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Abstract. Diffusion-weighted magnetic resonance imaging (MRI) is sen-
sitive to ensemble-averaged molecular displacements, which provide valu-
able information on e.g. structural anisotropy in brain tissue. However, a
concrete interpretation of diffusion-weighted MRI data in terms of phys-
iological or structural parameters turns out to be extremely challenging.
One of the main reasons for this is the multi-scale nature of the diffusion-
weighted signal, as it is sensitive to the microscopic motion of particles
averaged over macroscopic volumes. In order to analyze the geometrical
patterns that occur in (diffusion-weighted measurements of) biological
tissue and many other structures, we may invoke tools from the field of
stochastic geometry. Stochastic geometry describes statistical methods
and models that apply to random geometrical patterns of which we may
only know the distribution. Despite its many uses in geology, astronomy,
telecommunications, etc., its application in diffusion-weighted MRI has
so far remained limited. In this work we review some fundamental re-
sults in the field of diffusion-weighted MRI from a stochastic geometrical
perspective, and discuss briefly for which other questions stochastic ge-
ometry may prove useful. The observations presented in this paper are
partly inspired by the Workshop on Diffusion MRI and Stochastic Geom-
etry held at Sandbjerg Estate (Denmark) in 2019, which aimed to foster
communication and collaboration between the two fields of research.
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1 Introduction

Diffusion-weighted magnetic resonance imaging (MRI) [23] is one of the few
imaging modalities that is capable of mapping the immensely complex micro-
structural architecture of the human brain in a non-destructive manner. This is
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achieved by applying a specific sequence of diffusion-sensitizing magnetic field
gradients during the MRI acquisition, producing a signal with a decay rate that
is dependent on the relative mobility of water molecules in the tissue [30]. As
the overall mobility of the molecules is decreased by the presence of any material
barrier, the acquired signal effectively provides an indirect probe of the ambient
structure. At the micrometer length scales accessible in current scanners, the
dominant barriers to the diffusing molecules in the brain are the fiber-like neu-
rites that transmit information between different regions of the brain [3], and
whose properties are (naturally) of profound importance in neurology. Aside from
the anticipated and present clinical value of this modality, diffusion-weighted
MRI also stands to provide unique information about the evolution, morpho-
genesis, and function of the brain, already being pursued through the track-
ing of macroscopic fibers in tractography [2, 4, 20]. The challenge faced by the
diffusion-weighted MRI community is to identify the relevant structural param-
eters determining the signal decay, and—to the extent that this is possible—to
invert the relation between them. This is where we believe stochastic geometry
could play a role.

Stochastic geometry [29] is an area of statistics that provides modeling and
inference techniques for complex spatial objects whose structure can be described
effectively as random patterns. One of the first cases studied in what is now called
stochastic geometry—the problem of stereology [1]—included the inference of
geometric properties of 3D objects from their intersections with a small number
of 2D planes. This topic gained traction in the 1960s, as its solutions alleviated
the challenging and computationally demanding task of actually computing 3D
reconstructions. Stereology found a wealth of applications ranging from geology
to for example microscopy of neuroanatomy. Since then stochastic geometry has
evolved into a mature field of mathematics that offers a rich toolbox of rigorously
developed techniques, including models with potential relevance for diffusion-
weighted MRI such as random tessellations and fiber processes. Skimming the
stochastic geometry literature one quickly comes across a number of concepts
that have obvious analogues independently developed in the diffusion-weighted
MRI literature, and yet the two research domains have had very limited contact
so far.

This chapter is written from the perspective of diffusion-weighted MRI as a
field working on a set of challenging modeling problems, focusing on the potential
utility of stochastic geometry in addressing them. Our aim is not to provide an
exhaustive overview of relevant theory in either field, but simply to highlight
some well-known results where the conceptual links between the two become
apparent. A comprehensive introduction to stochastic geometry can be found in
the book by Stoyan et al. [29], while the books by Jones [16] and by Johansen-
Berg and Behrens [15] provide a good entryway to diffusion-weighted MRI.

To initiate an exchange of ideas between these two fields, the first Workshop
on Diffusion MRI and Stochastic Geometry was co-organized by the authors
and Eva B. Vedel Jensen at Sandbjerg Estate (Denmark, January 20–24, 2019).
The observations presented in this chapter partly inspired this workshop, but



the chapter likewise builds on the valuable discussions held at the lively and
interactive workshop. We are not aware of any previous works pointing out the
parallels described here, although some of them will undoubtedly have been
noticed before.

Overview

The molecular dynamics relevant for diffusion-weighted MRI are conveniently
described by a displacement probability density function—the diffusion propa-
gator P (r, t). The propagator P (r, t) represents the probability of a displacement
r at a diffusion time t, and the diffusion-weighted signal is related to the char-
acteristic function S of the propagator given by

S(q) =

∫
e−iqrP (r, t) dr, (1)

where qr denotes the inner product between q and r. The Fourier parameter
q can be considered an experimental parameter, determined in practice by the
diffusion-sensitizing gradients of the acquisition.

In the following sections we give examples of connections to stochastic geom-
etry for three different ‘limiting regimes’ of the diffusion-weighted signal, where
expressions for the relevant molecular dynamics can be simplified significantly.
Secs. 2 and 3, which feature the short and long diffusion time limits respectively,
can be well-understood in terms of the time-dependent diffusion coefficient D(t),
which represents the mean squared molecular displacement at a time t. This dif-
fusion coefficient appears as the first non-trivial coefficient in the Taylor series
of logS, the cumulant expansion3

logS(q) ' −D(t) q2 + . . . (2)

From this expansion it can already be gathered that results based on the diffusion
coefficient are mostly applicable when q is relatively small—i.e., when the gradi-
ents are weak enough for the D-dependent term in this expansion to dominate—
and in Sec. 4 we consider instead the limit where the gradient strength parameter
∼ q becomes large. In this regime the diffusion coefficient no longer provides an
adequate vehicle for the description and analysis of the diffusion process, and we
have to rely on other descriptors. Where necessary, additional details on these
concepts will be given in the text, although technicalities will be skipped in favor
of accessibility. To simplify the exposition further, we will make implicit use of
the narrow pulse approximation [6, 27] throughout. The paper concludes with
an outlook on the possible future uses of stochastic geometry in Sec. 5.

3 We restrict ourselves in Eq. (2) to the one-dimensional case, to keep technicalities
to a minimum.



2 Specific volumes and the short-time limit

“. . . the time-dependent diffusion coefficient D(t) of mobile molecules
confined in pores or cells carries information about the confining geome-
try. At early times, [a perturbative expansion of D(t)] gives, irrespective
of details, the pore surface to volume ratio . . . , which is a measure of
microscopic length.”

Sen (2004)

The first regime we consider is the short-time limit, described in the seminal
works by Mitra, Sen, and others [18, 19, 26], and with important insights dat-
ing back to Kac [17]. The situation analyzed in these works is the diffusion of
molecules in the neighborhood of obstructive geometrical features, Fig. 1. At
the boundaries between the diffusive medium and the geometry, the diffusion is
prescribed by boundary conditions that can depend on e.g. the permeability, leav-
ing the spatially averaged, time-dependent diffusion coefficient D(t) to be solved.
While this is a very challenging problem for any non-zero, finite time t, the lim-
iting behavior for t → 0 can be expressed in terms of a relatively small set of
practically useful structural parameters. As D(t) can be measured in the scanner,
we can use diffusion-weighted measurements to obtain estimates of these param-
eters. The emergence of these structural parameters in the diffusion-weighted
signal can be understood as follows.

In the limit t → 0 the diffusing molecules do not have enough time to in-
teract with the geometry, and the diffusion coefficient naturally approaches the
medium’s free diffusion coefficient D(0) = D0—the diffusion coefficient of the
medium in the absence of any geometry. At times close to the limit, the particles
move a typical distance in the order of

√
D0 t (by virtue of the definition of D

in terms of the mean squared displacement), and so roughly speaking only the
fraction of particles within some distance ∼

√
D0 t can ‘see’ the geometry. As

the geometry essentially acts as a barrier to the diffusion, the time-dependent
diffusion coefficient decreases from its free diffusion limit, and this decrease is
more significant if a larger fraction of the total number of particles can interact
with the boundaries. For diffusion times approaching 0, this fraction becomes
exactly proportional to the surface area of the geometry. Formalizing this no-
tion, Mitra et al. [19] then showed that the first order correction describing the
approach of the limit becomes proportional to the surface-to-volume ratio S/V
of a smooth geometry, cf. Fig. 1, according to

D(t) ∼ D0 −
4

3 d
√
π

S

V

√
D0 tD0 (t→ 0), (3)

where d is the spatial dimension. From this relation, the surface-to-volume ratio
can be estimated reliably from the diffusion-weighted measurements [13]. The
order t terms in this expansion depend to varying degrees on the boundary con-
dition parameters such as the permeability, as well as on the average curvature



Fig. 1: A schematic showing a particle (black solid line) diffusing in a volume V , marked
by the blue hatch pattern. The gray boundary S acts as a barrier to the diffusion,
resulting in a decreased time-dependent diffusion coefficient D(t) compared to the
free diffusion coefficient D0. At short times only particles in a small neighborhood of
the boundary (within a distance ∼

√
D0 t) are significantly impacted by this effect,

resulting in a characteristic decrease of D(t) proportional to the ratio between the
surface area S and the volume V . Note that the time-dependent diffusion coefficient
measured in diffusion-weighted MRI is acquired by averaging over volumes much larger
than the typical diffusion length

√
D0 t.

of the geometry, while higher order terms depend on even more intricate details
of the environment.

Although the complex interactions between particles undergoing random dis-
placements and their surrounding structures have not been considered in stochas-
tic geometry as such—this problem is closer to mathematical physics [5]—the
surface-to-volume ratio uncovered in Eq. (3) is a commonly estimated quantity
in for example stereology. The surface-to-volume ratio is also referred to as the
surface density or as the specific surface area in stereology and stochastic ge-
ometry. An example of a question in this scenario for which stochastic geometry
could be helpful is: “what is the smallest observation window (voxel) that has
an acceptable error when estimating a given characteristic?” [29, Sec. 6.4.6].

3 Stationarity and the long-time limit

“That is, we assume here that the voxel is statistically homogeneous.
This macroscopic uniformity allows us to go from averaging over the
contributions from all parts of the system . . . to ensemble averaging
over all disorder realizations, leading to the description of the signal in
terms of the statistical properties embodied in the correlators . . . ”

Novikov and Kiselev (2010)



In the short-time limit of the previous section, particles could not explore their
surroundings outside a vanishingly small window, leading to the simple relation
between the surface-to-volume ratio and the time-dependent diffusion coefficient.
In the long-time limit, on the other hand, we can assume that particles in fact
see all the surrounding structures. Under fairly general conditions, the diffu-
sion process in this limit can still be described in terms of a single diffusion
coefficient—the limiting coefficient D∞ = limt→∞D(t). While determining D∞
for a given sample is very difficult, Novikov et al. [21, 22, 24] showed that once
again there are basic geometrical properties of the structure that completely
determine the limiting behavior of D(t). In this case, the diffusion coefficient
approaches its limit as

D(t) ∼ D∞ + c t−ϑ (t→∞), (4)

where c is a constant, and where the exponent ϑ = (p + d)/2 is determined by
the spatial dimension d and a structural exponent p. The structural exponent p
is the exponent of the limiting power law behavior of the structure correlation
function, which roughly speaking quantifies the presence of long-range correla-
tions in the diffusion barriers. While the constant c varies significantly between
different configurations of barriers, we know of only a few possible values for
the exponent p, with many vastly different configurations of barriers producing
the same critical exponent in experiments. The structural exponent p effectively
distinguishes between different structural universality classes [21].

A central concept in the cited works by Novikov et al. is that because the dif-
fusing particles can explore their entire surroundings, the exact configuration of
the barriers becomes irrelevant. Consequently, one can theoretically replace the
complicated original structure with a simpler-to-analyze effective medium, per-
mitting the derivation of e.g. Eq. (4). As explained in the quote above, the prac-
tical application of this simplifying methodology requires that we assume that
the subsets of a sample explored by different particles can be viewed as random
samples (‘disorder realizations’) generated by some basic statistical properties
of the global structure. In the context of stochastic geometry, this same assump-
tion is more commonly called (spatial) stationarity, and it is a key assumption
in many classical proofs in the field. In particular, the assumption of stationarity
enabled the first proofs of the fundamental formulas of stereology. In a number
of stochastic geometry results it is now known that a weaker ‘first order station-
arity’ assumption is sufficient [1], and it might be interesting to see if the same
is possible for the long-time limit results discussed here.

4 Directional measures and the strong-gradient limit

“The concept of disordered media and statistical averaging can be par-
ticularly valuable to deal with the geometric complexity of biological
tissues. We believe that further progress in the field can be achieved by
merging microscopic geometric models, statistical [descriptions] of disor-
dered media, and high-gradient features of the signal formation.”

Grebenkov (2016)



The gradient strength parameter set during a diffusion-weighted MRI experi-
ment determines—roughly speaking—the scanner’s sensitivity to diffusive mo-
tion. The mobility of the water molecules in the sample affects the decay rate
of the diffusion-weighted signal, cf. Sec. 1, and stronger gradients make this ef-
fect correspondingly stronger. Although stronger gradients thus produce weaker,
harder to detect signals, these signals contain information about interesting fea-
tures of the diffusion that cannot be observed at lower gradient strengths. The
results for the short-time and long-time limits described in the previous subsec-
tions are mainly used at low to moderate gradient strength acquisitions.

When we increase the gradient strength in a diffusion-weighted MRI ex-
periment we first notice that the anisotropy, i.e., the orientation-dependence,
becomes more significant. While we omitted this before, anisotropy is already a
factor at the lower gradient strength experiments used for the concepts discussed
in Secs. 2 and 3. In the general case, the long-time limit D∞ of D(t) considered
in Eq. (3) is, for example, in fact a tensorial quantity related to the mean squared
molecular displacements along different orientations. This anisotropy in the dif-
fusion reflects the anisotropy in the sample’s micro-structure, so for example in
the brain it is predominantly determined by the orientation distribution of neu-
rites, cf. Sec. 1. At higher gradient strengths, the orientation-dependence of the
diffusion can no longer be represented by a simple tensor, and a more complete
set of orientational features becomes accessible.

The neurite orientations are generally characterized by a so-called fiber ori-
entation distribution function (ODF), which specifies the likelihood that a neu-
rite is locally tangent to a given orientation, and the estimation of this object
from strong-gradient experiments is a common problem considered in diffusion-
weighted MRI. A large number of techniques have been proposed to deal with
this question [14, 31, 32], but we will not discuss them in detail here. Instead
we will point out that the ODF also has a stochastic geometrical analogue: the
rose of directions [29]. The rose of directions is defined for fiber processes—a
well-defined (locally finite) collection of randomly placed fibers. The rose of di-
rections is the distribution of the direction tangent to a typical point on a fiber,
where the meaning of a ‘typical point’ can be made explicit using Palm distribu-
tion theory. A stationary fiber process is an example of a stochastic geometrical
model in the spirit of the work by Novikov et al. [22] that could be useful to
model biological tissues. Furthermore, the rose of directions has a dual—the rose
of intersections. These two objects are related through the Funk–Radon integral
transform [9], which also appears naturally in for example the diffusion-weighted
signal expression for narrow cylinders (the ‘fiber ball’ ODF) [14].

At even stronger gradients we move to another limiting regime—the strong-
gradient limit, or localization regime [11]. Here we can still make use of the
intuition developed in Sec. 2: any structure in the sample will act as a barrier
for particles in its vicinity, and thus slow down the average motion in that region.
Slower diffusion in turn implies less signal decay, and so the main contributions
to the signal now come from particles localized near the barriers [28]. The local-
ization effect carries non-trivial consequences for the diffusion time-dependence



of the signal, but for this chapter we are more interested in the orientation
dependence in this regime.

A simple way to understand the impact of the geometry’s anisotropy on
the signal in the strong-gradient limit, is to look at a diffusion propagator with
a compact support Ω. At strong gradients the integrand in Eq. (1) oscillates
rapidly, and as a result the integral indeed tends to 0. However, the rate at which
it decays is in fact governed by the support Ω, which is of course determined
by the geometry. We can consider as an illustration the ‘indicator’ propagator
which is 1 everywhere inside a sufficiently smooth and convex Ω, and 0 elsewhere.
The signal decay is then exponential with an exponent supr∈Ω qr [12], where the
exponent, viewed as a function in q, determines Ω completely. We could for
example use this observation to recover the shape of a convex pore enveloping
a diffusing substance, provided that the pore is much smaller than the typical
diffusion length

√
D0 t [6], but this approach is not limited to closed pores.

The function q 7→ supr∈Ω qr is called the support function of Ω in stochas-
tic geometry, where it can be associated with the rose of directions of a fiber
process [29]. A similar interpretation can be given to the support function as
it occurs here, leading to the definition of the barrier ODF [7, 8]. It must be
mentioned that as these developments are very recent, their practical utility is
currently still being investigated.

5 Perspectives

We have given three examples of concepts in diffusion-weighted MRI that also
occur in stochastic geometry: the surface-to-volume ratio, which is related to the
specific surface area commonly estimated in stereology; statistical homogeneity,
which is related to stationarity; and the fiber orientation distribution function,
whose stochastic geometry analogue is the rose of directions. In the context
of neuroimaging, the common thread between them appears to be the concept
of stationary fiber and surface processes from stochastic geometry, which are
completely characterized by the specific length/area and the rose of directions.

We believe further investigations in this direction could lead to new and
useful methods for the analysis of diffusion-weighted MRI data, as well as novel
research problems in stochastic geometry. In particular, we hope that the link
to the mature statistical theory found in stochastic geometry may offer practical
tools for the analysis of uncertainty and variation in applications of diffusion
weighted MRI: How much faith can we put in estimated anatomical quantities?
Which quantities can we expect to be able to derive from given data? What are
the conditions we should put on our data acquisition in order to be able to draw
sound conclusions for the hypotheses that we ultimately hope to investigate?
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