## Problematic confidence: The Role of Uncertainty when Data is estimated from Data

DALI workshop on Hidden Gems, San Sebastian 03.09.2019

Aasa Feragen

Section for Image Analysis & Computer Graphics Technical University of Denmark

afhar@dtu.dk



# The questions asked in this talk are inspired by Anton Mallasto's upcoming PhD thesis



## Ingrid (3 months) also helped!



## Case: Estimating structural brain connectivity





Figure: Left: Voxel-wise heatmap, NeuroImage'16. Right: Estimated white-matter trajectories (figure by Thomas Schultz).

- Estimate white-matter bundle trajectories from local tangential directions
- Data is noisy and has low resolution; tracked axons so small, we only observe population level behavior
- ~ Our estimates are wrong! How wrong?

## Case: Estimating structural brain connectivity

Population analysis routinely assumes that our best estimate is correct. Example:



Figure: From Garyfalldis et al, Front Neurosci'12

## Ignoring uncertainty in population analysis is a problem



- Left: Small sample of uncertain yearly temperature curves represented as Gaussian Processes (GPs) from a Siberian metereological station.
- Bottom right: The mean and pointwise standard deviation of the mean temperature curves (the best estimates).
  This is what we routinely do in imaging and many other domains.

# Ignoring uncertainty in population analysis is a **common** problem



- In most population analysis in medical imaging, the "data" is estimated from data
- Algorithms that quantify uncertainty are starting to appear
- Incorporating uncertainty in population analysis is not currently tackled

Ignoring uncertainty in population is a potentially **serious** problem

Underestimating uncertainty can lead to incorrect "significant" differences



**Conclusion:** If your final output includes an uncertainty, then it needs to be propagated from the uncertainty of your "data"

## Hidden gem? First steps.

#### Goal:

- Point out the problem: Learning from uncertain curves in the form of Gaussian Processes (GPs) (important: links to FDA)
- First solution: Distance based learning based on Wasserstein geometry of GPs



Mallasto and F, Learning from uncertain curves, NeurIPS'17

#### Geometric:

- For two GPs f and g, their Wasserstein distance is the limit of the Wasserstein distance between their finite-dimensional GD approximations.
- The Wasserstein geodesic between f and g can be approximated arbitrarily well by the Wasserstein geodesic in the space of finite-dimensional GD approximations.
- The Wasserstein *barycenter* (weighted mean) of a set of GPs is the limit of the Wasserstein barycenter of their finite-dimensional GD approximations.

#### Geometric:

- For two GPs f and g, their Wasserstein distance is the limit of the Wasserstein distance between their finite-dimensional GD approximations.
- The Wasserstein geodesic between f and g can be approximated arbitrarily well by the Wasserstein geodesic in the space of finite-dimensional GD approximations.
- The Wasserstein *barycenter* (weighted mean) of a set of GPs is the limit of the Wasserstein barycenter of their finite-dimensional GD approximations.

#### Computational:

- Distances and geodesics for GDs have analytical formulas (Takatsu'11)
- Barycenters for GDs can be computed via iterative optimization schemes (essentially SGD)

### Practical:

This allows us to use distance-based learning:

- mean GPs (cluster means)
- hierarchical clustering
- permutation tests for equal means



Figure: Clustering, hypothesis testing between populations of GPs

 With weighted means for GPs, we can perform kernel regression (GP-valued output).



Figure: Kernel regression on GPs: Predicted temperature curve distributions over 30 Russian weather stations in the period 1940-2009

#### Limitations:

- Only enables distance-based learning; a bit limited
- Choice of distance is always ad hoc

#### Limitations:

- Only enables distance-based learning; a bit limited
- Choice of distance is always ad hoc

#### Other options?

- Bayesian forced to either make strict model assumptions, or learn how to sample from nontrivial distributions.
- What about "embedding-based" learning such as kernel methods or neural networks?

#### Limitations:

- Only enables distance-based learning; a bit limited
- Choice of distance is always ad hoc

#### Other options?

- Bayesian forced to either make strict model assumptions, or learn how to sample from nontrivial distributions.
- What about "embedding-based" learning such as kernel methods or neural networks?

#### Challenge: Complex data

- Nonlinear constraints and invariances data often lives on manifold or similar
- Nonlinear processing steps, and variance needs to enter with the raw data

#### Limitations:

- Only enables distance-based learning; a bit limited
- Choice of distance is always ad hoc

#### Other options?

- Bayesian forced to either make strict model assumptions, or learn how to sample from nontrivial distributions.
- What about "embedding-based" learning such as kernel methods or neural networks?

#### Challenge: Complex data

- Nonlinear constraints and invariances data often lives on manifold or similar
- Nonlinear processing steps, and variance needs to enter with the raw data

Leaving the question still: How do we properly handle uncertainty when our data is estimated from data?