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4 CHAPTER 1 Statistics on Stratified Spaces

While manifold statistics is an established tool for computational anatomy, a number of struc-
tures are not modelled well on manifolds. Examples include data with variable topological
structure, such as trees and graphs, as well as objects that should be invariant with respect to
groups that do not act freely on the space of measurements. Such data can often be repre-
sented more faithfully as residing on a stratified space, which consists of multiple manifold
components, potentially with different dimensions, joined together in a controlled fashion. In
this chapter we give a brief introduction to stratified spaces and geometric tools that are use-
ful for performing statistics in them. We review existing least squares models in stratified
spaces, along with some unexpected behavior that they exhibit, illustrated in simple stratified
spaces. Next, we review two particular examples of stratified spaces given by two different
tree-spaces. The first is the Billera-Holmes-Vogtmann space of phylogenetic trees, for which
a number of statistical algorithms have been proposed. The second is the space of unlabelled
trees, which models the more general attributed trees found in computational anatomy. This
space has a more complicated geometry, and not much is known about its structure and statis-
tics. We present a novel result connecting the two tree-spaces and their geodesics, along with
a consequential theorem on uniqueness of geodesics. Finally, we discuss other, less studied
applications of stratified spaces as statistical domains, including spaces of graphs, point sets
and sequences, as well as quotient spaces.

Keywords: Stratified space statistics, tree-spaces, quotient spaces, variable topology

1.1 INTRODUCTION TO STRATIFIED GEOMETRY
The majority of statistical methodology is built on the premise that the data being
analysed lie in a finite dimensional vector space equipped with the Euclidean L2

inner product. As seen in the other chapters of this book, there are important ap-
plications for which data in fact lie in a smooth manifold, and for which work must
be done to extend existing “linear” methodology to this new context. Instead, in
this chapter, we consider a different class of data spaces for which the structure of
a smooth manifold is not available everywhere, and for which the dimension of the
space can vary from point to point. These stratified spaces have attracted interest
from researchers in recent years, and examples of data lying in stratified spaces in-
clude trees [11, 25, 19], graphs [34], point sets such as persistence diagrams [56], ob-
jects invariant to a nontrivial group action (lying in a group quotient space) [43, 38]
and positive semidefinite matrices [29, 55].

We will not give a general formal definition of a stratified space – more details
can be found, for instance, in [51] – but instead illustrate the properties of such
spaces and associated data analysis largely via examples. Indeed, existing statistical
methods in stratified spaces generally make no use at all of the formal definition of a
stratified space. This section describes three key toy examples before going on to sur-
vey definitions and results from metric geometry which are necessary to understand
the geometry of stratified spaces more generally. Although simple, the toy examples
are highly illustrative of the unusual properties of data analysis in stratified spaces.
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1.1 Introduction to stratified geometry 5

Properties of least squares estimators are considered in more detail in Section 1.2,
in particular by considering the examples introduced in this section. In Sections 1.3
and 1.4 we describe the geometry of two related stratified spaces: the space of evolu-
tionary trees with leaves labelled by a fixed set of species, and a space of unlabelled
trees. The final section goes beyond trees to illustrate how other types of data may
also be modelled as residing in a stratified space. Examples include graphs, point
sets, sequences and data invariant under nontrivial group actions. Some of these
constructions are well known, while others are new, coming with associated open
problems.

1.1.1 EXAMPLES
Statistical models and estimators on stratified spaces can display strikingly different
behaviour than intuition suggests from working on linear Euclidean spaces. Many of
these properties arise with the following fundamental simple examples.

Example 1.1 (Spiders). The k-spider consists of k copies of the positive real line
R≥0 glued together at the origin. The metric is the Eucidean metric on each “leg”
of the spider, extending in the obvious way to the whole space: given two points x, y
on different legs, d(x, y) = d(x, 0) + d(0, y). We use the notation Spiderk to denote
the k-spider. It is clear that for k > 2, the k-spider does not have the structure of
a topological manifold: no chart can be defined at the origin. The set of tangent
directions at the origin is not a vector space, but is in fact a copy of the space itself.

Most of the examples we consider, like the k-spider, are formed by gluing pieces
of Euclidean space or other manifolds together along their boundaries. We will be
deliberately informal about the operation of gluing two topological spaces X1, X2,
since the geometry of the resulting space does not depend on the technical details for
all the examples we consider. However, formally we mean that two subsets of the
spaces X1 and X2, respectively, are identified by a bijection (often an isometry when
there are underlying metrics) and we then form the quotient of X1 ∪ X2 where two
points are equivalent if and only if they are identified under the bijection.

Example 1.2 (Open books). The open book of dimension n + 1 on k pages is Bookn
k =

Rn × Spiderk. The spine of the book is the subset Rn × {0}, and each page of the book
is a subset Rn × R≥0. The metric is the product metric, and so is just the Euclidean
metric on each page Rn × R≥0. The simplest open book has n = 1 and k = 3, and
consists of three half-planes joined along their shared edge. Open books are strat-
ified in the following way: the spine is a n-dimensional manifold which forms the
boundary of the k pages, each of which is a n + 1 dimensional manifold with bound-
ary. Each piece in this decomposition is a stratum and the space consists of several
strata glued together along lower dimensional sub-strata.

The 3-spider parametrizes a certain set of trees and so forms a tree space. Con-
sider the set of rooted trees with 3 leaves, which are labelled bijectively with the set
S = {A, B,C}. There are three possible binary tree topologies, and one “star” tree
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6 CHAPTER 1 Statistics on Stratified Spaces

with no internal edges, shown in Figure 1.1. If we further assume that internal edges
are weighted, that is, assigned weights or lengths in R≥0, then Spider3 parametrizes
the corresponding set of tree objects: each “leg” of the spider corresponds to a dif-
ferent binary tree, and the position along the leg determines the weight assigned to
the single internal edge of the tree. If all the edges are weighted, then the space is
R3
≥0 × Spider3 ⊆ Book3

3, and so open books parametrize certain sets of trees.

Example 1.3 (Cones). Let Conekπ/2 denote the space formed by gluing together k
copies of the positive quadrant R2

≥0 to form a cone, so that the origin is a common
point in each quadrant and forms the point of the cone. An embedding of Cone5π/2
in R3 is shown in Figure 1.2. On each quadrant of Conekπ/2, the metric is Euclidean,
and the distance between points in different quadrants is the length of the shortest
path between them, where the path consists of straight line segments in each quad-
rant. In contrast to spiders and open books, each cone Conekπ/2 has the structure
of a topological manifold. As a stratified space, Conekπ/2 can be thought of as con-
taining two strata: the origin, and the complement of the origin. (An alternative
stratification of Cone5π/2 is by tree topology.) As we will see, a notion of curvature
can be defined for certain metric spaces. For k = 1, 2, 3, Conekπ/2 is non-negatively
curved, while for k > 4 it is non-positively curved.

The cone Cone5π/2 parametrizes a certain set of trees, as shown in Figure 1.2.
This is a subspace of the space of all leaf-labelled weighted rooted trees on 4 leaves.
More details are given in Section 1.3, which describes Billera-Holmes-Vogtmann tree

AB | C0

BC | A0 CA | B0

A B C

0

B C A

0

C A B

0
A B C

0

Figure 1.1: The space Spider3 (left) consists of three copies of the positive real
line joined together at the origin. It parametrizes the set of rooted trees with leaves
A, B,C such that the internal edge has a positive weight or length. The position along
the axis labelled with the bi-partition AB|C0, for example, determines the length of
the highlighted edge on the corresponding tree. The origin corresponds to a tree
obtained by contracting the internal edge to length zero. The open book Book1

3 is
shown on the right.
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Figure 1.2: An embedding of Cone5π/2 in R3, annotated to show how the cone
parametrizes a certain set of trees with 4 leaves. The space consists of 5 quadrants
glued along their edges, where each quadrant corresponds to a different binary tree.
Each binary tree has two weighted internal edges, and the weights determine the
position within the quadrant. The trees contain 5 different internal edges, labelled as
the corresponding axes in R3. The quadrant boundaries correspond to trees where an
edge has been contracted to have zero weight, as shown for the axis BC|AD0.

space [11], the space of edge-weighted trees on a fixed set of N labelled leaves. This
stratified space has received the most attention to date in terms of the development
of statistical methods, due to its importance in evolutionary biology and its attractive
geometric properties.

All three above examples are metric spaces which fail to have the structure of a
Riemannian manifold: spiders and open books are not topologial manifolds, while
the metric on any cone is singular at the origin. How, then, can we analyse data in
these spaces, or in more general stratified spaces? To answer this question we recall
various definitions and results from metric geometry. The following overview gives
the essential background geometry but a much fuller account is given in [12].

1.1.2 METRIC SPACES
Suppose X is the space in which we want to develop our statistical methodology,
and let d be a metric on X. It is easily seen that an arbitrary metric d does not itself
give enough structure on X in order to develop any useful statistics. For example,
the metric defined by d(x, y) = 1 for all x � y and d(x, x) = 0 only tells us whether
two data points are the same or not, and so cannot be used to calculate any useful
summary statistics. More structure on the space X is required, and so we consider
paths in X and their associated lengths.
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8 CHAPTER 1 Statistics on Stratified Spaces

Definition 1.4 (Geodesics). A geodesic [12] in a metric space (X, d) is defined as
a path γ : [0, 1]→ X such that for any t, t� ∈ [0, 1], we have d(γ(t), γ(t�)) = |t − t�| ·
d(γ(0), γ(1)). The image of a geodesic γ is called a geodesic segment in X.

A path γ : [0, 1]→ X is locally geodesic if there exists ε > 0 such that d(γ(t), γ(t�)) =
|t − t�| · d(γ(0), γ(1)) holds whenever |t − t�| < ε.
Definition 1.5 (Geodesic spaces). (X, d) is called a geodesic metric space if there is
at least one geodesic path between every pair of points in X. It is uniquely geodesic
if there is exactly one geodesic between every pair of points.

The existence of geodesics is really fundamental to the development of statistics
on a metric space X, just as in the case of Riemannian manifolds. However, it is also
useful to assign lengths to arbitrary paths in X.

Definition 1.6 (Path length). If c : [0, 1]→ X is a path in X then the length of c is

�(c) = sup
a=t0≤t1≤···≤tn=b

n−1�

i=0

d(c(ti), c(ti+1))

where the supremum is taken over all possible n and partitions of the interval [0, 1].
The length of c is taken to be infinite when this expression is unbounded.

The triangle inequality implies that �(c) ≥ d(c(a), c(b)) for any path c. It follows
from the definition of a geodesic γ on X that �(γ) = d(γ(0), γ(1)). Thus, a geodesic
is a shortest path connecting its endpoints. Conversely, a shortest path can always
be parametrized as a geodesic. Many spaces have pairs of points with no shortest
connecting path: for example take R2 equipped with the Euclidean metric but with
the origin removed. A point x cannot be joined to the antipodal point −x by a path of
length 2�x�. A metric space (X, d) is called a length space if d(x, y) is the infimum of
lengths of paths connecting x, y for all x, y ∈ X. The Hopf-Rinow theorem states that
any complete, locally compact length space (X, d) is a geodesic metric space. The
example of R2 without the origin is a length space, but it fails the conditions of the
Hopf-Rinow theorem as it is not complete.

1.1.3 CURVATURE IN METRIC SPACES
We next turn attention to the idea of curvature in a geodesic metric space. The idea
is to look at whether triangles are “fat” or “thin” compared to triangles in Euclidean
space. We will denote by Γ(x, y) a choice of geodesic segment between x, y ∈ X.
(Of course if X is uniquely geodesic then there is exactly one choice of segment.)
Given p, q, r ∈ X a geodesic triangle Δ(p, q, r) ⊆ X is a choice of geodesic segments
Γ(p, q),Γ(q, r), Γ(r, p). A corresponding flat Euclidean triangle is required in order
to draw comparisons. A triangle Δ� = Δ(p�, q�, r�) in R2 is a comparison triangle if

d(p, q) = d(p�, q�), d(q, r) = d(q�, r�) and d(r, p) = d(r�, p�).
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1.1 Introduction to stratified geometry 9

Such a triangle always exists in R2 (by applying the triangle inequality to Δ in X)
and is unique up to isometries of R2. Given x ∈ X on Γ(p, q), a comparison point x�

in Δ� is a point on Γ(p�, q�) such that

d(x, p) = d(x�, p�) and d(x, q) = d(x�, q�).

We call (x, x�) a comparison pair for the edge Γ(p, q). This is illustrated in Figure 1.3.
Geodesic metric spaces with non-positive curvature play a very prominent role

in the theory of statistics on stratified spaces. In order to have non-positive curva-
ture, every geodesic triangle must be at least as “thin” as its Euclidean comparison
triangle. This is made rigorous via the following definition of the so-called CAT(0)
inequality.

Definition 1.7. A geodesic triangle Δ(p, q, r) satisfies the CAT(0) inequality if
d(x, r) ≤ d(x�, r�) for all comparison pairs (x, x�) with x ∈ Γ(p, q), x� ∈ Γ(p�, q�), and
similarly for all comparison pairs on the other two edges. The geodesic metric space
X is a CAT(0) space if every geodesic triangle satisfies the CAT(0) inequality.

CAT(0) spaces, and more generally spaces which are locally CAT(0), are often
called non-positively curved spaces. They have a rich geometry, analogous to geom-
etry on Riemannian manifolds, which lends them as very suitable spaces on which to
develop statistical methods. There is an analogous definition of a CAT(κ) space for
κ � 0, and these spaces can be thought of as having curvature ≤ κ. Here, comparison
triangles are constructed not in the plane, but in a model space Mκ. For κ < 0, Mκ
is a scaled version of the hyperbolic plane; for κ > 0, Mκ is a scaled version of the
sphere S 2.

The name CAT(κ) comes from the concatenated initials of Cartan, Alexandrov
and Topogonov, all pioneers in defining and understanding the notion of curvature
for metric spaces [12]. In contrast, there is a definition of non-negatively curved
geodesic spaces, due to Alexandrov [2]: X is non-negatively curved if every geodesic
triangle in the space is at least as “fat” as a comparison triangle in R2.

Referring back to our fundamental examples, it is straightforward to check that
every triangle in a k-spider satisfies the CAT(0) inequality. Any product of two

p′

q′

r′
x′

Δ(p′, q′, r′)

p

q

r
x

Δ(p, q, r)

Figure 1.3: Comparing triangles in a geodesic metric space (left) and R2 (right).
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10 CHAPTER 1 Statistics on Stratified Spaces

CAT(0) spaces is CAT(0), so since Rn is CAT(0) is follows that the open book Bookn
k

is also CAT(0). More generally, a metric tree (X, d) is a tree where each edge has an
isometry to an interval in R, and such spaces are also CAT(0). On the other hand,
when k ≤ 3 the cone Conekπ/2 is non-negatively curved. Triangles in Conekπ/2 which
do not contain the origin in the interior are easily seen to be Euclidean triangles.
However, triangles which wind around the origin have interior angles which add up
to > π and are “fatter” than Euclidean triangles. The origin is repulsive: the only
geodesics which pass through the origin have an end point at the origin. We will
consider cones with k ≥ 5 later.

CAT(0) spaces have many appealing properties which help the development of
statistical methods within the spaces. First, they are uniquely geodesic, so every pair
of points in a CAT(0) space is joined by a unique geodesic. The geodesic segment
Γ(x, y) between x and y varies continuously as a function of x, y. Moreover, any path
which is locally geodesic is in fact a geodesic path.

In addition to these attractive properties of geodesics, there is a notion of pro-
jection onto closed sets in CAT(0) spaces. If X is a CAT(0) space then a function
f : X → R is convex if for any geodesic path γ : I → X parametrized proportional
to length, the function I → R defined by t �→ f (γ(t))) is convex. Given any x ∈ X,
it can be shown that the distance function d(·, x) : X → R is convex. Similarly the
function d(·, ·) is convex on the product space X × X. Now suppose that A ⊆ X is
convex and complete in the induced metric. (A subset A ⊆ X is convex if Γ(x, y) ⊆ A
for all x, y ∈ A.) Then given any x ∈ X there is a unique point π(x) ∈ A closest to x:

π(x) = argmina∈Ad(a, x).

This is called the projection of x onto A. If A is closed but not convex, then a closest
point in A to x exists, but it is not necessarily unique.

Cubical complexes are a rich source of examples of CAT(0) spaces, and are de-
fined in the following way. Let In ⊂ Rn be the unit cube [0, 1]n equipped with the
Euclidean metric. The codimension-k faces of In correspond to fixing k coordinates
on In to be either 0 or 1. A cubical complex is a metric space obtained by gluing
together cubes (potentially of different dimensions) along their faces: a dimension-k
face in one cube can be glued isometrically to one or more dimension-k faces in other
cubes. Cubical complexes are thus analogous to simplicial complexes, but each cell
is a unit cube rather than a simplex. A cubical complex X can be given a metric as
follows. On each cube, the metric is the Euclidean metric. More generally, the dis-
tance between x, y ∈ X is defined to be the infimum of the lengths of paths between
x and y which are straight line segments within each cube. When X is locally com-
pact then it is a geodesic metric space by the Hopf-Rinow theorem. Several spaces
of trees and networks [11, 28, 16] are examples of cubical complexes, although the
space of networks in [16] is not CAT(0).

Gromov gave a combinatorial condition that specifies when a cubical complex
is CAT(0) [30]. The condition is defined in terms of the link of each vertex in the
complex. The link of a vertex v is the set {x ∈ X : d(x, v) = ε} where 0 < ε < 1 is
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1.2 Least squares models 11

a fixed constant. The link of v can be regarded as an abstract simplicial complex,
and Gromov’s condition is expressed purely in terms of the combinatorics of this
object. Rather than state the condition precisely, we will illustrate it using the exam-
ple Conekπ/2 for k = 3 and k = 5. The cones Conekπ/2 can be constructed as cubical
complexes by filling each quadrant with an infinite array of 2-cubes (unit squares).
For k = 3 the link of the origin consists of three quarter-circular arcs forming a loop.
In order to be CAT(0), Gromov’s condition states that the link must contain the 2-
simplex bounded by this loop – but it does not, so the condition fails and Cone3π/2
is not CAT(0). On the other hand, when k = 5, the link of the origin consists of a
loop formed from 5 quarter-circular arcs. Gromov’s condition states that any sim-
plex whose 1-dimensional faces (quarter-circular arcs) are in the link, must itself be
in the link. Since the loop consists of 5 arcs rather than 3, it does not bound any
2-simplex, and so Gromov’s condition is satisfied for the origin. It also holds for the
other vertices in the cubical complex and so Cone5π/2 is CAT(0). We will consider
Gromov’s condition again when describing evolutionary tree space, but we next turn
attention to least squares estimators.

1.2 LEAST SQUARES MODELS
In Euclidean space, standard statistical methods such as computation of sample
means, linear regression and principal component analysis, can be formulated as
problems which minimize a least squares modelling error. Least squares errors gen-
eralize easily to metric spaces, and have therefore been popular for building statisti-
cal models both on manifolds and metric spaces. In stratified spaces, however, least
squares statistics have surprising and potentially unwanted properties [32, 24].

1.2.1 LEAST SQUARES STATISTICS AND STICKINESS
In this section suppose X is a geodesic metric space. Given a finite dataset
{x1, . . . , xn} ⊂ X, its Fréchet mean is defined as the point minimizing the sum of
squared distances to the data points [36]:

x̄ = argminx∈X
n�

i=1

d(xi, x)2. (1.8)

However, in stratified spaces, Fréchet means can be sticky [32]:

Definition 1.9 (Stickiness of Fréchet mean). The Fréchet mean x̄ of a finite sample
{x1, . . . , xn} ⊂ X is sticky if any sufficiently small perturbations {x�1, . . . , x�n} of the
sample also have mean x̄ = x̄�.

An example [32] of a sticky Fréchet mean can be found on the 3-spider, as illus-
trated in Figure 1.4. Three unit point masses are positioned on the 3-spider, one on
each leg of the spider and unit distance from the origin. These are shown as black
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ε

ε

ε

Figure 1.4: Left: The Fréchet mean (star-shaped point) of the dataset consisting
of the black points on Spider3 is sticky. Right: On the open book, the first prin-
cipal component (the line connecting the two star-shaped endpoints) of the dataset
consisting of the black points sticks to the spine of the book.

dots in the figure. When one of the point masses is moved by distance ε away from
the origin, the Fréchet mean (shown by a star on the figure) remains at the origin until
ε = 1, at which point it moves on to the upper leg in Figure 1.4 for ε > 1. In fact the
mean remains at the origin for all sufficiently small perturbations of the point masses.
For more general stratified spaces, stickiness implies that the Fréchet means of sam-
pled data tend to be located at lower-dimensional strata where three or more strata
are joined, just as for the 3-spider. In the case of tree spaces, such lower-dimensional
strata correspond to trees where at least one node has degree ≥ 4.

A natural extension of the Fréchet mean is the first principal component. This can
be defined provided there is a notion of projection onto geodesics or, more generally,
onto closed sets. It is denoted PC1 and is defined [44, 46, 21] as the geodesic segment
γa0b0 minimizing the sum of squared residual distances E(a, b):

a0, b0 = argmina,b∈XE(a, b), where E(a, b) =
n�

i=1

d(xi, prγab
(xi))2

and prγab
(xi) denotes the projection of xi onto γab. This definition is analogous

to the definition of first principal component on manifolds due to Huckemann et
al. [33], except for the restriction to geodesic segments, which is due to the problem
of parametrizing geodesic rays in X [44, 46, 21].

Just like Fréchet means, first principal components can also be sticky:

Definition 1.10 (Stickiness of PC1). The first principal component PC1 for a finite
sample in X sticks to a subset S ⊂ X if the first principal component of any suffi-
ciently small perturbation {x�1, . . . , x�n} of the sample also lies in S .

An example of stickiness for PC1 on the open book R × Spider3 is given in Fig-
ure 1.4, and it is a straightforward extension of the sticky mean example on the
3-spider. Here, two data points are positioned on each sheet of the book, several
units apart parallel to the spine. It is clear that PC1 ⊂ S where S is the spine of the
open book, and the same in fact holds for all small perturbations of the sample.
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Stickiness of PC1 indicates that, just as for Fréchet means, first principal compo-
nents in stratified spaces will have a tendency to be contained in lower-dimensional
strata, even when the data are contained in top-dimensional strata. This creates dif-
ficulties in building more advanced statistics: for instance, it is not clear how par-
allel transport along such principal components might be defined, which has con-
sequences for extending techniques from manifold statistics to the open problem of
defining second principal components.

1.2.2 THE PRINCIPAL COMPONENT AND THE MEAN
Stickiness is not the only surprising property of least squares statistics in stratified
spaces. In Figure 1.5 we give an example on the open book, where the Fréchet mean
does not lie on the first principal component. In the figure, the Fréchet mean lies
on the spine In Euclidean space, the Fréchet mean always lies on the first principal
component; on curved manifolds, this is known not to be the case [33]. This has con-
sequences for the definition and interpretation of the fraction of variance captured by
a principal component, which is frequently used to measure the success of dimen-
sionality reduction via PCA in Euclidean space [46]. The definition of the fraction
of variance relies on the Pythagorean theorem, and this breaks down in almost any
non-Euclidean space.

Figure 1.5: Let {x1, x2, x3, x4} consist of the circular points in the figure. The Fréchet
mean x̄ is the open diamond, which sits on the spine. However, calculations show
that PC1 is the dotted line segment connecting the two star-shaped points. It extends
from the page of the book above the spine onto either of the lower two pages, and
is therefore not unique. The dotted line can be shown to give a lower least squares
error than the geodesic running along the spine.
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1.3 BHV TREE-SPACE
While stratified spaces naturally appear in many applications, among the most in-
vestigated so far are spaces of trees. Tree spaces can be defined in different ways,
leading to different models and geometries, and this chapter will visit two tree spaces
in detail. The first, BHV tree space [11], assumes that all trees have the same, fixed
set of labeled leaves. This is a strong modelling assumption, which makes sense
for the study of evolutionary trees, where it was first defined – but which might be
overly restrictive in other applications. The modelling cost does, however, come
with strong computational advantages. The second tree space construction, which
does not assume a fixed set of labeled leaves, will be discussed in Section 1.4.

Phylogenetic trees represent evolutionary relationships between a chosen set of
biological species. The leaves of a phylogenetic tree, or phylogeny, represent present
day species, while internal vertices represent speciation events when a population has
differentiated into distinct subspecies. The edges in each tree are typically assigned
a weight in R≥0, which represents the degree of evolutionary divergence along each
edge. Trees can be either rooted or unrooted and we will describe the space of phylo-
genetic trees in both cases. Phylogenetic trees are usually estimated from incomplete
noisy data (often genetic sequence data in present-day organisms) and so it is natural
to study distributions on the space of all possible phylogenies relating a fixed set of
species. A geometry for this space was first described by Billera, Holmes and Vogt-
mann [11], and the corresponding geodesic metric space has become known as BHV
tree space. BHV tree space has been used to analyse sets of anatomical trees [21, 52],
as well as evolutionary trees. This section explains the geometry of BHV tree space
and reviews existing methods for analysing sets of phylogenetic trees via BHV ge-
ometry.

1.3.1 GEOMETRY IN BHV TREE SPACE
Definition 1.11 (Unrooted phylogenetic tree). Suppose S = {1, . . . ,N} is a fixed set
of labels. (We sometimes let S be any set with N elements.) An unrooted phylogenetic
tree on S is an unrooted tree with N leaves which satisfies the following conditions.

1. The leaves are bijectively labelled with the elements of S .
2. The edges are weighted by values in R≥0.
3. There are no vertices with degree 2.

Unrooted trees are important in evolutionary biology since it can be difficult to
identify the position of the root, which represents a distant ancestor, with any cer-
tainty. Phylogenetic trees are often represented graphically with edge lengths drawn
in proportion to their weights, and so edge weights are often referred to as lengths.
Any unrooted phylogeny on S contains at most 2N − 3 edges, with the upper bound
being attained when every non-leaf vertex has degree 3. Such trees are called re-
solved or bifurcating trees. However, trees can contain < 2N − 3 edges, in which
case one or more vertices has degree > 3. These trees are called unresolved. The
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Figure 1.6: Cutting an edge on a leaf-labelled tree (left) creates a bipartition, or split,
of the labels (right). The terms edge and split are therefore used interchangeably.

edges containing the leaves are called pendant edges. Conversely, internal edges
and internal vertices are, respectively, edges which do not end in a leaf, and vertices
with degree ≥ 3. The collection of all unrooted phylogenies on S is denotedUN .

A split is a bipartition of S , or in other words, a decomposition of S as a union
of two disjoint subsets S = A ∪ Ac. Splits are often written using the notation 12|345
to represent {1, 2, 3, 4, 5} = {1, 2, 3} ∪ {4, 5} for example. Given a tree x ∈ UN and
an edge e in x, cutting e disconnects x and yields a bipartition of the leaves, and
so every edge is associated with a unique split. In fact, on labelled trees, edges
and splits are entirely equivalent, as shown in Figure 1.6, and so we will use the
terms interchangeably in this section. The splits represented by a tree are called its
topology. Equivalently, the topology of x ∈ UN can be thought of as an unweighted
combinatorial tree. Two splits A|Ac and B|Bc are called compatible if there exists
at least one tree containing both splits. Examples of incompatible splits are easy
to construct: 12|345 is not compatible with 13|245 since the corresponding edges
cannot coexist in any tree. It can be shown that A|Ac and B|Bc are compatible if
one of the sets A ∩ B, A ∩ Bc, Ac ∩ B, Ac ∩ Bc is empty. Arbitrary sets of splits do
not generally correspond to tree topologies due to incompatibility. The following
theorem, due to Buneman [14], characterizes tree topologies.

Theorem 1.12 (Splits-Equivalence Theorem). Any set of pairwise compatible splits
which contains the splits {1}|{1}c, . . . , {N}|{N}c determines an unweighted tree on S .

To describe BHV tree space we first consider the pendant edges. These are
present in all trees and so unrooted tree space can be written as a product

UN = R
N
≥0 × BHVN

where BHVN parametrizes the internal edge lengths and topologies of unrooted trees
on S . At this stage it is convenient to consider rooted trees on S formally. Rooted
phylogenetic trees are defined in the same way as unrooted phylogenies, except they
contain a unique vertex labelled as the root. The root vertex has degree ≥ 2, with
degree exactly 2 in fully resolved trees. By attaching an additional leaf labelled 0
to the root vertex via an unweighted edge, an unrooted phylogeny is obtained, but
the leaf set is now labelled {0, 1, . . . ,N}. It follows that the collection of all rooted
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phylogenies on S = {1, . . . ,N}, denoted TN , is given by

TN = R
N
≥0 × BHVN+1.

The space BHVN can be described either by an embedding into a high dimen-
sional Euclidean space or, equivalently, by an intrinsic construction, and we consider
both approaches. There are M = 2N−1 − 1 possible splits of S , of which M − N cor-
respond to internal edges on trees. To embed BHVN in Euclidean space, we order
these splits arbitrarily and then associate the i-th split σi with the standard basis vec-
tor ei in RM−N for i = 1, . . . ,M − N. Every point x ∈ BHVN can be represented by
its vector of internal edge weights

�
i λi(x)ei where

λi(x) =


weight of split σi in x if x contains σi, or
0 if σi is not contained in x.

Arbitrary vectors in RM−N do not generally correspond to trees, as arbitrary col-
lections of splits do not give valid tree topologies. In fact there are (2N − 5)!! =
1 × 3 × 5 × · · · × (2N − 5) fully resolved unrooted topologies on N leaves, so the
fully resolved trees occupy (2N − 5)!! copies of RN−3

≥0 in RM−N . Hence, the number
of topologies and the dimension of the ambient space grow exponentially in N, while
the local dimension of tree space grows linearly. The space BHV4, corresponding to
the unrooted trees on 4 leaves, or (equivalently) rooted trees on 3 leaves, has M = 7
different splits and the embedding into RM−N = R3 consists of the three positive or-
thogonal axes. In other words, BHV4 = Spider3 as illustrated in Figure 1.1.

A

B

C

D

A

B

C

D

∼
D

0

�A

�B

�C

�D

�A

�B

�C

�D

Figure 1.7: Illustration of the equivalence relation in equation (1.13). Here A, B,C,D
are subtrees, and �A, �B, �C , �D are the associated edge lengths. The internal edge in
the tree on the left has length zero. The equivalence relation similarly applies when
there are arbitrarily many subtrees either side of an internal edge.

While the embedding into RM−N can be used to give a complete description of
the geometry of BHVN , it is not useful computationally due to the sparsity of vec-
tors representing trees. Instead, BHVN can be constructed intrinsically in terms of
an equivalence relation in the following way [42]. This description differs in some



✐
✐

“Book” — 2019/3/14 — 8:31 — page 17 — #27 ✐
✐

✐
✐

✐
✐

1.3 BHV tree-space 17

ways from the original BHV paper [11], but the explicit use of an equivalence re-
lation and quotient makes the construction comparable to that for unlabelled trees
in Section 1.4. The collection of trees OT with some fixed fully resolved topology
T can be parametrized by RN−3

≥0 by associating each internal edge in the topology
with a coordinate axis. In fact we equip OT with the induced Euclidean metric so
that OT � RN−3

≥0 is an isometry. The same notation is used when T is unresolved:
OT � Rk

≥0 when T contains k internal edges. Each set of trees OT is called an or-
thant, and if T is fully resolved then OT is a maximal orthant. BHV tree space is
constructed by taking the disjoint union of all orthants, and quotienting by an equiv-
alence relation:

BHVN =
�

T

OT

�
∼, (1.13)

where the union is taken over all possible topologies. The equivalence relation ∼
is defined in Figure 1.7. Under the relation, trees are identified if and only if they
are identical modulo the presence of splits with zero weight. Thus, when an edge is
contracted to length zero, it can equivalently be removed from the tree.

The equivalence relation glues orthants together to form BHVN . Orthants cor-
responding to unresolved topologies are contained in the equivalence classes of ele-
ments contained in the boundary of maximal orthants. Maximal orthants are glued at
their codimension-1 boundaries in a relatively simple way. If a single internal edge
in a tree with fully resolved topology T is contracted to length zero and removed
from the tree, the result is a vertex of degree 4. There are then three possible ways to
add in an extra edge to give a fully resolved topology, including the original topology
T , so each codimension-1 face of OT is glued to two other maximal orthants at their
boundaries. It follows that near codimension-1 boundaries, BHVN locally resembles
BookN−4

3 . On the other hand, the tree containing no internal edges, called the star
tree, corresponds to the origin in every set OT .

For N = 5, the embedding of BHV5 into RM−N = R10 is difficult to visualize, but
the intrinsic construction is more accessible. There are 15 different maximal orthants
defined on 10 different internal splits. The graph representing attachments between
codimension-1 faces of maximal orthants is a 3-valent graph with 10 vertices (one for
each split) and 15 edges (one for each orthant) called the Petersen graph, illustrated
in Figure 1.8. Assuming the graph is equipped with unit edge lengths, points on
the graph are in 1-to-1 correspondence with the points in BHV5 whose two internal
edge weights sum to a fixed non-zero constant. In entirety, BHV5 is the cone of the
Petersen graph, in other words the set of rays (copies of R≥0) joined at their common
origin and in 1-to-1 correspondence with points on the graph. The rays passing
through a fixed edge of the Petersen graph form the quadrant associated to that edge.
As shown by Figure 1.8, the graph contains various cycles of length 5, each of which
corresponds to an arrangement of 5 quadrants resembling Figure 1.2. Similarly, in
neighbourhoods of vertices of the Petersen graph, the cone resembles Book1

3.
It is straightforward to see that BHVN is a cubical complex: each maximal or-

thant is an infinite array of unit (N − 3)-cubes, and the structure of the complex is
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12|345

45|123

35|124

34|125

25|134 13|245

14|23524|135

23|14515|234

Figure 1.8: Vertices are drawn as dots and other edge crossings do not corre-
spond to graph vertices. Each vertex is labelled with a split and corresponds to the
codimension-1 boundary between three quadrants in BHV5. Each edge corresponds
to the quadrant in BHV5 comprising trees whose two internal edges are determined
by the two splits at either end of the edge.

determined by the way cubes are glued together at their boundaries according to the
unresolved trees they represent. Since each cube is glued to a finite number of other
cubes, the space is locally compact and the Hopf-Rinow theorem implies that BHVN

is a geodesic metric space. Billera, Holmes and Vogtmann [11] proved that BHVN

is CAT(0) by showing that Gromov’s condition for cubical complexes holds, as dis-
cussed in Section 1.1.3. Gromov’s condition corresponds exactly to the condition
that pairwise compatible collections of splits determine valid tree topologies, as es-
tablished in theorem 1.12. Since BHVN is CAT(0), the product spaces TN and UN

of rooted and unrooted trees are also CAT(0).
By definition, if two points x, y ∈ BHVN lie in the same orthant, then the geodesic

segment Γ(x, y) between them is simply the straight line segment within the orthant.
When the points x, y lie in different orthants, the geodesic comprises straight line
segments in different orthants joining x to y. Along each geodesic, x is continuously
deformed into y by contracting and expanding various edges. One possibility for the
geodesic between points in different orthants is that it consists of the straight line
segment from x to the origin and then the straight line segment from the origin to y.
This is the path given by contracting all internal edges in x to length zero, to give
the star tree, followed by expanding out all the edges in y. This is called the cone
path between x and y. Cone paths are geodesics for certain points x, y ∈ BHVN , and
the length of the cone path provides an upper bound on the length of the geodesic
segment Γ(x, y). Geodesics on TN and UN are the obvious trivial product between
the geodesics in RN

≥0 for the pendant edges and the geodesics in BHVN .
Figure 1.9 shows three geodesics in T4. All three occupy orthants on a single
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copy of Cone5π/2, and the figure shows the different types on geodesic which can
occur on T4. Depending on the end-points, some geodesics are cone paths, in which
case there is a “kink” at the origin. Examples like this on T4 and U5 give the im-
pression that unresolved topologies are isolated points along geodesics. Figure 1.10
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Figure 1.9: Three geodesics drawn in a copy of Cone5π/2 within tree space (dashed
lines). The geodesic Γ(x1, y1) is the line segment in one orthant. Γ(x2, y2) traverses
three orthants, by expanding and contracting edges: representative trees along the
geodesic are shown below. The geodesic Γ(x3, y3) is a cone path: both internal edges
are contracted to length zero with alternative edges then expanding out.
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Figure 1.10: The unresolved topology displayed by the central tree is not an iso-
lated point along the geodesic: the section of the geodesic in the corresponding non-
maximal orthant has length strictly greater than zero.
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gives an example in U6 where this is not the case. Geodesics on Cone5π/2 can be
thought of via a physical analogy. Suppose you construct an object like the squares
in Figure 1.9 out of some rigid board. A piece of elastic string can be stretched be-
tween any two points on this object. The string acts to minimize its length and gives
an approximate geodesic. As you move the end-points of the string around, it is easy
to see it will tend to catch on the origin, so that the geodesic is a cone-path. In fact,
this is a characteristic of tree space caused by the non-positive curvature: geodesics
have a tendancy to move through high-codimension regions.

While the existence and uniqueness of geodesics on tree space follow as a re-
sult of BHVN being CAT(0), it took a number of years following the original pa-
per by Billera-Holmes-Vogtmann for a computationally efficient algorithm for con-
structing geodesics to emerge. Given the exponential number of orthants in tree
space, computing geodesics could potentially be non-polynomial. However, Owen
and Provan [47] developed a remarkable O(N4) algorithm for constructing geodesics
which forms the basis of most of the methods described below. It operates by finding
a maximum flow on a certain bipartite graph whose two vertex sets correspond to the
splits in the two trees being connected. It can be thought of via the physical analogy
of “tightening the string” between two points, like the example on the cone above,
where the imaginary string is initiated as a cone path.

Before turning attention to existing statistical methodology in BHV tree space,
we mention generalizations and related spaces. In BHV tree space, edges are as-
signed positive weights. However, arbitrary values in R or even elements of some
vector space can also be used as the set of possible edge weights [26]. In this case,
orthants are replaced with products of vector spaces, glued together at points where
vectors are zero.

Retaining the assumption that edge weights are positive reals, three spaces related
to BHV tree space have been studied. First is the subspace of trees for which the
sum of all edge lengths is some fixed constant [61]. This space is also CAT(0),
but it is not a cubical complex; as yet, there is no exact algorithm for computing
geodesics. Another space of trees of interest to biologists comprises equidistance
trees, namely rooted phylogenies for which all leaves are the same distance from
the root. Gavryushkin and Drummond [28] considered two different geometries on
this space, one of which consists of a CAT(0) cubical complex. Finally, Devadoss
and Petti [16] have described a space of certain phylogenetic networks which are
generalizations of trees. This is a cubical complex, but it is not CAT(0).

1.3.2 STATISTICAL METHODOLOGY IN BHV TREE SPACE
Throughout this section we assume that D = {x1, . . . , xn} is a sample of trees in either
TN orUN .
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1.3.2.1 Fréchet mean and variance

Although biologists have defined and computed the mean of a sample D in a variety
of ways, it is natural to consider the Fréchet mean x̄ of D, defined in equation (1.8).
If d is the largest distance between two points in D, and r is the distance between the
origin and the furthest point, then any x which minimizes the Fréchet variance lies
in the ball centred at the origin and with radius d + r. As tree space is CAT(0), the
Fréchet function

�
i d(x, xi)2 is convex in x and so attains a unique minimum within

this ball. It follows that the Fréchet sample mean of D exists and is unique.
An algorithm originally due to Sturm [54], later extended and modified by other

authors [9, 42], has been used for computing the Fréchet mean and variance in BHV
tree space. The algorithms work in an iterative way, maintaining some estimate µ
of x̂. At each iteration, a data point xi is selected either deterministically or by sam-
pling from D; the geodesic from the current estimate µ to xi is constructed; and µ is
replaced with a point a certain proportion along this geodesic. While the algorithms
are guaranteed to converge to x̄, convergence can be slow in practice. Bačák’s al-
gorithms [9] are able to incorporate a weight for each data point in D, and can also
be used to compute sample medians. Methods for minimizing the Fréchet function
within a fixed orthant by making use of the local differentiable structure, have also
been developed [53]. Owen and Brown have carried out a simulation study [13] to
investigate behaviour of the Fréchet mean for samples from particular distributions
of interest to biologists.

Asymptotic results have also been established for the Fréchet mean in tree space,
under the limit of increasing sample size [6, 5]. These reflect the “stickiness” of
the estimator, as described in Section 1.2. The asymptotic distribution of the sample
mean consists of various Gaussian distributions on orthants, and in some situations
non-maximal orthants can have strictly positive mass, corresponding to stickiness.

An example of a mean tree computed with the Sturm algorithm [54, 42] is shown
in Figure 1.11. Here, the tree is formed by the centerlines passing through the tubular
airway tree in the lung, segmented from chest CT scans [40], as originally presented
in [21]. In order to model the airway trees using BHV tree-space, they are labelled
using the automatic airway labelling algorithm of [22, 26], and the tree is cut off
below the segment branches. Each branch of the tree is represented by 5 equidistant
3D landmark points, leading to 15-dimensional edge attributes (which is an easy
extension of BHV tree-space, as remarked on page 20). The mean was computed
from 8016 airway trees from the Danish Lung Cancer Screening Trial [49].

Note that the mean tree does not have any nodes with degree higher than 3. This
indicates that the mean tree sits in the top dimensional orthant of BHV tree-space,
and that it does not display sticky behavior. This lack of stickiness indicates that
the population of trees is topologically relatively homogeneous, but does not mean
that the airway trees all have the same topology; indeed, the dataset contains 1385
distinct topologies. However, about a third of the airway trees are contained in the 10
most frequent topologies, and more than 800 topologies only contain a single tree.
Moreover, given the relatively fixed strucure of airway trees, we expect different
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Figure 1.11: The mean airway centerline tree computed from a population of 8016
labelled airway centerline trees.

topologies to be quite similar to each other. These facts together explain why the
mean airway tree is not sticky.

1.3.2.2 Principal component analysis

Principal component analysis (PCA) is a widely-used method for exploratory anal-
ysis and dimension reduction of high-dimensional data sets. It operates by iden-
tifying the main directions or modes of variation in a sample of vectors by eigen-
decomposition of the associated sample covariance matrix. As such, it inherently
relies on the linear structure of the sample space, but the analysis can be re-expressed
in a number of different, though equivalent, ways. In particular, PCA is equivalent
to fitting affine subspaces to the data, in such a way as to minimize the sum of the
squared distances of the data points from their projections onto each subspace. In
Euclidean space, this amounts to finding the Fréchet mean (the zero-th order compo-
nent), then a line of best fit to the data (the first principal component), then a plane
of best fit, and so on. In Euclidean space the affine subspaces are necessarily nested,
so, for example, the first principal geodesic passes through the Fréchet mean.

A best-fit geodesic is a natural analog in tree space to the Euclidean first principal
component. Nye [44] first considered PCA in tree space, presenting an algorithm for
constructing geodesics of best fit, constrained to pass through some choice of mean
tree. The algorithm works by firing geodesics forward from the mean, with a greedy
search to identify the optimal direction in which to fire. Golden ratio search is used to
project data points onto candidate geodesics. The class of geodesics explored by this
approach as candidates is limited by the constraint of passing through a given fixed
mean, and as shown in Section 1.2.2, in tree space the principal geodesic does not
necessarily contain the Fréchet mean. Furthermore, in tree space it is more natural to
consider finite geodesic segments rather than infinitely long geodesic lines as princi-
pal components, since many infinite lines can share the same best-fit geodesic deter-
mined by the data. As an extreme example, consider the situation when all the data
points are tightly clustered within the interior of a maximal orthant. Conventional
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Figure 1.12: Airway trees sampled at 5 equidistant locations along the first principal
component of the 8016 airway centerline trees, as computed in [21].

PCA could be used to construct a principal line within the orthant, but there would be
many ways to extend this beyond the orthant into tree space. In view of this, Feragen
et al [21] fitted finite geodesics to data by searching over geodesic segments whose
end points were taken from the data set D. Examples can be constructed where such
geodesics fit poorly in comparison to an unconstrained geodesic [62]. The constraint
on the end points was subsequently dropped [46] by employing a stochastic search
algorithm to vary the end points in tree space and search for the geodesic segment of
best fit.

Construction of higher-dimensional objects in tree space to act as analogs of Eu-
clidean principal components proved challenging. For example, the convex hull of
three points in tree space – a natural candidate for a second order principal com-
ponent – can have dimension strictly greater than 2. Examples of convex hulls in
tree space with the “wrong” dimension in comparison to Euclidean space were first
constructed by Sean Skwerer (personal communication). Details of a similar exam-
ple based on his construction can be found in [45]. As an alternative to the convex
hull, Nye et al [45] considered the locus of the weighted Fréchet mean of three given
points, as the weights vary over the standard simplex. Also known as barycentric
subspaces [50], these objects have the correct dimension, although they are not nec-
essarily convex. It is possible that other analogs of PCA could be developed in tree
space in the future, for example with different objects playing the role of higher
dimensional components, potentially a nested version of PCA, or via some proba-
bilistic model.

Figure 1.12 shows 5 sampled trees along the first principal component of the
same 8016 airway centerline trees as used in Figure 1.11. The principal component
was computed using the algorithm from [21]. We see the airways from two different
views to emphasize the development throughout the principal component, which
appears to capture breathing motion. Note that some of the trees along the principal
component do contain a single node of degree 4, which indicates that the principal
component partly runs along a codimension 1 stratum in BHV tree-space.
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1.3.2.3 Other approaches

The preceeding methods all rely on least squares estimation but a few methods have
been developed in BHV tree space which take a different approach. First, Weyen-
berg et al [59, 58] used Gaussian kernels in tree space to identify outliers in data
sets. Gaussian kernels have density functions of the form f (x) ∝ exp(d(x, x0)2/σ2)
where d(·, ·) is the BHV metric, x0 is a point in tree space representing the mode of
the distribution, and σ a dispersion parameter. The normalizing constant for these
kernels is challenging to compute, and various computational approximations were
employed. Secondly, Willis [60] developed analysis via projection onto a tangent
space based at the Fréchet mean, by an analog of the Riemannian log-map. Here,
the log-map is used to represent trees as points in a vector space in which existing
Euclidean statistical methods can be applied. In [52], a set of brain artery trees were
mapped to points in BHV tree space, and the data set was analysed by a variety of
methods, including construction of the Fréchet mean, multidimensional scaling and
minimal spanning trees. Finally, Chakerian and Holmes [15] presented a method for
evaluating how close a data set comes to lying on a tree within tree space (a “tree of
trees”) in addition to various methods based on multidimensional scaling.

1.4 THE SPACE OF UNLABELLED TREES
While BHV tree space has the advantage of CAT(0) geometry and polynomial time
algorithms for computing geodesics, it comes with the assumption that all trees have
the same labeled set of leaves. In many applications, including most anatomical
trees, this assumption does not hold. In this section, we review the space of unla-
belled trees (tree-like shapes) as defined in [25]. Versions of this space have been
used to study airway trees from human lungs [25], blood arteries on the surface of
the heart [31] and neuronal trees [19].

As we shall see below, the geometry of the space of unlabelled trees is more com-
plicated than the geometry of BHV tree space. Among other things, geodesics are not
generally unique, and curvature is not generally bounded. As a result, most research
has so far gone into algorithms or heuristics for computing geodesics [25, 31, 19], as
well as analysis that only requires geodesics or their lengths, such as labelling [31],
clustering and classification [19]. Heuristic “means” have been proposed in place
of the Fréchet mean [20], but these are not exact. In order to study more complex
statistics, a better understanding of tree space geometry is needed. This section con-
tributes to that by giving a thorough definition of the space of unlabelled trees, and
linking its geodesics to geodesics in BHV tree space. We use this link to prove that
for two points sampled from a natural class of probability distributions, their con-
necting geodesic is almost surely unique. Such uniqueness of geodesics is important
for geometric statistical methods to be well-defined.
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Figure 1.13: The supertree T must be large enough to span all trees of interest. It
can represent smaller trees using 0-valued attributes to represent contracted branches.
This allows representation of higher order vertices, but also results in multiple equiv-
alent representations of unlabelled trees, as shown on the right.

1.4.1 WHAT IS AN UNLABELLED TREE?
Unlabelled trees are represented as pairs (T, x) consisting of a combinatorial tree T
and a branch attribute map x, where T plays a role similar to the tree topology in
Section 1.3. A combinatoral tree is a triple T = (V, E, r) where V is a vertex set, E
is an edge set so that the resulting graph is connected and does not have cycles, and
r ∈ V is a designated root vertex. Edges are undirected, so that the vertex pairs (u, v)
and (v, u) define the same edge in E. Given an edge e ∈ E, any other edge e� ∈ E on
the path from e to r is said to be above e. If e� is above e, then we say that e is below
e�. Parent, child and sibling relationships between edges can be similarly defined
using the root.

A branch attribute map is a mapping x : E → A associating to each edge e ∈ E an
edge attribute x(e) ∈ A, where A is called the edge attribute space. In all our appli-
cations, A will contain a 0 element, which represents a contracted branch. Through
contracted branches, we can represent many different unlabelled trees using the same
combinatorial tree, and we can also represent higher order vertices using a binary
combinatorial tree, as in Figure 1.13. This leads us to define minimal representations
of unlabelled trees: A representation (T, x) with combinatorial tree T = (V, E, r) is
minimal if x(e) � 0 for all e ∈ E. Given an unlabelled tree representation (T, x), we
denote by (T̂ , x̂) its minimal representation with T̂ = (V̂ , Ê, r̂) and x̂ = x|Ê, where T̂
is obtained from T by contracting all edges that have 0 attribute.

An unlabelled tree is spanned by the combinatorial tree T if it can be represented
as a pair (T, x). Two unlabelled trees (T0, x0) and (T1, x1) are equivalent, denoted
(T0, x0) ∼ (T1, x1), if, for their minimal representations (T̂0, x̂0) and (T̂1, x̂1), there
exists a tree isomorphism φ : T̂0 → T̂1 such that, if φÊ : Ê0 → Ê1 is the restriction of
φ to edges, then x̂1 ◦ φÊ = x̂0. Finally, we define an unlabelled tree as an equivalence
class x = [(T, x)].

In some applications, such as retinal vessels [41] or coronary arteries [31], the
tree might actually reside on a surface and therefore have a natural planar order. This
can be encoded by requiring the tree isomorphism φ to be an isomorphism of ordered
trees, resulting in ordered unlabelled trees.

Example 1.14 (Edge attributes). The edge attribute space A can be designed to
encode application-dependent branch properties. Branch length is encoded using
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Figure 1.14: A simple model for branch geometry is obtained by representing the
edge e by a set of n equidistant landmark points x(e) ∈ (RN)n.

A = R≥0, and to encode branch geometry via landmarks (Figure 1.14), set A = (RN)n.
Here, a branch is described by n landmark points x(e) = (x0, x1, x2, . . . , xn) ∈ {0} ×
(RN)n. The first landmark is typically translated to the origin (x0 = 0) and left out of
the analysis. Branch geometry can also be encoded via curves, giving A = Cr(I,RN),
the family of Cr curves. A version of this is used in [19].

Most results in this chapter assume that A is a finite dimensional vector space (or
its positive orthant), whose metric is given by the Euclidean norm.

Definition 1.15 (The space of unlabelled trees). Fix a (possibly infinite) binary com-
binatorial tree T which is sufficiently large to span all the unlabelled trees of interest;
we will henceforth refer to T as the supertree, see Figure 1.13. The space

X =
�

e∈E
A = {x : E → A} (1.16)

of all branch attribute maps x on E, contains all possible representations (T, x) of
unlabelled trees spanned by T . As shown in Figure 1.13, some unlabelled trees
have multiple representations (T, x), and we construct the space of unlabelled trees
spanned by T as the quotient of X with respect to the equivalence ∼ defined above:

X = X/ ∼ .
This definition covers both a space of ordered unlabelled trees, and a space of un-
ordered unlabelled trees, as accounted for in the definition of the equivalence ∼.

The identifications made by the equivalence induce singularities in the tree space
X. The metric on X induces a quotient metric [12] on X, called the QED metric (short
for quotient Euclidean distance, as the original metric used on X was Euclidean).

As opposed to BHV tree space, not much is known about the geometry of X. The
following theorem summarizes what we do know:

Theorem 1.17 (Geometry and topology of X [25]).
i) The tree space X with the QED metric is a contractible, complete, proper

geodesic space.
ii) At generic points x ∈ X, the tree space X is locally CAT (0).

iii) There exist x0, x1 ∈ X with more than one geodesic connecting them. �
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Due to the far more complex geometry of X, the computational tools and statistics
in X are far less developed than in BHV tree space. Computing geodesics is NP
complete [23], but some heuristics have appeared [31].

1.4.2 GEODESICS BETWEEN UNLABELLED TREES
In this section we describe a previously unpublished relation between BHV geodesics
and QED geodesics, which hints at a potential algorithm for computing or approx-
imating geodesics in X. Additionally, we use this relation to prove almost sure
uniqueness of geodesics between pairs of points in X. Throughout the section, an
unlabelled tree x ∈ X will be analyzed via its minimal representation (T̂ , x̂), with
minimal combinatorial tree T̂ = (V̂ , Ê, r̂).

1.4.2.1 Mappings, geodesics and compatible edges

A tree space geodesic from x0 to x1 in X carries with it an identification of subsets
of the corresponding edge sets Ê0 and Ê1. A mapping [10] between T̂0 and T̂1 is
defined as a subset M ⊂ Ê0 × Ê1 such that for any two (a, b), (c, d) ∈ M ⊂ Ê0 × Ê1
we have

i) a = c if and only if b = d, and
ii) a is an ancestor of c if and only if b is an ancestor of d.

The mapping M identifies subsets of Ê0 and Ê1, in the sense that if the pair of edges
(a, b) ∈ Ê0 × Ê1 is in the subset M ⊂ Ê0 × Ê1, then the edge a from T̂0 is identified
with the edge b from T̂1. In view of this, the condition i) is a 1-1 identification
condition on the edges; the edge a from T̂0 can only be identified with a single edge
in T̂1 and vice versa. The condition ii) ensures that when all un-identified edges are
contracted, the identification is a tree isomorphism between T̂0 and T̂1.

Given two trees x0, x1 ∈ X and a mapping M between their minimal combinatorial
trees T̂0 and T̂1, we say that a pair of unmapped edges (e0, e1) ∈ Ê1 × Ê2 \ M are
compatible with M if M ∪ (e0, e1) is also a mapping between T̂0 and T̂1. A single
unmapped edge e0 ∈ Ê0 \ prÊ0

M is compatible with the mapping M if T̂1 can be
transformed into a tree T̂ �1 by adding a zero-attributed edge e�1 so that M ∪ (e0, e�1)
is a mapping between T̂0 and T̂ �1. Compatibility with M of a single unmapped edge
e1 ∈ Ê1 \ prÊ1

M is defined analogously.
A path γ : [0, 1]→ X from x0 = γ(0) to x1 = γ(1) naturally induces a mapping

M ⊂ Ê0 → Ê1: If the edge a ∈ Ê0 is identified with the edge b ∈ Ê1 by the path γ
as illustrated in Figure 1.15, then (a, b) ∈ M, and vice versa. The unmapped edges
compatible with the mapping are edges that do not “disturb” the shortest path as-
sociated with M, where length is measured with respect to the QED metric. In the
shortest path from x0 to x1 associated with M, such edges will appear or disappear
at one of the geodesic endpoints, shrinking to or growing from 0 at constant speed
throughout the path. The unmapped edges incompatible with the mapping are edges
from T̂0 that, in the shortest path associated with M, will have to disappear before
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Figure 1.15: A geodesic γ from x0 to x1 induces a mapping between the minimal
combinatorial trees T̂0 and T̂1 as indicated by colors. The black edges are unmapped,
and incompatible with the mapping. In γ, the black edge from T̂1 cannot appear until
the black edge from T̂0 has been contracted.

other edges from T̂1 can appear, or edges from T̂1 which cannot appear before other
edges from T̂0 have disappeared. See Figure 1.15 for an example.

In the QED metric, the order and speed of edge deletions and additions in a tree
space path affect the length of the path. In particular a path will, when possible, be
shorter if it continuously performs two branch deformations simultaneously rather
than first performing one, then the other. Thus, in order to find a QED geodesic, it is
not enough to know which branches will be identified and which branches appear and
disappear throughout the geodesic. That is, it is not enough to know the mapping. We
also need to know at which point in the geodesic the branches will appear/disappear.

1.4.2.2 Link between QED geodesics and BHV geodesics

Consider two unlabelled trees x0 and x1, and let γ : [0, 1]→ X be a geodesic from x0
to x1 with mapping M ⊂ Ê0 × Ê1 between the minimal representations T̂0 and T̂1.

Definition 1.18 (Subtrees spanned by a mapping). The subtrees x̃0 and x̃1 spanned
by the mapping M are the subtrees of x0 and x1 obtained by removing all edges
below the edges from T̂0 and T̂1 that appear in M. More precisely, x̃0 = (T̃0, x̃0),
where T̃0 = (Ṽ0, Ẽ0, r̃0 = r̂0) is the combinatorial tree obtained by keeping all those
vertices and edges from T̂0 that are found on the path from the root r̂0 to some edge
in prÊ0

(M). The branch attribute mapping is defined by restriction: x̃0 = x̂0|Ẽ0. The
subtree x̃1 of x1 is defined similarly. The remaining edges are collected in residual
edge sets Ri = Êi \ Ẽi, and attributed residual edge sets ri = (Ri, xi|Ri), i = 0, 1. See
Figure 1.16.

We now show that there is a leaf labeling of the subtrees x̃0 and x̃1 spanned by the

Figure 1.16: The mapping indicated on the left spans the subtrees x̃0 and x̃1 shown
on on the right, leaving the residual edge sets r0 and r1.
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mapping M, such that the geodesic γ decomposes as a product of a BHV geodesic
between the leaf-labeled x̃0 and x̃1, and constant-speed interpolations between the
origin and the attributed residual sets r0 and r1, respectively.

Consider M as a subset of Ẽ0 × Ẽ1; then M is a mapping from T̃0 to T̃1. Each
leaf in T̃0 is mapped to a leaf in T̃1, so by arbitrarily labeling the leaves in T̃0, there
is a labeling of the leaves in T̃1 with the same labels, which is consistent with the
mapping: If (a, b) ∈ M where a and b are both leaves, then b is given the same label
as a. The trees T̃0 and T̃1 might contain nodes of order 2, in which case a labeled
“ghost” leaf with zero attribute is added at the node in order to raise its order. It
may be necessary to add corresponding ghost edges and leaves in the other tree as
well. Assume that the number of leaves in T̃0 and T̃1 is N; now the trees T̃0 and
T̃1 can be considered as trees in BHV tree space TN (with edge attribute set A, see
page 20). The geodesic γ restricts to a map γ̃ : [0, 1]→ TN which takes x̃0 to x̃1; this
is a geodesic in TN :

Theorem 1.19. A geodesic γ : [0, 1]→ X from x0 to x1 in X decomposes as a BHV
geodesic between x̃0 and x̃1, and Euclidean geodesics from r0 to 0 and from 0 to r1.
In particular:

i) All edges in R0 and R1 are compatible with the mapping M.
ii) All leaves in T̃0 are mapped with leaves in T̃1.

iii) The map γ̃ = prTN
◦ γ is a geodesic in the BHV space TN.

iv) Denote by R0 =
�

R0
A and R1 =

�
R1

A; now prRi
◦ γ : [0, 1]→ Ri for i = 1, 2

are constant-speed parametrizations of straight lines in Ri, the first from r0 to 0
and the second from 0 to r1.

For the proof, we need the following well-known lemma on product geodesics:

Lemma 1.20. [12, Chapter I, Proposition 5.3] Let A and B be geodesic metric
spaces, and let A × B have the metric d2 ((a1, b1), (a2, b2)) = d2

A(a1, a2) + d2
B(b1, b2).

Now a path γ : [0, 1]→ A × B is a geodesic if and only if it is a product of geodesics
γA : [0, 1]→ A, γB : [0, 1]→ B, that is γ = (γA, γB) : [0, 1]→ A × B. �

We are now ready to prove Theorem 1.19.

Proof. i) This holds because Ri consists of subtrees rooted at leaves in T̃i, and such
subtrees can be mapped onto ghost subtrees in the other tree. ii) This follows from
the definition of a mapping: A leaf e0 in T̃0 cannot be mapped to a non-leaf edge
e1 in T̃1 while some other edge e�0 in T̃0 is mapped to the child of e1 in T̃1. iii)-iv)
The geodesic γ must necessarily correspond to some path µ in TN × R0 × R1, and
the length of γ in X is the same as the length of µ in TN × R0 × R1. Reversely, for
any other path µ̃ in TN × R0 × R1 there is a corresponding path γ� in X of the same
length. Thus, the geodesic γ must correspond to a geodesic µ in TN × R0 × R1. But
a geodesic in TN × R0 × R1 consists precisely of a BHV geodesic in TN and straight
Euclidean lines in R0 and R1 by Lemma 1.20. �
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The significance of Theorem 1.19 is that it hints at an algorithm for computing
QED geodesics by searching over all possible leaf labelings of the two unlabelled
trees x0, x1 ∈ X. For each leaf mapping, we can compute the corresponding BHV
geodesic between the corresponding x̃0, x̃1, and the interpolation between the cor-
responding attributed residual edge sets. Combining these, we can form the corre-
sponding path in X, where the shortest possible such path is indeed the geodesic.
While such an algorithm is still NP complete due to the search over all possible
leaf labelings, one might be able to utilize heuristics for tree matching to reduce the
search space in practice.

1.4.3 UNIQUENESS OF QED GEODESICS
While we have just seen that geodesics in X decompose into products of BHV
geodesics and Euclidean interpolations inR1 andR2, this does not indicate that X is a
product ofTN and a Euclidean space. Both the leaf-number N forTN , the assignment
of leaf labels, and the residual spaces R1 and R2 depend on the two unlabelled trees
x0 and x1. Nevertheless, we can use the previous result to prove uniqueness results
for geodesics in X. First, note that such geodesics in X are not generally unique:

Example 1.21. Consider the simple case of the tree space spanned by the combi-
natorial tree T with two edges rooted at the root vertex, representing two geometric
trees x0 and x1 with one edge each, and with branch attributes x0(e1) = (0, 1) ∈ R2

and x1(e2) = (1, 0). There are now two geodesics from x0 to x1 in X: one which maps
the two edges onto each other, and one which does not.

However, we show that for a natural family of probability distributions, two in-
dependently sampled trees will almost surely have a unique connecting geodesic.

Any measure µ on X can be pushed forward to a measure µ�(Y) = µ(φ−1(Y)) on
X through the quotient map π : X → X. Thus, in the case where the edge attribute
space A is a Euclidean space (or orthant), we can endow X with the push-forward of
the Lebesgue measure on X. We now state the main theorem of this section:

Theorem 1.22 (Main theorem). Assume that the edge attribute space A is Euclidean
or a Euclidean orthant, and let f be any probability density distribution on X with
respect to the push-forward of the Lebesgue measure on X. If x0 and x1 are indepen-
dently sampled from f , then with probability 1, there is a unique geodesic connecting
x0 and x1.

Note that in Theorem 1.22, the probability density function f will exist whenever
the corresponding probability measure is absolutely continuous with respect to the
push-forward of the Lebesgue measure, ensuring that positive probability mass does
not concentrate on the cut locus where pairs of points can have multiple geodesics.

In order to prove Theorem 1.22, we need to link unlabelled tree-space geodesics
to BHV geodesics by assigning artificial “leaf labels” to select subsets of edges that
will play the role of leaves.
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Definition 1.23 (Leaf mapping). Given a mapping M between combinatorial trees
T0 and T1, and subtrees T̃0 and T̃1 spanned by the mapping M, define

ML = {(e0, e1) ∈ M|e0 is a leaf in T̃0 and e1 is a leaf in T̃1}.
We call ML the leaf mapping associated with the mapping M (and, when relevant,
with the geodesic γ whose mapping is M).

Our proof relies on the following observations:

Lemma 1.24. Assume that x0 and x1 are sampled independently from f , where f
is any probability density distribution on X with respect to the push-forward of the
Lebesgue measure on X.

i) Note that while every geodesic in X induces a mapping M, and thus a leaf map-
ping ML, there may be several mappings M1, . . . ,Mk, not all associated with
geodesics, that give the same leaf mapping ML.

ii) For any leaf mapping ML, there is almost surely a unique shortest path from x0
to x1 associated to the leaf mapping, as follows: The leaf mapping defines leaf-
labeled subtrees x̃0 and x̃1 of x0 and x1, respectively, as above. Associated to the
leaf-labeled subtrees x̃0 and x̃1 there is a BHV geodesic γ̃ and residual spaces
R0 and R1, which give rise to a path γ from x0 to x1; this is the shortest possible
path from x0 to x1 with the given leaf mapping ML associated to it.

iii) There are finitely many possible leaf mappings (ML)i, i = 1, . . . ,N, between the
trees x0 and x1, which almost surely give rise to N shortest possible paths γi from
x0 to x1 in X with that given leaf mapping.

iv) Associated with the (ML)i and their associated shortest paths γi, there are finitely
many possible distances d1, . . . , dN between x0 and x1. It is possible that di = d j

for different i, j, for instance if the geodesic is not unique.
v) Among the possible paths γi, i = 1, . . . ,N enumerated in iii), the shortest one(s)

will be the geodesic(s) between x0 and x1. Among the possible distances di in iv),
the smallest distance min{d1, . . . , dN} is the QED distance between the unlabelled
trees x0 and x1.

Proof. i) If the subtrees spanned by the leaf mapping ML do not have degree 2 ver-
tices, then there is only one (maximal) mapping M with leaf mapping ML. But if
one of the subtrees, say x̃0, spanned by the mapping has a degree 2 vertex, then there
may be more than one way to add ghost vertices and edges to obtain a tree whose
internal vertices have degree ≥ 3. ii) If the subtrees spanned by the leaf mapping
ML do not have degree 2 vertices, then there is a unique corresponding geodesic and
mapping. If one of the subtrees has a degree 2 vertex, then there will only be more
than one shortest path (and corresponding mapping) if there are different, equal-cost
ways of matching the edges adjacent to the degree 2 mapping and the added ghost
subtree, to corresponding edges and subtrees in the other tree. This will only hap-
pen if permutations of matched edges give the same total difference, which can only
happen on a subset of measure 0. iii) Follows from ii). iv) Trivial. v) Follows from



✐
✐

“Book” — 2019/3/14 — 8:31 — page 32 — #42 ✐
✐

✐
✐

✐
✐

32 CHAPTER 1 Statistics on Stratified Spaces

Theorem 1.19. �

In a similar way as Theorem 1.19 we have:

Lemma 1.25. Let γ be a geodesic from x0 to x1 in X with a corresponding mapping
M, and assume that (e0, e1) ∈ M, i.e. the edge e0 in T̂0 is matched to the edge e1
in T̂1 by the geodesic. Let xc(e0) denote the child subtree of x0 rooted at the end of
e0, and let xp(e0) denote the remaining subtree of x0 after removing e0 and its child
subtree xc(e0). Similarly for x1 and e1. Then γ can also be represented as a product

γ = (γ1, γ2, γ3) : I → X × A × X,
where γ1 is the shortest path from xc(e0) to xc(e1) respecting the restriction of M; γ2
is the straight line from x(e0) to x(e1) in A; and γ3 is the shortest path from xp(e0) to
xp(e1) respecting the restriction of M. In particular, the length of γ in X is the same
as the length of (γ1, γ2, γ3) in X × A × X.

We are now ready to start the proof of Theorem 1.22. Suppose that x0 is any
tree in X where no two nonzero edges have the same attribute. Denote by Wx0 the
set of trees x1 in X such that there are at least two distinct geodesics γa and γb in X
connecting x0 to x1. If we can show that the set X \Wx0 is open and dense in X, then
we have proven Theorem 1.22, since the measure on X is the push-forward of the
Lebesuge measure.

Lemma 1.26. The complement X \Wx0 is open.

Proof. Let x1 ∈ X \Wx0 , that is, x1 is an unlabelled tree in X with only one geodesic
γ from x0 to x1, of length l1. We prove the lemma by finding an ε > 0 such that
B(x1, ε) ⊂ X \Wx0 .

There is a unique leaf mapping corresponding to γ; we denote it (ML)1. Associ-
ated with the finite number of other possible leaf mappings (ML)2, . . . , (ML)N there
is a finite number of shortest possible path lengths l2 ≤ . . . ≤ lN , where l1 < l2 since
the geodesic from x0 to x1 is unique.

Set ε = l2−l1
2 , and assume that there exists some x�1 ∈ B(x1, ε) ∩Wx0 , that is, such

that d(x1, x�1) < ε and there are two geodesics γa and γb from x0 to x�1. Now, if γc is a
geodesic from x�1 to x1, then the concatenations of paths γc ∗ γa and γc ∗ γb give two
distinct paths from x0 to x1, each of length

d(x0, x�1) + d(x�1, x1) ≤ d(x0, x1) + 2d(x1, x�1) < l1 + 2ε = l1 + 2
l2 − l1

2
= l2.

But this is not possible since the shortest two paths of equal length from x0 to x1 have
length at least l2. Hence, there cannot be two geodesics from x0 to x�1, i.e. x�1 � Wx0

and B(x1, ε) ⊂ X \Wx0 . This completes the proof that X \Wx0 is open in X. �

First, note that for the set Δ of trees x1 where at least two branches have identical
attributes, its complement X \ Δ is open and dense in X. It is thus enough to show that
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Figure 1.17: Since x0(ea
0) � x0(eb

0), it is possible to find some x�1 such that the in-
equalities in equations (1.28) and (1.29) are satisfied.

X \ (Wx0 \ Δ) is open and dense in X, since the intersection of two open and dense
sets is dense, and X \Wx0 ⊃ (X \ (Wx0 \ Δ)) ∩ (X \ Δ).

Next, assume that x1 ∈ Wx0 \ Δ. We are going to show that for any ε > 0 the ball
B(x1, ε) intersects X \Wx0 . Since x1 ∈ Wx0 , there are two distinct geodesics γa and γb

from x0 to x1 in X. Let Ma and Mb be the corresponding mappings between Ê0 and
Ê1, and denote by Êa

1 = prÊ1
(Ma) ⊂ Ê1 and Êb

1 = prÊ1
(Mb) ⊂ Ê1 the sets of edges in

x1 identified with some edge in x0 by γa and γb, respectively. We divide the proof
into two cases:

Case I: Êa
1 = Êb

1, and Case II: Êa
1 � Êb

1.

Proof of Case I: In this case, since γa � γb, there must be some edge e1 in Êa
1 = Êb

1
onto which two different edges ea

0 and eb
0 in Ê0 are mapped by (ML)a and (ML)b,

respectively. The two source edges have different edge attributes x0(ea
0) and x0(eb

0)
by the assumption of the theorem, and e1 has edge attribute x1(e1).

Lemma 1.27. For any ε > 0, we can find an unlabelled tree x�1 with the same minimal
combinatorial tree as x1, such that d(x1, x�1) < ε and the number of geodesics from
x0 to x�1 is at most p − 1, where p is the number of geodesics from x0 to x1.

Proof. By Lemma 1.24 there are (almost surely) finitely many leaf mappings be-
tween x0 and x1, denoted (ML)1, . . . , (ML)N , with corresponding shortest possible
paths γ1, . . . , γN of lengths l1, . . . , lN . We may assume l1 = l2 = . . . = lp < lp+1 ≤
. . . ≤ lN . The length of a geodesic from x0 to x1 is thus l1. Without loss of generality,
and possibly swapping a and b, we may assume that ε < lp+1 − l1. Since ε > 0, we
can find an attribute map x�1 : E1 → A such that x�1|Ê1 \ {e1} = x1|Ê1 \ {e1}, and

�x�1(e1) − x1(e1)� < ε, (1.28)

while

�x0(ea
0) − x1(e1)� < �x0(ea

0) − x�1(e1)� and �x0(eb
0) − x1(e1)� > �x0(eb

0) − x�1(e1)�.
(1.29)

Denote by x�1 the unlabelled tree whose edge attribute map is x�. Note that the



✐
✐

“Book” — 2019/3/14 — 8:31 — page 34 — #44 ✐
✐

✐
✐

✐
✐

34 CHAPTER 1 Statistics on Stratified Spaces

leaf mappings (ML)a and (ML)b can be transferred to the pair (x0, x�1) since x�1 has the
same tree topology as x1. This induces two paths γ�a and γ�b from x0 to x�1, which are
the shortest possible paths with the corresponding leaf mappings (ML)a and (ML)b.
By Lemma 1.25 and Eq. (1.29), the length l(γ�b) of γ�b satisfies

l(γ�b)2 = l(γb)2 + �x0(eb
0) − x�1(e1)�2 − �x0(eb

0) − x1(e1)�2 < l(γb)2,

so l(γ�b) < l(γb). Now, we see that the shortest path from x0 to x�1 corresponds to a
leaf mapping ML which also gives a shortest path from x0 to x1.

To see this, let γ�c be the geodesic from x0 to x�1, with leaf mapping (ML)c; we
then have l(γ�c) ≤ l(γ�b). The leaf mapping (ML)c also generates path γc from x0 to x1
which is the shortest possible with leaf mapping (ML)c. We now have

l(γc) ≤ l(γ�c) + d(x�1, x1) < l(γ�c) + ε < l(γ�c) + (lp+1 − l1) ≤ l(γ�b) + (lp+1 − l1)
< l(γb) + (lp+1 − l1) = l1 + (lp+1 − l1) < l1 + lp+1 − l1 = lp+1,

so we must necessarily have l(γc) = l1, i.e., γc is a shortest path from x0 to x1.
As a consequence, there are no new geodesic-generating leaf mappings between

x0 and x�1, which were not geodesic-generating between x0 and x1. Thus, the number
of shortest paths from x0 to x�1 is at most p − 1, where p is the number of shortest
paths from x0 to x1. This concludes the proof of Lemma 1.27. �

By repeatedly using Lemma 1.27, we see that for any ε > 0 there is a tree x�1 with
d(x1, x�1) < ε and a unique geodesic from x0 to x�1, which proves Case I.
Proof of Case II: We must have |Êa

1 | = |Êb
1 | by the definition of a mapping; therefore

we may assume (by symmetry) that e1 ∈ Êa
1 \ Êb

1. That is, there exists some e0 ∈ Ê0

which is identified with e1 ∈ Êb
1 by γb, whereas e0 is not identified with any edge in

Ê1 by γa. Let t0 ∈ [0, 1] be the time at which the zero attributed edge corresponding
to e1 appears in the geodesic γa. Let xb

t0 (e0) be the attribute associated to the edge
mapped from e0 to e by γb at time t0. Find an attribute map x�1 : Ê1 → RN , such that
x�1|Ê1 \ {e1} = x1|Ê1 \ {e1}, and �x�1(e1) − x1(e1)� < ε, while

�(x�)a
t0 (e0) − x1(e1)� < �xa

t0 (e0) − x�1(e1)� and �x1(e1)� > �x�1(e1)�.
Now, γ�b is shorter than γ�a, and in particular,

l(γ�b) ≤ d(x0, xb,t0 ) + d(xb,t0 , x
�
1) < d(x0, xb,t0 ) + d(xb,t0 , x1) = d(x0, x1) = l(γb).

The second inequality holds by Lemma 1.25. The proof wraps up as in Case I. �

1.5 BEYOND TREES
Tree space is so far the stratified data space that has seen the most attention, both
in theoretical developments and in applications that perform statistical analysis in
the stratified space (as opposed to reducing the data to Euclidean features). This is
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most likely caused in part by the availability of efficient code for computing BHV
geodesics [47], and in part the availability of tree-structured data [1].

However, a number of other applications generate data with combinatorial prop-
erties that are modelled well using stratified spaces. Below we discuss a few exam-
ples, some of which have seen some analysis – and some which are yet unexplored.

1.5.1 VARIABLE TOPOLOGY DATA
Stratified spaces are well suited for modeling data with variable topological structure,
as we have already seen in the case of trees. This idea generalizes also to other
examples.

Example 1 (Graphs). Graph-structured data are often represented using adjacency
matrices. An adjacency matrix representing a directed graph with n vertices is an
n × n matrix M such that the entry Mi j contains a scalar or vector attribute which
describes the directed edge from vertex i to vertex j, and the entry Mii describes
the vertex i. Undirected graphs are given by symmetric matrices, and graphs with
different sizes can be represented as fixed-size n × n adjacency matrices by entering
empty (ghost) vertices described by zero attributes, just like the unlabeled trees from
Section 1.4. Such an approach is used by Jain and Obermayer [34], who build a space
of attributed graphs as a quotient of the space of adjacency matrices on n vertices,
where vertex permutations are factored out. In their graph-space, the zero attribute
Mi j denotes a situation where there is no edge connecting the edges i and j, as in
Fig. 1.18 (a), top. A similar space of attributed graphs was also studied recently by
Kolaczyc et al [39], reproducing several results from [34].

In the space of attributed graphs from [34], the zero edge attribute corresponds to
“no edge”, as in Fig. 1.18 (a), top. Within such a model, Jain and Obermayer develop
theory for statistics and machine learning such as means and medians, clustering and
classification using Lipschitz optimization on the quotient, which is computation-
ally efficient. However, this model does not accommodate continuous edge lengths
well: In the case where the “shape” of a graph is simply described by the lengths of
edges, we obtain converging sequences as illustrated in Figure 1.18 (b, top), where
a sequence of cycles with one decreasing edge converges to a “line” graph with four
vertices on it. In order to accommodate edge lengths, one might prefer a length 0
branch to be a contracted one, as shown in Figure 1.18 (a-c, bottom). This would
imply identification of vertices, which has a drastic impact on the geometry of the
space of graphs, which in the top case is a quotient with respect to the permutation
group as introduced in [34] – but which in the bottom case is not.

Another example of variable topology data is given by point sets, which can be
used to represent a wide variety of data objects.

Example 2. A point set is a finite set {x1, . . . , xn} ⊂ X of points in a geodesic metric
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(a) (b)

Figure 1.18: Having edge attribute 0 can be used to model either no branch (a,
top), or a contracted edge, causing vertices to melt together (a, bottom). This choice
drastically affects limits of sequences (b).

space X. We denote by P = {{x1, . . . , xn} ⊂ X|n ∈ N} the space of point sets of ar-
bitrary cardinality. Geometric objects can be specified by point clouds or landmark
points, where one traditionally requires exact correspondence between the point sets
for different objects [38]. However, this does not always make sense, e.g. if there is
occlusion or missing annotations; if the landmark points correspond to non-existent
physical attributes; or if the landmark points represent geometric features such as
high curvature, rather than specific physical attributes. Other examples of point set
data include objects tracked over time or over different 2D slices of a 3D object. Per-
sistence diagrams [56] are a special case of point sets, where the points lie above the
diagonal, in the positive orthant of R2. In persistence diagrams, the diagonal itself
represents an arbitrary number of “dummy” points to which points from another per-
sistence diagram can be matched, in effect constituting a quotient space in which all
points on the diagonal are identified. Returning to point sets in general, by imposing
an order on the point sets, we obtain sequences, where examples include spike trains,
time series and other discrete signals [3, 35].

There are different ways to interpolate between point sets with variable cardinal-
ity, and different modelling choices lead to different “point set spaces”. In case of
occlusion or missing labels, it is natural to introduce “dummy” points, which can be
matched to points which exist in one object, but not the other. This is similar to the
0 attributed edges in the space of graphs. A different modelling choice could be to
allow points to merge together. This would, for instance, make sense when tracking
cells over time, which might divide.

In every example encountered in this chapter, a data space can be built as follows:
Consider data objects belonging to a discrete set of topologiesT = {Ti : i ∈ I}. These
topologies could be different different tree topology, different graph structures, dif-
ferent point set cardinality, or something else entirely. Restricting analysis to the set
Xi of data objects that have the fixed topology Ti, we apply known techniques: Trees,
graphs and point sets with a fixed topology are represented as fixed-length vectors or
matrices, to which standard Euclidean or manifold statistics can be applied. Includ-
ing all the different topologies in T , we obtain a disjoint union X =

�̇
Xi of spaces
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where different topologies are represented, but where we cannot yet interpolate be-
tween points in different subspaces Xi. Ultimately,we interpolate between different
topologies by realizing that, as with the trees, the boundary of each fixed-topology
stratum Xi consists of data whose topology is a degeneration of the topology found in
Xi, and thus topologically different. We join the different Xi when their degenerated
boundary topologies coincide, just like with the trees in Sections 1.3 and 1.4.

1.5.2 MORE GENERAL QUOTIENT SPACES
For all the examples above, different topologies are bridged by identifying different
representations of the same degenerated topologies along stratum boundaries. As
with trees, this can be thought of as creating a quotient X/ ∼, where x ∼ x� whenever
x and x� are two different representations, in two different strata, of the same point.

This quotient space approach extends beyond topological variation, for example
to the case of symmetric, positive definite (SPD) matrices. SPD matrices are fre-
quently encountered data objects, representing e.g. diffusion tensors [7, 4, 27, 8, 18]
or covariance descriptors [57]. Any SPD matrix Σ can be interpreted as the covari-
ance of a centered normal distribution, whose shape is characterized by its eigen-
values and whose orientation is characterized by its eigenvectors. Note that when-
ever all eigenvalues are distinct, the eigenvectors (orientations) are unique up to sign
change, whereas when two or more eigenvalues coincide, the eigenvectors are no
longer unique (corresponding to rotational symmetry of the normal distribution).
This leads to a stratification of the set of eigenspace decompositions of n × n SPD
matrices [29], where the stratification corresponds to the eigenvalue multiplicities.

Both the topologically variable data and the SPD matrices are quotient spaces
with respect to equivalences. A particularly well-understood type of equivalence is
defined by belonging to the same group action orbit. For instance, Kendall’s shape
space is a quotient of (Rd)n with respect to the group of rotations, translations and
rescaling, and the space of attributed graphs is a quotient of the space of adjacency
matrices with respect to the node permutation group. Group quotients appear when
we seek invariance with respect to a group action; invariant properties are proper-
ties which can be defined on orbits rather than on data points. However, unless the
group action is particularly nice (and often it is not), group quotients are not gen-
erally smooth. For instance, Kendall’s shape space [38] has singularities, and these
singularities correspond to changes in the diffeomorphism class of the group orbit at
the singularity. Other variants of shape space, such as projective shape space, have
also been studied as stratified data spaces [37, 48]. When a Lie group acts properly
on a smooth manifold, the quotient is a stratified space, stratified by orbit type – and
the stratification can be helpful in understanding the geometric, computational and
statistical properties of the quotient [29].

While imposing invariants means that one is actually working on a quotient space,
geometric statistics is not always phrased as a problem on a quotient. Moreover,
when it has been phrased as a statistical problem on a quotient, it has not typically
been acknowledged that noise in the data might not live on the quotient. This is
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the topic of recent work [43, 17], which shows that statistics on quotients can be
biased by these modelling choices. It is still unknown whether this can be interpreted
through stratified (singular) space geometry.

1.5.3 OPEN PROBLEMS
Stratified spaces have many attractive properties from the modelling point of view:
They allow continuously bridging different topologies or structures, and they give a
way to organize singularities in quotient spaces. However, a number of open prob-
lems are still left unanswered. As we have seen in Section 1.2, least squares statistics
in stratified spaces exhibit unexpected and possibly unwanted properties due to the
singularities in the stratified space. Can we design statistical methods that do not
exhibit stickiness – or that, perhaps, are sufficiently rich to capture the variation ig-
nored by stickiness? As we have seen in Sections 1.3 and 1.4, computing geodesics
is another challenge, and thus also an open problem, at least in the case of unlabelled
trees. However, the other data types above do not exhibit the hierarchical structure of
trees, and might therefore prove less computationally challenging. A general open
challenge is thus to utilize the modelling capabilities of stratified spaces in new ap-
plications.
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tence diagrams. Disc. Comp. Geom., 52(1):44–70, 2014.

[57] O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast descriptor for detection and
classification. European Conference on Computer Vision (ECCV), pages 589–600, 2006.

[58] G. Weyenberg, R. Yoshida, and D. Howe. Normalizing kernels in the billera-holmes-vogtmann
treespace. IEEE ACM T. Comput. Bi., page doi:10.1109/TCBB.2016.2565475, 2016.

[59] Grady Weyenberg, Peter M Huggins, Christopher L Schardl, Daniel K Howe, and Ruriko
Yoshida. KDEtrees: non-parametric estimation of phylogenetic tree distributions. Bioinfor-
matics, 30(16):2280–2287, 2014.

[60] A. Willis. Confidence sets for phylogenetic trees. J. Am. Stat. Assoc., 2018.
[61] Sakellarios Zairis, Hossein Khiabanian, Andrew J. Blumberg, and Raul Rabadan. Genomic

data analysis in tree spaces. arXiv preprint, arXiv:1607.07503, 2016.



✐
✐

“Book” — 2019/3/14 — 8:31 — page 42 — #52 ✐
✐

✐
✐

✐
✐

42 CHAPTER 1 Statistics on Stratified Spaces

[62] H. Zhai. Principal component analysis in phylogenetic tree space. PhD thesis, University of
North Carolina at Chapel Hill, 2016.



✐
✐

“Book” — 2019/3/14 — 8:31 — page 43 — #53 ✐
✐

✐
✐

✐
✐

1.5 Beyond trees 43

ACKNOWLEDGMENTS
he authors wish to thank the editors and the anonymous reviewers for their insightful feedback,
which helped greatly improve the quality of the paper. Aasa Feragen was supported by the Lundbeck
Foundation, as well as by the Centre for Stochastic Geometry and Advanced Bioimaging, funded
by a grant from the Villum Foundation.


