object of class AC2 (an s-bot). When needed, the orchestrator moves
an s-bot by passing it from the cell containing it to one of the eight adjacent
cells. Thus, s-bots have no information about the global environment or their
current position, but only about the contiguous cells and the direction towards
the target. Intuitively, the cell encapsulating an s-bot may be seen as a further
layer wrapping objects of class AC2. In fact, it is responsible for updating its
knowledge, taking care of its effects (e.g. exposing the status of s-bot’s LEDs),
and handling the interactions between the s-bot and the scheduler.

4.2.2. Rules of adaptive components

The behaviour of a layer is specified by the rules contained in its R attribute.
This is a term of sort Module, i.e. a meta-representation of a Maude module.
Sophisticated control strategies can be realized: the outer component can execute

14

1 rl [admissibleMovements] :
2 < oid : AC0 | K: k0 1Step , E: e0 , A0 >
3 => < oid : AC0 | K: k0 , E: e0 canMoveTo(freeDirs(k0)), A0 > .

Listing 2: A rule of layer 0 to compute the set of free directions.

or manipulate the rules in R, and analyse the outcome. This way, the wrapping
component can act as a planner or decision-taker. To illustrate how the flows of
execution and information of Fig. 5 discussed in §3.2 are actually implemented,
we present one sample rule per layer. For the sake of presentation we abstract
from irrelevant details. The full code is available at [10].

Layer 0. This layer implements the core functionalities of s-bots. For example,
the rule (keyword rl) of Listing 2, named admissibleMovements, computes the
set of directions an s-bot can move to. A rule can be applied to a Maude term t
if its left-hand side (LHS) (here the object in line 2, containing variables oid,
k0, e0 and A0) matches a subterm of t with substitution σ, and the application
consists of replacing the matched sub-term with the term obtained by applying
σ to the right-hand side, i.e. the object in line 3 that follows the symbol =>.

Rule admissibleMovements allows to rewrite an object of class AC0 to itself,
enriching its effects with the result of evaluating canMoveTo(freeDirs(k0)).
Operator canMoveTo is a constructor, i.e. it cannot be reduced, acting as a
container. Instead freeDirs(k0) reduces to the set of directions the s-bot can
move to, i.e. those not containing walls or other s-bots. This is realized by
analysing the facts of shape on(dir,content) contained in the knowledge k0.
For example, if on(right,none) is a fact in k0, then right is a direction in
freeDirs(k0). It is worth noting that the behaviour of freeDirs() is specified
with Maude equations instead of rules: they have higher priority than rules,
meaning that rules are applied only to terms in normal form with respect to the
equations (two sample equations are discussed later in Listing 5). Note that rule
admissibleMovements consumes the constant 1Step from the knowledge of the
object: intuitively, it is a token used to inhibit further applications of the rule,
obtaining a one-step rewriting. Variable A0 matches all remaining attributes of
object oid, and they are left unchanged by the application of the rule.

Layer 1. Objects of class AC1 implement the basic controllers discussed in § 3.3.1
and correspond to the states of the state machine of Fig. 2. Rules of this layer
can execute the component of the lower level (an object of class AC0) providing
additional knowledge to it, and elaborating its effects. The conditional rule of
Listing 3 (keyword crl) implements (part of) the logic of state IP, computing
the direction towards which to move.

The rule can be applied to a matched sub-term only if its (firing) condition
(i.e. the if clause of lines 6–10) is satisfied under the matching. Maude allows
four kinds of conditions: 1) equational conditions, to check equality of two terms
t and t′; 2) membership predicates, to check if a term t has sort s; 3) rewrite
expressions, to check if a term t can be rewritten to a term t′; and 4) matching

15

1 crl [MovePreferablyTowardsLight]:
2 < oid : AC1 | K: k1 1Step , E: e1 ,
3 M: < oid : AC0 | K: k0 , E: e0 , R: m0 , A0 >, A1 >
4 => < oid : AC1 | K: k1 , E: e1 go(dir),
5 M: < oid : AC0 | K: k0e , E: e0, R: m0, A0e >, A1 >
6 if < oid : AC0 | K: k0e , E: e0 canMoveTo(freeDirs), A0e >
7 := execute(< oid : AC0 | K: 1Step update1To0(k1,k0), E: e0, R: m0, A0 >)
8 /\ prefDirs := intersection(freeDirs , dirsToLight(k1))
9 /\ dir := if prefDirs =/= empty then uniformlyChooseDir(prefDirs)

10 else uniformlyChooseDir(freeDirs) fi .

Listing 3: A rule of layer 1 to compute a direction towards which to move.

conditions, written p := t to check if the pattern p matches the term (obtained
by reducing) t. When the match is successful, a matching condition can be
regarded as a sort of assignment that binds the variables in p. As a special
case, boolean predicates can be used in conditions that are checked for equality
with respect to the value true. For the rule of Listing 3, the condition is the
conjunction (/\) of three matching conditions, that are evaluated sequentially.

The operator execute exploits Maude’s meta-level functionalities to obtain
the meta-representation of one object, and to execute it via the rules meta-
represented in its attribute R: m. In particular, in line 7 of Listing 3, the operator
applies a single rule of m0 to the managed component < oid : AC0 ... >,
after having updated its knowledge. In fact, the operation update1To0(k1,k0)

implements a (controlled) propagation of the knowledge from layer 1 to layer 0,
filtering k1 before updating k0 (e.g. information about the surrounding cells is
propagated, but not the one about the target).

The assignment of the first matching condition (lines 6 and 7) updates
knowledge and attributes of the managed component < oid : AC0 ... >

(cf. variables k0e and A0e, with e a mnemonic suffix for “executed”) and
binds freeDirs to the directions towards which the managed component can
move. This is used in the second matching condition (line 8) to compute the
intersection between freeDirs and the directions towards the light, evaluated
reducing dirsToLight(k1). The resulting set of directions is bound to prefDirs.
Finally, by resorting to the if then else fi statement, in the third matching
condition (lines 9-10) dir is bound to a direction randomly chosen from prefDirs,
or from freeDirs if the former set is empty. Comparing the LHS (lines 2–3) and
the RHS (lines 4–5), one sees that the overall effect of the rule is the production
of a new effect at layer 1, go(dir), and the update of the knowledge of the
component of layer 0.

Notice that the rules stored in the attributes of layer 0 (m0) are not affected
by the rule: in fact, in our implementation rules of layer 1 never trigger an
adaptation phase on layer 0. This is just a design choice: the idea is that the
hardware abstraction layer remains constant since in the considered scenarios
the hardware of the s-bots does not change.

Layer 2. A component of this layer corresponds to an entire state machine
of a self-assembly strategy (e.g. Fig. 2). It monitors the environment and

16

1 crl [adaptAndExecute]:
2 < oid : AC2 | K: k2 nextEffect , E: e2,
3 M: < oid : AC1 | K: k1 , E: e1 , R: m1 , A1 >, A2 >
4 => < oid : AC2 | K: k2a , E: e2a schedule(event(oid ,effect)),
5 M: < oid : AC1 | K: k1e , E: e1a , R: m1a , A1e >, A2a >
6 if < oid : AC2 | K: k2a , E: e2a ,
7 M: < oid : AC1 | K: k1a , E: e1a , R: m1a , A1a >, A2a >
8 := adapt(< oid : AC2 | K: k2 , E: e2 ,
9 M: < oid : AC1 | K: k1 , E: e1 , R: m1 , A1 >, A2 >)

10 /\ <oid: AC1 | K: k1e , E: e1a effect , A1e >
11 := execute(<oid: AC1 | K: 1Step update2To1(k2a ,k1a), E: e1a , R: m1a , A1a >).

Listing 4: A rule of layer 2 to compute adaptation and execution phases of layer 1.

triggers single transitions of the managed component (layer 1), like movements
and gripper actions. Transitions of the managed component are performed by
executing it with the rules stored in its attribute R.

If necessary, this layer also enforces adaptation phases, that is, transitions
from the current state of the self-assembly strategy to a new one, by changing
the rules of the managed component and the colors of the LEDs. As discussed
later, by changing the rules of the managed component we mean that the layer 2
substitutes the attribute R of layer 1 with a new one.

Listing 4 contains the main rule of this layer. It is triggered by the token
nextEffect (line 2), generated by the scheduler and propagated to the s-bot
by the cell containing it. The rule consists of an adaptation phase (lines 6–9)
followed by an execution phase (lines 10–11), both performed on the managed
component and both triggered by the two matching conditions of the rule. The
variables bound by the two matching conditions have either a or e as suffix, to
recall the phase where they have been introduced (adapt or execute).

The adaptation phase is computed by the operation adapt, using the knowl-
edge of layer 2 (k2) to enact a transition to a new state of the strategy, if
necessary. Operation adapt is specified by a set of equations, two of which are
presented in Listing 5. The first one is a conditional equation (keyword ceq),
which encodes the transition of Fig. 2 from state AGG to SA, labeled with Close

to red. It states that if an s-bot in state AGG sees in its neighborhood an s-bot
with red LEDs on, then it must pass to state SA and turn on its green LEDs.
Also, the rules of the managed component are changed: the new module m1a

is obtained with the operation upModule, producing the meta-representation
of the Maude module whose name is passed as first parameter. In this case
the used module is GRAB ADMISSIBLE LED, and it contains the rules defining the
controller for layer 1 with the same name, which is used in state SA as shown
in Fig. 2. Note also how, in line 4, we invoke again the operation adapt. This
allows to consecutively compute more than one adaptation phase if necessary.

In order to implement a self-assembly strategy we only need to specify an
equation for every transition in the corresponding state machine, plus the default
rule noAdaptationNeeded of Listing 5 line 9 where owise is a special attribute
telling the Maude interpreter to apply the equation only if none of the others
can be applied. The latter is a plain (non-conditional) equation, as it can be

17

1 ceq [AggToSA]:
2 adapt(< oid2 : AC2 | K: state(AGG) k2 , E: e2 ,
3 M: < oid1 : AC1 | R: m1 , E: e1 , A1 > , A2 >)
4 = adapt(< oid2 : AC2 | K: state(SA) k2, E: setAllLEDs(green),
5 M: < oid1 : AC1 | R: m1a , E: none , A1 > , A2 >)
6 if seeEffect(led(red),k2)
7 /\ m1a := upModule(’GRAB_ADMISSIBLE_LED ,false) .
8
9 eq [noAdaptationNeeded]: adapt(obj) = obj [owise] .

Listing 5: One of the equations for the strategy of Fig. 2 (AGG → SA) plus the default case.

1 mod IDLE is
2 pr AC1 .
3 endm
4
5 mod MOVE_PREFERABLY_TOWARDS_LIGHT is
6 pr AC1 .
7
8 crl [MovePreferablyTowardsLight]: *** shown in Listing 3
9 endm

10
11 mod GRAB_ADMISSIBLE_LED is
12 pr AC1 .
13
14 var k1 k0 k0e e1 e0 e0e : Config . var m0 : Module .
15 vars A0 A0e A1 : AttributeSet . var oid : Oid .
16 var dirsWithEmiss : Set{Direction} . var dir : Direction .
17
18 crl [gripColorEmission] :
19 < oid : AC1 | K: k1 1Step , E: e1 ,
20 M: < oid : AC0 | K: k0 , E: e0 , R: m0, A0 > , A1 >
21 => < oid : AC1 | K: k1 , E: insertEffect(attach(dir),e1),
22 M: < oid : AC0 | K: k0e , E: e0e , R: m0 , A0e > , A1 >
23 if <oid : AC0 | K: k0e , E: e0e canAttachTo(dirsWithEmiss), A0e >
24 := execute(<oid : AC0 | K: 1Step update1To0(k1,k0), E: e0 , R: m0, A0 >)
25 /\ dirsWithEmiss =/= empty
26 /\ dir := uniformlyChooseDir(dirsWithEmiss) .
27 endm

Listing 6: Some of the predefined basic controllers discussed in §3.3.1.

seen by the use of keyword eq.
It is worth to remark that this solution works for deterministic strategies.

In fact the absence of non-determinism allows us to implement the adaptation
strategy as a function (adapt), defined by a set of confluent and terminating
equations. The general case of non-deterministic strategies can be handled by
lifting the function adapt to sets of possible future states and implementing a
function that takes the decision by solving the non-determinism on the basis of
suitable criteria (e.g. randomly or using preference functions).

Coming back to the rule of Listing 4, once the adaptation phase is concluded,
the second sub-condition of the rule takes care of the one-step execution of the
(possibly adapted) managed component. Finally, the effects generated by layer 1
are wrapped in the constructors event and schedule, and the resulting term is
added to the effects of layer 2, that will be propagated to the scheduler by the
encosing cell.

18

Figure 7: An assembly strategy to form ensembles shaped as lines.

4.2.3. Implementation of the Predefined Basic Controllers for Layer 1

We present here some details of the implementation of the predefined basic
controllers discussed in §3.3.1. Each of these controllers is defined by a Maude
module with the same name. Listing 6 shows the implementation of three of
them. They all import in a protecting way (keyword pr) the module AC1 that
contains the definition of the common operations of this layer (like update1To0

and insertEffect).
Lines 1–3 show the trivial code of controller IDLE. Lines 5-9 sketch the

code of controller MOVE PREFERABLY TOWARDS LIGHT, whose only rule has been
already discussed (see Listing 3). Finally, lines 11-27 show the code of controller
GRAB ADMISSIBLE LED. This controller is used in states in which the s-bot does
not move, but only tries to grip other s-bots. In particular, in lines 23–24 we
first execute the component of layer 0, providing to it the 1Step token, and
updating its knowledge with the one of layer 1. We thus obtain dirsWithEmiss,
that is the set of directions corresponding to the surrounding cells from which it
is possible to sense a given color emission (in this case red, which is specified in
the knowledge of layer 0). Then, if this set is not empty (line 25), in line 26 we
randomly select one of the directions. Finally, in line 21 this direction is inserted
in the effects of layer 1.

5. Design of Self-Assembly Strategies

We now demonstrate the wide applicability of our architecture (and of
MESSI) by discussing some implemented strategies. In particular, since the
basic behaviours are already implemented by the controllers presented in §3.3.1,
for each new strategy only the state transitions have to be defined.

5.1. A Self-Assembly Strategy for Line-Forming Scenarios

We start with the simple self-assembly strategy of Fig. 7 to form line-shaped
ensembles. In the scenario there are no obstacles, and three colors are used to
guide the assembling: the green color stands for “the s-bot wants to grip another
s-bot”, red stands for “the s-bot wants to be grabbed” and magenta for “the s-bot
is part of an ensemble, but other s-bots should connect elsewhere”. The s-bots

19

Figure 8: Variant of the basic self-assembly response strategy to deal with unexpected behaviours.

are initialized in state Aggregate, randomly moving in any direction (controller
MOVE IN ANY DIRECTION). If a red color emission is sensed, then the s-bot grabs it
by changing its status to Self Assemble with controller GRAB ADMISSIBLE LED

and keeping the LEDs green. If the gripping action succeeds, the s-bot has to
wait for other s-bots to grab it, hence it changes its status to Wait and sets the
IDLE controller. Only the LED opposite to the direction of the gripper is set to
red (the others are set to magenta): this will force the generation of line-shaped
ensembles. If an s-bot in state Aggregate does not see any red color emission,
but sees a magenta one, it knows that it is near to an ensemble and searches for
the tail of the line by changing to the basic controller OUTFLANK EFFECT. This
case is captured by the transition from state Aggregate to state Search Tail

labeled with “See magenta, and not see red”.
If an s-bot in state Self assembly does not perceive any assembly anymore

(i.e. neither red nor magenta color emissions), then it reverts to state Aggregate.
If instead a magenta color emission is still perceived (but not a red one), then
the s-bot starts searching for the tail of the assembly (state Search Tail).

The last outgoing transition from Aggregate handles the case when the s-bot
does not perceive any ensemble, while it perceives single s-bots (green color
emissions). Then, with probability Prob(seed) the s-bot becomes the seed of
a new ensemble, and waits for other s-bots to grip it: it changes its state to
Assembly Seed with controller IDLE, sets a randomly selected LED to red and
the others to magenta. The strategy has a last transition from Assembly Seed

to Aggregate with firing condition “(timeout or see red or see magenta)

and not gripped”. In order to limit the number of ensembles, an s-bot in state
Assembly Seed can revert to state Aggregate. This transition is allowed when
the s-bot has not been connected, and either a fixed amount of time elapsed
(timeout), or another ensemble is perceived (see red or magenta).

20

5.2. Self-Assembly Strategies for Hole-Crossing Scenarios

We now discuss two variants of the basic self-assembly response strategy
of Fig. 2. The first one, depicted in Fig. 8, is just a mild variation where we
enrich some of the firing conditions of its transitions, and add a new transition
from state Self Assemble to Aggregate. The differences with respect to the
original strategy are highlighted with red color and underlined. This variant
solves some unexpected and undesired behaviours of the original strategy, which
were discovered during our experiments. A brief description of this variant and
the motivations for its proposal are given in §6.1.

The strategy of Fig. 9 is instead a major variation. It is obtained by composing
the above strategy (Fig. 8) with the one depicted in Fig. 7 for the line-forming
scenario. As argued in [7], the idea is that if s-bots compose in lines, then there
are more chances to succeed in crossing holes. In §6.2 we evaluate this intuitive
reasoning by comparing the performances of the strategies of Fig. 2, 8 and 9.

Colors are used as in the line-forming strategy. The first two transitions (from
state IP to AP, and from AP to AGG) are taken from the strategy of Fig. 8, the
only difference is that a further LED emission is considered (magenta): initially,
an s-bot navigates independently towards the light source avoiding obstacles
(state Independent Phototaxis, controller MOVE PREFERABLY TOWARDS LIGHT),
and changes to state Anti Phototaxis with controller MOVE AWAY FROM LIGHT

if it perceives a hole or a LED emission of color green, red, or magenta.
After a timeout, the s-bot changes its state to Aggregate with controller
MOVE IN ANY DIRECTION to search for grippable s-bots. Three cases can arise.

In the first case a red LED emission is perceived, and the s-bot changes to
state Self Assembly and controller GRAB ADMISSIBLE LED to grip the perceived
assembly. Once the gripping action completes, the s-bot changes state to Wait

and controller IDLE, turning all its LEDs to magenta, except for the one opposite
to the gripper which is the new tail of the line, and that is hence set to red.

In the second case a magenta LED emission is perceived, and neither a red
LED nor a hole are perceived: the s-bot changes to Search Grippable LED with
controller OUTFLANK EFFECT. Intuitively, the s-bot has perceived an assembly
(i.e. the magenta emission), however it has to search for the tail of the line (i.e. a
red emission). This is the behaviour offered by the controller OUTFLANK EFFECT.
Once a red LED emission is perceived the s-bot changes to state Self Assembly.
If instead a hole is perceived, then, in order to avoid to fall in it, the state of
the s-bot is changed back to Anti Phototaxis. Finally, if for some reason the
assembly is not perceived anymore, then the s-bot reverts to Aggregate.

In the third case, neither assemblies nor holes are perceived, but only single s-
bots (green emissions). As for the other strategies, with probability Prob(seed)

the s-bot becomes the seed of a new assembly (i.e. the head of the line) by
changing its state to Assembly Seed, with controller IDLE. However, differently
from the basic self-assembly response strategy, by resorting to the color magenta
the seed s-bot influences the shape of the assembly by allowing to be gripped only
in the directions opposite to the light source (as depicted in state AS of Fig. 9).
Now, after the expiration of a timeout, if the s-bot has been gripped it changes

21

Figure 9: Variant of the basic self-assembly response strategy where s-bots assemble in lines.

to state Wait with controller IDLE, and sets all its LEDs to magenta. Next,
if no green emissions are perceived it changes in state Connected Phototaxis

and collectively navigates (with its assembly) towards the light source (con-
troller MOVE TOWARDS LIGHT). As for the other strategies, if an s-bot in state
Assembly Seed is not gripped before the expiration of a timeout, or if it perceives
other assemblies, then it changes back to state Aggregate.

6. Analysis of Self-Assembly Strategies

In the early development phases we mainly focused on debugging the imple-
mented strategies by resorting to discrete-event simulations (§6.1). A couple of
trial-and-error iterations were enough for the model to acquire sufficient maturity
to undergo a more rigorous analysis in terms of model checking. Ordinary
model checking is possible (via Maude’s LTL model checker), but it suffers from
the state-space explosion problem, and it is limited to small scenarios and to
qualitative properties. To tackle larger scenarios, and to gain more insights
into the probabilistic model by reasoning about probabilities and quantities, we
resorted to statistical model checking (§6.2).

6.1. Simulations

Simulations are performed thanks to the discrete-event simulator mentioned
in §3.3. Valuable help has been obtained implementing an exporter from Maude
Configuration terms to DOT graphs [22] offering the automatic generation of
images from states, and of animations from images: they have greatly facilitated
the debugging of our code. Fig. 10 illustrates three states of a simulation where
s-bots execute the basic self-assembly response strategy. The initial state (left)
consists of three s-bots (grey circles with small dots on their perimeter) in their
initial state (emitting blue light), a wide hole (the black rectangle) and the target

22

Figure 10: Three states of a simulation: initial (left), assembly (middle), final (right).

of the s-bots, i.e. a light source (the orange circle to the right). After some steps,
two s-bots finally get assembled (middle of Fig. 10), and can safely cross the
hole (right of Fig. 10), while the third one remains in the left part of the arena.

While performing simulations with different scenarios and parameters we
observed several unexpected behaviors, e.g. not-assembled s-bots erroneously
believing to be part of an assembly, and hence moving into the hole. In other
simulations we noticed instead pairs of s-bots grabbing each other. These observa-
tions triggered the following questions: Is there an error in our implementation?
Is there an error in the strategy defined in [7]?

Examining the strategy we discovered that the two behaviors are not disal-
lowed, and that they are originated by the two transitions (see Fig. 2) outgoing
from the state AS (willing to be grabbed). The first transition leads to state W,
triggered by the expiration of a timeout, while the second one leads to state
AGG (willing to grab), triggered by the event See red (i.e. another s-bot willing
to be grabbed). But an s-bot can change from state AS to state W even if no
other s-bot is attached to it; in this case it can evolve to state CP and thus move
towards the target falling in the hole. Considering the other transition, once an
s-bot i grabs an s-bot j, i becomes “willing to be grabbed” (turning on its red
LEDs) to allow other s-bots to connect to the assembly. But now j can pass
from state AS to state AGG, thus trying to grab i. Interestingly, we noted that
the two unexpected behaviors strongly depend on the duration of the timeout:
a short timeout favors the first behaviour, a long timeout favors the second.

We also noted further unexpected or undesired behaviors: for example, an
s-bot may remain stuck in state SA, because no recovery mechanism is provided
for the cases in which an s-bot in state SA fails to assemble with another s-bot.

Are these behaviors actually possible for real s-bots or are they forbidden by
real life constraints (e.g. due to the physical structure of the s-bots or to some
real-time aspects)? Our experience makes it evident that the effectiveness of the
self-assembly strategies of [7] can also depend on the physical and mechanical
properties of s-bots, and therefore these strategies might not be adequate in
general for self-assembling settings where other constraints apply. Luckily,
the three unexpected behaviors can be fixed as depicted in Fig. 8 by adding a
transition from state SA to state AGG, and further conditions to the two mentioned
transitions of the strategy. In particular, the transition from AS to W requires a
further condition to ensure that the s-bot has been gripped, while the transition
from AS to AGG requires that the s-bot is not gripped.

23

6.2. Statistical Model Checking

We resort to statistical model checking (see e.g. [23, 24, 9]) in order to answer
questions like what is the probability that n robots reach the target? Or what is
the expected number of a given measure? The technique, where probabilities and
quantities are estimated, does not yield the absolute confidence of qualitative
or probabilistic model checking, but allow us to analyze (up to some statistical
errors) larger scenarios and to deal with the stochastic nature of probabilistic
systems. This is helpful to compare different strategies on the basis of their
estimated performances. As usual with statistical analysis techniques, we made
our models totally probabilistic, getting rid of all unquantified non-determinism.

We use PVeStA [9], a parallel statistical model checker that evaluates quan-
titative temporal expressions (QuaTEx) [8], allowing to query about expected
values of real-typed properties. Estimations are done with respect to a confidence
interval specified by α and δ: the tool performs n independent simulations, with
n large enough to grant that if a property is estimated as x, then, with probability
(1 − α), its actual value belongs to the interval [x − δ/2, x + δ/2]. There is a
trade-off between the estimation accuracy and the time required to compute it:
the coarser is the confidence interval, the less accurate is the estimation, and
less simulations are required. A presentation of PVeStA and of QuaTEx is out
of the scope of this paper, we refer to [9, 24] for the first and to [8] for the latter.

6.2.1. Assumptions, parameters and hardware specifications.

Experiments ran on a Linux machine with 64 GB of RAM and 48 cores
with 2.00 GHz clock. For all our experiments we fixed α to 0.05, while we used
different δ depending on the range of values of the estimated properties (e.g. 0.05
when estimating probabilities and 0.2 when counting the number of robots
satisfying a given condition). To reach such a level of confidence PVeStA ran
hundreds of simulations for each property, with an average run time per property
of about four hours. We recall from §2 that s-bots have a diameter of 12 cm, and
a maximal speed of 30 cm/s. As discussed in §4, we abstracted arenas to discrete
grids. Each cell can contain at most one s-bot, and it is accordingly dimensioned
(i.e. 12 × 12 cm2). Our representation of s-bot’s actions and perceptions is
influenced by this abstraction: s-bots perform one-step movements to one of
the eight surrounding cells. We fixed 0.6 seconds as the time necessary to move
to an adjacent cell. Similarly, s-bots can grip other s-bots in one of the eight
surrounding cells. In particular, we decided to abstract from the time necessary
to rotate the gripper, and we set to 2 seconds the time to grip an s-bot. In the
same way, s-bots perceptions are limited to the eight surrounding cells, the only
global information perceived being the direction towards the target light source.

6.2.2. Analysis of self-assembly strategies for the hole-crossing scenario

We performed a comparative analysis of the basic self-assembly response
strategy of Fig. 2, our variant of Fig. 8 to get rid of the unexpected behaviors, and
the one of Fig. 9 where s-bots assemble in lines. The aim of these experiments
was twofold: on the one hand we wanted to show that the strategies of Figg. 8

24

Property Scenario BSRS BSRS+ BSRS+LINE BSRS+(NON-VERTICAL)LINE

3-BOTS 0.64 0.00 0.00 0.00
Q0 6-BOTS 0.99 0.00 0.00 0.00

9-BOTS 0.99 0.00 0.00 0.00

3-BOTS 0.58 0.61 0.57 0.96
Q1 6-BOTS 0.88 0.94 0.82 0.99

9-BOTS 0.97 0.97 0.93 1.00

3-BOTS 1.03 1.26 1.20 1.98
Q2 6-BOTS 3.38 3.40 3.16 5.10

9-BOTS 4.75 5.85 5.14 8.04

Table 2: The result of the statistical model checking procedure.

and 9 do not generate the unexpected behaviors arising in (our implementation
of) the original one. We focused on the behaviour in which two s-bots grab
each other, and defined the QuaTEx expression Q0 : What is the probability
that at least two s-bots grab each other in an execution? On the other hand, we
wanted to compare the success rate of the strategies to study the influence of the
unexpected behaviours and of the shape of the assemblies. We thus defined the
QuaTEx expressions Q1 : What is the probability that at least one s-bot reaches
the goal? And Q2 : What is the expected number of s-bots reaching the goal?

Our analysis regarded three configurations: 3 s-bots in a 11 × 7 grid, 6
s-bots in a 12 × 8 grid, and 9 s-bots in a 14 × 10 grid. As usual we fixed a
sufficiently large simulation duration. Finally, we fixed Prob(seed) to 0.7 (i.e.
the probability to become the seed of a new assembly), three times the time
necessary to grip an s-bot as timeout for state AS, and the time necessary to
perform a movement as timeout for state AP.

Summarizing the results, the double gripping behaviour is absent in our two
strategies, while it arises often in the original one. Moreover, our variant depicted
in Fig. 8 exhibits the best success rate both for Q1 and Q2, while the cross hole
line-forming strategy of Fig. 9 does not have the expected performances.

Table 2 details the results of our analysis: “BSRS” stands for basic self-
assembly response strategy (Fig. 2), “BSRS+” stands for our variant (Fig. 8),
and “BSRS+LINE” is the strategy of Fig. 9. The last column “BSRS+(NON-
VERTICAL)LINE” refers to a variant of the strategy of Fig. 9 discussed later.

We already discussed Q0. Considering Q1, we see that if the s-bots execute
our variant of the basic self-assembly strategy, then there is a higher probability
that at least one of them reaches the target for the 3- and 6-BOTS cases. For the
9-BOTS case we have high probabilities for any strategy: clearly, as there are
more s-bots, the probability that at least one reaches the target is pushed closer
to one. Finally, considering Q2, the strategy BSRS+ has the best performances.

Noteworthy, we expected BSRS+LINE to have much better performances.
We suspected that the strategy has low performances due to the fact that often
the formed lines are parallel to the hole, and hence the s-bots fall in it. Note
that the light is perceived from one to three directions: e.g. if the light is
in a position on the right and below with respect to the s-bot, then it will be
perceived from right, down-right and down. In order to confirm this hypothesis

25

we modified the strategy to avoid lines that are parallel to the hole. In the
considered configurations we only have vertical holes, hence it is sufficient to
forbid the seed of the line to turn red the LEDs in direction up and down. The
evaluation of the performances of this new strategy, depicted in the column
BSRS+(NON-VERTICAL)LINE of Table 2, confirms our hypothesis, as they
are much better than the performances of the other strategies.

Figure 11: Ratio of successful robots (Q2).

As previously stated, our aim is
not the design of new self-assembly
strategies, but rather showing how
these can be specified and evaluated
following our approach. In order to
better understand and compare the
performances of the four strategies, in
Fig. 11 we depict the ratio of robots
reaching their target when varying the
number of robots according to Q2. In-
terestingly, what we found is that the
extra time spent in forming lines pays
back if we manage to obtain lines that
are not parallel to the hole.

7. Related Work

We discuss in this section some works that have influenced and inspired us,
together with further related works. We recall that the key characteristics of
our approach are (i) a white-box approach to adaptation based on the notion of
control data; (ii) a hierarchical architecture that provides the basic structure
of the adaptation logic; (iii) computational reflection as the main mechanism
to realize the adaptation logic; (iv) probabilistic rule-based specifications and
quantitative verification techniques to specify and analyze the adaptation logic.
In particular, the above points (ii)–(iv) are discussed in §7.1–7.3, respectively.
For a detailed discussion of point (i) we refer to [1].

7.1. Hierarchical architectures and models for adaptive systems

As we have already mentioned, the hierarchical architecture of our approach
is mainly based on seminal architectural models for autonomic and adaptive
systems like the MAPE-K [2] and the Russian Dolls architectures [17, 6]. We
discuss here some of the approaches that build upon such models as well.

Among those, PAGODA (Policy And GOal based Distributed Autonomy) [21]
is one of the closest as it also relies on the Russian Dolls model and on Maude.
PAGODA is a modular architecture for specifying and prototyping systems
of autonomous cooperating agents. One of the main differences with respect
to our work is that in PAGODA adaptation (called coordination) is mainly
realized by intercepting and manipulating messages (e.g. to monitor and enforce
communication policies) rather than on the meta-programming mechanisms

26

based on reflection adopted in our approach. In this regard, the advantages of
PAGODA are that it can be realized in platforms not supporting computational
reflection and that even if realized in a platform supporting it, controlled objects
can be kept as black boxes that hide their internal behavior which may be
mandatory in those scenarios (different from ours) where code privacy is a key
concern. The advantage of our approach is that computational reflection can be
exploited to realize sophisticated forms of adaptation as already explained in
§3.1.3 and later in §7.2.

From the architectural point of view there are other important differences.
PAGODA imposes a two-layered architecture (the local nodes and the global
system). Similar two-layered structures can be found in other models for adaptive
systems as well (we refer to the examples cited in [1]). Our approach, instead,
allows us to build a hierarchy up to any level which enables us to use different
levels of adaptation. This feature allows the designer to decompose the adaptation
logic into different levels of abstraction, providing a flexible and modular way of
realizing adaptive behaviors. Many approaches featuring more than one layer of
adaptation can be found in the literature (e.g. [25, 26, 27]), as well as examples
of architectures with an arbitrary number of layers (cf. the discussion of [28]).

The component architecture of PAGODA is also different from ours. In
particular, PAGODA components (called nodes or agents) are composed of a
knowledge base, a reasoner, a monitor, a learner, and a hardware abstraction
layer. Similar structures are used in many other agent-oriented systems, since
they provide convenient adaptation mechanisms. An example can be found in
simpAL [29], which combines the concurrent object and actor paradigms. Our
approach does not impose the use of reasoning or learning techniques but they
may be certainly adopted in concrete instances. However, we have preferred
to keep the architecture of nodes as simple as possible to focus mainly on an
explicit representation of control data and basic ingredients for communication.
In addition, we have observed that the self-assembly strategies proposed by the
swarm computing community often adhere to the so-called reactive pattern [30],
typical of reactive agents, which are characterized by the lack of explicit goals
and of sophisticated adaptation mechanism such as planning or learning.

An approach similar in spirit to PAGODA is PobSAM (Policy-based Self-
Adaptive Model) [15], a framework for modelling and analyzing self-adaptive
systems which relies on policies as high-level mechanism to realize adaptive
behaviors. PobSAM combines the actor model of coordination [31] with process
algebra machinery and shares our white-box spirit of separating application and
adaptation concerns. As in PAGODA, the global architecture of the system
has only two layers, composed of managed actors, implementing the functional
behavior of the system, and autonomic manager (meta-)actors, controlling the
behavior of managed actors by enforcing policies (rules that determine under
which condition actors must or must not do a certain action). The configuration
of managers is determined by their sets of policies which can vary (i.e. adapt)
dynamically. The currently active set of policies represents the control data
in this approach. Adaptation is indeed the switch between active policies. So,
despite the differences in the architecture and in the use of reflection (see the

27

discussion on PAGODA and the one in §7.2), PobSAM and our approach share
the idea of having rules as a high-level object of adaptation.

Close to our work is also the composite actor model of [28] which combines
the Russian Dolls and actor models to specify hierarchically composed entities
in a disciplined way by imposing constraints on the contents of some attributes
of actors, and on their interaction. The focus of [28], however is not on adaptive
systems, but rather on well-formedness scheduling criteria to ensure correctness
of statistical model checking techniques (discussed later in §7.3). Self-organising
assembly systems, instead, are addressed in [32] using Maude as specification
language and the Chemical Abstract Machine (CHAM) [33] as architecture
and programming paradigm. CHAM shares some similarities with RRDs in
general and our approach in particular, including the use of (reactive) rule-based
specifications and nested architectures. The approach described in [32], however,
does not rely on reflection nor on quantitative analysis.

There are many other modelling frameworks for adaptive systems based
on hierarchical structures, besides Russian Dolls. A differentiating advantage
of our approach, however, is that each component of an adaptive system (be
it a manager, a managed component, or both) is represented with the same
programming abstraction, allowing us to reuse the same techniques at each layer.

7.2. Reflection-based adaptation

Computational reflection is widely accepted as one of the key instruments
to model and build self-adaptive systems [3], but of course other linguistic
mechanisms can be used as well (see e.g. the discussion of [34]). One of the
main advantages of reflection against other adaptation mechanisms (such as the
previously discussed policy-based adaptation of PAGODA [21] and PobSAM [15])
is that it enables one to perform reasoning based on the actual model of each
controlled object. For instance, a controller can test the reaction of an object
under different (hypothetical) environments and/or explore and solve the non-
deterministic choices of the controlled object. Exploiting such internal models is
widely applied in areas such as Robotics and Control Theory, and it is advocated
as a necessary feature in adaptive software sytems [35]. As a matter of fact, we
use this idea in our case study, where the component of each layer controls which
of the possible actions of the component in the underlying managed component
are available. For instance, the component in layer 0 just exposes all possible
functionalities of the robots which are selected by the basic behaviors of layer 1.
Such mechanisms cannot be immediately realized in policy-based approaches
like the ones discussed above.

A prominent example where reflection plays a major role in the develop-
ment of adaptive systems is the FOrmal Reference Model for Self-adaptation
(FORMS) [18]. Reflection in FORMS implies the presence, besides of base-level
components and computations, of meta-level subsystems and meta-computations
that act on a meta-model. Meta-computations can inspect and modify the
meta-model that is causally connected to the base-level system, so that changes
in one are reflected in the other. This implies some major differences with our
approach which lacks of an explicit notion of meta-model in the FORMS sense,

28

and whose hierarchical architecture forbids a base layer to modify the upper
layer directly (a hot-linking mechanism would be needed to synchronize them).

Another illustrative example that is worth mentioning belongs to the field
of process algebras and consists of studying the suitability of the tuple-space
coordination model of KLAIM [36] as a convenient mechanism for modelling
self-adaptive systems [37]. The authors describe how to adopt in KLAIM three
paradigms for adaptation: two that focus on the language-level, namely, context-
oriented programming [38] and dynamic aspect-oriented programming [16], and
one that focuses on the architectural-level (i.e. MAPE-K). The main idea in all
the cases is to rely on the use of process tuples, that is tuples (the equivalent
of messages in the tuple-space paradigm) that denote entire processes. These
process tuples can be sent by manager components (locations in KLAIM) to
managed components, which can then install them via the eval primitive of
KLAIM. In few words, adaptation is achieved by means of code mobility and
code injection. This is a point in common with our approach even if we do not
consider a particular way of encapsulating code (behavior) such as aspects or
variations (respectively used in the aspect- and context-oriented paradigms).
Interestingly enough, KLAIM and its toolset are used in [39] in order to specify
and analyse collective robotic systems. As in our case, the analysis is based on
statistical model checking. Letting apart the differences, this work shows the
raising interest on the use of high-level, abstract formal modelling and verification
techniques for rapid-prototyping purposes (see also the use of the probabilistic
model checker PRISM in the methodology of [40]).

7.3. Modelling and analysing probabilistic systems with Maude

Moving to the concrete setting of Maude, several works (e.g. [28, 41, 42, 43,
44, 45]) can be found in the literature where probabilistic systems specified by
probabilistic rewrite theories in PMaude [8] are analyzed using probabilistic
analysis methods like statistical model checking. Among others, we highlight
the already mentioned composite actors of [28] and the probabilistic strategy
language of [45]. The authors of the latter face a typical problem that arises
when modelling and analyzing probabilistic systems: one needs to ensure that
the underlying system is free of non-determinism in order to make it amenable
for statistical model checking. Typical solutions are based on imposing certain
conditions and rule formats, or by resorting to ad-hoc solutions like minimizing
the probability of concurrent events. For example, in the above discussed
composite actor models [28] this problem is solved by a transformation which,
provided a system specification satisfying some well-formedness requirements,
exploits the idea of using a (top-level) scheduler of messages, to impose an
ordering of consumption of messages, as proposed in [8, 42]. To cope with the
hierarchical structure (the scheduler and the messages to be scheduled do not
necessarily reside in the same level) messages have to be moved across layers
when scheduled or descheduled. Our approach is similar, as we also resort to a
top-level scheduler of messages. However, rather than moving messages across
layers, we let them be consumed by the cells containing robots, which reside
at the same level of the scheduler. Then messages are transformed in tokens

29

for the outermost layer of a robot, and are used by the outer layers to perform
one-step executions of the managed components (i.e. inner layers). Instead, the
probabilistic strategy language of [45] offers an elegant and flexible solution that
allows to keep the non-determinism in the system, which is solved at the level of
the strategy. Roughly, the idea is to assign probabilities to non-deterministic
transitions by assigning weights to rule matches that are later normalized into
values in the interval [0, 1].

8. Conclusions and further works

The main contributions of our paper are: (1) a description of a generic archi-
tecture for adaptive systems that builds on the white-box approach to adaptation
and the notion of control data [1] together with the MAPE-K architecture and
the Reflective Russian Dolls model; and (2) the validation of our architecture
and of MESSI, its instantiation in Maude, for the early prototyping of adaptive
systems (§5) and for their analysis (§6) exploiting the Maude toolset.

The distinguishing features of our approach are: (i) a white-box approach to
adaptation based on the notion of control data; (ii) a hierarchical architecture
to modularize the design; (iii) computational reflection as the main adaptation
mechanism; (iv) probabilistic rule-based specifications and quantitative verifi-
cation techniques to specify and analyze the adaptation logic. The suitability
of such features has been discussed throughout the paper and is witnessed by
prominent examples from the literature on self-adaptive systems (cf. §7). The
approach can be realized in any framework providing suitable support for (i)–(iv).
In this paper we have shown that Maude is a good candidate and we plan to
investigate the suitability of other frameworks in future work.

We discussed our sources of inspiration in §7, the main ones being early
approaches to coordination and adaptation based on distributed object reflec-
tion [6, 17, 21]. The original contribution of our work does not lie on the
individual features (i)–(iv) but on their combination in a natural, convenient and
flexible way. We consider the support of each individual feature by well-accepted
theories and techniques one of the strongest points of our work. Other interesting
aspects of our work are the clear and neat representation and role of control
data in the architecture, and the fact that, to the best of our knowledge, this is
the first analysis of self-assembly strategies based on statistical model checking.

The case study of self-assembly strategies for robot swarms [7] has contributed
to assess our approach and framework. Overall, the implemented strategies
(§5) and the reuse of a small set of basic controllers witness the generality
and accessibility of our approach, thanks to the modularity provided by our
hierarchical structuring. Moreover, the experimentations show that it is well-
suited for prototyping self-assembly systems in early development stages, and that
the capability of performing and visualizing simulations can be useful to discover
and resolve small ambiguities and bugs of self-assembly strategies. Furthermore,
statistical model checking allows us to estimate quantitative properties of self-
assembly strategies, enabling to compare them at prototypal development stage.

30

Some ongoing work is aimed to improve the overall performance of MESSI
analysis engine. The idea is to extend PVeStA and QuaTEx in order to allow
to query sets of properties at once, by reusing the output of the same group of
simulations for all properties instead of running different simulations for each
property. The tool, called MultiVeStA [46], is under development and its usability
and performance need to be assessed by tackling new case studies and performing
more complex analyses. However, the key challenging question we want to tackle
is: can we exploit the proposed architecture to facilitate also the analysis of
adaptation strategies other than just their design? We envision several paths in
this regard. First, we are investigating how logical reflection can be exploited
at each layer of the architecture, for instance to equip components with formal
reasoning capabilities. Second, we plan to develop a compositional reasoning
technique that exploits the hierarchical structure of the layered architecture.

Acknowledgements

We are grateful to the organizers of the AWASS 2012 summer school for the
opportunity to mentor a case study based on the experience of this paper, and
to Herwig Guggi, Ilias Gerostathopoulos and Rosario Surace for their work. We
are also grateful to the anonymous reviewers for their constructive criticisms.

References

[1] R. Bruni, A. Corradini, A. Lluch Lafuente, F. Gadducci, A. Vandin, A
conceptual framework for adaptation, in: J. de Lara, A. Zisman (Eds.),
FASE 2012, Vol. 7212 of LNCS, Springer, 2012, pp. 240–254.

[2] P. Horn, Autonomic Computing: IBM’s perspective on the State of Infor-
mation Technology (2001).

[3] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, B. H. C. Cheng, Composing
adaptive software, IEEE Computer 37 (7) (2004) 56–64.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, C. L.
Talcott, All About Maude, Vol. 4350 of LNCS, Springer, 2007.

[5] J. Meseguer, Twenty years of rewriting logic, Journal of Logic and Algebraic
Programming 81 (7-8) (2012) 721–781.

[6] C. L. Talcott, Coordination models based on a formal model of distributed
object reflection, in: L. Brim, I. Linden (Eds.), MTCoord 2005, Vol. 150(1)
of ENTCS, Elsevier, 2006, pp. 143–157.

[7] R. O’Grady, R. Groß, A. L. Christensen, M. Dorigo, Self-assembly strategies
in a group of autonomous mobile robots, Autonomous Robots 28 (4) (2010)
439–455.

[8] G. A. Agha, J. Meseguer, K. Sen, PMaude: Rewrite-based specification
language for probabilistic object systems, in: A. Cerone, H. Wiklicky (Eds.),
QAPL 2005, Vol. 153(2) of ENTCS, Elsevier, 2006, pp. 213–239.

31

[9] M. AlTurki, J. Meseguer, PVeStA: A parallel statistical model checking
and quantitative analysis tool, in: A. Corradini, B. Klin, C. Ĉırstea (Eds.),
CALCO 2011, Vol. 6859 of LNCS, Springer, 2011, pp. 386–392.

[10] Maude Ensemble Strategies Simulator and Inquirer (MESSI) (2012).
URL http://sysma.lab.imtlucca.it/tools/ensembles/

[11] R. Bruni, A. Corradini, F. Gadducci, A. Lluch-Lafuente, A. Vandin, Mod-
elling and analyzing adaptive self-assembly strategies with Maude, in:
F. Durán (Ed.), WRLA 2012, Vol. 7571 of LNCS, Springer, 2012, pp.
118–138.

[12] F. Mondada, G. C. Pettinaro, A. Guignard, I. W. Kwee, D. Floreano, J.-L.
Deneubourg, S. Nolfi, L. M. Gambardella, M. Dorigo, Swarm-bot: A new
distributed robotic concept, Autonomous Robots 17 (2-3) (2004) 193–221.

[13] I. Harvey, E. A. D. Paolo, R. Wood, M. Quinn, E. Tuci, Evolutionary
robotics: A new scientific tool for studying cognition, Artificial Life 11 (1-2)
(2005) 79–98.

[14] G. Salvaneschi, C. Ghezzi, M. Pradella, Context-oriented programming: A
programming paradigm for autonomic systems, CoRR abs/1105.0069v2.

[15] N. Khakpour, S. Jalili, C. Talcott, M. Sirjani, M. Mousavi, Formal modeling
of evolving self-adaptive systems, Science of Computer Programming 78 (1)
(2012) 3–26.

[16] P. Greenwood, L. Blair., Using dynamic aspect-oriented programming to
implement an autonomic system, in: R. Filman, M. Haupt, K. Mehner,
M. Mezini (Eds.), DAW 2004, RIACS, 2004, pp. 76–88.

[17] J. Meseguer, C. Talcott, Semantic models for distributed object reflection,
in: B. Magnusson (Ed.), ECOOP 2002, Vol. 2374 of LNCS, Springer, 2002,
pp. 1–36.

[18] D. Weyns, S. Malek, J. Andersson, FORMS: Unifying reference model for
formal specification of distributed self-adaptive systems, ACM Transactions
on Autonomous and Adaptive Systems 7 (1) (2012) 8:1–8:61.

[19] J. Dowling, T. Schäfer, V. Cahill, P. Haraszti, B. Redmond, Using reflection
to support dynamic adaptation of system software: A case study driven
evaluation, in: W. Cazzola, R. J. Stroud, F. Tisato (Eds.), OORaSE 1999,
Vol. 1826 of LNCS, Springer, 2000, pp. 169–188.

[20] J. Andersson, R. de Lemos, S. Malek, D. Weyns, Reflecting on self-adaptive
software systems, in: SEAMS 2009, IEEE Computer Society, 2009, pp.
38–47.

32

http://sysma.lab.imtlucca.it/tools/ensembles/
http://sysma.lab.imtlucca.it/tools/ensembles/

[21] C. L. Talcott, Policy-based coordination in PAGODA: A case study, in:
G. Boella, M. Dastani, A. Omicini, L. W. van der Torre, I. Cerna, I. Linden
(Eds.), CoOrg 2006 & MTCoord 2006, Vol. 181 of ENTCS, Elsevier, 2007,
pp. 97–112.

[22] GraphViz - Graph Visualization Software, http://www.graphviz.org/.

[23] K. Sen, M. Viswanathan, G. Agha, On statistical model checking of stochas-
tic systems, in: K. Etessami, S. K. Rajamani (Eds.), CAV 2005, Vol. 3576
of LNCS, Springer, 2005, pp. 266–280.

[24] K. Sen, M. Viswanathan, G. A. Agha, Vesta: A statistical model-checker
and analyzer for probabilistic systems, in: C. Baier, G. Chiola, E. Smirni
(Eds.), QEST 2005, IEEE Computer Society, 2005, pp. 251–252.

[25] I. Lanese, A. Bucchiarone, F. Montesi, A framework for rule-based dynamic
adaptation, in: M. Wirsing, M. Hofmann, A. Rauschmayer (Eds.), TGC
2010, Vol. 6084 of LNCS, Springer, 2010, pp. 284–300.

[26] A. Bucchiarone, M. Pistore, H. Raik, R. Kazhamiakin, Adaptation of
service-based business processes by context-aware replanning, in: K.-J. Lin,
C. Huemer, M. B. Blake, B. Benatallah (Eds.), SOCA 2011, IEEE Computer
Society, 2011, pp. 1–8.

[27] R. van Renesse, K. P. Birman, M. Hayden, A. Vaysburd, D. A. Karr, Building
adaptive systems using ensemble, Software: Practice and Experience 28 (9)
(1998) 963–979.

[28] J. M. Jonas Eckhardt, Tobias Mühlbauer, M. Wirsing, Statistical model-
checking for composite actor systems, in: N. Mart̀ı-Oliet, M. Palomino
(Eds.), WADT 2012, Vol. 7841 of LNCS, Springer, 2013, pp. 143–160.

[29] A. Ricci, A. Santi, From actors to agent-oriented programming abstractions
in simpal, in: SPLASH 2012, ACM, 2012, pp. 73–74.

[30] G. Cabri, M. Puviani, F. Zambonelli, Towards a taxonomy of adaptive
agent-based collaboration patterns for autonomic service ensembles, in:
W. W. Smari, G. C. Fox (Eds.), CTS 2011, IEEE Computer Society, 2011,
pp. 508–515.

[31] G. Agha, Actors: a model of concurrent computation in distributed systems,
MIT Press, 1986.

[32] R. Frei, G. D. M. Serugendo, T.-F. Serbanuta, Ambient intelligence in
self-organising assembly systems using the chemical reaction model, Journal
of Ambient Intelligence and Humanized Computing 1 (3) (2010) 163–184.

[33] G. Berry, G. Boudol, The chemical abstract machine, Theoretical Computer
Science 96 (1) (1992) 217–248.

33

[34] C. Ghezzi, M. Pradella, G. Salvaneschi, An evaluation of the adaptation
capabilities in programming languages, in: H. Giese, B. H. Cheng (Eds.),
SEAMS 2011, ACM, 2011, pp. 50–59.

[35] R. Calinescu, C. Ghezzi, M. Z. Kwiatkowska, R. Mirandola, Self-adaptive
software needs quantitative verification at runtime, Communications of
ACM 55 (9) (2012) 69–77.

[36] R. De Nicola, G. L. Ferrari, R. Pugliese, KLAIM: A kernel language for
agents interaction and mobility, IEEE Transactions on Software Engineering
24 (5) (1998) 315–330.

[37] E. Gjondrekaj, M. Loreti, R. Pugliese, F. Tiezzi, Modeling adaptation with
a tuple-based coordination language, in: S. Ossowski, P. Lecca (Eds.), SAC
2012, ACM, 2012, pp. 1522–1527.

[38] R. Hirschfeld, P. Costanza, O. Nierstrasz, Context-oriented programming,
Journal of Object Technology 7 (3) (2008) 125–151.

[39] E. Gjondrekaj, M. Loreti, R. Pugliese, F. Tiezzi, C. Pinciroli, M. Brambilla,
M. Birattari, M. Dorigo, Towards a formal verification methodology for
collective robotic systems, in: T. Aoki, K. Taguchi (Eds.), ICFEM 2012,
Vol. 7635 of LNCS, Springer, 2012, pp. 54–70.

[40] M. Brambilla, C. Pinciroli, M. Birattari, M. Dorigo, Property-driven design
for swarm robotics, in: AAMAS 2012, IFAAMAS, 2012, pp. 139–146.

[41] J. Meseguer, R. Sharykin, Specification and analysis of distributed object-
based stochastic hybrid systems, in: J. Hespanha, A. Tiwari (Eds.), HSCC
2006, Vol. 3927 of LNCS, Springer, 2006, pp. 460–475.

[42] M. AlTurki, J. Meseguer, C. A. Gunter, Probabilistic modeling and analysis
of DoS protection for the ASV protocol, in: D. J. Dougherty, S. Escobar
(Eds.), SecReT 2008, Vol. 234 of ENTCS, Elsevier, 2009, pp. 3–18.

[43] M. Wirsing, J. Eckhardt, T. Mühlbauer, J. Meseguer, Design and analysis
of cloud-based architectures with KLAIM and Maude, in: F. Durán (Ed.),
WRLA 2012, Vol. 7571 of LNCS, Springer, 2012, pp. 54–82.

[44] J. Eckhardt, T. Mühlbauer, M. AlTurki, J. Meseguer, M. Wirsing, Stable
availability under denial of service attacks through formal patterns, in:
J. de Lara, A. Zisman (Eds.), FASE 2012, Vol. 7212 of LNCS, Springer,
2012, pp. 78–93.

[45] L. Bentea, P. C. Ölveczky, A probabilistic strategy language for probabilistic
rewrite theories, in: N. Mart̀ı-Oliet, M. Palomino (Eds.), WADT 2012, Vol.
7841 of LNCS, Springer, 2013, pp. 77–94.

[46] S. Sebastio, A. Vandin, MultiVeSta: Statistical model checking for discrete
event simulators, in: ValueTools 2013, ACM, 2013, to appear.

34

	Introduction
	Case Study: Self-Assembling Robot Swarms
	An Architectural Approach to Adaptive Systems
	Inspiring Guidelines and Motivations
	A White-Box Perspective on Adaptation Based on Control Data
	Hierarchical Structure and the MAPE-K Architecture
	Computational Reflection
	Rule-based specifications and quantitative analysis

	A Generic Architecture for Self-Adaptive Systems
	Intra-layer architecture
	Inter-layer architecture

	Instantiation of the Architecture to the Robotic Case Study
	Mapping the Self-Assembly Strategy over the Architecture

	MESSI: Maude Ensemble Strategies Simulator and Inquirer
	Rewriting Logic, Maude and the Reflective Russian Dolls
	Implementation Details
	On the structure of adaptive components and of the simulator
	Rules of adaptive components
	Implementation of the Predefined Basic Controllers for Layer 1

	Design of Self-Assembly Strategies
	A Self-Assembly Strategy for Line-Forming Scenarios
	Self-Assembly Strategies for Hole-Crossing Scenarios

	Analysis of Self-Assembly Strategies
	Simulations
	Statistical Model Checking
	Assumptions, parameters and hardware specifications.
	Analysis of self-assembly strategies for the hole-crossing scenario

	Related Work
	Hierarchical architectures and models for adaptive systems
	Reflection-based adaptation
	Modelling and analysing probabilistic systems with Maude

	Conclusions and further works

