# Uncertainty quantification for manifold valued models

#### Anton Mallasto, Søren Hauberg, Aasa Feragen

Section for Image Analysis & Computer Graphics, DTU Compute

afhar@dtu.dk

DALI/ELLIS workshop on Geometric Deep Learning

San Sebastian 05.09.2019



## Most of the work in this talk is based on Anton Mallasto's upcoming PhD thesis



#### Ingrid (3 months) also helped!



#### Manifold valued models: motivation

Manifolds are everywhere:

- Implicitly defined via constraints
- Implicitly defined via wanted invariances
- Explicitly defined via a change of metric (learned or known)



Figure sources: Dryden and Mardia (middle); Arvanitidis et al (right)

#### Manifold valued models: motivation

Manifolds as input is "easy": Map to feature space; "only" need to retain some level of order



#### Manifold valued models: motivation

Manifold-valued as output is often more difficult – mapping to feature space is often out of the question

- Manifold-valued regression
- Manifold-valued generative models
- Interpolation for manifold-valued data
- Interpretation



#### This talk

- Basic notation and definitions
- Generalizing GPs: Wrapped Gaussian Processes (WGPs)
- Manifold valued regression with UQ: WGP regression
- Uncertain submanifold learning: WGPLVM

### Basic notation and definitions

#### Riemannian manifolds

- ▶ Riemannian manifold = smooth manifold M with smoothly varying inner product (Riemannian metric)  $g_p(\cdot, \cdot)$ , aka  $\langle \cdot, \cdot \rangle_p$  on tangent space  $T_pM$
- Induces a distance function d and geodesics γ (locally distance minimizing) on M



#### Riemannian manifolds

- ▶ Riemannian manifold = smooth manifold M with smoothly varying inner product (Riemannian metric)  $g_p(\cdot, \cdot)$ , aka  $\langle \cdot, \cdot \rangle_p$  on tangent space  $T_pM$
- Induces a distance function d and geodesics γ (locally distance minimizing) on M
- Logarithmic and exponential maps Log: M → TM, Exp: TM → M locally linearize the manifold



#### Riemannian manifolds

- ▶ Riemannian manifold = smooth manifold M with smoothly varying inner product (Riemannian metric)  $g_p(\cdot, \cdot)$ , aka  $\langle \cdot, \cdot \rangle_p$  on tangent space  $T_pM$
- Induces a distance function d and geodesics γ (locally distance minimizing) on M
- Logarithmic and exponential maps Log: M → TM, Exp: TM → M locally linearize the manifold
- Exp<sub>p</sub> is a diffeomorphism between a neighborhood
   0 ∈ U ⊂ T<sub>p</sub>M and neighbourhood p ∈ V ⊂ M, chosen maximally. V = area of injectivity.



#### Product manifolds

- (M<sub>i</sub>, g<sub>i</sub>) Riemannian manifolds with, exponential maps Exp<sup>i</sup>, logarithmic maps Log<sup>i</sup>, i = 1, 2.
- $M = M_1 \times M_2$  is a Riemannian manifold with
  - metric  $g = g_1 + g_2$ ,
  - component-wise computed exponential map  $\operatorname{Exp}_{(p_1,p_2)}((v_1, v_2)) = (\operatorname{Exp}_{p_1}^1(v_1), \operatorname{Exp}_{p_2}^2(v_2))$

component-wise log map as well

#### Expectations and means on Riemannian manifolds

► For a random point X ∈ M, its expectation, or set of Fréchet means is

$$\mathbb{E}[X] := \arg\min_{q \in M} (\mathbb{E}[d(q, X)^2]).$$

Can be multivalued!

► For a dataset  $\boldsymbol{p} = \{p_i \in M\}_{i=1}^N$ , the *empirical Fréchet mean* is the minimizer

$$\min_{q\in M}\sum_{i=1}^N d(q,p_i)^2.$$



#### Gaussian Processes (GPs)

- Gaussian process (GP) = collection f of random variables s.t. any finite subcollection (f(ω<sub>i</sub>))<sup>N</sup><sub>i=1</sub> has a joint Gaussian distribution, where ω<sub>i</sub> ∈ Ω for the *index set* Ω.
- Entirely characterized by the mean function m and covariance function k:

$$m(\omega) = \mathbb{E}\left[f(\omega)\right],\tag{1}$$

$$k(\omega,\omega') = \mathbb{E}\left[ (f(\omega) - m(\omega))(f(\omega') - m(\omega'))^{T} \right], \quad (2)$$

• Notation:  $f \sim \mathcal{GP}(m, k)$ .



What do we need to obtain manifold valued GPs?

► Joint "GDs"



#### Euclidean GP regression

- ▶ Training data:  $\boldsymbol{D} = \{(x_i, y_i) \mid x_i \in \boldsymbol{x} \subset \mathbb{R}^I, y_i \in \boldsymbol{y} \subset \mathbb{R}^n\}$
- The GP predictive distribution at outputs y<sub>\*</sub> at test inputs x<sub>\*</sub>:

$$p(\mathbf{y}_*|\mathbf{D},\mathbf{x}_*) = \mathcal{N}(\boldsymbol{\mu}_*,\boldsymbol{\Sigma}_*), \tag{3}$$

$$\boldsymbol{\mu}_* = \boldsymbol{k}_*^T (\boldsymbol{k} + K_{\text{err}})^{-1} \boldsymbol{y}, \qquad (4)$$

$$\Sigma_* = \boldsymbol{k}_{**} - \boldsymbol{k}_*^T (\boldsymbol{k} + K_{\rm err})^{-1} \boldsymbol{k}_*, \qquad (5)$$

where, given a kernel  $k : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  we use the notation  $\mathbf{k} = k(\mathbf{x}, \mathbf{x}), \ \mathbf{k}_* = k(\mathbf{x}, \mathbf{x}_*), \ \mathbf{k}_{**} = k(\mathbf{x}_*, \mathbf{x}_*)$  and  $K_{\text{err}}$  is the measurement error variance.

What do we need to obtain manifold valued GPs?

► Joint "GDs"

Conditioning of the "joint GD"



# Generalizing GPs: Wrapped Gaussian Processes (WGPs)

Mallasto, F, CVPR'18

#### Wrapped Gaussian Distributions (WGDs)<sup>2</sup>

- n-dimensional Riemannian manifold (M, d)
- $\blacktriangleright$  Stochastic variable  $X \in M$ follows a wrapped Gaussian distribution (WGD) if for some  $\mu \in M$  and SPD matrix  $K \in \mathbb{R}^{n \times n}$ .

$$X \sim (\operatorname{Exp}_{\mu})_{\#} (\mathcal{N}(0, K)),$$

- ▶ Notation:  $X \sim \mathcal{N}_M(\mu, K)$ .
- The basepoint and tangent space covariance of X are

$$\mu_{\mathcal{N}_M}(X) := \mu, \ \mathsf{Cov}_{\mathcal{N}_M}(X) := K.$$





Figure: WGD defined as a Gaussian  $\mathcal{N}(0, K)$  in the tangent space  $T_{\mu}M$ , pushed forward by  $Exp_{\mu}$ 

<sup>&</sup>lt;sup>2</sup>Mardia and Jupp, *Directional Statistics*, 2009

Needed for wrapped GPs: Jointly WGD stochastic variables

▶ Random points X<sub>i</sub> ~ N<sub>Mi</sub>(µ<sub>i</sub>, K<sub>i</sub>), i = 1, 2, are *jointly WGD*, if the random point (X<sub>1</sub>, X<sub>2</sub>) is WGD on M<sub>1</sub> × M<sub>2</sub>:

$$(X_1, X_2) \sim \mathcal{N}_{M_1 \times M_2} \left( \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} K_1 & K_{12} \\ K_{21} & K_2 \end{pmatrix} \right),$$

for some matrix  $K_{12} = K_{21}^T$ .

#### Needed for wrapped GPs: Conditioning

#### Theorem

Assume  $X_1, X_2$  are jointly WGD as in (16), then we have the conditional distribution

$$X_1|(X_2 = p_2) \sim (\operatorname{Exp}_{\mu_1})_{\#} \left( \sum_{\nu \in A} \lambda_{\nu} \mathcal{N}(\mu_{\nu}, K_{\nu}) \right),$$

where

$$\mu_{v} = K_{12}K_{2}^{-1}v,$$

$$K_{v} = K_{1} - K_{12}K_{2}^{-1}K_{12}^{T},$$

$$\lambda_{v} = \frac{\mathcal{N}(v|\mathbf{0}, K_{2})}{\mathbb{P}\{A\}},$$

$$A = \{v \in T_{\mu_{2}}M \mid \operatorname{Exp}_{\mu_{2}}(v) = p_{2}\},$$

$$\mathbb{P}\{A\} = \sum_{v \in A} \mathcal{N}(v|\mathbf{0}, K_{2}).$$

#### Special case: Infinite injectivity radius

- $\blacktriangleright$  When the  $\mathrm{Exp}$  and  $\mathrm{Log}$  maps are globally 1-1
  - Manifolds of non-positive curvature
  - Wasserstein geometry on normal distributions
  - Typical Riemannian geometries on SPD matrices
- ▶ In this case,  $\mu_{\mathcal{N}_M}(X) \in \mathbb{E}[X]$  (not generally)
- In this case,

$$egin{split} & \mathsf{X}_1 | (\mathsf{X}_2 = \mathsf{p}_2) \ & \sim \left( \mathrm{Exp}_{\mu_1} 
ight)_{\#} \left( \mathcal{N} \left( \mu_{\mathrm{Log}_{\mu_2}(\mathsf{p}_2)}, \mathsf{K}_{\mathrm{Log}_{\mu_2}(\mathsf{p}_2)} 
ight) 
ight), \end{split}$$

In practice: Assume probability mass on the area of injectivity large ~> this is a reasonable approximation, i.e. the Gaussian mixture in the tangent space is well approximated by a single Gaussian.

#### The Wrapped Gaussian Process (WGP)<sup>3</sup>

A collection f of random points on a manifold M indexed over a set Ω is a wrapped Gaussian process (WGP), if every finite subcollection (f(ω<sub>i</sub>))<sup>N</sup><sub>i=1</sub> is jointly WGD on M<sup>N</sup>.

We define

$$\begin{array}{ll} m(\omega) & := \mu_{\mathcal{N}_M}(f(\omega)) \\ k(\omega, \omega') & := \operatorname{Cov}_{\mathcal{N}_M}(f(\omega), f(\omega')) \end{array}$$

called the *basepoint function* (BPF) and *tangent space covariance function* (TSCF) of *f*, respectively.

- Entirely characterized by the pair (m, k), similar to the Euclidean case.
- Notation:  $f \sim \mathcal{GP}_M(m, k)$ .

<sup>3</sup>Mallasto, **F**, CVPR'18

#### Remark: Viewed via an infinite product manifold

- A WGP *f* can be viewed as a WGD on the possibly infinite-dimensional product manifold *M*<sup>|Ω|</sup>.
- ▶ *f* defines a GP  $f_{Euc}$  in the tangent spaces  $T_m M \subset M$  over the basepoint function, pushing each marginal  $f(x_i)$  forward onto *M* by  $(Exp_{m(x_i)})_{\#}(f(x_i))$ .

Formally:

 $f \sim (\operatorname{Exp}_m)_{\#}(\mathcal{GP}(0, k)).$ 



### Manifold valued regression with UQ:

Wrapped Gaussian Process Regression on Riemannian Manifolds

Anton Mallasto, Aasa Feragen

CVPR 2018

#### Setting

- Infinite injectivity radius (or using the unimodal approximation)
- Noise-free training data (later with noise)

$$D_M = \{(x_i, p_i) \mid x_i \in \mathbb{R}^I, p_i \in M, i = 1, ..., N\}.$$

• Denote  $\mathbf{x} = (x_i)_{i=1}^N$  and  $\mathbf{p} = (p_i)_{i=1}^N$ ; moreover  $\mathbf{x}_*$  is used for test inputs, and  $\mathbf{p}_*$  for test outputs.

#### GP regression on manifolds: A naïve benchmark

Choose p ∈ M (typically p ∈ E[p]; transfrom the training data D<sub>M</sub> into D<sub>T<sub>p</sub>M</sub> by

$$\boldsymbol{D}_{\mathcal{T}_pM} = (\boldsymbol{x}, \boldsymbol{y}) := \{ (x_i, y_i) \mid y_i = \mathrm{Log}_p(p_i) \}.$$

Apply GP regression f<sub>euc</sub> ~ GP(m<sub>euc</sub>, k<sub>euc</sub>) in the tangent space, giving a predictive distribution y<sub>\*</sub>|y ~ N(μ<sub>\*</sub>, Σ<sub>\*</sub>).

▶ Map back to the manifold *M*, resulting in

$${\pmb p}_*|{\pmb p}=\mathrm{Exp}_{\pmb 
ho}({\pmb y}_*)\sim \left(\mathrm{Exp}_{\pmb 
ho}
ight)_\# \left(\mathcal{N}({\pmb \mu}_*,{\pmb \Sigma}_*)
ight).$$



#### WGP regression: Noise-free

Assuming a WGP prior f<sub>prior</sub> ~ GP<sub>M</sub>(m, k), the joint distribution between the training outputs p and test outputs p<sub>\*</sub> at x<sub>\*</sub> is

$$\begin{pmatrix} \boldsymbol{p}_* \\ \boldsymbol{p} \end{pmatrix} \sim \mathcal{N}_{M_1 \times M_2} \left( \begin{pmatrix} \boldsymbol{m}_* \\ \boldsymbol{m} \end{pmatrix}, \begin{pmatrix} \boldsymbol{k}_{**} & \boldsymbol{k}_* \\ \boldsymbol{k}_*^T & \boldsymbol{k} \end{pmatrix} \right),$$

where m = m(x),  $m_* = m(x_*)$ , k = k(x, x),  $k_* = k(x_*, x)$ , and  $k_{**} = k(x_*, x_*)$ .

Therefore (using the unimodal approximation if necessary):

$$\begin{split} \boldsymbol{p}_* | \boldsymbol{p} &\sim \left( \mathrm{Exp}_{\boldsymbol{m}_*} \right)_{\#} \left( \mathcal{N}(\boldsymbol{\mu}_*, \boldsymbol{\Sigma}_*) \right), \\ \boldsymbol{\mu}_* &= \boldsymbol{k}_* \boldsymbol{k}^{-1} \mathrm{Log}_{\boldsymbol{m}} \boldsymbol{p}, \\ \boldsymbol{\Sigma}_* &= \boldsymbol{k}_{**} - \boldsymbol{k}_* \boldsymbol{k}^{-1} \boldsymbol{k}_*^{\mathsf{T}}. \end{split}$$

WGP regression: Noise-free

#### Remark

- The predictive distribution *p*<sub>\*</sub>|*p* is not necessarily WGD, as μ<sub>\*</sub> might be non-zero.
- ► The distribution can be sampled from, but computing quantities such as E[p<sub>\*</sub>|p] exactly is not trivial.
- Exp<sub>m<sub>\*</sub></sub>(μ<sub>\*</sub>) is not necessarily a Fréchet mean of p<sub>\*</sub>|p.
   However, it is the maximum a posteriori (MAP) estimate.

#### Choosing a prior

- An "informed" choice of prior base point function helps correctly localize the regressor
- We used (left) the Fréchet mean (constant function, giving naïve baseline) or (right) the output of geodesic regression or principal curves



#### WGP algorithm

Input Manifold-valued training data  $D_M = \{(x_i, p_i)\}_{i=1}^n$ .

**Output** Predictive distribution for  $p_*|p$  at  $x_*$ .

- i. Choose a prior BPF m.
- ii. Transform  $\boldsymbol{D}_{T_{\boldsymbol{m}}M} \leftarrow \{(x_i, \operatorname{Log}_{\boldsymbol{m}(x_i)}(p_i))\}_{i=1}^N$ .
- iii. Choose a parametric prior TSCF k
- iv. Using GP prior  $\mathcal{GP}(0, k)$ , carry out Euclidean GP regression for the transformed data  $D_{T_mM}$ , yielding the mean and covariance  $(\mu_*, \Sigma_*)$ .
- vi. End with the predictive distribution  $p_*|p \sim (\operatorname{Exp}_{m_*})_{\#}(\mathcal{N}(\mu_*, \Sigma_*))$

#### WGP regression: Noisy case

 The standard Euclidean noise model is p<sub>i</sub> = f(x<sub>i</sub>) + ε, ε ~ N(0, K<sub>err</sub>)

We thus propose the error model Log<sub>m(xi)</sub>(pi) = Log<sub>m(xi)</sub>(f(xi)) + ϵ. That is, the error lives in the tangent space of the prior mean at xi.

#### WGP regression: Noisy case

 The standard Euclidean noise model is p<sub>i</sub> = f(x<sub>i</sub>) + ε, ε ~ N(0, K<sub>err</sub>)

We thus propose the error model Log<sub>m(xi)</sub>(pi) = Log<sub>m(xi)</sub>(f(xi)) + ϵ. That is, the error lives in the tangent space of the prior mean at xi.

The joint distribution of p and p<sub>\*</sub> changes into

$$\begin{pmatrix} \boldsymbol{p}_* \\ \boldsymbol{p} \end{pmatrix} \sim \mathcal{N}_{M_1 \times M_2} \left( \begin{pmatrix} \boldsymbol{m}_* \\ \boldsymbol{m} \end{pmatrix}, \begin{pmatrix} \boldsymbol{k}_{**} & \boldsymbol{k}_* \\ \boldsymbol{k}_*^T & \boldsymbol{k} + K_{\mathrm{err}} \end{pmatrix} \right)$$

#### WGP regression: Noisy case

 The standard Euclidean noise model is p<sub>i</sub> = f(x<sub>i</sub>) + ε, ε ~ N(0, K<sub>err</sub>)

We thus propose the error model Log<sub>m(xi)</sub>(pi) = Log<sub>m(xi)</sub>(f(xi)) + ϵ. That is, the error lives in the tangent space of the prior mean at xi.

The joint distribution of p and p<sub>\*</sub> changes into

$$\begin{pmatrix} \boldsymbol{p}_* \\ \boldsymbol{p} \end{pmatrix} \sim \mathcal{N}_{M_1 \times M_2} \left( \begin{pmatrix} \boldsymbol{m}_* \\ \boldsymbol{m} \end{pmatrix}, \begin{pmatrix} \boldsymbol{k}_{**} & \boldsymbol{k}_* \\ \boldsymbol{k}_*^T & \boldsymbol{k} + \mathcal{K}_{\mathrm{err}} \end{pmatrix} \right).$$

• The remaining computations are then carried out similarly, with the replacement of  $\boldsymbol{k}$  with  $\boldsymbol{k} + K_{\text{err}}$  everywhere.

#### WGP regression in action on the sphere



- a) WGP regression using a prior BPF given by geodesic regression (dotted black) on a toy data set (grey dots) on S<sup>2</sup>. The predictive distribution is visualized using the MAP estimate (black line), and 20 samples from the distribution (in gray) with three samples emphasized (in red, green and blue).
- b) A motion capture dataset of the orientation of the left *femur* of a walking person. The independent variables were estimated by *principal curve* analysis, and a WGP was fitted.

WGP regression in action on diffusion tensors



- Upsampling DTI tensor field by WGP regression.
- Colors depict the direction of the principal eigenvector of the respective tensor.
- Upsampling using the MAP estimate of the predictive distribution of WGP regression on the original data set with uncertainty visualized below (white = maximum relative error, black = no error).

#### WGP regression in action on diffusion tensors

- Upsampling a subsampled DTI tensor field by WGP regression based on 20% of the original elements
- Regression using two different prior WGP BPFs:
   b-c) the Fréchet mean d-e) geodesic regression in both cases predicting via the MAP estimate
- The uncertainty fields in c) and e) have similar shapes, but the magnitudes differ.



#### WGP regression in action on Kendall shape space



- WGP regression predicting Corpus Callosum shape from age
- Red = data points from the test set, not used for training
- Black = the MAP estimates of the predictive distributions
- Green = values of the prior BPF (tangent space geodesic regression) at corresponding ages
- Blue = 20 samples from the predictive distribution

## Uncertain submanifold learning: WGPLVM

Anton Mallasto, Søren Hauberg, Aasa Feragen

Probabilistic Riemannian submanifold learning with wrapped Gaussian process latent variable models

AISTATS 2019

#### Learning latent representations

In differential geometric terms: A latent variable or (sub)manifold learning model learns a (sometimes stochastic) *chart* for the manifold on which the data lies.



Figure: Submanifold learning

#### Gaussian Process Latent Variable Model (GPLVM)

- Aims to learn a probabilistic model relating elements in the low dimensional *latent space* L ⊆ ℝ<sup>n'</sup> to observed data Y = {y<sub>i</sub>}<sup>N</sup><sub>i=1</sub> ⊂ ℝ<sup>n</sup>, with n' < n.</p>
- In geometric terms, learns a latent space by optimizing over input variables for GP regression predicting the observed data.
- Computed by: Choosing a prior GP f ~ GP(m, k<sub>θ</sub>) with hyper-parameters θ ∈ Θ. The hyper-parameters are optimized with the *latent variables* X = {x<sub>i</sub>}<sup>N</sup><sub>i=1</sub> ∈ L to maximize the log-likelihood

$$\log(\mathbb{P}(Y|X,\theta)) = -\frac{nN}{2}\ln(2\pi) - \frac{n}{2}\ln|K_{X,\theta}| \\ -\frac{1}{2}\mathrm{Tr}\left(K_{X,\theta}^{-1}YY^{T}\right),$$

## The Wrapped Gaussian Process Latent Variable Model (WGPLVM)

- $P = \{p_i\}_{i=1}^N$  on *n*-dim ambient Riemannian manifold  $\mathcal{M}$ .
- Consider a family of WGPs f ~ GP<sub>M</sub>(m, k<sub>θ</sub>), f: L → M (θ ∈ Θ hyperparameters)

## The Wrapped Gaussian Process Latent Variable Model (WGPLVM)

- $P = \{p_i\}_{i=1}^N$  on *n*-dim ambient Riemannian manifold  $\mathcal{M}$ .
- Consider a family of WGPs f ~ GP<sub>M</sub>(m, k<sub>θ</sub>), f: L → M (θ ∈ Θ hyperparameters)
- The likelihood assigned by the prior f to a data point p with associated latent variable x is

$$\begin{split} \mathbb{P}\{p|x,\theta\} &= \sum_{v \in \operatorname{Exp}_{m(x)}^{-1}(p)} \mathcal{N}(v|\mathbf{0}, K_{x,\theta}) \\ &\approx \mathcal{N}\left(\operatorname{Log}_{m(x)}(p)|\mathbf{0}, K_{x,\theta}\right), \end{split}$$
where  $(K_{x,\theta})_{ij} = k_{\theta}(x^{i}, x^{j})$  and  $x = (x^{1}, x^{2}, ..., x^{n}). \end{split}$ 

## The Wrapped Gaussian Process Latent Variable Model (WGPLVM)

- $P = \{p_i\}_{i=1}^N$  on *n*-dim ambient Riemannian manifold  $\mathcal{M}$ .
- Consider a family of WGPs f ~ GP<sub>M</sub>(m, k<sub>θ</sub>), f: L → M (θ ∈ Θ hyperparameters)
- The likelihood assigned by the prior f to a data point p with associated latent variable x is

$$\mathbb{P}\{p|x, heta\} = \sum_{v\in \operatorname{Exp}_{m(x)}^{-1}(p)} \mathcal{N}(v|\mathbf{0}, K_{x, heta}) \ pprox \mathcal{N}\left(\operatorname{Log}_{m(x)}(p)|\mathbf{0}, K_{x, heta}
ight),$$

where  $(K_{x,\theta})_{ij} = k_{\theta}(x^i, x^j)$  and  $x = (x^1, x^2, ..., x^n)$ . Maximize the approximate log-likelihood

$$\ln \left(\mathbb{P}\{p|x,\theta\}\right) \approx -\frac{nN}{2}\ln(2\pi) - \frac{n}{2}\ln|K_{x,\theta}| \\ -\frac{1}{2}\mathrm{Log}_{m(x)}(p)^{T}K_{x,\theta}^{-1}\mathrm{Log}_{m(x)}(p)$$

#### The WGPLVM pipeline

- The data p<sub>i</sub> ∈ M (blue and red dots) is transformed to the tangent bundle by p<sub>i</sub> → Log<sub>m(xi)</sub>(p<sub>i</sub>) ∈ T<sub>m(xi)</sub>M ⊂ T<sub>m</sub>M along the prior basepoint function m (dotted black line) at initial latent variables x<sub>i</sub>.
- 2. A GPLVM is learned, yielding the latent variables  $\hat{x}_i \in L$  and the GP  $f_{\text{Euc}}$  from L to the tangent bundle.
- 3. The GP  $f_{\text{Euc}}$  is then pushed forward onto  $\mathcal{M}$  by  $(\text{Exp})_{\#}(f_{\text{Euc}})$ , resulting in the predicted data submanifold.



#### Interpretation

- Basepoint function m can delocalize the learning process in order to avoid distortions of the metric caused by linearization of the curved M.
- Kernel k<sub>θ</sub> governs interaction between observations in different tangent spaces

#### Predictions

- ► The conditional distribution will then be a non-centered GP f<sub>Euc</sub> ~ GP(m<sub>Euc</sub>, k<sub>Euc</sub>) defined on T<sub>m</sub>M pushed forward by the exponential map, resulting in the predictive distribution \(\varphi\_{pred} ~ (Exp<sub>m(x)</sub>)#(f<sub>Euc</sub>).\)
- The mean prediction is given by  $\bar{\varphi}_{\text{pred}}(x) = (\text{Exp}_{m(x)})_{\#}(m_{\text{Euc}})(x)).$



#### Optimization and computation

- The initial latent variables X = {x<sub>i</sub>}<sup>N</sup><sub>i=1</sub> can be chosen strategically to aid optimization. We use principal geodesic analysis (for geodesic trend) and principal curves (otherwise)
- The basepoint function was set to the Fréchet mean, but could in principle be optimized over, in particular for very spread-out data
- Computational complexity is O(NL + N<sup>3</sup>), where L is the cost of computing the Riemannian logarithm.

#### WGPLVM in action: Datasets and manifolds used

**Femur dataset on**  $S^2$ . A set of directions  $P = \{p_i\}_{i=1}^N \in S^2$  of the left *femur* bone of a person walking in a circular pattern is measured at N = 338 time points.



#### WGPLVM in action: Datasets and manifolds used

**Diatom shapes in Kendall's shape space.** Diatoms are unicellular algae, whose species are related to their shapes. In Kendall's shape space  $M_K$  we analyze a set of outline shapes of 780 *diatoms* from 37 different species.



Figure: Representatives of each of the 37 diatom classes.

#### WGPLVM in action: Datasets and manifolds used

Diffusion tensors in SPD(3) and Crypto-tensors in SPD(10), Log-Euclidean metric.

- SPD(3): Collect a set of 750 diffusion tensors from a diffusion MRI dataset, sampled with approximately uniform fractional anisotropy values.
- SPD(10): Collect price of 10 popular crypto-currencies in the time 2.12.2014-15.5.2018; encode the crypto-currency intra-relationship at a given time in the covariance matrix between the prices in the past 20 days. Include every 7th day in the period, resulting in 126 10 × 10 covariance matrices.



#### WGPLVM in action: Visualization



Figure: The latent space for the crypto-tensor dataset, with days visualized by color. Note that for GPLVM, the dark blue points corresponding to early times are hidden underneath the green points.

#### WGPLVM in action: Visualization



Figure: The latent spaces for the diffusion-tensor dataset learned using the WGPLVM and GPLVM models. The colors indicate the FA of the given tensor.

#### WGPLVM in action: Visualization



Figure: The latent spaces for the diatom dataset learned using the WGPLVM and GPLVM models. The colors indicate the species of the diatom corresponding to the latent variable.

#### WGPLVM in action: Uncertainty quantification



- Uncertainty estimates given by the WGPLVM, GPLVM and projected GPLVM models for the four datasets.
- Bars represent the frequency of occurrences, where the fraction of samples, given by the x-value, lies closer to the mean prediction than a test point.
- Continuous curves represent the cumulative distributions.
- If the cumulative distribution lies above x = y, we are overestimating the corresponding quantile, and vice versa.
- "Close to diagonal" = "good model fit"

#### WGPLVM in action: Encoding

| Riemannian |                                  | Femur                            |                                  | Diatoms                                   |                                      | Diffusion tensors              | Crypto-tensors                  |
|------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------------|--------------------------------------|--------------------------------|---------------------------------|
| GPLVMProj  |                                  | $(9.22 \pm 0.55) \times 10^{-2}$ |                                  | $(2.48 \pm 0.25) \times 10^{-2}$          |                                      | $0.582 \pm 0.025$              | $21.91 \pm 2.26$                |
| WGPLVM     |                                  | $(9.20 \pm 0.53) \times 10$      | )-2                              | $(2.39 \pm 0.15) \times \mathbf{10^{-2}}$ |                                      | $0.391 \pm 0.035$              | $3.04 \pm 0.26$                 |
| Euclidean  | Femur                            |                                  | Diatoms                          |                                           | Diffusion tensors                    |                                | Crypto-tensors                  |
| GPLVM      | $(9.21 \pm 0.55) \times 10^{-2}$ |                                  | $(2.48 \pm 0.25) \times 10^{-2}$ |                                           | $(6.03\pm0.34)	imes\mathbf{10^{-2}}$ |                                | $(7.36 \pm 5.27) \times 10^{5}$ |
| GPLVMProj  | $(9.21 \pm 0.55) \times 10^{-2}$ |                                  | $(2.48 \pm 0.25 \times 10^{-2})$ |                                           | (6.                                  | $03 \pm 0.34) \times 10^{-2}$  | $(5.49 \pm 3.17) \times 10^5$   |
| WGPLVM     | (9.                              | $19 \pm 0.53) \times 10^{-2}$    | (2.                              | ${f 39\pm 0.15})	imes {f 10^{-2}}$        | (7                                   | $.54 \pm 0.36) \times 10^{-2}$ | $(8.69 \pm 7.12) \times 10^5$   |

Figure: Mean reconstruction errors (top = intrinsic distance, bottom = Euclidean distance)

#### Discussion - what did we see?

#### Summary:

- WGPs: Generalization of GPs that takes values (as opposed to input) on a manifold
- Applications in WGP regression and WGPLVM
- Clearly improved uncertainty quantification over the Euclidean models

#### Discussion:

- These datasets were not particularly big, but even in the Euclidean models, the mean function learned the manifold anyway!
- However, in the Euclidean models, the covariance function does *not* learn the manifold on its own

#### Explanation:

- The uncertainty covers up a poor model fit of the parameterized covariance
- As a result, the Euclidean model assigns positive probability mass to impossible points.

#### Outlook

- GPs are rather restrictive more flexible models of uncertainty?
- In particular (and in view of the name of the workshop) deep WGPs?
- Closely related: Deep learning with manifold valued output?