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Abstract

We propose a semantic similarity metric for image registration. Existing metrics
like euclidean distance or normalized cross-correlation focus on aligning intensity
values, giving difficulties with low intensity contrast or noise. Our semantic
approach learns dataset-specific features that drive the optimization of a learning-
based registration model. Comparing to existing unsupervised and supervised
methods across multiple image modalities and applications, we achieve consistently
high registration accuracy and faster convergence than state of the art, and the
learned invariance to noise gives smoother transformations on low-quality images.

1 Introduction

Deformable registration is a fundamental preprocessing tool in medical imaging, where the goal
is to find anatomical correspondences between images and derive geometric transformations Φ to
align them. Most algorithmic and deep learning-based methods optimize alignment via a similarity
measure D and a λ-weighted regularizer R, combined in a loss function

L(I,J,Φ) = D(I ◦ Φ,J) + λR(Φ) . (1)

The similarity metric D assesses the alignment and strongly influences the result. Pixel-based
similarity metrics like euclidean distance (MSE) and patch-wise normalized cross-correlation (NCC)
are commonly used in both algorithmic [3, 4, 10, 22, 23, 25] and deep learning based [1, 5, 7, 8, 13,
14, 17, 18, 26–28] image registration. Typically, the similarity measure for a task is selected as the
best out of a small set of metrics, with no guarantee that one of the metrics is suitable for the data.

The shortcomings of pixel-based similarity metrics have been studied substantially in the image
generation community [29], where the introduction of deep similarity metrics approximating human
visual perception has improved the generation of photo-realistic images [6, 12]. As registration
models are generative models [7], we expect these similarity metrics to improve registration as
well. Current attempts at using learned similarity metrics for image registration require ground truth
transformations [11] or limit the input to the registration model [17].

We propose a data-driven similarity metric for image registration based on the alignment of semantic
features. We learn semantic filters of our metric on the dataset, use it to train a registration model,
and validate our approach on three biomedical datasets of different image modalities and applications.
Across all datasets, our method achieves consistently high registration accuracy, outperforming even
metrics utilizing supervised information. Our models converge faster and learn to ignore noisy image
patches, leading to smoother transformations on low-quality data.

Medical Imaging Meets NeurIPS. 34th Conference on Neural Information Processing Systems (NeurIPS 2020),
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Figure 1: Two-step training: First, the Feature Extractor (yellow) is trained on a segmentation task.
Next, its weights are frozen and used in the loss computation of the registration network (blue).

2 A deep similarity metric for image registration

To align areas of similar semantic value, we propose a similarity metric based on the agreement of
semantic feature representations of two images. Semantic feature maps are obtained by a feature ex-
tractor to be tuned on a surrogate segmentation task. To capture alignment of both localized, concrete
features, and global, abstract ones, we calculate the similarity at multiple layers of abstraction.

Concretely, given a set of feature-extracting functions F l : RΩ×C → RΩl×Cl for L layers, we define

DeepSim(I ◦ Φ,J) =
1

L

L∑
l=1

1

|Ωl|
∑
p∈Ωl

〈
F l
p(I ◦ Φ), F l

p(J)
〉

‖F l
p(I ◦ Φ)‖‖F l

p(J)‖
, (2)

where F l
p(J) denotes the lth layer feature extractor applied to image J, at spatial coordinate p. It is

a vector of Cl output channels, and the spatial size of the lth feature map is denoted by |Ωl|. The
metric is influenced by the neighbourhood of a pixel, as F l composes convolutional filters with
increasing receptive area of the composition. Note that the formulation via cosine similarity is similar
to the classic NCC metric, which can be interpreted as the squared cosine-similarity between two
zero-mean vectors of patch descriptions.

Feature extraction To aid registration, the functions F l(·) should extract features of semantic
relevance for the registration task, while ignoring noise and artifacts. We achieve this by training the
feature extractor on a supplementary segmentation task, as segmentation models excel at learning
relevant kernels for the data while attaining invariance towards non-predictive features like noise.
The obtained convolutional filters act as feature extractors for DeepSim, see also Figure 1.

3 Experiments
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Figure 2: Quantitative comparison of similarity metrics. Stars
indicate p-test significance level. Effect size given by Cohen’s d.

We compare registration mod-
els trained with DeepSim to the
baselines MSE, NCC, NCCsup
(NCC with supervised informa-
tion [5]), and VGG (a VGG-
net based metric common in im-
age generation and similar to our
method [12]). Figure 1 shows
our model architecture. For both
registration and segmentation we
use U-nets [21]. The registration network predicts the transformation Φ based on two images I,J. A
spatial transformer module [15] applies Φ to obtain the morphed image I ◦ Φ. The loss is given by
Eq. 1; we choose the diffusion regularizer for R and tune hyperparamter λ on the validation sets.

To show that our approach is applicable to a large variety of registration tasks, we validate it on three
2D and 3D datasets of different image modalities: T1-weighted Brain-MRI scans [9, 16], human
blood cells of the Platelet-EM dataset [20], and cell-tracking of the PhC-U373 dataset [19, 24]. Each
dataset is split into a train, validation, and test section.

2



Moving Fixed MSE NCC NCCsup VGG DeepSim

N/A for
3D Data

(a)

NCC

DeepSim

(b)

Figure 3: (a) Qualitative comparison, (b) Detail view of highlighted areas. Select segmentation
classes annotated color. The transformation is visualized by morphed grid-lines.

Registration accuracy & convergence We measure the mean Sørensen Dice coefficient on the
unseen test-set in Figure 2, and test for statistical significance of the result with the Wilcoxon
signed rank test for paired samples. Our null hypothesis for each similarity metric is that the
model trained with DeepSim performs better. We test for a statistical significance levels of
p∗ = 0.05, p∗∗ = 0.01, p∗∗∗ = 0.001. We further measure the effect size with Cohen’s d, and label
the metrics accordingly in Figure 2. Models trained with our proposed DeepSim rank as the best
on the Brain-MRI and Platelet-EM datasets, with strong statistical significance. On the PhC-U373
dataset, all models achieve high dice-overlaps of > 0.97. DeepSim converges faster than the
baselines, especially in the first epochs of training.

Qualitative examples & transformation grids We plot the fixed and moving images I,J and the
morphed image I ◦ Φ for each similarity metric model in Figure 3a, and a more detailed view of a
noisy patch of the Platelet-EM dataset in Figure 3b. The transformation is visualized by grid-lines,
which have been transformed from a uniformly spaced grid. On models trained with the baselines,
we find strongly distorted transformation fields in noisy areas of the images. In particular, models
trained with NCC and NCCsup produce very irregular transformations, despite careful tuning of the
regularization-hyper-parameter. The model trained by DeepSim is more invariant towards the noise.

4 Discussion & Conclusion

Registration models trained with DeepSim achieve high registration accuracy across multiple datasets,
leading to improved downstream analysis and diagnosis in medical applications. The consistency of
our proposed metric makes testing multiple traditional metrics unnecessary; instead of empirically
determining whether MSE or NCC captures the characteristics of a data-set best, we can use
DeepSim to learn the relevant features from the data.

The analysis of noisy patches in Figure 3b highlights a learned invariance to noise. The pixel-
based similarity metrics are distracted by artifacts, leading to overly-detailed transformation fields.
DeepSim does not show this problem. While smoother transformation fields can be obtained for all
metrics by strengthening the regularizer, this would negatively impact the registration accuracy of
anatomically significant regions. Accurate registration of noisy, low-quality images allows for shorter
acquisition time and reduced radiation dose in medical applications.

DeepSim is a general metric, applicable to image registration tasks of all modalities and anatomies.
Beyond the presented datasets, the good results on low-quality data let us hope that DeepSim will
improve registration accuracy in the domains of lung CT and ultrasound, where details are hard to
identify, and image quality is often poor. We further emphasize that the application of DeepSim is
not limited to deep learning. Algorithmic image registration uses a similar optimization framework,
where a similarity-based loss is minimized via gradient descent-based methods. DeepSim can be
applied to drive algorithmic methods, improving their performance by aligning deep, semantic feature
embeddings.
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Broader impact

The broader impact of our work is defined by the numerous applications of medical image registration.
Common applications are in neuroscience [5], CT-imaging of lungs and abdomen [26], as well as for
fusion and combination of multiple modalities [11].

The deep learning approach to image registration utilized in this work can achieve impressive results
across a wide variety of tasks, but this often comes at the cost of training models on specialized
hardware for extensive periods. This energy-intensive workload may raise carbon emissions, the
primary contributor to climate change [2]. We hope that by presenting a method for learning a seman-
tic similarity metric from the data, we make excessive testing of other loss functions unnecessary.
This can reduce the amount of model configurations to be tested in the development of deep learning
methods, contributing to a lower environmental impact of the image registration community.
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