
Programming and Verifying
Component Ensembles ?

Rocco De Nicola1, Alberto Lluch Lafuente1, Michele Loreti2,
Andrea Morichetta1, Rosario Pugliese1, Valerio Senni1, and Francesco Tiezzi1

1 IMT Institute for Advanced Studies Lucca, Italy
2 Università degli Studi di Firenze, Italy

Abstract. A simplified version of the kernel language SCEL, that we call
SCELight, is introduced as a formalism for programming and verifying
properties of so-called cyber-physical systems consisting of software-
intensive ensembles of components, featuring complex intercommuni-
cations and interactions with humans and other systems. In order to
validate the amenability of the language for verification purposes, we
provide a translation of SCELight specifications into Promela. We test the
feasibility of the approach by formally specifying an application scenario,
consisting of a collection of components offering a variety of services
meeting different quality levels, and by using SPIN to verify that some
desired behaviors are guaranteed.

Keywords: Cyber Physical Systems, Component-based Systems, Formal
Methods, Process Calculi, Verification, Model Checking

1 Introduction

Nowadays much attention is devoted to software-intensive cyber-physical systems.
These are systems possibly made of massive numbers of components, featuring
complex intercommunications and interactions with humans and other systems
and operating in open and unpredictable environments thus needing to dynami-
cally adapt to new requirements, technologies and contextual conditions. Such
classes of systems include the so-called ensembles [1] and systems of systems [2],
mainly characterized by the idea of assembling or aggregating groups of au-
tonomous components, which may be independently controlled and managed,
and whose interaction may be cooperative or competitive.

The design and the analysis that these classes of systems meet the expectations
of their users pose big challenges to language designers and software engineers.
The problem for language designers is to provide the right set of programming
abstractions together with the formal machinery that permits guaranteeing
that the expected behavior is exhibited. To deal with the above mentioned
challenges, in [3] we have introduced the kernel language SCEL that permits
? Research supported by the European projects IP 257414 ASCENS and STReP 600708
QUANTICOL, and the Italian PRIN 2010LHT4KM CINA.

governing the complexity of such systems by providing flexible abstractions, by
enabling transparent monitoring of the involved entities and by supporting the
implementation of self-* mechanisms such as self-adaptation. The key concepts of
the language are those of Behaviors, Knowledge, Aggregations and Policies that
have proved fruitful in modelling autonomic systems from different application
domains such as, e.g., collective robotic systems [3,4], service provision and
cloud-computing [5,6,7], and cooperative e-vehicles [8].

One of the distinguishing features of SCEL is the use of flexible, group-
oriented, communication primitives that allows one to implicitly select the set of
components to communicate with, by evaluating a given predicate P used as the
target. When a communication action has predicate P as a target, it will involve all
components that satisfy P . For example, if a system contains elements that export
attributes such as serviceProvided and QoS and one would like to program a
component willing to interact with all the components that provide a service s and
offer a QoS above q, (s)he can use the predicate serviceProvided = s ∧QoS > q
to select the component’s partners.

Contribution. This paper presents a first step towards using SCEL and the SPIN
model checker [9] for guaranteeing systems properties. For ease of presentation
we introduce a simple variant of SCEL that we call SCELight. We provide a
translation of SCELight specifications into Promela, that is the input language
of SPIN, and show how to exploit it to verify ensemble-based scenarios with
SPIN. We test feasibility of the approach by considering an application scenario,
borrowed from [5], consisting of a collection of components offering a variety of
services meeting different quality levels.

Structure of the paper. The rest of the paper is organized as follows. In the
next section, we introduce our application scenario that will be used also to
describe the language constructs. In Section 3 we introduce syntax and informal
semantics of SCELight, while in Section 4 we describe our translation and its
intricacies demanded by the significantly different nature of SCELight and Promela.
In Section 5 we show how SPIN can be used to check and verify properties of
SCELight specifications, by relying on the translation into Promela of the SCELight
specification of the scenario presented in Section 3. Finally, Section 6 concludes
by also touching upon directions for future work.

2 A Service Provision Scenario

We consider an application scenario, borrowed from [5], consisting of a collection
of components offering a variety of services. Each component manages and
elaborates service requests with different requirements, roughly summarized by
the following three service quality levels: gold, silver and base. These requirements
are defined via a combination of predicates on the hardware configuration and
the runtime state of the provider components. For example, the runtime state
can give a measure of the number of service requests currently handled locally.

SILVER

SILVER

GOLD

GOLD

BASE

BASE

SILVER ENSEMBLE

CLIENT

qry(factorial)@SILVER

SILVER

factorial

factorial

factorial

storage

Fig. 1. Group-oriented communication in the service provision scenario

Notice that the hardware measure is static while the load estimate is dynamically
updated whenever a component receives or completes a service request.

The quality of service, hence, implicitly defines three ensembles, which group
together service provider components according to the quality requirements they
are able to provide. Clearly, since the quality of service depends on the component
state, ensembles are dynamic and components do not need to explicitly migrate
from one ensemble to the other: their change of state will implicitly entail their
membership to ensembles. The requirements characterizing the three ensembles
of service providers are:

– Gold: components must have a high level of hardware configuration, i.e. a
hardware level greater or equal to 7;

– Silver : components must provide a hardware configuration with a level that
is at least 4 and, whenever a component provides a hardware level over 7, the
computational load must be less than 40%; this latter condition guarantees
that gold components can handle requests at silver level only when their
computational load is under 40%;

– Base: components can have any hardware level, however if they are also gold
or silver components then their computational load must be under 20% or
40%, respectively.

We remark that components dynamically and transparently leave or enter an
ensemble when their computational load changes. For instance, a gold component
leaves a silver ensemble when its computational load becomes higher than 40%.

Let us now consider a client component willing to submit a request for service
factorial, which remotely computes the factorial of a natural number. Let us
further assume that the client is interested in having the service from a silver-
quality provider, to ensure the result to be provided within a reasonable amount
of time (i.e., on a quite fast, light-loaded server). Before submitting its request,
this component interacts with the ensemble of silver components searching a

provider of the factorial service. This search is done by taking advantage of the
group-oriented communication (Figure 1), which allows the client to dynamically
identify a component that exposes the service factorial at the wanted silver
service level. If more than one provider component meets these requirements, one
of them will be non-deterministically selected. Then, the client posts the actual
request to the selected component and waits for the result.

Notice that the application scenario discussed above exploits different forms
of communication. First, the invoking client uses group-oriented communication
to identify the component that is able to handle specific service request. Then,
point-to-point communication is used for client-server interaction.

3 The SCELight Language

Knowledge
K

Processes

P

I Interface

Fig. 2. A SCELight component

SCEL (Software Component Ensemble
Language) [3] is a language for program-
ming service computing systems in terms
of service components aggregated accord-
ing to their knowledge and behavioural
policies. To enhance flexibility with respect
to different application domains, SCEL is
parametric with respect to the language
for expressing policies, the predicate reg-
ulating component interactions, and the
notion of knowledge.

For ease of presentation we consider in this work an instantiation of SCEL
named SCELight, where no policy language is provided, the interaction predicate
interprets the composition of component’s processes as a standard interleaving,
and knowledge repositories are implemented as multiple distributed tuple-spaces
à la Klaim [10]. Moreover, SCELight does not include other sophisticated features
of SCEL such as higher-order communication and dynamic creation of new names
and components. Last, SCELight includes a specific primitive for atomically
updating attribute values, and replaces the non-deterministic choice of SCEL
by an ordinary conditional choice. These two standard control flow constructs,
that are part of the syntax of Promela, simplify the specification task and can be
easily realized in SCEL.

The basic ingredient of SCELight is the notion of (service) component I[K, P],
graphically depicted in Figure 2, that consists of:
1. An interface I publishing and making available structural and behavioural

information about the component itself in the form of attributes, i.e. names
acting as references to information stored the component’s repository.

2. A knowledge repository K managing both application and awareness data,
together with specific handling mechanisms. It stores also the information
associated to the interface.

3. A process P that can execute local computations, coordinate interaction with
the knowledge repository or perform adaptation and reconfiguration.

Definitions: Systems:
D ::= ∅

∣∣ A(f̄) , P
∣∣ D1, D2 S ::= I[K, P]

∣∣ S1 ‖ S2

Knowledge: Items: Templates:
K ::= ∅

∣∣ 〈t〉
∣∣ K1 ‖ K2 t ::= e

∣∣ t1, t2 T ::= v
∣∣ x

∣∣ ? x
∣∣ T1, T2

Processes: Targets:
P ::= nil

∣∣ a.P
∣∣ if (e) then P1 else P2

∣∣ P1 | P2
∣∣ A(ū) c ::= n

∣∣ P

Actions: Names:
a ::= get(T)@c

∣∣ qry(T)@c
∣∣ put(t)@c

∣∣ attr := e n ::= i
∣∣ x

Table 1. SCELight syntax

A SCELight specification is a pair 〈D, S〉 grouping together a set of process
definitions D and a system S. The syntax of definitions and systems is
presented in Table 1. A (recursive) process definition has the form A(f̄) , P , with
A, f̄ and P denoting a process identifier, a list of formal parameters, and a process,
respectively. We will use ū to denote a list of actual parameters. Definitions
can be dynamically activated by processes running in system components. We
assume that each process identifier has a single definition. Systems aggregate
components through the composition operator _ ‖ _ .

Knowledge. A Knowledge repository K is a tuple-space, i.e. a (possibly empty)
multiset of stored tuples 〈t〉, composed by the operator _ ‖ _ . Tuples are
knowledge items consisting of sequences of values. Such values can result from
the evaluation of some given expression e. We assume that expressions may
contain attribute names attr, values v (i.e., component identifiers i, strings and
integers), and variables x, together with the corresponding standard operators.
To pick a tuple out from a tuple-space by means of a given template T (i.e., a
sequence of values and variables), the pattern-matching mechanism is used: a tuple
matches a template if they have the same number of elements and corresponding
elements have matching values or variables; variables match any value of the
same type (? x is used to bind variables to values) and two values match only if
they are identical. If more than one tuple match a given template, one of them is
arbitrarily chosen.

Processes and Actions. Processes are the active computational units. Each
process is built up from the inert process nil via action prefixing (a.P), conditional
choice (if (e) then P1 else P2), parallel composition (P1 | P2), and parametrized
process invocation (A(ū)). Processes can perform four different kinds of actions.
Actions get(T)@c, qry(T)@c and put(t)@c are used to manage shared knowledge
repositories by withdrawing/retrieving/adding information items from/to the
knowledge repository identified by c. These actions exploit templates T to select
knowledge items t from the repositories. They are implemented by invoking
the handling operations provided by the knowledge repository. Action attr := e
atomically assigns the value of e to attr and, differently from the other actions,

it is not indexed with an address because it always acts locally. Actions get and
qry are blocking and, thus, may cause the process executing them to wait for the
wanted element if it is not (yet) available in the knowledge repository. The two
actions differ for the fact that get removes the retrieved item from the target
repository while qry leaves the repository unchanged. Actions put and := are
instead immediately executed.

Different entities may be used as the target c of an action, namely a component
name n (in case of point-to-point communication) or a predicate P (in case of
group-oriented communication). In fact, in an action using a predicate P to
indicate the target, the predicate acts as a ‘guard’ specifying all components that
may be affected by the execution of the action, i.e. a component must satisfy P to
be the target of the action. Thus, the set of components satisfying a given predicate
used as the target of a communication action can be considered as the ensemble
with which the process performing the action intends to interact. A predicate
is a boolean-valued expression obtained by applying standard operators to the
results returned by the evaluation of relations between components’ attributes
and expressions. Notably, an attribute name occurring in a predicate refers to an
attribute within the interface of the object components (i.e., components that
are target of the communication action).

The service provision scenario in SCELight. The application scenario introduced
in Section 2 can be formalized in SCELight as the following specification

〈D, Ic1 [Kc1 , Pc1] ‖ . . . ‖ Icn [Kcn , Pcn] ‖ Ip1 [Kp1 , Ap1] ‖ . . . ‖ Ipm [Kpm , Apm]〉

consisting of a composition of n clients Ich
[Kch

, Pch
] and m providers Ipj [Kpj , Apj].

The latter ones are dynamically organised in ensembles according to requirements
expressed in terms of suitable attributes exposed in the components’ interfaces.
In particular, we assume that attributes named hw and load are provided by
each component. The former can take an integer value from 0 to 10 that gives
an indication of the capacity of the hardware configuration of the component,
while the latter can take an integer value from 0 to 100 that estimates the actual
computational load of the component. The values of such attributes can be
dynamically changed through actions hw := e1 and load := e2. Each service
component also stores in its knowledge repository a collection of items indicating
the available services, together with their component identifier. For example, the
provider pj offering the factorial service stores in its local repository the item
〈“service”, “factorial”, ipj 〉. Note that including the identifier in the tuple publish-
ing the service is fundamental as the group-oriented communication primitives are
completely anonymous, i.e. the actual objects of a group-oriented communication
action are not known to the subject.

The three ensembles of gold, silver and base service providers are characterized
by the following predicates:

Pg , (hw ≥ 7)
Ps , (4 ≤ hw < 7) ∨ (Pg ∧ load < 40)
Pb , (hw < 4) ∨ (Ps ∧ load < 40) ∨(Pg ∧ load < 20)

Each client component ch runs the process Pch
, that takes care of the interac-

tion with the factorial service and is of the form

qry(“service”, “factorial”, ?x)@Pk.
put(“invoke”, “factorial”, v, ich

)@x.
get(“result”, “factorial”, ?y)@ich

. P ′
ch

for some service level k in {b, s, g} and some argument v for the factorial function
the client would like the server to execute.

In words, such process first searches, via a qry action, among the components
belonging to the ensemble identified by predicate Pk, an item matching the
template (“service”, “factorial”, ?x). In this way, by taking advantage of group-
oriented communication, the client is able to dynamically identify a component x
that provides the factorial service at the desired service level k. Then, via a put
action, the process invokes the selected service, in a point-to-point fashion, by
providing the actual parameter v of the request. After issuing the invocation, the
process waits for the result (recall that action get is blocking). Whenever the
result of the service invocation is made available, the process can withdraw it
from the local repository and continue as process P ′

ch
.

Each server ipj
runs the process Apj

defined in D as:

Apj , get(“invoke”, “factorial”, ?x, ?y)@ipj .
load := load + 20.
(Apj

| Q(x, y))

The process is triggered by a client request. Whenever this happens, the compu-
tational load is updated; we assume that each service instance uses 20% of the
sever’s capacity. Then, the factorial service becomes again ready to serve other
client requests, and the process Q, which actually computes the result of the
invoked service for the current request, is executed. We assume that, before its
termination, process Q updates the value of attribute load, and puts the result
of the computation in the repository of the client.

4 Translating SCELight into Promela

In this section we introduce the translation of SCELight specifications into Promela
in order to verify ensemble-based scenarios with the model checker SPIN. The
translation is formally defined by a family of functions J·K.

Specifications. Given a SCELight specification 〈D, S〉, function J·K in Figure 3
returns a Promela specification containing the declaration of the necessary data
structures for representing interfaces, knowledge, components and processes. Data
structures representing interfaces and knowledge repositories are declared with a
global scope; in this way, attributes and knowledge items can be directly accessed
by Promela processes.

J〈D, S〉K = /* The type of the interface as a struct of attributes */
typedef interface{

int attr_1;
. . .
int attr_w;

}

/* A component-indexed array of interfaces */
interface I[cNum(S)];

/* Component-indexed array of knowledge repositories */
chan K[cNum(S)] = [capacity] of { int, . . . , int︸ ︷︷ ︸

max(S,D)

}

int initialized = 0;

/* process definitions */
JDKmax(S,D),cNum(S)−1

/* Component specifications */
JSKmax(S,D),cNum(S)−1

Fig. 3. Translation of SCELight specifications

Interfaces. The translation declares a structured type interface as a collection of
(integer) variables, one for each attribute; we assume that all components expose
the same set of attributes {attr1, . . . , attrw}. All interfaces are then recorded in
the array I, whose size is computed by function cNum(S), which returns the
number of components in S.

Repositories. All knowledge repositories are grouped together in the array K.
Each repository is implemented as a channel of tuples of length max(S, D), which
corresponds to the maximum length of items used in the definitions D and system
S. To simplify message management in Promela, all tuples have the same length
and are composed only of integer values. To fulfil this assumption, messages
representing shorter items are completed by using dummy values (see Figure 8),
while string values are converted into integers in a pre-processing phase. The
dimension of repositories is set by means of the parameter capacity (its value
depends on the application domain).

Initialization and Process -Definitions. The translation also initializes a counter
(initialized) used to implement a barrier that guarantees that all processes
start their execution when all initializations of interface attributes and knowledge
repositories is terminated. Finally, an auxiliary function J·Km,` is used to individ-
ually translate the process definitions and the system components. This function
is parameterized by the maximum length of items m and the highest component
index (ranged from 0 to cNum(S)− 1) necessary to properly translate SCELight
processes in D and S.

JD1, D2Km,` = JD1Km,` JD2Km,` JS1 ‖ S2Km,` = JS1Km,` JS2Km,`

JA(f̄) , P Km,` = proctype A(f̄) { run A_0(f̄) } JP Km,`,i,f̄∪var(P)
A_0

JIi[Ki, Pi]Km,` = active proctype c_i {
atomic {

/* Attribute initialization */
I[i].attr_1 = Ii.attr1; . . . I[i].attr_w = Ii.attrw;

/* Knowledge repository initialization */
∀ t ∈ Ki : K[i]!JtK;

/* Increment initialization counter */
initialized++;

}
/* Start when all components are initialized */
initialized == ` + 1 -> run c_i_0(0̄)

}
JPiKm,`,i,var(Pi)

c_i_0

Fig. 4. Translation of definitions and system components

Process Definitions. The translation of process definitions and system components
is reported in Figure 4. A definition A(f̄) , P is rendered as a declaration of a
Promela process (via the proctype construct) with the same name and parameters
A(f̄), and followed by the translation of P . As clarified later, the latter is another
process declaration that will be activated by the run operator within the body
of the process declaration A.

Components. The translation of a component Ii[Ki, Pi] corresponds again to a
process declaration, with name c_i, that initializes the data structures modelling
the component attributes and its knowledge repositories with values in Ii and Ki.
Notably, differently from all other process definitions, component translations are
automatically instantiated in the initial system state (by means of the keyword
active). Since the repository is modelled as a channel K[i], the insertion of (the
translation of) an item is performed by means of a send operation (!). When
all initializations are completed, the execution of the translation of Pi, defined
immediately after c_i, is triggered. Such translation is defined as a function
J·Km,`,i,x̄

p parameterized, besides by m and `, also by the process index i, the set
x̄ of variables used in the SCELight process (identified by functions var(·) and
passed as parameters from a process to another) and the name p to be used
for the process declaration to generate unique process names. To guarantee the
uniqueness of process declaration names, for each component i the names of its
declarations are prefixed by c_i_0 and are built by adding a character for each
translated construct: 0 for action prefix, t or f for conditional choice (depending
on the branch), l or r for parallel composition (depending on the side).

JnilKm,`,i,x̄
p = proctype p(x̄) { }

Ja.P Km,`,i,x̄
p = proctype p(x̄) { JaKm,`; run p0 }

JP Km,`,i,x̄
p0

Jif (e) then P1 else P2Km,`,i,x̄
p = proctype p(x̄) {

if
:: atomic{ e -> run pt }
:: atomic{ else -> run pf }

fi
}
JP1Km,`,i,x̄

pt

JP2Km,`,i,x̄
pf

JP1 | P2Km,`,i,x̄
p = proctype p(x̄) { atomic { run pl; run pr } }

JP1Km,`,i,x̄
pl

JP2Km,`,i,x̄
pr

JA(ū)Km,`,i,x̄
p = proctype p(x̄) { run A(ū) }

Fig. 5. Translation of processes

Processes. The translation of processes is reported in Figure 5. Each SCELight
process is naturally translated into a Promela process declaration. The base cases
are the translations of the empty process nil and call A(ū), which consist of an
empty declaration and a declaration containing only a run statement (see the
translation of definitions in Figure 4), respectively. In case an action prefixing
a.P , the process declaration contains the translation of a, which models the
action execution, while the translation of the continuation P is outside the
declaration and is activated only after the termination of the action execution.
The translation of the other constructs, namely conditional choice and parallel
composition, is similar and straightforwardly relies on the Promela constructs
for selection (if . . . fi) and for the parallel execution of processes (via multiple
run statements). Both cases use an atomic block: in case of conditional choice,
it just aims at reducing the complexity of the verification model (by restricting
the amount of interleaving), while in case of parallel execution this ensures the
simultaneous activation of the parallel processes.

Actions. Translation J·Km,`,i of actions is defined in Figure 6. It is worth noticing
that in most cases atomic blocks are used to guarantee atomic execution of
the actions. We also recall that the FIFO receive operations of Promela on
asynchronous channels are q?m (remove the first message from channel q if it
matches m and update the variables in m accordingly); q?<m> (test if the first
message on channel q matches m and update the variables in m accordingly); and
q?[m] (test if the first message on channel q matches m without side-effects on
the variables of m). In addition, Promela provides three so-called random receive

Jget(T)@nKm,`,i = atomic{ K[n]???JT Km }

Jget(T)@PKm,`,i = if
:: atomic {P |0 && K[0]??[JT Km] -> K[0]???JT Km }
...
:: atomic {P |` && K[`]??[JT Km] -> K[`]???JT Km }

fi

Jqry(T)@nKm,`,i = atomic{ K[n]???<JT Km> }

Jqry(T)@PKm,`,i = if
:: atomic {P |0 && K[0]??[JT Km] -> K[0]???<JT Km> }
...
:: atomic {P |` && K[`]??[JT Km] -> K[`]???<JT Km> }

fi

Jput(t)@nKm,`,i = K[eval(n)]!JtK;

Jput(t)@PKm,`,i = atomic{
int j=0;
do

:: j == ` -> break
:: P |j -> K[j]!JtK; j++
:: else -> j++

od
}

Jattr := eKm,`,i = I[i].attr = e;

Fig. 6. Translation of actions

variants of the previous ones (denoted with ?? in place of ?), which remove/test
the oldest tuple matching the pattern instead of the first one.

i = len(q);
do

:: q??m -> break
:: i>0 -> q??m; q!m; i--

od

Fig. 7. Abbreviation q???m

A point-to-point action get(T)@n is basi-
cally modeled as a (pattern-matching-based)
receive operation (???) on the channel
K[eval(n)] corresponding to the knowledge
repository of the component identified by n.
Note that q???m is not the primitive Promela
operation q??m but an abbreviation defined in
Figure 7. The receive operation q??m does en-
code the semantics we need since it removes the
oldest tuple in the channel among those matching the template m and not any
of them as required by the semantics of get. The abbreviation q???m ensures a
non-deterministic removal by non-deterministically choosing between (i) removing
the oldest matched item and (ii) looping after reinserting the oldest matched
item in the queue so that it becomes the newest such item. The latter can be

JT Km = JT K,_, . . . ,_︸ ︷︷ ︸
m−|T |

JvK = v JxK = eval(x) J? xK = x; JT1, T2K = JT1K, JT2K

JeK = e Jt1, t2K = Jt1K, Jt2K

Fig. 8. Translation of templates and items

attempted as many times as the size of q to ensure termination and it guarantees
that all possible messages matching m will be considered.

A group-oriented action get(T)@P is translated as a non-deterministic choice
among a set of input actions on each repository. In particular, for each repository
i there is a branch guarded by P |i && K[i]??[JT Km] which will ensure the
transition to fire only if the target predicate holds for component i and i has a
matching item in its repository. If that is the case the item is indeed removed
using again the non-deterministic input operation in K[i]???JT Km.

Actions qry(T)@n and qry(T)@P are translated in the same way, except for
the use of the non-consuming variant (???< . . . >) of the receive operation, while
a point-to-point put action is simply translated as a send operation (!) on the
appropriate channel, while the group-oriented one consists of a loop that sends
the tuple to the repositories of all components satisfying the target predicate.
The selection statement permits ignoring the components that do not satisfy the
predicate (in fact, the put action is non-blocking).

Action attr := e is straightforwardly translated as an assignment of expression
e to the attribute attr exposed in the interface of the proper component (the
latter is identified by the parameter i of the translation function).

Templates and Items. Function J·Km (Figure 8) returns a template of length m by
concatenating the translation of the template given as argument with a sequence
of so-called hidden variables (denoted by “_”). The translation functions JT K
and JtK are straightforward. Filling the tuple with dummy values is not needed
in the translation of items; this is automatically done by SPIN. It is worth to
recall as well that function eval(·), instead, is used for evaluating variables and
protecting them from assignments in the matching mechanism.

5 Verification

We illustrate in this section some examples of how SPIN can be used to check
and verify properties of SCELight specifications, by resorting to the translation
of the SCELight specification of the scenario presented in Section 3.

Checking Deadlock Absence. One first property one would like to check is absence
of deadlocks. Obviously not every instance of our scenario is deadlock free. Indeed,
if the instance contains clients requiring a service that is not offered by any server
or that cannot be served at the required quality level, deadlocks may arise since
SCEL input operations have blocking semantics. Notably, the system can have

valid terminal states as well, since clients gracefully terminate after successfully
receiving the results from servers.

Below, we report an example result of invoking SPIN for checking deadlock
absence in an instance of our scenario with 3 servers with different hardware
configurations and 5 clients invoking the services offered by the servers:

State-vector 1828 byte, depth reached 81, errors: 0
3849511 states, stored

The result is positive (no errors) and SPIN explores a few millions of states.

Checking Server Overload. Another typical use of SPIN that is very convenient
for our purposes is to look for interesting executions by characterizing them by
means of an LTL formula and asking SPIN for a counterexample. For example,
in our scenario, to obtain system runs overloading the server si we can specify a
formula � Isi .load ≤ 100, which states that server si will never be overloaded.

Indeed, if we check the above invariant in an instance of our scenario with one
gold server and 6 clients requiring a gold service, SPIN returns a counterexample

pan:1: assertion violated !(!((I[0].load<=100))) (at depth 145)
pan: wrote client-server-scenario.pml.trail

which consists of an execution of the system, i.e. a trail (stored in the file
client-server-scenario.pml.trail), in which the server accepts and executes
the six requests concurrently, which causes its load to be 6× 20% = 120%. One
may think that if the clients request a base service, it would not be possible to
overload the server, as the gold server will accept to serve only a few base requests
concurrently. Actually, this is not true. The reason is that even if a gold server
will belong to the base ensemble only if its load is below 20%, it may be identified
as a target by several concurrent clients before actually accepting any service
request (and hence updating its load). Indeed, SPIN provides a counterexample
also for the above property for a configuration with gold server and 6 clients
sending base requests. Of course, the problem raised by this verification result
can be easily fixed by changing the servers specification in order to check the
load value before accepting additonal requests.

Checking Responsiveness. Finally, we show an example of a typical liveness
property expressing the fact that clients are guaranteed responsiveness: whenever
a client invokes the factorial service, it will eventually get a result. This can be
formalized with the usual LTL formulae of the form �(request → ♦response).
SPIN provides positive answers for all possible instances of our scenario, since
once a client finds an appropriate server for the required service, the server cannot
avoid providing the service.

6 Concluding remarks

We have presented a formal approach to the specification and verification of
ensemble-based systems, by providing a translation of SCELight specifications

into Promela, the specification language of the SPIN model checker. SCELight
is a dialect of the SCEL specification language specifically devised in the EU
project Ascens [11] for modelling autonomic, ensemble-based, systems. We have
illustrated our approach by verifying a few properties of a service provision
scenario. The presented approach enriches the toolset support for SCEL-based
engineering of ensemble systems, which currently includes statistical model
checking in MiScel [12], the Maude-based SCEL interpreter, and run-time testing
with jRESP [13], the Java-based run-time environment for SCEL.

As future work, we plan to continue our programme to verify ensemble-based
systems by pursuing different lines of research. The proposed approach will be
enhanced by optimizing the generated Promela code to enable a more efficient
verification, e.g. by reducing the number of process declarations and invocations,
which is actually only required to deal with parallel composition and recursion.
Moreover, to foster the practical application of the approach, the SCELight to
Promela translation will be implemented in a standard programming language, like
Java, by resorting to supporting framework specifically devised for this purpose
like Xtext [14]. From a more theoretical perspective, we intend to formally prove
that the presented encoding is sound and complete with respect to the operational
semantics of SCEL and Promela.

We also plan to extend the work by considering the SCEL constructs not
included in SCELight. The main challenge will be to treat the dynamic creation
of new names and components for which SPIN does not offer any (efficient)
verification support. Some techniques have been proposed to deal with dynamic
aspects of software in SPIN (see e.g. [15,16]), but they are not included in the
official SPIN distribution. To deal with dynamicity, we plan to investigate the
use of other verification tools that provide a better support to these features.
We plan also to consider the possibility of using the operational semantics of
SCEL as a starting point to generate systems descriptions that can be provided
as input to the BIP toolset. The challenge here is understanding if the dynamic
part of full SCEL specifications can be “constrained” to provide a full model to
be analyzed in BIP and if Dy-BIP [17], the extension of BIP [18] to deal with
dynamic architectures, will do a better service.

Finally, another promising line of research that we intend to explore concerns
the extension of Promela and BIP, with primitives for group-oriented communica-
tion. In fact, on the one hand, the suitability of SCEL to model ensemble-based
systems points out the benefits of such form of communication in this application
domain. On the other hand, avoiding specification translations would improve
efficiency of the verification and, hence, its effectiveness.

References

1. Project InterLink: http://interlink.ics.forth.gr (2007)
2. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwiatkowska, M.Z.,

McDermid, J.A., Paige, R.F.: Large-scale complex IT systems. Commun. ACM
55(7) (2012) 71–77

http://interlink.ics.forth.gr

3. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL Language. ACM Transactions on Autonomous
and Adaptive Systems (2014) To appear, available as Technical Report from
http://eprints.imtlucca.it/2117/.

4. Cesari, L., De Nicola, R., Pugliese, R., Puviani, M., Tiezzi, F., Zambonelli, F.:
Formalising Adaptation Patterns for Autonomic Ensembles. In: Proc. of the 10th
International Symposium on Formal Aspects of Component Software (FACS’13).
LNCS, Springer (2014)

5. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A Language-based Approach
to Autonomic Computing. In: FMCO 2011. LNCS 7542, Springer (2012) 25–48
http://rap.dsi.unifi.it/scel/.

6. Margheri, A., Pugliese, R., Tiezzi, F.: Linguistic Abstractions for Programming and
Policing Autonomic Computing Systems. In: Proc. of the 10th IEEE International
Conference on. Autonomic and Trusted Computing (ATC-2013), IEEE Computer
Society (2014)

7. Mayer, P., Klarl, A., Hennicker, R., Puviani, M., Tiezzi, F., Pugliese, R., Keznikl,
J., Bures, T.: The Autonomic Cloud: A vision of voluntary, peer-2-peer cloud
computing. In: Proc. of the 2013 IEEE Seventh International Conference on Self-
Adaptive and Self-Organizing Systems Workshops (SASOW’13), IEEE Computer
Society (2014)

8. Bures, T., De Nicola, R., Gerostathopoulos, I., Hoch, N., Kit, M., Koch, N., Monreale,
G., Montanari, U., Pugliese, R., Serbedzija, N., Wirsing, M., Zambonelli, F.: A
Life Cycle for the Development of Autonomic Systems: The e-mobility showcase.
In: Proc. of the 2013 IEEE Seventh International Conference on Self-Adaptive and
Self-Organizing Systems Workshops (SASOW’13), IEEE Computer Society (2014)

9. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5) (1997)
279–295

10. De Nicola, R., Ferrari, G., Pugliese, R.: Klaim: A Kernel Language for Agents
Interaction and Mobility. IEEE Trans. Software Eng. 24(5) (1998) 315–330

11. ASCENS: Autonomic service-component ensembles http://www.ascens-ist.eu/.
12. Belzner, L., De Nicola, R., Vandin, A., Wirsing, M.: Reasoning (on) Service

Component Ensembles in Rewriting Logic. In Iida, S., Meseguer, J., Ogata, K.,
eds.: Specification, Algebra, and Software: A Festschrift Symposium in Honor of
Kokichi Futatsugi (SAS 2014). (2014) To Appear, April 2014.

13. jRESP: http://code.google.com/p/jresp/.
14. Xtext: http://www.eclipse.org/Xtext/
15. Demartini, C., Iosif, R., Sisto, R.: dSPIN: A Dynamic Extension of SPIN. In Dams,

D., Gerth, R., Leue, S., Massink, M., eds.: SPIN. Volume 1680 of Lecture Notes in
Computer Science., Springer (1999) 261–276

16. Iosif, R.: Symmetry reductions for model checking of concurrent dynamic software.
STTT 6(4) (2004) 302–319

17. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling Dynamic Architectures Using
Dy-BIP. In: Software Composition. Volume 7306 of LNCS., Springer (2012) 1–16

18. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis,
J.: Rigorous component-based system design using the BIP framework. IEEE
Software 28(3) (2011) 41–48

http://eprints.imtlucca.it/2117/
http://rap.dsi.unifi.it/scel/
http://www.ascens-ist.eu/
http://code.google.com/p/jresp/
http://www.eclipse.org/Xtext/

	 Programming and Verifying Component Ensembles

