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Most of the work in this talk is based on Anton Mallasto’s
upcoming PhD thesis
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Ingrid (3 months) also helped!
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Manifold valued models: motivation

Manifolds are everywhere:
I Implicitly defined via constraints
I Implicitly defined via wanted invariances
I Explicitly defined via a change of metric (learned or known)

LAND model

LAND mean

Figure sources: Dryden and Mardia (middle); Arvanitidis et al (right)
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Manifold valued models: motivation

Manifolds as input is “easy”: Map to feature space; “only” need to
retain some level of order

Classification

Regression

Raw input
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Manifold valued models: motivation

Manifold-valued as output is often more difficult – mapping to
feature space is often out of the question
I Manifold-valued regression
I Manifold-valued generative models
I Interpolation for manifold-valued data
I Interpretation

blablabla
       

? !
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This talk

I Basic notation and definitions
I Generalizing GPs: Wrapped Gaussian Processes (WGPs)
I Manifold valued regression with UQ: WGP regression
I Uncertain submanifold learning: WGPLVM
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Basic notation and definitions
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Riemannian manifolds
I Riemannian manifold = smooth manifold M with smoothly

varying inner product (Riemannian metric) gp(·, ·), aka 〈·, ·〉p
on tangent space TpM

I Induces a distance function d and geodesics γ (locally
distance minimizing) on M

I Logarithmic and exponential maps Log : M → TM,
Exp : TM → M locally linearize the manifold

I Expp is a diffeomorphism between a neighborhood
0 ∈ U ⊂ TpM and neighbourhood p ∈ V ⊂ M, chosen
maximally. V = area of injectivity.

Tangent space Exp/log maps
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Product manifolds

I (Mi , gi ) Riemannian manifolds with, exponential maps Expi ,
logarithmic maps Logi , i = 1, 2.

I M = M1 ×M2 is a Riemannian manifold with
I metric g = g1 + g2,
I component-wise computed exponential map

Exp(p1,p2)((v1, v2)) =
(
Exp1

p1
(v1),Exp2

p2
(v2)

)
I component-wise log map as well
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Expectations and means on Riemannian manifolds

I For a random point X ∈ M, its expectation, or set of Fréchet
means is

E[X ] := arg min
q∈M

(E[d(q,X )2]).

Can be multivalued!
I For a dataset p = {pi ∈ M}Ni=1, the empirical Fréchet mean is

the minimizer

min
q∈M

N∑
i=1

d(q, pi )
2.
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Gaussian Processes (GPs)
I Gaussian process (GP) = collection f of random variables s.t.

any finite subcollection (f (ωi ))Ni=1 has a joint Gaussian
distribution, where ωi ∈ Ω for the index set Ω.

I Entirely characterized by the mean function m and covariance
function k :

m(ω) = E [f (ω)] , (1)

k(ω, ω′) = E
[
(f (ω)−m(ω))(f (ω′)−m(ω′))T

]
, (2)

I Notation: f ∼ GP(m, k).
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What do we need to obtain manifold valued GPs?

I Joint “GDs”
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Euclidean GP regression

I Training data: D = {(xi , yi ) | xi ∈ x ⊂ Rl , yi ∈ y ⊂ Rn}
I The GP predictive distribution at outputs y∗ at test inputs x∗:

p(y∗|D, x∗) = N (µ∗,Σ∗), (3)

µ∗ = kT
∗ (k + Kerr)

−1y , (4)

Σ∗ = k∗∗ − kT
∗ (k + Kerr)

−1k∗, (5)

where, given a kernel k : R× R→ R we use the notation
k = k(x , x), k∗ = k(x , x∗), k∗∗ = k(x∗, x∗) and Kerr is the
measurement error variance.
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What do we need to obtain manifold valued GPs?

I Joint “GDs”
I Conditioning of the “joint GD”
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Generalizing GPs: Wrapped
Gaussian Processes (WGPs)

Mallasto, F, CVPR’18
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Wrapped Gaussian Distributions (WGDs)2

I n-dimensional Riemannian
manifold (M, d)

I Stochastic variable X ∈ M
follows a wrapped Gaussian
distribution (WGD) if for some
µ ∈ M and SPD matrix
K ∈ Rn×n,

X ∼
(
Expµ

)
#

(N (0,K )) ,

I Notation: X ∼ NM(µ,K ).
I The basepoint and tangent

space covariance of X are

µNM
(X ) := µ, CovNM

(X ) := K .

Figure: WGD defined as
a Gaussian N (0,K ) in
the tangent space TµM,
pushed forward by Expµ
to M.

2Mardia and Jupp, Directional Statistics, 2009
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Needed for wrapped GPs: Jointly WGD stochastic variables

I Random points Xi ∼ NMi
(µi ,Ki ), i = 1, 2, are jointly WGD, if

the random point (X1,X2) is WGD on M1 ×M2:

(X1,X2) ∼ NM1×M2

((
µ1
µ2

)
,

(
K1 K12
K21 K2

))
,

for some matrix K12 = KT
21.
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Needed for wrapped GPs: Conditioning

Theorem
Assume X1,X2 are jointly WGD as in (16), then we have the
conditional distribution

X1|(X2 = p2) ∼
(
Expµ1

)
#

(∑
v∈A

λvN (µv ,Kv )

)
,

where
µv = K12K

−1
2 v ,

Kv = K1 − K12K
−1
2 KT

12,

λv =
N (v |0,K2)

P{A}
,

A = {v ∈ Tµ2M | Expµ2
(v) = p2},

P{A} =
∑
v∈A
N (v |0,K2).
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Special case: Infinite injectivity radius

I When the Exp and Log maps are globally 1-1
I Manifolds of non-positive curvature
I Wasserstein geometry on normal distributions
I Typical Riemannian geometries on SPD matrices

I In this case, µNM
(X ) ∈ E[X ] (not generally)

I In this case,

X1|(X2 = p2)

∼
(
Expµ1

)
#

(
N
(
µLogµ2

(p2),KLogµ2
(p2)

))
,

I In practice: Assume probability mass on the area of
injectivity large  this is a reasonable approximation, i.e. the
Gaussian mixture in the tangent space is well approximated by
a single Gaussian.
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The Wrapped Gaussian Process (WGP)3

I A collection f of random points on a manifold M indexed over
a set Ω is a wrapped Gaussian process (WGP), if every finite
subcollection (f (ωi ))Ni=1 is jointly WGD on MN .

I We define

m(ω) := µNM
(f (ω))

k(ω, ω′) := CovNM
(f (ω), f (ω′))

called the basepoint function (BPF) and tangent space
covariance function (TSCF) of f , respectively.

I Entirely characterized by the pair (m, k), similar to the
Euclidean case.

I Notation: f ∼ GPM(m, k).

3Mallasto, F, CVPR’18
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Remark: Viewed via an infinite product manifold

I A WGP f can be viewed as
a WGD on the possibly
infinite-dimensional product
manifold M |Ω|.

I f defines a GP fEuc in the
tangent spaces TmM ⊂ M
over the basepoint function,
pushing each marginal f (xi )
forward onto M by
(Expm(xi ))#(f (xi )).

I Formally:

f ∼ (Expm)#(GP(0, k)).
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Manifold valued regression with UQ:

Wrapped Gaussian Process Regression on
Riemannian Manifolds

Anton Mallasto, Aasa Feragen

CVPR 2018
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Setting

I Infinite injectivity radius (or using the unimodal
approximation)

I Noise-free training data (later with noise)

DM = {(xi , pi ) | xi ∈ Rl , pi ∈ M, i = 1, ...,N}.

I Denote x = (xi )
N
i=1 and p = (pi )

N
i=1; moreover x∗ is used for

test inputs, and p∗ for test outputs.
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GP regression on manifolds: A naïve benchmark
I Choose p ∈ M (typically p ∈ E[p]; transfrom the training data

DM into DTpM by

DTpM = (x , y) := {(xi , yi ) | yi = Logp(pi )}.

I Apply GP regression feuc ∼ GP(meuc , keuc) in the tangent
space, giving a predictive distribution y∗|y ∼ N (µ∗,Σ∗).

I Map back to the manifold M, resulting in

p∗|p = Expp(y∗) ∼
(
Expp

)
#

(N (µ∗,Σ∗)) .

27 / 58



WGP regression: Noise-free

I Assuming a WGP prior fprior ∼ GPM(m, k), the joint
distribution between the training outputs p and test outputs
p∗ at x∗ is(

p∗
p

)
∼ NM1×M2

((
m∗
m

)
,

(
k∗∗ k∗
kT
∗ k

))
,

where m = m(x), m∗ = m(x∗), k = k(x , x), k∗ = k(x∗, x),
and k∗∗ = k(x∗, x∗).

I Therefore (using the unimodal approximation if necessary):

p∗|p ∼
(
Expm∗

)
#

(N (µ∗,Σ∗)) ,

µ∗ = k∗k−1Logmp,

Σ∗ = k∗∗ − k∗k−1kT
∗ .
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WGP regression: Noise-free

Remark
I The predictive distribution p∗|p is not necessarily WGD, as µ∗

might be non-zero.
I The distribution can be sampled from, but computing

quantities such as E[p∗|p] exactly is not trivial.
I Expm∗(µ∗) is not necessarily a Fréchet mean of p∗|p.

However, it is the maximum a posteriori (MAP) estimate.
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Choosing a prior

I An “informed” choice of prior base point function helps
correctly localize the regressor

I We used (left) the Fréchet mean (constant function, giving
naïve baseline) or (right) the output of geodesic regression or
principal curves
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WGP algorithm

Input Manifold-valued training data DM = {(xi , pi )}ni=1.
Output Predictive distribution for p∗|p at x∗.

i. Choose a prior BPF m.
ii. Transform DTmM ← {(xi ,Logm(xi )(pi ))}Ni=1.
iii. Choose a parametric prior TSCF k

iv. Using GP prior GP(0, k), carry out Euclidean GP regression
for the transformed data DTmM , yielding the mean and
covariance (µ∗,Σ∗).

vi. End with the predictive distribution
p∗|p ∼ (Expm∗)#(N (µ∗,Σ∗))
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WGP regression: Noisy case

I The standard Euclidean noise model is pi = f (xi ) + ε,
ε ∼ N (0,Kerr)

I We thus propose the error model
Logm(xi )(pi ) = Logm(xi )(f (xi )) + ε. That is, the error lives in
the tangent space of the prior mean at xi .

I The joint distribution of p and p∗ changes into(
p∗
p

)
∼ NM1×M2

((
m∗
m

)
,

(
k∗∗ k∗
kT
∗ k + Kerr

))
.

I The remaining computations are then carried out similarly,
with the replacement of k with k + Kerr everywhere.
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WGP regression in action on the sphere

a) WGP regression using a prior BPF given by geodesic
regression (dotted black) on a toy data set (grey dots) on S2.
The predictive distribution is visualized using the MAP
estimate (black line), and 20 samples from the distribution (in
gray) with three samples emphasized (in red, green and blue).

b) A motion capture dataset of the orientation of the left femur
of a walking person. The independent variables were
estimated by principal curve analysis, and a WGP was fitted.
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WGP regression in action on diffusion tensors

I Upsampling DTI tensor field by WGP regression.
I Colors depict the direction of the principal eigenvector of the

respective tensor.
I Upsampling using the MAP estimate of the predictive

distribution of WGP regression on the original data set with
uncertainty visualized below (white = maximum relative error,
black = no error).
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WGP regression in action on diffusion tensors

I Upsampling a subsampled
DTI tensor field by WGP
regression based on 20% of
the original elements

I Regression using two
different prior WGP BPFs:
b-c) the Fréchet mean
d-e) geodesic regression

in both cases predicting via
the MAP estimate

I The uncertainty fields in c)
and e) have similar shapes,
but the magnitudes differ.
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WGP regression in action on Kendall shape space

I WGP regression predicting Corpus Callosum shape from age
I Red = data points from the test set, not used for training
I Black = the MAP estimates of the predictive distributions
I Green = values of the prior BPF (tangent space geodesic

regression) at corresponding ages
I Blue = 20 samples from the predictive distribution
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Uncertain submanifold
learning: WGPLVM
Anton Mallasto, Søren Hauberg, Aasa Feragen

Probabilistic Riemannian submanifold learning with
wrapped Gaussian process latent variable models

AISTATS 2019
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Learning latent representations

In differential geometric
terms: A latent variable or
(sub)manifold learning model
learns a (sometimes stochas-
tic) chart for the manifold on
which the data lies.

Figure: Submanifold learning
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Gaussian Process Latent Variable Model (GPLVM)

I Aims to learn a probabilistic model relating elements in the
low dimensional latent space L ⊆ Rn′ to observed data
Y = {yi}Ni=1 ⊂ Rn, with n′ < n.

I In geometric terms, learns a latent space by optimizing over
input variables for GP regression predicting the observed data.

I Computed by: Choosing a prior GP f ∼ GP(m, kθ) with
hyper-parameters θ ∈ Θ. The hyper-parameters are optimized
with the latent variables X = {xi}Ni=1 ∈ L to maximize the
log-likelihood

log(P(Y |X , θ)) =− nN

2
ln(2π)− n

2
ln |KX ,θ|

− 1
2
Tr
(
K−1
X ,θYY

T
)
,
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The Wrapped Gaussian Process Latent Variable Model
(WGPLVM)

I P = {pi}Ni=1 on n-dim ambient Riemannian manifoldM.
I Consider a family of WGPs f ∼ GPM(m, kθ), f : L→M

(θ ∈ Θ hyperparameters)

I The likelihood assigned by the prior f to a data point p with
associated latent variable x is

P{p|x , θ} =
∑

v∈Exp−1
m(x)

(p)

N (v |0,Kx ,θ)

≈ N
(
Logm(x)(p)|0,Kx ,θ

)
,

where (Kx ,θ)ij = kθ(x i , x j) and x = (x1, x2, ..., xn).
I Maximize the approximate log-likelihood

ln (P{p|x , θ}) ≈− nN

2
ln(2π)− n

2
ln |Kx ,θ|

−1
2
Logm(x)(p)TK−1

x ,θLogm(x)(p),
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The WGPLVM pipeline

1. The data pi ∈M (blue and red
dots) is transformed to the tangent
bundle by pi 7→ Logm(xi )(pi ) ∈
Tm(xi )M⊂ TmM along the prior
basepoint function m (dotted black
line) at initial latent variables xi .

2. A GPLVM is learned, yielding the
latent variables x̂i ∈ L and the GP
fEuc from L to the tangent bundle.

3. The GP fEuc is then pushed forward
ontoM by (Exp)#(fEuc), resulting
in the predicted data submanifold.
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Interpretation

I Basepoint function m can delocalize the learning process in
order to avoid distortions of the metric caused by linearization
of the curvedM.

I Kernel kθ governs interaction between observations in
different tangent spaces
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Predictions
I Approximate submanifold can be

predicted at arbitrary latent
variables XPred, by conditioning
f̂ ∼ GPM(m, kθ̂) on the data P
with the associated latent variables
X̂ .

I The conditional distribution will
then be a non-centered GP
fEuc ∼ GP(mEuc, kEuc) defined on
TmM pushed forward by the
exponential map, resulting in the
predictive distribution
ϕpred ∼ (Expm(x))#(fEuc).

I The mean prediction is given by
ϕ̄pred(x) = (Expm(x))#(mEuc)(x)).
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Optimization and computation

I The initial latent variables X = {xi}Ni=1 can be chosen
strategically to aid optimization. We use principal geodesic
analysis (for geodesic trend) and principal curves (otherwise)

I The basepoint function was set to the Fréchet mean, but
could in principle be optimized over, in particular for very
spread-out data

I Computational complexity is O(NL + N3), where L is the
cost of computing the Riemannian logarithm.
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WGPLVM in action: Datasets and manifolds used

Femur dataset on S2. A set of directions P = {pi}Ni=1 ∈ S2 of
the left femur bone of a person walking in a circular pattern is
measured at N = 338 time points.
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WGPLVM in action: Datasets and manifolds used

Diatom shapes in Kendall’s shape space. Diatoms are
unicellular algae, whose species are related to their shapes. In
Kendall’s shape space MK we analyze a set of outline shapes of
780 diatoms from 37 different species.

Figure: Representatives of each of the 37 diatom classes.
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WGPLVM in action: Datasets and manifolds used
Diffusion tensors in SPD(3) and Crypto-tensors in SPD(10),
Log-Euclidean metric.
I SPD(3): Collect a set of 750 diffusion tensors from a diffusion

MRI dataset, sampled with approximately uniform fractional
anisotropy values.

I SPD(10): Collect price of 10 popular crypto-currencies in the
time 2.12.2014-15.5.2018; encode the crypto-currency
intra-relationship at a given time in the covariance matrix
between the prices in the past 20 days. Include every 7th day
in the period, resulting in 126 10× 10 covariance matrices.
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WGPLVM in action: Visualization

Figure: The latent space for the crypto-tensor dataset, with days
visualized by color. Note that for GPLVM, the dark blue points
corresponding to early times are hidden underneath the green points.
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WGPLVM in action: Visualization
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Figure: The latent spaces for the diffusion-tensor dataset learned using
the WGPLVM and GPLVM models. The colors indicate the FA of the
given tensor.
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WGPLVM in action: Visualization
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Figure: The latent spaces for the diatom dataset learned using the
WGPLVM and GPLVM models. The colors indicate the species of the
diatom corresponding to the latent variable.
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WGPLVM in action: Uncertainty quantification

I Uncertainty estimates given by the WGPLVM, GPLVM and
projected GPLVM models for the four datasets.

I Bars represent the frequency of occurrences, where the
fraction of samples, given by the x-value, lies closer to the
mean prediction than a test point.

I Continuous curves represent the cumulative distributions.
I If the cumulative distribution lies above x = y , we are

overestimating the corresponding quantile, and vice versa.
I “Close to diagonal” = “good model fit”
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WGPLVM in action: Encoding

Figure: Mean reconstruction errors (top = intrinsic distance, bottom =
Euclidean distance)
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Discussion – what did we see?
Summary:
I WGPs: Generalization of GPs that takes values (as opposed

to input) on a manifold
I Applications in WGP regression and WGPLVM
I Clearly improved uncertainty quantification over the Euclidean

models
Discussion:
I These datasets were not particularly big, but even in the

Euclidean models, the mean function learned the manifold
anyway!

I However, in the Euclidean models, the covariance function
does not learn the manifold on its own

Explanation:
I The uncertainty covers up a poor model fit of the

parameterized covariance
I As a result, the Euclidean model assigns positive probability

mass to impossible points.
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Outlook

I GPs are rather restrictive – more flexible models of
uncertainty?

I In particular (and in view of the name of the workshop) –
deep WGPs?

I Closely related: Deep learning with manifold valued output?
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