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Ingrid (3 months) also helped!
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I DWI hypothesis: Water diffuses along fibers, not across
I Typical DWI pipeline:

I Local modelling: Estimate “fiber orientation distribution
function” (fODF) from data

I Global modelling: Integrate local models to obtain
long-range connectivity

Figure: Field of diffusion tensors estimated from data.
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I DWI hypothesis: Water diffuses along fibers, not across
I Typical DWI pipeline:

I Local modelling: Estimate “fiber orientation distribution
function” (fODF) from data

I Global modelling: Integrate local models to obtain
long-range connectivity

Figure: Field of fODFs estimated via constrained spherical
deconvolution.
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I DWI hypothesis: Water diffuses along fibers, not across
I Typical DWI pipeline:

I Local modelling: Estimate “fiber orientation distribution
function” (fODF) from data

I Global modelling: Integrate local models to obtain
long-range connectivity
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Figure: Estimate of white-matter fiber by integrating the fODF
field.



Uncertainties in local modelling
I Reflection symmetric probability distribution on S2 modelling

probability of tangential white matter bundle
I E.g. used for quantifying microstructural properties
I Does quantify uncertainty – but in an ad hoc way, based on a

single noisy measurement
I Limitations: Angular resolution, scale of measurement vs

anatomy, model assumptions, ...

9 / 19



Uncertainties in global modelling
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Geometrize the brain: 
Interpolated diffusion tensors define Riemannian geometry;
Shortest paths = estimates of white matter trajectories
(O'Donnel et al'02; Lenglet et al'04)
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Geometrize the brain: 
Interpolated diffusion tensors define Riemannian geometry;
Shortest paths = estimates of white matter trajectories
(O'Donnel et al'02; Lenglet et al'04)

Utilize probabilistic numerics:
Riemannian shortest paths are solutions to a 2nd order diff-EQ
Numerical uncertainty quantified by solving the diff-EQ
it using GP regression
(Schober et al, MICCAI'14)
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Geometrize the brain: 
Interpolated diffusion tensors define Riemannian geometry;
Shortest paths = estimates of white matter trajectories
(O'Donnel et al'02; Lenglet et al'04)

Utilize probabilistic numerics:
Riemannian shortest paths are solutions to a 2nd order diff-EQ
Numerical uncertainty quantified by solving the diff-EQ
it using GP regression
(Schober et al, MICCAI'14)

Incorporate measurement uncertainty:
Modern DWI has "high" angular resolution; 

DTI requires far less
Bootstrap the data to obtain uncertain diffusion tensors
= stochastic Riemannian metric

Obtain uncertain GP estimates of white matter tracts 
solving the geodesic diff-EQ using GP regression
(Hauberg et al, MICCAI'15)
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Geometrize the brain: 
Interpolated diffusion tensors define Riemannian geometry;
Shortest paths = estimates of white matter trajectories
(O'Donnel et al'02; Lenglet et al'04)

Utilize probabilistic numerics:
Riemannian shortest paths are solutions to a 2nd order diff-EQ
Numerical uncertainty quantified by solving the diff-EQ
it using GP regression
(Schober et al, MICCAI'14)

Incorporate measurement uncertainty:
Modern DWI has "high" angular resolution; 

DTI requires far less
Bootstrap the data to obtain uncertain diffusion tensors
= stochastic Riemannian metric

Obtain uncertain GP estimates of white matter tracts 
solving the geodesic diff-EQ using GP regression
(Hauberg et al, MICCAI'15)

A number of problems remain:
* Propagation of uncertainty with distance to endpoints: 

A ProbNum problem
* Proper modelling of local uncertainty
* Propagation of uncertainty throughout imaging pipeline
* More flexible fODF models; avoid inflated uncertainty 

due to poor model fit
* Uncertain fiber tracking (not shortest-path tractography)



Uncertainties in population modelling
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State-of-the-art in population modelling is to represent the
tract by a fixed prototype and perform population analysis on
scalar properties measured along the prototype.

Figure: O’Donnel et al, NeuroImage’09.

This ignores the variance in the estimated tract on every level
(estimation uncertainty, population variance, ...)
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State-of-the-art in population modelling is to represent the
tract by a fixed prototype and perform population analysis on
scalar properties measured along the prototype.

Figure: Garyfalldis et al, Front Neurosci’12

This ignores the variance in the estimated tract on every level
(estimation uncertainty, population variance, ...)



Ignoring uncertainty in population modelling is a problem

I The more clinical your paper is, the more likely you are to
have to support your claims by p-values (my experience)

I Ignoring uncertainty can lead to incorrect “significant”
differences

I Conclusion: If your final output includes an uncertainty, then
it needs to be propagated from the uncertainty of your “data”
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Back to population analysis of white matter tracts
I Different tracts are not independent observations of one

phenomenon, they are highly dependent observations of highly
dependent phenomena

I The noise is in the image. New observation = new image =
unavailable.

Figure: By Thomas Schultz 21 / 19



Learning from uncertain curves via Wasserstein distances
between GPs (Mallasto and F, NeurIPS’17)

I Derived analytical approximations of Wasserstein distances,
geodesics and barycenters for GPs via GD approximations

I Enables tractable distance-based learning

how far?
how much mass needs to move?

I Pros: Computationally tractable; resembles state-of-the-art
methods without uncertainties

I Cons: Strict model assumptions; limited scope
I Thus: Very open problem
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Discussion and outlook
I Diffusion MRI offers a rich pool of problems in modelling,

quantifying and communicating uncertainty
I We have first solutions based on GPs in global modelling and

population analysis
I A wide range of open problems remain

Figure: From Garyfalldis et al, Front Neurosci’12
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