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Abstract—The fact that machine learning models, despite their
advancements, are still trained on randomly gathered data is
proof that a lasting solution to the problem of optimal data
gathering has not yet been found. In this paper, we investigate
whether a Bayesian approach to the classification problem can
provide assumptions under which one is guaranteed to perform
at least as good as random sampling. For a logistic regression
model, we show that maximal expected information gain on
model parameters is a promising criterion for selecting samples,
assuming that our classification model is well-matched to the
data. Our derived criterion is closely related to the maximum
model change. We experiment with data sets which satisfy
this assumption to varying degrees to see how sensitive our
performance is to the violation of our assumption in practice.

I. INTRODUCTION

The default procedure to train a machine learning model is
to learn from randomly gathered data. Active learning inves-
tigates whether we could reach at least the same performance
as random sampling with fewer samples if we had the control
over which samples to gather. While it might seem intuitive
that the answer to the previous question should be positive,
a consistent solution has been elusive so far [1], [2] . There
have been several heuristics that propose sampling strategies
based on common sense [3], and while they do outperform
random sampling on occasion, it is not clear ahead of time if
they will. What is missing is the set of conditions under which
one is guaranteed to perform at least no worse than random
sampling. This has been a hurdle which has prevented active
learning strategies from replacing random sampling altogether.

In this paper, we employ a Bayesian framework for both
model fitting as well as active learning to investigate the
possibility of optimal data gathering—at least under certain
assumptions. Parameters of our classification model are in-
ferred through the approximation of the posterior distribution
of parameters by a Gaussian distribution. We, in turn, look for
data which maximally reduces the expected entropy of this
Gaussian posterior. Our derivation follows that of MacKay
[4] for regression problems. We show that in the case of
logistic regression, our sampling strategy has a nice, analytical
form, which is closely related to maximum model change [5].
Moreover, in the limit of infinite data our sampling strategy
behaves similarly to the “decision boundary sampling” [6]. We

illustrate the behavior of our sampling strategy on a number
of data sets, and in this context discuss how our derivations
rely on our model being well-matched to the data. Having said
that, we have no Bayesian way of quantifying the extent to
which the model is well-matched to the data. Bayesian model
testing is only able to compare different proposed models, and
is in principle unable to detect if all those models are far from
the truth. We conclude with a discussion of how this problem
might be alleviated by extending the logistic regression model
to a neural network.

The outline of this paper is as follows: Section II reviews
how inference and active learning fit into the data modeling
process, which we derive in detail in Section III and Section
IV, respectively, following the analogous derivations of [7]
and [4] for regression models. Particularly, in Subsection III-A
we apply Laplace’s method to Bayesian inference of model
parameters and in Subsection III-B we address inference of
a hyperparameter in an evidence maximization framework. In
Section IV, we briefly review measures of information gain
and introduce an active learning strategy to gain maximal
information on model parameters. A performance criterion
that incorporates parameter uncertainty is given in Section V.
In Section VI, we experimentally validate our active learning
scheme on a range of data sets which satisfy our data set
assumptions to varying degrees. Finally, Section VII draws on
our findings to discuss if any guarantees can be given about
the optimality of our proposed method. We end by suggesting
how the same line of thought could potentially lead to a better
solution.1

II. DATA MODELING

Before we delve into details, we find it of great value to
remind the reader of the role of inference and data gathering in
data modelling process [8]. We, as the data scientist, typically
have a few candidate models (hypotheses), one of which
we postulate underlies the data fairly well. These models
might also include some parameters which we would like
to set. Bayesian inference is the tool that enables us to
reliably compare models and fit their parameters, taking into

1The code is available at https://github.com/kasra-arnavaz/Bayesian-Active-
Learning.



account the information produced by the data and our prior
knowledge about which model or parameter is more likely. As
a result, one could think of the following scenario for optimal
data gathering [7]: Firstly, we may look for data that gives
us maximal expected information on the plausibility of our
candidate models. We may use this information to come up
with new models we now find likely. We may continue this
iteration until we have narrowed down our hypotheses to one.
Once we have decided on one particular model, we would
then aim to gather data which gives us maximal expected
information on the parameters of that particular model. A
criterion that maximizes the discrimination of two models has
been given in [4].

In this paper, we assume we have identified the so-called
‘true model’, and thus look for data that reduces the expected
uncertainty of parameters the most. This assumption will incur
consequences which we will discuss in Section VII.

III. BAYESIAN INFERENCE

Active learning goes hand in hand with uncertainty quan-
tification. Bayesian inference provides a coherent basis for
uncertainty quantification, where uncertainties are expressed
by probability distributions. We refer the reader to [7] for an
in-depth review of Bayesian inference for regression problems.
Below, we will specifically work with the logistic regression
model. This choice is made in part because it leads to
analytical derivations, and in part because it is commonly used
as the final output of more flexible deep learning classification
networks.

A. Inference of model parameters w

In discriminative modeling, we are interested in finding
a mapping from the input space to the target space which
generalizes well to unseen data.

Suppose we have observed N input-target pairs as D =
{xn, tn}, where xn ∈ Rk, tn ∈ {0, 1}, and n = 1, ..., N .
A parametric model with parameters w ∈ Rk is specified
by its functional form y(x;w), the likelihood distribution
P ({tn}|{xn},w)2, and the prior distribution P (w)3. The
functional form specifies a space of functions F through which
one can wander by changing the parameters. The likelihood
determines which functions in F fit the observed N samples
better than the others. Prior establishes our prior belief about
the plausibility of functions in F . As our observed samples
might also include outliers, prior usually takes a form which
favors smooth functions to prevent the model from fitting to
outliers and facilitate generalization. Our posterior belief of
parameters would then be given by Bayes’ theorem as

P (w|D) =
P (D|w)P (w)

P (D)
. (1)

2For notational convenience, from here onwards, we will write
P ({tn}|{xn},w) as P (D|w), taking into account that in discriminative
models we model targets given inputs.

3The prior could also depend on nuisance parameters, which we are
momentarily assuming to be already integrated out.

One common prior which gives a varying degree of smooth-
ness is a zero-mean Gaussian prior with variance 1/α written
as

P (w|α) =
1

ZE
exp (−αE(w)), (2)

where
E(w) =

1

2
wTw (3)

and
ZE =

√
(2π/α)k. (4)

For small α, the variance would be large, making the prior
more like a uniform distribution and thus prior takes a neutral
position in the posterior belief of the parameters in (1). In this
case, parameters which fit the observed data better would be
more plausible. Conversely, large α leads to a small variance,
leaving the posterior to be dominated by the prior. In this case,
over-smooth functions would be more plausible which might
not fit the observed data well. In Subsection III-B, we will
apply Bayes’ theorem to find which values of hyperparameter
α are more likely.

We let the output of our model to estimate the probability
of the positive class i.e. P (tn = 1|xn,w) = y(xn;w).
Consequently, we would get P (tn = 0|xn,w) = 1−y(xn;w).
Therefore the probability of observed data would be given by

P (D|w) =
∏
n

yn(w)
tn(1− yn(w))

1−tn

= exp(−G(w)),

(5)

where yn(w) ≡ y(xn;w) and

G(w) = −
∑
n

tn log yn(w) + (1− tn) log(1− yn(w)), (6)

which is referred to as the binary-cross entropy loss.
By Bayes’ theorem4

P (w|D, α) =
P (D|w)P (w|α)

P (D|α)
, (7)

the posterior distribution over w can be written as

P (w|D, α) =
1

ZM
exp(−M(w)), (8)

where
M(w) = G(w) + αE(w), (9)

and ZM is the normalizing constant given by

ZM =

∫
exp(−M(w))dkw. (10)

This integral is intractable and we need the value of ZM
to infer α. To get around this problem, we can substitute
M(w) by its quadratic Taylor approximation around wMAP =
argminM(w) as

M(w) 'M(wMAP) +
1

2
(∆wTA∆w), (11)

4Data’s dependence on α is only through w i.e. P (D|w, α) = P (D|w).



where
∆w = w −wMAP, (12)

and
A = HM (wMAP), (13)

which is the Hessian matrix of M(w) computed at wMAP.
Consequently, the posterior distribution would be a Gaussian
as

P (w|D, α) =
1

ZM
exp(−1

2
∆wTA∆w), (14)

where
ZM = e−M(wMAP)

√
(2π)k/det(A). (15)

For a logistic regression model defined by

yn(w) :=
1

1 + exp(−wTxn)
, (16)

it can be verified that

A =
∑
n

yn(wMAP) [1− yn(wMAP)]xnx
T
n + αIk. (17)

In summary, we approximated our posterior distribution by a
Gaussian distribution with mean wMAP and covariance matrix
A−1.

B. Inference of hyperparameter α

The mean and the covariance matrix of the posterior distri-
bution over w depend on α. To address this issue, we must
take the expectation of P (w|D, α) when α’s are drawn from
their own posterior distribution P (α|D), or simply marginalize
P (w, α|D) over α i.e.

P (w|D) =

∫
P (w|D, α)P (α|D) dα. (18)

The posterior over α is determined by

P (α|D) ∝ P (D|α)P (α). (19)

Assuming a uniform prior over logα—since α appeared as
an exponent in (2)—posterior belief over α is completely
determined by its likelihood function P (D|α) which is also
known as the evidence for α. Evidence P (D|α) appeared
as the normalizing constant in (7) and is thus given by
P (D|α) = ZM/ZE which using (4) and (15) results in

logP (D|α) = −M(wMAP)− 1

2
log detA +

k

2
logα. (20)

In the above equation, M(wMAP) and A depend on α
according to (9) and (17). If we rewrite (17) as A = B+αIk
and plug that together with (9) into (20), we get

logP (D|α) =−G(wMAP)− αE(wMAP)

− 1

2
log det(B + αIk) +

k

2
logα.

(21)

We apply the same Gaussian approximation technique in
the previous subsection to P (α|D), with the difference that
we replace the Gaussian distribution by a delta function at its
peak and keep track of the variance only as a measure of how
dominant the peak is.

If P (α|D) has a dominant peak5 at αMAP, we can approx-
imate (18) by

P (w|D) ' P (w|D, αMAP). (22)

If we take the derivative of (21) w.r.t logα and set it to
zero, we find αMAP will satisfy

2αMAPE(wMAP) + αMAPTrace((B + αMAPIk)−1)− k = 0.
(23)

We will solve this equation numerically to find αMAP. Taking
the second derivative of (21) w.r.t (logα)2 computed at αMAP
shows how dominant the peak is and is given by [9]

σlogα|D '

√
2

k − αTrace(A−1)
. (24)

With few labeled samples, αTrace(A−1) would be close to
its maximum value k, which in turn leads to a large σlogα|D,
so the peak would not be dominant and approximation (22)
would not hold.

To conclude this section, our posterior distribution over
model parameters, which also represents our uncertainty of
parameters, is approximated to P (w|D, αMAP). Details on how
we actually compute the posterior will be given in Section VI.

IV. BAYESIAN ACTIVE LEARNING

Having gathered N input-target pairs, we would like to
select the next input xN+1 such that we expect maximal
information gain on model parameters once we receive target
tN+1. We will introduce two measures of information gain,
both of which depend on entropy.

Entropy was originally introduced by Shannon [10] for
discrete random variables. It measures how uncertain a discrete
random variable is. For example, if we have a bent coin with
bias p, the entropy is zero when p = 0 or p = 1 and is
maximum when p = 0.5. For continuous random variables,
entropy on its own is incompetent of conveying anything
meaningful [11], mainly due to the fact that it is scale variant.
However, change in entropy can be one measure of information
gain (or loss).

Let us denote the probability distributions of parameters
before and after we receive the target tN+1 by PN (w) and
PN+1(w), respectively. Then information gain would mean a
positive ∆S = SN − SN+1, where

SN =

∫
PN (w) log

1

PN (w)
dkw (25)

is the entropy of the probability distribution of parameters
before receiving tN+1. Since the value of tN+1 is unknown
to us when selecting xN+1, we will be working with the
expectation over P (t|x,D) of our selected information gain
measure. Another measure for information gain is the cross
entropy between PN (w) and PN+1(w) defined as

C =

∫
PN+1(w) log

PN (w)

PN+1(w)
dkw. (26)

5Empirically, if the model is well-matched to the data, this distribution is
unimodal [7].



It is shown in [4] that change in entropy and cross entropy
are equivalent in expectation i.e. E[∆S] = E[C]. Merely out
of convenience, we will be working with change in entropy
moving forward.

If we denote our entire training set by Q, from which N
samples have been labeled, then our next query to label would
be

xN+1 = argmax
x∈Q

(
EP (t|x,D) [SN − SN+1]

)
. (27)

We approximated our posterior distribution over w by a
Gaussian in (14). It can be shown that the entropy of a k-
dimensional Gaussian distribution with covariance matrix A−1

is [4]

S =
k

2
(1 + log 2π) +

1

2
log(det A−1). (28)

Therefore change in entropy would equal to

∆S =
1

2
log

detAN+1

detAN
. (29)

Due to (17), the relationship between AN+1 and AN is

AN+1 = AN + yN+1(wMAP) [1− yN+1(wMAP)]xN+1x
T
N+1.
(30)

For a scalar β and a vector x, determinant has the property
det
[
A + βxxT

]
= (detA)(1 + βxTA−1x). Applying this

property to (30), we can rewrite (29) as

∆S =
1

2
log(1 +m), (31)

where

m = yN+1(wMAP) [1− yN+1(wMAP)]xTN+1A
−1
N xN+1.

(32)
Note that this expression is independent of tN+1, and as a
result E(∆S) = ∆S. This is a mere consequent of choosing a
logistic regression model, and might not hold for other models.

We refer to the criterion defined by (31) and (32),
as maximal expected information gain or just information
gain for short. This criterion has a nice property that
yN+1(wMAP) (1− yN+1(wMAP)) favors the points close to
the decision boundary while xTN+1A

−1
N xN+1 favors the

points on the far end of data space. In particular, for small
N , where we have a high uncertainty over parameters,
xTN+1A

−1
N xN+1 would be the dominating term, so the cri-

terion would select points which have a larger norm and
lie close to the decision boundary. As we gather more data,
eigenvalues of the covariance A−1N would get smaller, and
yN+1(wMAP) (1− yN+1(wMAP)) would be the dominating
term in the criterion. At this point, maximal expected informa-
tion gain behaves close to decision boundary sampling in [6].
Figure 1 illustrates this intuition of the two sampling strategies
for N = 2, 7, 12, 17 and 22.

Lastly, information gain criterion is closely related to max-
imum model change criterion in [5] for a logistic regression
model. Inspired by the gradient descent update rule, which
updates parameters in the opposite direction of the gradient

of the loss function, the authors in [5] propose a sampling
strategy which maximizes the expected gradient length of the
loss function.

V. BAYESIAN PREDICTION

By the application of probability rules, Bayesian predic-
tion takes the uncertainty of parameters into account when
predicting new targets. For an input x, our prediction for its
corresponding target t to belong to the positive class is the
expected value of our model output when the parameters are
drawn from the posterior distribution i.e.

P (t = 1|x,D) =

∫
P (t = 1|x,w)P (w|D) dkw. (33)

The term P (t = 1|x,D) is written in shorthand by y(x) and
is referred to as marginalized output.

Under our current assumptions P (w|D) is a Gaussian dis-
tribution according to (14), and P (t = 1|x,w) is a sigmoidal
function according to (16), which render the above integral
intractable. Maximum a Posteriori (MAP) method estimates
this integral by

P (t = 1|x,D) ' P (t = 1|x,wMAP), (34)

which is equivalent of replacing the posterior P (w|D) by a
delta function at its peak wMAP (similar to what we did for the
inference of α). A better approximation has been in suggested
[12] resulting in a predictive distribution as 6

P (t = 1|x,D) =
1

1 + exp(−wT
MAPx/

√
1 + π

8x
TA−1x)

.

(35)
This equation comes with a nice interpretation: When the

uncertainty of parameters are low i.e. the eigenvalues of the
covariance A−1 are small, we get xTA−1x → 0, which
implies P (t = 1|x,D) → P (t = 1|x,wMAP), meaning MAP
estimation is valid. On the other hand, when the eigenvalues
(uncertainties) are large, giving xTA−1x → ∞, we see that
P (t = 1|x,D) → 0.5, meaning that we have low confidence
in our predictions due to high uncertainty in parameters. MAP
estimation is no longer valid in this case. In conclusion, the
term xTA−1x prevents overconfident predictions when the
model has been exposed to little data and is uncertain about
the parameters as a result.

Having settled our prediction, we would seek to define
measures for out-of-sample performance on a given test set
{xm, tm|m = 1, · · · ,M}. Accuracy defined by (37) is igno-
rant of prediction uncertainty and is not preferred as a result.

accuracy =
1

M

∑
m

1(tm = byme), (36)

where 1(·) outputs one if its argument is True and zero if
False, b·e rounds its argument to closest integer, and ym ≡
y(xm).

6This approximation becomes inaccurate when wT
MAPx� xTA−1x� 1.
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Fig. 1. Here, we show the sampling procedure for maximal expected information gain versus decision boundary sampling for a 2D version of the Digits data
set obtained by projecting it onto its first two principal components. We show the points drawn at iteration 0, 5, 10, 15, and 20, respectively. The black dots
are unlabeled samples and the white ones are labeled samples. The color indicates the value (pink=high, blue=low) of the property being maximized, i.e. the
information gain (top) and the distance to decision boundary (bottom). Note how samples are drawn near pink areas.

An alternative would be the binary cross entropy loss
between the targets tm and marginalized outputs ym, which
we call marginalized loss, and is given by

marginalized loss = − 1

M

∑
m

tm log ym+(1−tm) log(1−ym).

(37)
Due to the intuition given for marginalized output, a model

which makes a mistake in the classification of a test point but
is unsure about its prediction incurs a lower marginalized loss,
than the one which makes a mistake and is confident about its
prediction.

With marginalized loss as our preferred measure of perfor-
mance on unseen data, we head to experiment.

VI. EXPERIMENTS

We compare our maximal information gain strategy with
two other sampling strategies using logistic regression; namely
random sampling and decision boundary sampling [6], where
the latter picks the closest possible sample to the decision
boundary under the assumption that these are maximally
uncertain. We perform experiments on the following 10 clas-
sification data sets: AB and ABA are synthetic data sets
sampled from 2 and 3 2-dimensional Gaussian distributions,
respectively, to produce data sets which are linearly separable
(AB) and not linearly separable (ABA). The Breast Cancer
Wisconsin (Diagnostic) [13], Optical Recognition of Hand-
written Digits [14], Statlog (Heart), Haberman’s Survival [15],
Parkinson’s [16], and Ionosphere [17] data sets come from the
UCI repository [18]; here, for Digits only the first two classes
were used. DD [19], [20] and AIDS [21], [22] are benchmark
graph learning data sets [23], where each graph was given a
vector representation via its node degree histogram. The details
of the 10 data sets are shown in Table I.

TABLE I
DATA SET DETAILS

Name AB Heart Digits AIDS Cancer

# Samples 1000 270 360 2000 569
# Features 2 13 64 10 30

Name Parkinson’s DD Haberman Ion ABA

# Samples 195 1178 306 351 1000
# Features 22 19 3 34 2

When training logistic regression, we pick the initial value
of logα according to its prior, U(10−3, 10) in our case, each
time a new training point is drawn. With this value of α,
we minimize M(w), and then update α according to (23).
We plug in this new α into the equation for M(w) and
repeat this process until convergence, which is guaranteed if
optimizations of M(w) at each stage are not far off [9]. The
final values for wMAP and A will be used for the prediction.

When using the maximal expected information gain sam-
pling, we start the experiments by randomly revealing one
labeled data point from each class, and add in one sample at a
time that maximizes (31). We repeat this setup 20 times chang-
ing the two revealed data points each time. A similar procedure
is applied to the decision boundary sampling and random
sampling strategies; these are initialized with the same two
data points per run as the maximal information gain sampling.
Samples are selected with replacement among all strategies
i.e. relabeling of the same input is possible. Otherwise, all
sampling strategies would reach the same performance when
all samples in Q are exhausted [1].

Figure 2 and Figure 3 show the mean and standard deviation
of the accuracy and marginalized loss over the different data
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Fig. 2. For 5 roughly linearly separable data sets, we see (left) a visualization of the data set via projection onto the first two principal components, as
well as the (middle) accuracy and (right) marginalized loss, both as a function of number of training samples seen. The plots contain the mean and standard
deviations of 20 repeated runs of the sampling strategies. As the logistic regression model is well-matched to these data sets, the information gain criterion
for gathering samples outperforms random sampling.

sets for the three sampling strategies. The figures also show
(left column) the projection of the data onto the first two
principal components of each data set, to give insight into
data set properties.

Data sets in Figure 2 compose of two clusters for each class
which are roughly separable by a line. Even Heart data set
looks like two Gaussians whose means are close to each other.
Looking at their corresponding accuracies and marginalized
loss, we see that at least in the limit of high amount of data,
information gain outperforms random sampling consistently.

When the number of training samples is small, in the cases
where we obtain inferior performance compared to random
sampling, we speculate the reason to be a large σlogα|D given
in (24); not to mention that approximation (35) breaks when
wT

MAPx � xTA−1x � 1. It is visually visible that for data
sets in Figure 3, however, the classes are less linearly separable
to the point that ABA clearly is not. In such scenarios,
information gain sampling does not perform satisfactorily in
neither accuracy nor marginalized loss. The reason is that the
logistic regression model is not well-matched to these data
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Fig. 3. For 5 not linearly separable data sets, we see (left) a visualization of the data set via projection onto the first two principal components, as well as the
(middle) accuracy and (right) marginalized loss, both as a function of number of training samples seen. The plots contain the mean and standard deviations of
20 repeated runs of the sampling strategies. Since the assumption that our hypothesis space is correct no longer holds, the information gain criterion performs
poorly.

sets. Information gain criterion works by taking uncertainty
of parameters into account, but the input-target relationship in
these data sets cannot be modeled by a logistic regression,
so the covariance matrix A−1 we compute in (17) is far
from anything meaningful. This is verified by the increasing
marginalized loss in DD, Haberman, and ABA. We will
resume this discussion in the next section.

VII. DISCUSSION AND CONCLUSION

We have derived an active learning sampling scheme for
classification based on maximizing information gain on model

parameters. Additionally, we have shown that in the case
of logistic regression, this scheme takes a nice, interpretable
form and, in particular, is closely related to the more ad hoc
maximum model change [5]. Via our experiments we also
see how the performance of the method depends whether
our choice of classifier is well matched to the data set, an
assumption implicitly underlying our analysis.

In particular, in Section II, we assumed that we have found
the so-called true model, and as a result the purpose of data
gathering is to infer the plausibility of model parameters with
smallest possible amount of labeled data. Subsequently, we



derived a criterion under the Bayesian framework assuming
that the model is well-matched to the data. In Bayesian
language, our assumption is that the hypothesis space is
correct. Our experiments confirmed that indeed, when the
hypothesis space is correct, the information gain criterion
could be a promising sampling strategy—perhaps with more
accurate approximations using Monte Carlo methods [24].
That is reassuring except the fact that we have no Bayesian
way of verifying that our hypothesis space actually is correct
[25].

Hypothesis testing in the Bayesian framework is performed
through model-comparison. Let’s say we have several hypothe-
ses Hi whose validity we want to investigate, and we have
gathered data D. Thanks to Bayes’ theorem

P (Hi|D) ∝ P (D|Hi)P (Hi), (38)

we can sort alternative hypotheses in order of their plausibility.
They could all be completely far from the truth and we would
get a ranking regardless. Therefore, Bayesian model compari-
son is also only viable if we are within the correct hypothesis
space, where Bayes wouldn’t prefer other hypotheses to the
truth [7].

It seems inevitable that one must err on the side of a
larger hypothesis space. Logistic regression is essentially a
classification neural network with no hidden layer, which has
the nice property that its posterior over parameters with a
Gaussian prior is unimodal. For a neural network with hidden
layers, the posterior could be multimodal, and even if we can
find the global maximum of the posterior, fitting a Gaussian
around that point is not an acceptable substitute for the entire
posterior distribution. However, a solution has been given
in [26] which is to fit a Gaussian distribution around each
local maximum of the posterior and treat each maximum
separately. One can then use Bayes’ theorem to compare
them to one another. Although this might not be a permanent
solution, since neural networks of a fixed width and depth
are not still universal approximators, they nevertheless specify
a larger hypothesis space than logistic regression. Extending
our analysis to more flexible, modern classifiers remains an
important avenue for future research.
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